FPGA-based Key Generator for the Niederreiter
Cryptosystem using Binary Goppa Codes

Wen Wang'!, Jakub Szefer!, and Ruben Niederhagen?

! Yale University, New Haven, CT, USA
{wen.wang.ww349, jakub.szefer}@yale.edu
2 Fraunhofer Institute SIT, Darmstadt, Germany
ruben@polycephaly.org

Abstract. This paper presents an post-quantum secure, efficient, and
tunable FPGA implementation of the key generation algorithm for the
Niederreiter cryptosystem using binary Goppa codes. Our key genera-
tor implementation requires as few as 896,052 cycles to produce both
public and private portions of a key, and can achieve an estimated fre-
quency Fmax of over 240 MHz when synthesized for Stratix V FPGAs.
To the best of our knowledge, this work is the first hardware-based im-
plementation that works with parameters equivalent to, or exceeding,
the recommended 128-bit “post-quantum security” level. The key gener-
ator can produce a key pair for parameters n = 6960, m = 13, ¢t = 119
in only 3.7ms when no systemization failure occurs, and in 3.5 - 3.7ms
on average. To achieve such performance, we implement an optimized
and parameterized Gaussian systemizer for matrix systemization, which
works for any large-sized matrix over any finite field GF(2™). Our work
also presents an FPGA-based implementation of the Gao-Mateer addi-
tive FFT, which only takes about 1000 clock cycles to finish the evalu-
ation of a degree-119 polynomial at 2! data points, for example. The
key generator Verilog HDL code is partly code-generated using Python
and Sage, and can be easily re-generated for different parameters, not
just the ones shown in this paper. Design validation was performed using
Sage, iVerilog simulation, and data from real FPGA hardware.

Keywords: post-quantum cryptography, code-based cryptography, Nie-
derreiter key generation, FPGA, hardware implementation.

1 Introduction

Once sufficiently large and efficient quantum computers can be built, they will
be able to break many cryptosystems used today: Shor’s algorithm [24,25] can
solve the integer factorization problem and the discrete logarithm problem in
polynomial time, which fully breaks cryptosystems built upon the hardness of
these problems, e.g., RSA, ECC, and Diffie-Hellman. In addition, Grover’s algo-
rithm [12] gives a square-root speedup on search problems and improves brute-
force attacks that check every possible key, which threatens, e.g, symmetric key
ciphers like AES. However, a “simple” doubling of the key size can be used as



mitigation for attacks using Grover’s algorithm. To defend against these quan-
tum algorithms, the cryptographic community is investigating cryptosystems
that are secure against attacks by quantum computers in a field called Post-
Quantum Cryptography (PQC).

Currently, there are five popular classes of PQC algorithms: hash-based, code-
based, lattice-based, multivariate, and isogeny-based cryptography [3,23]. Most
code-based public-key encryption schemes are based on the McEliece [19] cryp-
tosystem or the more efficient Niederreiter [21] cryptosystem. This work focuses
on the Niederreiter cryptosystem, which was proposed in 1986, using binary
Goppa codes. There is some work on using QC-MDPC codes, which have smaller
key sizes compared to binary Goppa codes [14]. However, QC-MDPC codes can
have decoding errors, which may be exploited by an attacker [13]. Therefore,
binary Goppa codes are still considered the more mature and secure choice de-
spite their disadvantage in the key size. Until now, the best known attacks on
McEliece/Niederreiter using binary Goppa codes are generic decoding attacks
which can be warded off by a proper choice of parameters [5].

However, there is a tension between the algorithm’s parameters (i.e., the se-
curity level) and the practical aspects, e.g., the size of keys and computation
speed, resulting from the chosen parameters. The PQCRYPTO project [22] rec-
ommends to use a McEliece cryptosystem with binary Goppa codes with code
length n = 6960, adding ¢ = 119 errors, and code rank k£ = 5413 in order to
achieve 128-bit post-quantum security for public-key encryption when account-
ing for the worst-case impact of Grover’s algorithm [1]. The classical security
level for these parameters is about 266-bit [6]. This recommended parameter set
results in a private key of about 13 kB, and a public key of about 1022 kB. These
parameters provide maximum security for a public key of at most 1IMB [5]. Our
tunable design is able to achieve these parameters, and many others, depending
on the user’s needs.

The Niederreiter cryptosystem consists of three subroutines: key generation,
encryption, and decryption. In this paper, we are focusing on the implementation
of the most expensive subroutine in the Niederreiter cryptosystem: the key gen-
eration. The industry PKCS #11 standard defines a platform-independent API
for cryptographic tokens, e.g., hardware security modules (HSM) or smart cards,
and explicitly contains functions for public-private key-pair generation. Further-
more, hardware crypto accelerators, e.g., for IBM’s z Systems, have dedicated
key-generation functions. These examples show that efficient hardware imple-
mentations for key generation will be required also for post-quantum schemes.
We chose FPGAs as target platform since they are ideal for hardware develop-
ment and testing; parts of the hardware code can be re-used for developing an
ASIC design as well.

Due to the confidence in the Niederreiter cryptosystem, there are many
publications on hardware implementations related to this cryptosystem, e.g.,
[15,18,26]. Of the hardware implementations, we are only aware of one which
has considered and presented a hardware implementation of the key generation
algorithm [26]. The key-generation hardware design in [26], however, uses fixed,



non-tunable security and design parameters, which do not meet the current rec-
ommended post-quantum security levels, uses a not constant-time approach for
generating irreducible polynomials, and moreover, has a potential security flaw
by using a non-uniform permutation, which may lead to practical attacks.

Contributions. This paper presents the first post-quantum secure, efficient,
and tunable FPGA-based implementation of the key generation algorithm for
the Niederreiter cryptosystem using binary Goppa codes. The contributions are:

— a key generator with tuneable parameters, which uses code-generation to
generate vendor-neutral Verilog HDL code,

— a constructive, constant-time approach for generating an irreducible Goppa
polynomial,

— an improved hardware implementation of Gaussian systemizer which works
for any large-sized matrix over any finite binary field,

— anew hardware implementation of Gao-Mateer additive FFT for polynomial
evaluation,

— anew hardware implementation of Fisher-Yates shuffle for obtaining uniform
permutations, and

— design validation using a Sage code reference design, iVerilog simulation, and
data from real FPGA runs.

Source code. The source code is available as Open Source at http://caslab.
csl.yale.edu/code/keygen.

2 Niederreiter Cryptosystem and Key Generation

The first code-based public-key encryption system was given by McEliece in
1978 [19]. The private key of the McEliece cryptosystem is a randomly chosen
irreducible binary Goppa code G with a generator matrix G that corrects up to
t errors. The public key is a randomly permuted generator matrix GP"» = SGP
that is computed from G and the secrets P (a permutation matrix) and S (an
invertible matrix). For encryption, the sender encodes the message m as a code-
word and adds a secret error vector e of weight ¢ to get ciphertext ¢ = mGP"™> @e.
The receiver computes cP~! = mSG @ eP~! using the secret P and decodes m
using the decoding algorithm of G and the secret S. Without knowledge of the
code G, which is hidden by the secrets S and P, it is computationally hard to
decrypt the ciphertext. The McEliece cryptosystem with correct parameters is
believed to be secure against quantum computer attacks.

