
Digital Liquid Democracy:
How to Vote Your Delegation Statement

Bingsheng Zhang
Lancaster University

b.zhang2@lancaster.ac.uk

Hong-Sheng Zhou
Virginia Commonwealth University

hszhou@vcu.edu

June 24, 2017

Abstract

The existing (election) voting systems, e.g., representative democracy, have many limitations and often fail to serve
the best interest of the people in collective decision making. To address this issue, the concept of liquid democracy has
been emerging as an alternative decision making model to make better use of “the wisdom of crowds”. Very recently,
a few liquid democracy implementations, e.g. Google Votes and Decentralized Autonomous Organization (DAO), are
released; however, those systems only focus on the functionality aspect, as no privacy/anonymity is considered.

In this work, we, for the �rst time, provide a rigorous study of liquid democracy under the Universal Composability
(UC) framework. In the literature, liquid democracy was achieved via two separate stages – delegation and voting.
We propose an e�cient liquid democracy e-voting scheme that uni�es these two stages. At the core of our design
is a new voting concept called statement voting, which can be viewed as a natural extension of the conventional vot-
ing approaches. We remark that our statement voting can be extended to enable more complex voting and generic
ledger-based non-interactive multi-party computation. We believe that the statement voting concept opens a door for
constructing a new class of e-voting schemes.

Contents
1 Introduction 1

2 Preliminaries 3
2.1 The UC framework . 3
2.2 Ideal functionalities . 4

2.2.1 Bulletin board functionality . 4
2.2.2 Certi�cate functionality . 4

3 Modeling Liquid Democracy Voting 5

4 Constructing Liquid Democracy Voting 7
4.1 Building blocks . 7

4.1.1 Re-randomizable threshold PKE . 7
4.1.2 Non-interactive zero-knowledge proofs/arguments . 9

4.2 Protocol description . 9
4.2.1 Preparation phase . 10
4.2.2 Voting/Delegation phase . 11
4.2.3 Tally phase . 11

4.3 Security . 13

5 Instantiations 13
5.1 Re-randomizable threshold PKE instantiation . 13
5.2 NIZK instantiations . 13

6 Discussions 15

A Proof for Theorem 4.4 17

1 Introduction
Elections/Referendums provide people in each society with the opportunity to express their opinions in the collective
decision making process. The existing election/voting systems can be mainly divided into two types, direct democracy
and representative democracy. Although the former one treats every voter equally, it is not scalable; therefore, the latter
one is widely used in most countries. However, representative democracy has many limitations and it often fails to serve
the best interest of the people. For example, to make correct decisions, the voters have to invest tremendous e�ort to
analyze the issues. The cost of identifying the best voting strategy is high, even if we assume that the voter has collected
accurate information. What’s worse, misinformation campaigns often in�uence the voters to select certain candidates
which could be against the voters’ own interests. In the past decades, the concept of liquid democracy [21] has been
emerging as an alternative decision making model to make better use of collective intelligence. Liquid democracy is
a hybrid of direct democracy and representative democracy, where the voters can either vote directly on issues, or
they can delegate their votes to representatives who vote on their behalf. Due to its advantages, liquid democracy has
received high attentions since the spread of its concept; however, there is no satisfactory solution in the form of either
paper-voting or e-voting yet1. We here ask the following challenging question:

Is it possible to introduce new technologies to circumvent the implementation barriers to liquid democracy?