In 1986 Niederreiter introduced a dual variant of the McEliece cryptosys-
tem by using a parity check matrix H for encryption instead of a generator
matrix [21]. For the Niederreiter cryptosystem, the message m is encoded as a
weight-t error vector e of length n; alternatively, the Niederreiter cryptosystem
can be used as a key-encapsulation scheme where a random error vector is used
to derive a symmetric encryption key. For encryption, e is multiplied with H
and the resulting syndrome is sent to the receiver. The receiver decodes the


http://caslab.csl.yale.edu/code/keygen
http://caslab.csl.yale.edu/code/keygen

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: m, t, and n.

Output: Private key (g(z), (a0, @1, ..., an—1)) and public key K.
1 Choose a random sequence (o, a1, . ..,an—1) of elements in GF(2™).
2 Choose a random polynomial g(z) such that g(«) # 0 for all @ € (ao,...,Qn—1).
3 Compute the t x n parity check matrix

1/g(ao)  1/g(a1) --- 1/g(an-1)
ao/g(ao) ai/glen) -+ an—1/g(an-1)

ol Jg(00) o fg(an) - ol Jg(an)

4 Transform H to a mt x n binary parity check matrix H’ by replacing each entry
with a column of m bits.

5 Transform H’ into its systematic form [L,:|K].

6 Return the private key (g(x), (a0, @1,...,an—1)) and the public key K.

received syndrome, and obtains e. Originally, Niederreiter used Reed-Solomon
codes for which the system has been broken [27]. However, the scheme is secure
when using binary Goppa codes. Niederreiter introduced a trick to compress H
by computing the systemized form of the public key matrix. This trick can be
applied to some variants of the McEliece cryptosystem as well.

We focus on the Niederreiter cryptosystem due to its compact key size and
the efficiency of syndrome decoding algorithms. As the most expensive opera-
tion in the Niederreiter cryptosystem is key generation, it is often omitted from
McEliece/Niederreiter implementations on FPGAs due to its large memory de-
mand. Therefore, our paper presents a new contribution by implementing the
key generation algorithm efficiently on FPGAs.

2.1 Key Generation Algorithm

Algorithm 1 shows the key-generation algorithm for the Niederreiter cryptosys-
tem. The system parameters are: m, the size of the finite field, ¢, the number
of correctable errors, and n, the code length. Code rank k is determined as
k = n—mt. We implemented Step 2 of the key-generation algorithm by comput-
ing an irreducible Goppa polynomial g(z) of degree ¢ as the minimal polynomial
of a random element 7 from a polynomial ring over GF(2™) using a power se-
quence 1,7,...,r'~! and Gaussian systemization (see Section 5). Step 3 requires
the evaluation of g(z) at all points {ag, a1, ..., an—1}. To achieve high efficiency,
we decided to follow the approach of [4] which evaluates g(x) at all elements of
GF(2™) using a highly efficient additive FFT algorithm (see Section 4.2). There-
fore, we evaluate g(x) at all & € GF(2™) and then choose the required o; using
Fisher-Yates shuffle by computing a random sequence (g, a1, ..., a,_1) from a
permuted list of indices P. For Step 5, we use an efficient Gaussian systemization
implementation for matrices over GF(2) from [28].



Param. Description Size (bits)| |Config. Description Size (bits)
m  |Size of the finite field 13 g(z) | Goppa polynomial | 120 x 13
t Correctable errors 119 P |Permutation indices| 8192 x 13
n Code length 6960 H |Parity check matrix|1547 x 6960
k Code rank 5413 K Public key 1547 x 5413

Table 1: Parameters and resulting configuration for the key generator.

2.2 Structure of the Paper

The following sections introduce the building blocks for our key generator module
in a bottom-up fashion. First, we introduce the basic modules for arithmetic in
GF(2™) and for polynomials over GF(2™) in Section 3. Then we introduce the
modules for Gaussian systemization, additive FFT, and Fisher-Yates shuffle in
Section 4. Finally, we describe how these modules work together to obtain an
efficient design for key generation in Section 5. Validation of the design using
Sage, iVerilog, and Stratix V FPGAs is presented in Section 6 and a discussion
of the performance is in Section 7.

2.3 Testing Platform

Throughout the paper (except for Table 9), performance results are reported
from Quartus-synthesis results for the Altera Stratix V FPGA (type 5SGXEATN),
including Fmax (maximum estimated frequency, in MHz), Logic (logic usage,
counted in Adaptive Logic Modules, also called ALMs), Mem. (memory usage,
counted in Block RAMs), and Reg. (registers, counted in ALMs used for the
register bits). Cycles are derived from iVerilog simulation. Time is calculated
based on Fmax and Cycles. Timex Area is calculated based on Cycles and Logic.

3 Field Arithmetic

The lowest-level building blocks in our implementation are GF(2™) finite field
arithmetic and on the next higher level GF(2™)[z]/f polynomial arithmetic.

3.1 GF(2™) Finite Field Arithmetic

GF(2™) represents the basic finite field in the Niederreiter cryptosystem. Our
code for all the hardware implementations of GF(2™) operations is generated by
code generation scripts, which take in m, the size of the finite field, as a param-
eter, and then automatically generate the corresponding Verilog HDL code.

GF(2™) Addition. In GF(2™), addition corresponds to a simple bitwise xor
operation of two m-bit vectors. Therefore, each addition has negligible cost and
can often be combined with other logic while still finishing within one clock cycle,
e.g., a series of additions or addition followed by multiplication or squaring.

GF(2™) Multiplication. Multiplication over GF(2) is one of the most used
operations in the Niederreiter cryptosystem. A field multiplication in GF(2™) is



Algorithm Logic Reg. Fmax (MHz)

Schoolbook Algorithm 90 78 637
2-split Karatsuba Algorithm 99 78 625
3-split Karatsuba Algorithm 101 78 529
Bernstein 87 78 621

Table 2: Performance of different field multiplication algorithms for GF(2'%).

composed of a multiplication in GF(2)[z] and reduction modulo f, where f is a
degree-m irreducible polynomial. For the case of m = 13, we use the pentanomial
f(z) = 213 + 2* + 2% + x + 1 since there is no irreducible trinomial of degree 13.
We are using plain schoolbook multiplication, which turns out to deliver good
performance. Table 2 shows that the schoolbook version of GF(2'3) multiplica-
tion achieves a higher Fmax while requiring less logic compared to several of our
implementations using Karatsuba multiplication [17,20]. The performance of the
schoolbook version is similar to Bernstein’s operation-count optimized code [2].
We combine multiplication in GF(2)[z] and reduction modulo f such that one
GF(2™) multiplication only takes one clock cycle.

GF(2™) Squaring. Squaring over GF(2™) can be implemented using less logic
than multiplication and therefore an optimized squaring module is valuable for
many applications. However, in the case of the key generation algorithm, we
do not require a dedicated squaring operation since an idle multiplication mod-
ule is available in all cases when we require squaring. Squaring using GF(2™)
multiplication takes one clock cycle.

GF(2™) Inversion. Inside the GF(2™) Gaussian systemizer, elements over
GF(2™) need to be inverted. An element a € GF(2™) can be inverted by comput-
ing a=! = alGF2™)I=2 This can be done with a logarithmic amount of squarings
and multiplications. For example, inversion in GF(2!?) can be implemented us-
ing twelve squarings and four multiplications. However, this approach requires
at least one multiplication circuit (repeatedly used for the four multiplications)
plus some overhead and has a latency of several cycles in order to achieve high
frequency. Therefore, we decided to use a pre-computed lookup table for the
implementation of the inversion module. For inverting an element a € GF(2™),
we convert the bit-representation of a to an integer value and use this value as
address into the lookup table. For convenience, we added an additional bit to
each value in the lookup table that is set high in case the input element a can
not be inverted, i.e., a = 0. This saves additional logic that otherwise would be
required to check the input value. Thus, the lookup table has a width of m + 1
and a depth of 2™, and each entry can be read in one clock cycle. The lookup
table is read-only and therefore can be stored in either RAM or logic resources.

3.2 GF(2™)[z]/f Polynomial Arithmetic

Polynomial arithmetic is required for the generation of the secret Goppa poly-
nomial. GF(2™)[z]/f is an extension field of GF(2™). Elements in this extension



Algorithm Mult. Cycles Logic TimexArea Fmax (MHz)

1-level Karatsuba 17 x (20 x 20) 20 377 11,860  4.47-10° 342
2-level Karatsuba 17 x 17 x (4x4) 4 1788 11,584  2.07-107 254
2-level Karatsuba 17 x 17 x (4x4) 16 632 12,706  8.03-10° 151

Table 3: Performance of different multiplication algorithms for degree-118 polynomials.

field are represented by polynomials with coefficients in GF(2™) modulo an irre-
ducible polynomial f. We are using a sparse polynomial for f, e.g., the trinomial
2™ 4+ 28 + 1, in order to reduce the cost of reduction.

Polynomial Addition. The addition of two degree-d polynomials with d + 1
coefficients is equivalent to pair-wise addition of the coefficients in GF(2™).
Therefore, polynomial addition can be mapped to an xor operation on two m(d+
1)-bit vectors and finishes within one clock cycle.

Polynomial Multiplication. Due to the relatively high cost of GF(2™) multi-
plication compared to GF(2™) addition, for polynomials over GF(2™) Karatsuba
multiplication [17] is more efficient than classical schoolbook multiplication in
terms of logic cost when the size of the polynomial is sufficiently large.

Given two polynomials A(z) = 3°°_ a;a* and B(z) = 327, bz, schoolbook
polynomial multiplication can be implemented in hardware as follows: Calculate
(asbo, asbo, . .., apby) and store the result in a register Y. Then similarly calculate
(asbi, agb;, . .., apb;), shift the result left by ¢ - m bits, and then add the shifted
result to Y, repeat for all ¢ = 1,2,...,5. Finally the result stored in register
Y is the multiplication result (before reduction). One can see that within this
process, 6 x 6 GF(2™) multiplications are needed.

Karatsuba polynomial multiplication requires less finite-field multiplications
compared to schoolbook multiplication. For the above example, Montgomery’s
six-split Karatsuba multiplication [20] requires only 17 field element multipli-
cations over GF(2™) at the cost of additional finite field additions which are
cheap for binary field arithmetic. For large polynomial multiplications, usually
several levels of Karatsuba are applied recursively and eventually on some low
level schoolbook multiplication is used. The goal is to achieve a trade-off between
running time and logic overhead.

The multiplication of two polynomials of degree d =t — 1 is a key step in the
key-generation process for generating the Goppa polynomial g(z). Table 3 shows
results of several versions of polynomial multiplication for ¢ = 119, i.e., d = 118,
using parameterized six-split Karatsuba by adding zero-terms in order to obtain
polynomials with 120 and 24 coefficients respectively. On the lowest level, we use
parameterized schoolbook multiplication. The most efficient approach for the
implementation of degree-118 polynomial multiplication turned out to be one
level of six-split Karatsuba followed by schoolbook multiplication, parallelized
using twenty GF(2'3) multipliers. Attempts using one more level of six-split
Karatsuba did not notably improve area consumption (or even worsened it) and
resulted in both more cycles and lower frequency. Other configurations, e.g.,
five-split Karatsuba on the second level or seven-split Karatsuba on the first



level, might improve performance, but our experiments do not indicate that
performance can be improved significantly.

In the final design, we implemented a one-level six-split Karatsuba multipli-
cation approach, which uses a size- {%1 schoolbook polynomial multiplication
module as its building block. It only requires 377 cycles to do one multiplication

of two degree-118 polynomials.

4 Key Generator Modules

The arithmetic modules are used as building blocks for the units inside the
key generator, shown later in Figure 2. The main components are: two Gaus-
sian systemizers, Gao-Mateer additive FFT used for polynomial evaluation, and
Fisher-Yates shuffle for generating uniformly distributed permutations.

4.1 Gaussian Systemizer

Matrix systemization is needed for generating both the private Goppa polyno-
mial g(x) and the public key K. Therefore, we require one module for Gaussian
systemization of matrices over GF(2!?) and one module for matrices over GF(2).
We use a modified version of the highly efficient Gaussian systemizer from [28]
and adapted it to meet the specific needs for Niederreiter key generation. The
prior design in [28] used a N x N square processor array to compute on column
blocks of the matrix. The size of this processor array is parameterized and can
be chosen to either optimize for performance or for resource usage.

The design from [28] only supported systemization of matrices over GF(2).
An important modification that we applied to the design is the support of arbi-
trary finite fields — we added a finite field inverter to the diagonal “pivoting”
elements of the processor array and finite field multipliers to all the processors.
This results in a larger resource requirement compared to the GF(2) version but
the longest path still remains within the memory module and not within the
computational logic for computations on large matrices.

4.2 Gao-Mateer Additive FFT

Given a polynomial g(z) = 22:0 g:xt, evaluating it at n data points over GF(2™)
is an essential step for generating the parity check matrix H. Applying Horner’s
rule is a common approach for polynomial evaluation. For example, an polyno-
mial f(z) = ZLO fix® of degree 7 can be evaluated at a point o using Horner’s
rule as

fla) = fra” + fea® + -+ fra+ fo
= (((fra+ fo)a+ fs)a+ fa)... )a+ fo

using 7 additions and 7 multiplications by «. More generically speaking, one
evaluation of a polynomial of degree d requires d additions and d multiplications
using Horner’s rule. Evaluating several points scales linearly. The asymptotic
time complexity of polynomial evaluation using Horner’s rule is O(n - d).



In order to reduce this cost, we use a characteristic-2 additive FFT algorithm
introduced in 2010 by Gao and Mateer [11], which was used for multipoint poly-
nomial evaluation by Chou in 2013 [4]. This algorithm evaluates a polynomial
at each element in a field GF(2™) using a number of operations logarithmic
in the length of the polynomial. Most of these operations are additions, which
makes this algorithm particularly suitable for hardware implementations. The
asymptotic time complexity of additive FFT is O(2™- log, d).