We very much expect an a�rmative answer because from a societal perspective, we need to ensure that these unmoti-
vated/misinformed voters to participate in the process of decision making.
A new concept. We could approach the above problem via multiple angles. In this paper, we propose a new and clean
concept: statement voting. Statement voting can be viewed as a natural extension of traditional candidate voting. Instead
of de�ning a �xed election candidate, each voter can de�ne a statement in his or her ballot but leave the vote “unde�ned”
during the voting phase. During the tally phase, the (conditional) actions expressed in the statement will be carried out
to determine the �nal vote. Single Transferable Vote (STV) is a special case of statement voting, where the voters rank
the election candidates instead of naming only one candidate in their ballots. The ranked candidate list together with the
STV tally rule can be viewed as an outcome-dependent statement. Roughly speaking, the statement declares that if my
favorite candidate has already won or has no chance to win, then I would like to vote for my second favorite candidate,
and so on. In terms of liquid democracy, the vote delegation can be expressed as a target-dependent statement, where
a voter can de�ne that his/her ballot is the same as the target voter’s ballot. Of course, the target voter can also state
whether he/she is willing to be delegated in the ballot. To obtain the basic intuition, let’s �rst leave privacy aside and
consider the following toy example.
Example: Each ballot is in the form of (ID,action, target). If a voter Vi is willing to be delegated, he/she sets
ID := Vi; otherwise, sets ID := ⊥. If Vi wants to delegate his/her vote to another voter Vj , then the ballot is
B := (ID,delegate,Vj). If Vi wants to directly vote for vi, then the ballot is B := (ID,vote, vi). Suppose there
are seven ballots: B1 := (V1,delegate,V7), B2 := (V2,vote, v2), B3 := (V3,vote, v3), B4 := (⊥,vote, v4),
B5 := (V5,delegate,V4), B6 := (⊥,delegate,V3) and
B7 := (V7,delegate,V3). Here, the e�ective vote of B1 is de�ned by B7, which is further de�ned by B3; note that
B3 votes for v3; that means, B7 votes for v3 by following B3. Now let’s consider B6: B6 follows B3; however, B6 is not
willing to be followed by anyone; as a result, B6 also votes for v3. Finally, let’s consider B5: B5 follows B4; however,
B4 is not willing to be followed by anyone; as a consequence, B5 is re-de�ned as blank ballot, ⊥. After interpreting the
delegation statements, the �nal votes are (v3, v2, v3, v4,⊥, v3, v3).

Careful readers may wonder why this type of natural voting idea has never appeared in the physical world. Indeed,
it is typically not available in the real life. Di�erent from the toy example, in the reality, the voters care about privacy
and anonymity. To ensure anonymity, the voters are not willing to leave their identities in the ballots. If no identities
(or equivalences) are included in the ballots, then it is di�cult for voters to “follow” other voters’ choices. The election
committees might assign each voter a temporal ID to achieve anonymity, but a voter needs to obtain the target voter’s
temporal ID in order to delegate his vote. This requires secure peer-to-peer channels among all the voters, which is not
practical. In “our design” paragraph in the Introduction, we will present the �rst digital construction for implement-
ing full-�edged liquid democracy. How to construct a physical construction is an interesting open question. Before
presenting our construction, we �rst need to clearly de�ne and model our security goal.

1All the existing liquid democracy implementations, e.g., Google Votes and Decentralized Autonomous Organization (DAO) do not consider pri-
vacy/anonymity. This drawback prevents them from being used in serious elections. Here, we note that straightforword blockchain-based solutions
cannot provide good privacy in practice. Although some blockchains such as Zerocash [5] can be viewed as a global mixer, they implicitly require
anonymous channels. While in practice, all the implementations of anonymous channels su�er from time leakage, i.e., the user’s ID is only hidden
among the other users who are also using the system at the same time. Subsequently, the adversary can easily identify the user during quiet hours.

1

Modeling liquid democracy voting. We for the �rst time provide a rigorous modeling for liquid democracy voting.
More concretely, we model liquid democracy voting in the well-known Universal Composability (UC) framework, via
an ideal functionality FLiqid. The functionality interacts with a set of voters, trustees, and an auditor, and consists of
preparation phase, voting/delegation phase, and tally phase. During the preparation phase, the trustees need to indicate
their presence to FLiqid, and the election/voting will not start until all the trustees have participated the preparation.
During the voting/delegation phase, each voter can either directly vote for the candidate(s) or delegate his vote to another
voter. In addition, each voter can use a �ag α to indicate whether he is willing to be delegated. Note that, when all the
trustees are corrupted, FLiqid leaks the voters’ ballots to the adversary.