The basic idea of the algorithm is to write f in the form f(z) = f©) (22 4z)+
zfM (22 + ), where £O)(z) and £ (z) are two half-degree polynomials, using
radiz conversion. The format of f shows a large overlap between evaluating f(«)
and f(a+1). Since (a+1)? + (a + 1) = a® + a for a € GF(2™), we have:

fla) = f(o)(oz2 +a)+ ozf(l)(oz2 +a)
fla+1) = fO%0*+a) + (a+1)fM(a® + ).

Once f(© and f() are evaluated at a? + a, it is easy to get f(a) by performing
one field multiplication and one field addition. Now, f(a+ 1) can then be easily
computed using one extra field addition as f(a + 1) = f(a) + fM(a? + ).
Additive FFT applies this idea recursively until the resulting polynomials f(©)
and f(1) are 1-coefficient polynomials (or in another word, constants). During the
recursive operations, in order to use the a and a + 1 trick, a twisting operation
is needed for all the subspaces, which is determined by the new basis of f(°) and
f®). Finally, the 1-coefficient polynomials of the last recursion step are used to
recursively evaluate the polynomial at all the 2™ data points over GF(2™) in a
concluding reduction operation.

Radix Conversion. Radix conversion converts a polynomial f(z) of coefficients
in GF(2™) into the form of f(z) = f©) (22 4-x)+xf1) (224x). As basic example,
consider a polynomial f(z) = fo + fix + fox? + f323 of 4 coefficients with basis
{1, 2,22, 23}. We compute the radix conversion as follows: Write the coefficients
as a list [fo, f1, f2, f3]. Add the 4'" element to the 34 element and add the
new 3'4 element to the 2°¢ element to obtain [fo, fi + f2 + f3, fo + f3, f3]. This
transforms the basis to {1, z, (% + z), #(2? + 1)}, we have

F@) = fot+ (fr+ o+ f3)r + (fo+ f3)(@® +2) + faz(a® + @)
= (fo+ (f24 f3)(@® +2) +2((fr + fo + f3) + [3(2® + 1))
= fO@2 +2)+2fV (2?4 2)

with fO(z) = fo+ (fo + fs)o and fD(x) = (f1 + f2+ f3) + fa.

For polynomials of larger degree, this approach can be applied recursively.
Consider a polynomial g(z) = go + g1 + g22% + g323 + gax* + g52° + ge2® + gra”
of 8 coefficients. Write g(z) as a polynomial with 4 coefficients, i.e.,

9(x) = (g0 + 91%) + (g2 + g32)2* + (94 + gs2)2* + (g6 + grz)2.



Perform the same operations as above (hint: substitute 22 with y and re-substitute
in the end) to obtain

9(x) = (90 + 912) + ((92 + g3) + (94 + gs) + (96 + g72)) 2
+ ((94 + g5%) + (g6 + grz)) (2? + ) + (g6 + grx)2? (2® + z)?
= (90 + 912) + ((92 + 94 + g6) + (93 + g5 + g7)z) 2
+ (94 + g6) + (95 + 7)) (2" + 2)* + (g6 + gr2)2® (2” + 2)?
with basis {1, z, 22,23, (2% + 2)2, z(2? + )%, 2%(2? + 2)?, 23 (2? + x)?}.
Now, recursively apply the same process to the 4-coefficient polynomials

9V (@) = go+ g1z + (92 + ga + g6)2% + (93 + g5 + g7)2> and g®) (z) = (g4 + g6) +
(95 + g7) + g6x® + g7, This results in

g™ (@) = go+ (91 + g2+ g3 + g1 + g5 + g6 + g7)x
+(g2+93+gs+9g5+9gs+ 97)(962 +x)+ (93 + 95+ 97)35(332 + ), and
g™ () = (g4 + g6) + (95 + 96)x + (96 + 97) (x? + 2) + gra(2® + x).

Substituting g™ (x) and ¢® () back into g(x), we get

9(x) = go

+ (91 + 92+ 93+ 92+ g5 + g6 + g7)x

+ (92 + 93+ 94+ g5 + g6 + g7)(2* + 2)
+ (93 + g5 + g7)z(z® + x)

+ (92 + g6) (2% + 2)?

+ (g5 + g)x(2® + x)*

+ (g6 + g7)(z* + z)°

+ (g7)x(2® +x)*.

with basis {1, z, (22 +2)!, 2(22 +2), ..., (22 +2)%, 2(2® +2)3}. This representa-
tion can be easily transformed into the form of g(z) = ¢(0 (2 +2) +2g™M (2 + ).

In general, to transform a polynomial f(x) of 2* coefficients into the form
of f = fOz?+z) 4+ 2fD(2? + z), we need 2 size-2F~% i = 0,1,.., k radix
conversion operations. We will regard the whole process of transforming f(x)
into the form of f(© (22 + z) + 2 (22 + z) as one complete radix conversion
operation for later discussion.

Twisting. As mentioned above, additive FFT applies Gao and Mateer’s idea
recursively. Consider the problem of evaluating an 8-coefficient polynomial f(x)
for all elements in GF(2%). The field GF(2*) can be defined as: GF(2%) =
{0,a,...,a®+a*+a,1,a+1,..., (a®+a®+a)+1} with basis {1,a,a?,a}. After
applying the radix conversion process, we get f(z) = f(© (22 +z)+2fM (2®+x).
As described earlier, the evaluation on the second half of the elements (“...+17)
can be easily computed from the evaluation results of the first half by using

10



the a and « + 1 trick (for a € {0,a,...,a® + a? + a}). Now, the problem turns
into the evaluation of f(°)(z) and fM)(z) at points {0,a® + a,...,(a® + a® +
a)? + (a® + a®> + a)}. In order to apply Gao and Mateer’s idea again, we first
need to twist the basis: By computing f©)(z) = f©((a2 + a)z), evaluating
fOz) at {0,a® + a,...,(a® + a® + a)? + (a® + a® + a)} is equivalent to evalu-
ating f(o/)(x) at {0,1,...,a% + a® + a}. Similarly for f(V)(z), we can compute
FO(z) = fD((a®+a)z). After the twisting operation, both f(©) and f(") have
the basis {1, a,a?, a®}. Therefore, this step equivalently twists the bases that we
are working with. Now, we can perform radix conversion and apply the a and
o+ 1 trick on f©)(z) and 1)) (z) recursively again.

The basis twisting for f(°)(z) and f()(z) can be mapped to a sequence of
field multiplication operations on the coefficients. Let 8 = a? 4 a. f; denotes the
i-th coefficient of a polynomial f(x). For a degree-7 polynomial f(x), we get:

1’ 1’ 1’ 1’ o’ o’ o’ o’
A, S0 0 p 80 00 g0 L0 500y

— 18251, 82150, 8F 0, ;0. g3 £ 82 150 g0 pO

When mapping to hardware, this step can be easily realized by an entry-wise
multiplication between the polynomial coefficients and powers of 3, which are
all independent and can be performed in parallel. Given a size-2* polynomial
of coefficients from GF(2™), each twisting step takes 2 GF(2™) multiplication
operations. In our implementation, we use a parameterized parallel multiplier
module that is composed of multiple GF(2™) multipliers. The number of GF(2™)
multipliers is set as a parameter in this module, which can be easily adjusted to
achieve an area and running time trade-off, as shown in Table 4.

Reduction. Evaluating a 2*-coefficient polynomial f(z) € GF(2™)[z] at all
elements in GF(2™) requires k twisting and k radix conversion operations. The
last radix conversion operation operates on 2~ size-2 polynomials of the form
g(x) = a+ bx. We easily write g(z) as g(z) = ¢(0 (22 + z) + 29 (22 + x) using
g9 (x) = a,gM(z) = b. At this point, we finish the recursive twist-then-radix-
conversion process, and we get 2¥ polynomials with only one coefficient. Now
we are ready to perform the reduction step. Evaluation of these 1-coefficient
polynomials simply returns the constant value. Then by use of g(a) = ¢(® (a2 +
a)+agM(a? +a) and g(a+1) = g(a) + g9 (a® + «), we can recursively finish
the evaluation of the polynomial f at all the 2™ points using [log,(t)] recursion
steps and 2™~ multiplications in GF(2™) in each step.

Non-recursive Hardware Implementation. As shown in Figure 1, the re-
cursive algorithm is mapped to a non-recursive hardware implementation. Given
a size-2* polynomial, the twist-then-radix-conversion process is repeated for k
times, and an array containing the coefficients of the resulting 1-coefficient poly-
nomials is fed into the reduction module. Inside the reduction module, there
are two memory blocks: A data memory and a constants memory. The data
memory is initialized with the 1-coefficient polynomials and gets updated with
intermediate reduction data during the reduction process. The constants mem-
ory is initialized with elements in the subspace of f(© and f(), which are pre-

11



g(a) Evaluation (Additive FFT)

‘%‘) : Reduction S
. H I
8 = f(Bx) i (f,f) ]
g - R 9x) ,f(x) Twisting Radix > > %
& : Conversion data const. | |1 O
£ emory| [memory| T
o o)
u R
Fig.1: Dataflow diagram of Gao-Mateer additive FFT.
Multipliers

Twist Reduction Cycles Logic TimexArea Mem. Reg. Fmax (MHz)

4 32 1188 11,731 1.39 - 107 63 27,450 399

8 32 1092 12,095 1.32- 107 63 27,470 386

16 32 1044 12,653 1.32- 107 63 27,366 373

32 32 1020 14,049 1.43 - 107 63 26,864 322

Table 4: Performance of additive FFT using different numbers of multipliers for twist.

generated via Sage code. Intermediate reduction data is read from the data
memory while subspace elements are read from the constants memory. Then re-
duction computations are done following the reduction pattern by use of addition
and multiplication submodules. The computed intermediate reduction results are
then written back to the data memory. The reduction step is repeated until the
evaluation process is finished and the final evaluation results are stored in the
data memory.

Performance. Table 4 shows performance and resource-usage for our additive
FFT implementation. For evaluating a degree-119 Goppa polynomial g(x) at all
the data points in GF(2!3), 32 finite filed multipliers are used in the reduction
step of our additive FFT design in order to achieve a small cycle count while
maintaining a low logic overhead. The twisting module is generated by a Sage
script such that the number of multipliers can be chosen as needed. Radix con-
version and twisting have only a small impact in the total cycle count; therefore,
using only 4 finite filed multipliers for twisting results in good performance. The
memory required for additive FFT is only a small fraction of the overall memory
consumption of the key generator.

4.3 Random Permutation: Fisher-Yates Shuffle

Computing a random list of indices P = [r(0),7(1),...,7(2™ —1)] for a permu-
tation m € Som (here, S; denotes the symmetric group on {0,1,...,i — 1}), is
an important step in the key-generation process. We compute P by performing
Fisher-Yates shuffle [10] on the list [0,1,...,2™ — 1] and then using the first n
elements of the restulting permutation. We choose Fisher-Yates shuffle, because
it requires only a small amount of computational logic. Algorithm 2 shows the
Fisher-Yates shuffle algorithm.

12



Algorithm 2: Fisher-Yates shuffle
Output: shuffled array A
Initalize: A = {0,1,...,n — 1}

1 for i from n — 1 downto 0 do

2 Generate j uniformly from range[0, i]
3 Swap A[i] and A[j]

m Size (= 2™) Cycles (avg.) Logic TimexArea Mem. Reg. Fmax (MHz)
13 8192 24,576 149 3.66 - 10° 7 111 335

Table 5: Performance of the Fisher-Yates shuffle module for 2'2 elements.

We implemented a parameterized permutation module by use of a dual-port
memory block of depth 2™ and width m. First, the memory block is initialized
with contents [0,1,...,2™ — 1]. Then, the address of port A decrements from
2™ —1 to 0. For each address A, a PRNG keeps generating new random numbers
as long as the output is larger than address A. Therefore, our implementation
does not produce a biased permutation (under the condition that the PRNG
has no bias) but it is not constant-time. Once the PRNG output is smaller than
address A, this output is used as the address for port B. Then the contents of the
cells addressed by A and B are swapped. Since we are using a dual-port memory
in our implementation, a memory swapping operation can be finished within
two cycles, one cycle for reading the current values and one cycle for writing the
swapped values. We improve the probability of finding a random index smaller
than address A by using only [log,(A)] bits of the PRNG output. In total, our
implementation requires on average 1.5-2™%1 cycles. Table 5 shows performance
data for our Fisher-Yates shuffle module.

5 Key Generator for the Niederreiter Cryptosystem

Using two Gaussian systemizers, Gao-Mateer additive FFT, and Fisher-Yates
shuffle, we designed the key generator as shown in Figure 2. Note that the
design uses two PRNGs to enable deterministic testing. For real deployment,
these PRNGs must be replaced with a true random number generator, e.g., [7].
We require at most m random bits per clock cycle per PRNG.

5.1 Private Key Generation

The private key consists of an irreducible Goppa polynomial g(x) of degree t
and a permutated list of indices P.

Goppa Polynomial g(z). The common way for generating a degree-d irre-
ducible polynomial is to pick a polynomial g of degree d uniformly at random,
and then to check whether it is irreducible or not. If it is not, a new polynomial
is randomly generated and checked, until an irreducible one is found. The den-
sity of irreducible polynomials of degree d is about 1/d [19]. When d =t = 119,

13



Goppa Polynomial Gen. g_out K_out

g portion A A
: K portion
>
> H : E 9(a) ‘
R > R ~»  Evaluation E
Generator : : (Additive FFT) Hi
7y GF(2") ; I
— Gaussian [« : Y
PRNG Systemizer : H GF(2)
Generator Gaussian [«

PRNG |-| P : Systemizer
> Generator > P ’ +

(Fisher-Yates Shuffle)

Darmiitation (Co ' Public Kev K Ceoe
Permutation Gen. : Public Key K Gen.

Fig. 2: Dataflow diagram of the key generator. Functional units are represented as white
boxes and memory blocks represented as grey boxes. The ports g_out and P_out are
for the private key data, and the port K_out is for to the public key data.

the probability that a randomly generated degree-119 polynomial is irreducible
gets quite low. On average, 119 trials are needed to generate a degree-119 ir-
reducible polynomial in this way. Moreover, irreducibility tests for polynomials
involve highly complex operations in extension fields, e.g., raising a polynomial
to a power or finding the greatest common divisor of two polynomials. In the
hardware key generator design in [26], the Goppa polynomial g(z) was generated
in this way, which is inefficient in terms of both time and area.