To model the privacy of mixing type of e-voting, we let FLiqid replace each voter’s ID with a pseudonym. The
functionality FLiqid then sorts the anonymized ballots lexicographically to hide the order correspondence and reveal
them to the adversary. Note that this type of information leakage is consistent with the conventional paper-based voting
system, where a voter submits his ballot to a ballot box and the ballot is mixed together with the other voters’ ballots. To
model end-to-end veri�ability, we introduce an auditor Au who will verify whether the election result is mis-presented.
Note that the auditor can be performed by any party, and here we model auditor as a single entity for simplicity.

We emphasize that in practice, virtually all threshold cryptographic systems su�er from selective failure attacks;
namely, during the opening process of a threshold cryptographic system, the last several share holders can jointly see
the content to be opened themselves before hand. Hence, they can decide if they want to actually open the content.
However, surprisingly, this subtle issue was rarely modeled in the literature. For instance, the only previously known
e-voting functionality [22] fails to address it. During the tally phase, the tally will be released if all the trustees agree to
proceed.
Our design. Our toy example shows that it is possible to interpret the delegation statement by extending the tally
algorithm. However, it is not immediately obvious about how to apply the same technique in conjunction with privacy.
Before the voting/delegation phase, each voter can pick a temporal ID. However, the main challenge here is to distribute
the temporal ID to the ones who need. The same as all existing end-to-end veri�able e-voting schemes, our design
requires a publicly accessible consistent bulletin board, modeled as global functionality ḠBB. We let the voters post
the re-randomizable threshold encryption of their temporal ID on the ḠBB. If voter Vi wants to delegate his ballot
to voter Vj , he can include a re-randomized ciphertext of Vj ’s temporal ID. More speci�cally, Vi sets his ballot as
Bi := (wi,delegate,Wj), if he wants to delegate to Vj ; or he sets Bi := (wi,vote, vi), if he wants to vote for
vi; here wi is Vi’s temporal ID and Wj is the re-randomized ciphertexts of Vj ’s temporal ID. All the ballots will �rst
be shu�ed via a mix-net, and then all the trustees will jointly open those re-randomized ciphertexts inside the ballots.
Subsequently, we can handle the delegation statement and compute the tally in the same way as the toy example.
Extensions and further remarks. In this work, we initiate the study of statement voting and liquid democracy. We
remark that our statement voting concept can be signi�cantly extended to support much richer ballot statements. It
opens a door for constructing a new class of e-voting schemes. We also remark that this area of research is far from
being completed, and our design and modeling ideas can be further improved. For example, if there is a delegation
loop in which a set of voters delegate their votes to each other while no one votes, then what should be the “right”
policy? Should the ballots be reset as blank ballots? This might not be ideal in reality. One possible approach is to
extend the delegation statement to include a default vote. When a delegation loop exists, the involved ballots could
be counted as their default votes. We �nally remark that, voting policies can be heavily in�uenced by local legal and
societal conditions. How to de�ne “right” voting policy itself is a very interesting question. We believe our techniques
here have the potential to help people to identify suitable voting policies which can further eliminate the barriers to
democracy.
Relatedwork. The concept of liquid democracy (a.k.a. delegative democracy) is emerging over the last decades [29, 2, 9].
To our best knowledge, Ford [21] �rst o�cially summarized the main characteristics of liquid democracy and brought it
to the vision of computer science community. However, in terms of implementation/prototyping, there was no system
that can enable liquid democracy until very recently. Google Votes [24] is a decision-making system that can support
liquid democracy, and it is built on top of social networks, e.g., the internal corporate Google+ network. Decentralized
Autonomous Organization (DAO) [20] realized liquid democracy using the blockchain technology, and it has been widely
used to vote on expenses and actions of various contracts. Recently, Merkle [28] provide a comprehensive review on
DAO, collective intelligence, and liquid democracy. He believes that liquid democracy can utilize the expertise of all the
citizens to make high-quality decisions. Nevertheless, all the existing liquid democracy voting systems only focus on the
functionality aspect of liquid democracy, and no privacy or some other advanced security properties were considered.

With regards to conventional security oriented e-voting systems, Chaum [16] proposed to use anonymous channels
and pseudonyms to achieve voter privacy and veri�ability. Benaloh and Yung later showed how to distribute the cen-
tralized election authority using threshold cryptography [7]. Sako and Kilian [31] minimized the assumption needed

2

for a mix-type voting system to achieve so-call receipt-freeness, where the voters can simulate/hide their votes to the
coercers. Groth [22] gave the �rst UC de�nition for an e-voting system, and he proposed a protocol using (threshold)
homomorphic encryption. Moran and Naor [30] later studied the privacy and receipt-freeness of an e-voting system in
the stand-alone setting. Unruh and Muller-Quade [34] gave a formal study of e-voting coerciability in the UC framework.
Alwen et al. [3] considered stronger versions of coerciability in the MPC setting under UC framework.

The most widely used e-voting system in practice is Helios [1]. Almost all the end-to-end veri�able e-voting systems
[19, 17, 26, 25] requires a consistent bulletin board (BB). However, none of them gives a practical realization of BB. On
the other hand, Kiayias, Zhou, and Zikas [27] gives a UC model of the global ledger and discuss about how to use such
a ledger to enable fair and robust MPC.
Organization. In Section 2, we present the required preliminaries including a brief overview of UC framework and
some useful ideal functionalities. In Section 3, we rigorously model liquid democracy voting, and in Section 4, we
present the details of our construction for liquid democracy voting. The instantiations of the building blocks in our
main construction can be found in Section 5, and some discussions for future directions can be found in Section 6.
Finally, the security analysis of our main construction can be found in in Appendix A.

2 Preliminaries

2.1 The UC framework
Following Canetti’s framework [12, 11], a protocol is represented as interactive Turing machines (ITMs), each of which
represents the program to be run by a participant. Protocols that securely carry out a given task are de�ned in three
steps, as follows. First, the process of executing a protocol in an adversarial environment is formalized. Next, an “ideal
process” for carrying out the task at hand is formalized. The parties have access to an “ideal functionality,” which is
essentially an incorruptible “trusted party” that is programmed to capture the desired functionality of the task at hand.
A protocol is said to securely realize an ideal functionality if the process of running the protocol amounts to “emulating”
the ideal process for that ideal functionality. Below we overview the model of protocol execution (called the real-world

model), the ideal process, and the notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running an instance of a
protocol π, a network adversary A that controls the communication among the parties, and an environment Z that
controls the inputs to the parties and sees their outputs. The execution consists of a sequence of activations, where in
each activation a single participant (either Z , A, or some other ITM) is activated, and may write on a tape of at most
one other participant, subject to the rules below. Once the activation of a participant is complete, the participant whose
tape was written on is activated next.

Let EXECπ,A,Z(λ, z, r) denote the output of the environment Z when interacting with parties running protocol π
on security parameter λ, input z and random input r = rZ , rA, r1, r2, ... as described above (z and rZ for Z ; rA for A,
ri for party Pi). Let EXECπ,A,Z(k, z) denote the random variable describing EXECπ,A,Z(k, z, r) when r is uniformly
chosen. Let EXECπ,A,Z denote the ensemble {EXECπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is de�ned via comparing the protocol execution to
an ideal protocol for carrying out the task at hand. A key ingredient in the ideal protocol is the ideal functionality that
captures the desired functionality, or the speci�cation, of that task. The ideal functionality is modeled as another ITM
(representing a “trusted party”) that interacts with the parties and the adversary. More speci�cally, in the ideal protocol
for functionality F all parties simply hand their inputs to an ITM instance running F .