We decided to explicitly generate an irreducible polynomial g(z) by us-
ing a deterministic, constructive approach. We compute the minimal (hence
irreducible) polynomial of a random element in GF(2™)[z]/h with deg(h) =
deg(g) = t: Given a random element r from the extension field GF(2™)[x]/h,
the minimal polynomial f of r is defined as the non-zero monic polynomial of
least degree with coefficients in GF(2™) having r as a root, i.e., f(r) = 0. The
minimal polynomial of a degree-(t — 1) element from field GF(2™)[z]/h is always
of degree t and irreducible if it exists.

The process of generating the minimal polynomial f for a random element
r is as follows: Given random element r(z) = Zf;é rixt, all 7, € GF(2™) with
minimal polynomial f(z) = fo + fiz + -+ + fio12t~! + ', since f(r) = 0,
we have fy + fir + - -+ fi_ir*™! +r* = 0 or equivalently written using vec-
tors (17,77 ..., (v V)T, (v)T) - (fo, f1,---» fi—1,1)T = 0. Note that since R =
AT T (DT ()T is a t x (t+ 1) matrix while f = (fo, f1,.--, fi—1,1)T
is a size-(t + 1) vector, we have:

0re—1 - ()1 [ fo

0rp—g - (r'),_o fi
R-f=1+ 1 . ; = 0.

0 r --- (r'), Ji—1

1 rg -+ (r'), 1



Nr Cycles Logic TimexArea Mem. Reg. Fmax (MHz)

1 922,123 2539 2.34-10° 14 318 308
2 238,020 5164 1.23-10° 14 548 281
4 63,300 10,976 6.95 - 10® 13 1370 285

Table 6: Performance of the GF(2™) Gaussian systemizer for m = 13 and ¢ = 119, i.e.,
for GF(2'%) and a 119 x 120 matrix.

Now, we can find the minimal polynomial by treating f as variable and
by solving the resulting system of equations for f. By expanding this matrix-
vector multiplication, we get ¢ linear equations which uniquely determine the
solution for (fo, f1,..., fi—1). Solving systems of linear equations can be easily
transformed into a matrix systemization problem, which can be handled by doing
Gaussian elimination on the coefficient matrix R.

In our hardware implementation, first a random number generator is used,
which generates t random m-bit strings for the coefficients of r(z) = Zﬁ;é rizt.
Then the coefficient matrix R is calculated by computing the powers of 1,7, ..., r¢,
which are stored in the memory of the GF(2™) Gaussian systemizer. We re-
cursively use the six-split Karatsuba polynomial multiplier, which is described
in Section 3.2, to compute the powers of r. After each multiplication, the re-
sulting size-t polynomial is written to the memory inside the GF(2™) Gaus-
sian systemizer. (Our Gaussian-systemizer module operates on column-blocks of
width Ng. Therefore, the memory contents are actually computed block-wise.)
This multiply-then-write-to-memory cycle is repeated until R is fully calculated.
After this step is done, the memory inside the GF(2™) Gaussian systemizer has
been initialized with the coefficient matrix R.

After the initialization, the Gaussian elimination process begins and the co-
efficient matrix R is transformed into its reduced echelon form [I;|g]. Now, the
right part of the result contains all the unknown coefficients of the minimal
polynomial f, or equivalently: g7 = (go,91,--.,9:t-1) = (fo, f1,---, fi—1). By
the end of this step, the minimal polynomial of r is uniquely determined by:
f@)=go+qz+-+ g1z 2t

The part of memory which stores the coefficients of the Goppa polynomial
g(z) is shown as the “g-portion” in Figure 2. Later the memory contents stored
in the g-portion are read out and sent to the g(x) evaluation step, which uses
the additive FFT module to evaluate the Goppa polynomial g(x) at every point
in field GF(213).

Performance. Table 6 shows the impact of different choices for the Gaussian-
systemizer parameter Ny for a matrix of size 119 x 120 in GF(2'3). Ny defines
the size of the Np x Np processor array of the Gaussian systemizer [28] and
implicitly the width of the memory that is used to store the matrix. Therefore,
it has an impact on the number of required memory blocks, because the synthesis
tools usually require more memory blocks for wider memory words to achieve
good performance and because we have to add zero-columns to the matrix to
make the number of columns a multiple of Ng. In this case, the memory is

15



used most efficiently for Ng = 4. When doubling Ng, the number of required
cycles should roughly be quartered and the amount of logic should roughly be
quadrupled. However, the synthesis results show a doubling pattern for the logic,
which is due to some logic overhead that would vanish for larger Ng.

Random Permutation P. In our design, a randomly permuted list of indices
of size 213 is generated by the Fisher-Yates shuffe module and the permutation
list is stored in the memory P in Figure 2 as part of the private key. Later
memory P is read by the H generator which generates a permuted binary form
the parity check matrix. In our design, since n < 2™, only the contents of the
first n memory cells need to be fetched.

5.2 Public Key Generation

As mentioned earlier, the public key K is the systemized form of the binary
version of the parity check matrix H. In [26], the generation of the binary version
of H is divided into two steps: first compute the non-permuted parity check
matrix and store it in a memory block A, then apply the permutation and store
the binary form of the permuted matrix into a new memory block B, which is
of the same size as A. This approach requires simple logic but needs two large
memory blocks A and B.

In order to achieve better memory efficiency, we omit the first step, and
instead generate a permuted binary form H’ of the parity check matrix in one
step. We start the generation of the public key K by evaluating the Goppa
polynomial g(x) at all @ € GF(2™) using the Gao-Mateer additive FF'T module.
After the evaluation, the results are stored in the g(«) data memory of the
additive FF'T module.

Now, we generate the permuted binary parity check matrix H' and store it in
the memory of the GF(2) Gaussian systemizer. Suppose the permutations indices
stored in memory P are [po,p1,--.,Pn—1,---,P2m_1], then H' is mathematically
defined as:

glap,) — 1/glap,) -+ 1/g(ap,_,)
apo/g(apo) apl/g(apl) '”apn—l/g(apn—l)

/

gy /9(m,) ot glap,) - ot Jg(ap, )

To generate the first column of H’, the first element pg from P is fetched and
stored in a register. Then, the corresponding polynomial evaluation value g(«,,)
is read out from the g(«) data memory of the additive FET module. This value is
then inverted using a GF(2™) inverter. After inversion, we get 1/g(a,,) which is
the first entry of the column. The second entry is calculated by a multiplication of
the first entry row and oy, the third entry again is calculated by a multiplication
of the previous row and a,, ans so on. Each time a new entry is generated,
it is written to the memory of the GF(2) Gaussian systemizer (bit-wise, one
bit per row). This computation pattern is repeated for all pg, p1, ..., pn—1 until

16



Ny Cycles Logic TimexArea Mem. Reg. Fmax (MHz)

10 150,070, 801 826 1.24-10** 663 678 257
20 38,311,767 1325  5.08-10'° 666 1402 276
40 9,853,350 3367 3.32-10'° 672 4642 297
80 2,647,400 10,983 2.91-10° 680 14,975 296
160 737,860 40,530 2.99-10'° 720 55,675 290
320 208,345 156,493  3.26-10'°C 848 213,865 253

Table 7: Performance of the GF(2) Gaussian systemizer for a 1547 x 6960 matrix.

H' is fully calculated. After this step, the memory inside the GF(2) Gaussian
systemizer contains H'. (Again, this process is actually performed on column-
blocks on width Ny due to the architecture of the Gaussian systemizer.) After
initializing the memory contents of the GF(2) Gaussian systemizer with H’, the
Gaussian systemization process is started.

When the fail signal from the output of the GF(2) Gaussian systemizer is
detected, key generation needs to be restarted. In case Gaussian systemization
succeeds, the left part of the matrix has been transformed into a mt x mt identity
matrix and the right side is the mt x k public key matrix K, labeled “K-portion”
in Figure 2.

Success Probability. The number of invertible mt x mt matrices over GF(2) is
the order of the general linear group GL(mt, GF(2)), i.e., H;”Ztal 2™t 23, The to-
tal number of m¢ x mt matrices over GF(2) is 20m")°  Therefore, the probability of
a random mt x mt matrix over GF(2) being invertible is H;.Tial gmt _ 97 /9(m1)*
For mt = 13- 119 = 1547 the probability is about 29%. Thus, on average we
need about 3.5 attempts to successfully generate a key pair.

Performance. Table 7 shows the effect of different choices for parameter Ny
on a matrix of size 1547 x 6960 in GF(2). Similar to the GF(2™) Gaussian
systemizer, Ny has an impact on the number of required memory blocks. When
doubling Ny, the number of required cycles should roughly be quartered (which
is the case for small Ny ) and the amount of logic should roughly be quadrupled
(which is the case for large Np). The best time-area product is achieved for
Ny = 80, because for smaller values the non-computational logic overhead is
significant and for larger values the computational logic is used less efficiently.
Fmax is mainly limited by the paths within the memory.

6 Validation

We validate our hardware implementation using a validation process based on
Sage [9], iVerilog [16] and data from real execution on an Altera Stratix V FPGA
(type 5SGXEAT7N) from the Terasic DE5-Net FPGA Development Kit. This
validation process cannot catch all implementation errors since it depends on a
correct Sage implantation and since only a very small subset of possible input
values can be checked in reasonable time. However, it gives valuable debugging

17



information during the implementation process and increases trust in the cor-
rectness of the overall implementation.

Parameters and PRNG Inputs. First, a set of parameters is chosen, which
are usually the system parameters (m, t, n, and k) of the cryptosystem. For
the key generator, apart from the system parameters, two hardware parame-
ters, Ng and Np are picked, which configure the size of the processor arrays
in the GF(2™) and GF(2) Gaussian systemizers. When using a PRNG, random
seeds are used for generating a deterministic output. Given these parameters
and random seeds as input, Sage code corresponding to each module generates
the input data for that module. For example, for the additive FFT module, the
coefficients of a random polynomial are generated and stored in a data.in file.
Later, the parameters, seeds and data.in are fed into different testing platforms
for deterministic validation, as discussed below.

Sage Results vs. iVerilog Simulation Results. The first level of the val-
idation is the generation of a reference result by use of a Sage code for each
module. The Sage code uses the pre-defined functions from the Sage package for
the field arithmetic, etc. Given the parameters, seeds, and data.in file as input,
it generates the reference results. These results can be compared with hardware
simulation output. For each module, the Verilog HDL code is simulated with
the iVerilog simulator by the use of a testbench file, which initializes all input
values and control signals. For example, for the additive FF'T module, the test-
bench file generates all the input control signals (clk, start, etc.), and reads input
polynomial from data.in. After the simulation is done, the testbench writes its
result to a data output file. Finally, the simulation result can be compared to
the reference result obtained earlier from Sage. If these two results match, the
hardware code is validated and assumed to be functionally correct.

Sage & iVerilog Results vs. FPGA Results. After the hardware design has
been validated through simulation, the real FPGA testing is carried out on an
Altera Stratix V FPGA. The FPGA design is compiled with the Altera Quartus
16.1 tools. We use a PCle interface for communication with the FPGA. After a
test finishes, the FPGA output (in the case of the key-generator test, this is the
contents of the H, R and P memories), is read-out into a data file. Then the
output from the FPGA is compared to the output of iVerilog and Sage. If the
outputs match, the design is assumed to be functionally correct.

7 Evaluation

We tested the final design on an Altera Stratix V FPGA (type 5SGXEATN).
In addition, we synthesized the design for a Xilinx UltraScale+ VUP9 FPGA
for comparison. Based on the PQCRYPTO project [22] recommendations, the
following system parameters were selected: m = 13, t = 119, n = 6960 and
k = 5413. These parameters were specified in [5] for a target public key size
of about 1MB. They provide a classical security level of about 266-bit which
corresponds to a post-quantum security level of at least 128-bit.

18



Case Ny Ngr Cycles Logic TimexArea Mem. Fmax Time

Altera StratixV
logic 40 10 11,121,220 29,711 3.3-10* 756 240MHz 46.43ms
bal. 80 40 3,062,942 48,354 1.48-10'' 764 248MHz 12.37ms
time 160 80 896,052 101,508 9.1-10' 803 243MHz 3.68ms

Xilinx Virtex Ultrascale+
logic 40 10 11,121,220 42,632 4.74-10'' 348.5 200MHz 55.64ms
bal. 80 40 3,062,942 60,989 1.87-10'' 356 221MHz 13.85ms
time 160 80 896,052 112,845 1.01-10' 375 225MHz 3.98ms

Table 8: Performance of the key generator for three cases: low logic consumption (logic),
low time requirements (time), and balanced between logic and time (bal.). All the
numbers in the table come from compilation reports of the Altera and Xilinx tool
chains respectively. For Xilinx, logic utilization is counted in LUTs.

Design m t n  Cycles (avg.) Freq. Time (avg.) Arch.
Shoufan et al. [26] 11 50 2048 1.47-107 163MHz 90ms Virtex V
This Work 11 50 2048 2.72-10° 168MHz 16ms Virtex V
Chou [8] 13 128 8192 3.1-10° (3GHz) (1033ms) Ivy Bridge
Chou [] 13 128 8192 1.3-10° (3GHz)  (435ms) Haswell
This Work 13 128 8192 3.71-10° 240MHz 15ms Stratix V

Table 9: Comparison with related work. Cycles and Time are average values, taking
into account failure cases. Specific frequency are not given in [8]; we report a derived
runtime for 3GHz as example.

Due to the large size of the permuted parity check matrix H, generating
the public key K by doing matrix systemization on the binary version of H is
usually the most expensive step both in logic and cycles in the key generation
algorithm. In our key generator, independently of the security parameters, the
design can be tuned by adjusting Nr and Ny, which configures the memory
width of the GF(2™) and GF(2) Gaussian systemizer. Table 6 and Table 7 show
that by adjusting Nr and Ng in the two Gaussian systemizers, we can achieve
a trade-off between area and performance for the key generator. We selected
three representative parameter choices, and present data for them in Table 8.
The logic case targets to minimize logic consumption at the cost of performance,
the time case focuses on maximising performance at the cost of resources, and
the balanced case attempts to balance logic usage and execution time.

Comparison of our results with other Niederreiter implementations on FP-
GAs is not easy. Table 9 gives an attempt of comparing our result to the per-
formance data given in [26]. The design in [26] occupies about 84% of the tar-
get FPGA for their entire Niederreiter-cryptosystem implementation including
key generation, encryption, decryption, and IO. Our design requires only about
52% of the logic, but only for the key generation. The design in [26] practically
achieves a frequency of 163MHz while we can only report estimated synthesis

19



results for Fmax of 168MHz for our design. Computing a private/public key
pair using the design in [26] requires about 90ms on average (their approach for
generating the Goppa polynomial is not constant time and the key-generation
procedure needs to be repeated several times until the Gaussian systemization of
the public key succeeds). Our design requires about 16ms on average assuming
the design indeed runs stably at 168MHz.

We also compare our design to a highly efficient CPU implementation from [8]
in Table 9. The results show that our optimized hardware implementation com-
petes very well with the CPU implementation. In this case, we ran our imple-
mentation on an Altera Stratix V FPGA. Therefore, these numbers contain the
logic required for the PCle interface. The actual frequency that we achieved fits
well to the estimated frequencies for Stratix V in Table 8.

8 Conclusion

This work presents a new FPGA-based implementation of the key-generation
algorithm for the Niederreiter cryptosystem using binary Goppa codes. Our key
generator implementation requires as few as 896,052 cycles to produce both pub-
lic and private portions of a key, and can achieve Fmax of over 240 MHz when
synthesized for Stratix V FPGAs. Our key generator is the first hardware-based
implementation of a key generator for code-based cryptographic algorithms that
supports currently recommended security parameters. This work presents the
first key generator with tuneable parameters, which uses code-generation to
generate vendor-neutral Verilog HDL code, and a design that is based on novel
hardware implementations of Gaussian systemizer, Gao-Mateer additive FFT,
and Fisher-Yates shuffle.

Acknowledgments. We want to thank Tung Chou for his invaluable help in
particular for the additive FF'T implementation.

References

1. Augot, D., Batina, L., Bernstein, D.J., Bos, J., Buchmann, J., Castryck,
W., Dunkelman, O., Giineysu, T., Gueron, S., Hilsing, A., Lange, T., Mo-
hamed, M.S.E., Rechberger, C., Schwabe, P., Sendrier, N., Vercauteren, F.
Yang, B.Y.: Initial recommendations of long-term secure post-quantum systems.
Tech. rep., PQCRYPTO ICT-645622 (2015), https://pgcrypto.eu.org/docs/
initial-recommendations.pdf

2. Bernstein, D.J.: High-speed cryptography in characteristic 2, http://binary.cr.
yp.to/m.html, accessed March 17, 2017

3. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer (2009)

4. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based
cryptography. In: Bertoni, G., Coron, J.S. (eds.) Cryptographic Hardware and
Embedded Systems — CHES 2013. LNCS, vol. 8086, pp. 250-272. Springer (2013)

20


https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://binary.cr.yp.to/m.html
http://binary.cr.yp.to/m.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the mceliece
cryptosystem. In: Buchmann, J., Ding, J. (eds.) Post-Quantum Cryptography —
PQCrypto 2008. LNCS, vol. 5299, pp. 31-46. Springer (2008)

Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: International Workshop on Post-Quantum Cryptography. pp. 31-46.
Springer (2008)

Cherkaoui, A., Fischer, V., Fesquet, L., Aubert, A.: A very high speed true random
number generator with entropy assessment. In: Bertoni, G., Coron, J.S. (eds.)
Cryptographic Hardware and Embedded Systems — CHES 2013. LNCS, vol. 8086,
pp. 179-196. Springer (2013)

Chou, T.: McBits revisited. In: Fischer, W., Homma, N. (eds.) Cryptographic Hard-
ware and Embedded Systems — CHES 2017. LNCS, Springer (2017), to appear.
Developers, T.S.: SageMath, the Sage Mathematics Software System (Version
7.5.1) (2017), http://www.sagemath.org

Fisher, R.A., Yates, F.: Statistical tables for biological, agricultural and medical
research. Oliver and Boyd (1948)

Gao, S., Mateer, T.: Additive fast fourier transforms over finite fields. IEEE Trans-
actions on Information Theory 56(12), 62656272 (2010)

Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory
of Computing — STOC 96. pp. 212-219. ACM (1996)

Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on mdpc with cca
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) Advances in
Cryptology — ASTACRYPT 2016. LNCS, vol. 10031, pp. 789-815. Springer (2016)
Heyse, S., von Maurich, 1., Giineysu, T.: Smaller keys for code-based cryptogra-
phy: QC-MDPC McEliece implementations on embedded devices. In: Bertoni, G.,
Coron, J.S. (eds.) Cryptographic Hardware and Embedded Systems — CHES 2013.
LNCS, vol. 8086, pp. 273-292. Springer (2013)

Hu, J., Cheung, R.C.C.: An application specific instruction set processor (ASIP)
for the Niederreiter cryptosystem. Cryptology ePrint Archive, Report 2015/1172
(2015)

Icarus Verilog, http://iverilog.icarus.com/, accessed March 17, 2017
Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics Doklady 7, 595-596 (1963)

Massolino, P.M.C., Barreto, P.S.L..M., Ruggiero, W.V.: Optimized and scalable co-
processor for McEliece with binary Goppa codes. ACM Transactions on Embedded
Computing Systems (TECS) 14(3), 45 (2015)

McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep
Space Network Progress Report 44, 114—116 (1 1978)

Montgomery, P.L.: Five, six, and seven-term karatsuba-like formulae. IEEE Trans-
actions on Computers 54(3), 362-369 (2005)

Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15, 19-34 (1986)

Post-quantum cryptography for long-term security pqcrypto ict-645622, https:
//pacrypto.eu.org/, accessed March 17, 2017

Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006)

Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: Foundations of Computer Science. pp. 124-134. IEEE (1994)

Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review 41(2), 303-332 (1999)

21


http://www.sagemath.org
http://iverilog.icarus.com/
https://pqcrypto.eu.org/
https://pqcrypto.eu.org/

26.

27.

28.

Shoufan, A., Wink, T., Molter, G., Huss, S., Strentzke, F.: A novel processor ar-
chitecture for McEliece cryptosystem and FPGA platforms. IEEE Transactions on
Computers 59(11), 1533-1546 (Nov 2010)

Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on gener-
alized Reed-Solomon codes. Discrete Mathematics and Applications 2(4), 439-444
(1992)

Wang, W., Szefer, J., Niederhagen, R.: Solving large systems of linear equations
over GF(2) on FPGAs. In: Conference on Reconfigurable Computing and FPGAs
— ReConFig 2016. IEEE Conference Publications, IEEE (2016)

22



	FPGA-based Key Generator for the Niederreiter Cryptosystem using Binary Goppa Codes