Securely realizing an ideal functionality. We say that a protocol π emulates protocol φ if for any network adversary
A there exists an adversary (also known as simulator) S such that no environment Z , on any input, can tell with non-
negligible probability whether it is interacting with A and parties running π, or it is interacting with S and parties
runningφ. This means that, from the point of view of the environment, running protocol π is “just as good” as interacting
with φ. We say that π securely realizes an ideal functionality F if it emulates the ideal protocol for F . More precise
de�nitions follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

De�nition 2.1. Let π and φ be protocols, and F be an ideal functionality. We say that π UC-emulates φ if for any

adversaryA there exists an adversary S such that for any environment Z that obeys the rules of interaction for UC security

we have EXECφ,S,Z ≈ EXECπ,A,Z . We say that π UC-realizes F if π UC-emulates the ideal protocol for functionality F .

3

Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating as usual as in the standard
model of execution, the parties also have access to (multiple copies of) an ideal functionality. Hybrid protocols represent
protocols that use idealizations of underlying primitives, or alternatively make trust assumptions on the underlying
network. They are also instrumental in stating the universal composition theorem. Speci�cally, in anF-hybrid protocol
(i.e., in a hybrid protocol with access to an ideal functionalityF), the parties may give inputs to and receive outputs from
an unbounded number of copies of F . The de�nition of a protocol securely realizing an ideal functionality is extended
to hybrid protocols in the natural way.

2.2 Ideal functionalities
2.2.1 Bulletin board functionality

The public bulletin board (BB) is modeled as a global functionality ḠBB. Formal description can be found in Fig. 1. The
functionality is parameterized with a predicate Validate that ensures all the newly posted messages are consistent with
the existing BB content w.r.t. Validate. Any party can use (submit, sid,msg) and (read, sid) to write/read the BB. We
remark that our ḠBB can be much simpli�ed version of the global public ledger functionality Ḡledger recently de�ned by
Kiayias et al [27].

Functionality ḠBB

The shared functionality ḠBB is globally available to all the parties and the adversary S . It is parameterized with a predicate
Validate, and variable state. Initially, state := ε.

Upon receiving (submit, sid,msg) from a party P or S , if Validate(state,msg) = 1, then set state := state||msg.
Upon receiving (read, sid) from a party P or S , return (read, sid, state) to the requestor.

Figure 1: The public bulletin board functionality.

2.2.2 Certi�cate functionality

We present the multi-session version of certi�cate functionality following the modeling of [13]. The multi-session
certi�cate functionality F̂Cert can provide direct binding between a signature for a message and the identity of the
corresponding signer. This corresponds to providing signatures accompanied by “certi�cates” that bind the veri�cation
process to the signers’ identities. For completeness, we recap F̂Cert in Fig. 2.

Functionality F̂Cert

The functionality F̂Cert interacts with a set of signers {S1, . . . , Sk}, and a set of veri�ers {R1, . . . ,Rn}, and the adversary S .

• Upon receiving (Sign, sid, ssid,m) from a signer P ∈ {S1, . . . , Sk}, verify that ssid = (P, ssid′) for some
ssid′. If not, ignore the request. Otherwise, send (SignNotify, sid, ssid,m) to the adversary S . Upon receiving
(Signature, sid, ssid,m, σ) from S , verify that no entry (ssid,m, σ, 0) is recorded. If it is, then return (Error) to P
and halt. Else, return (Signature, sid, ssid,m, σ) to P , and record the entry (ssid,m, σ, 1).

• Upon receiving (Verify, sid, ssid,m, σ) from any party P ∈ {R1, . . . ,Rn}, send (VerifyNotify, sid, ssid,m) to the
adversary S . Upon receiving (Verified, sid, ssid,m, b∗) from S , do:

If (ssid,m, σ, 1) is recorded then set b = 1.
Else, if the signer of subsession ssid is not corrupted, and no entry (ssid,m, ·, 1) is recorded, then set b = 0 and
record the entry (ssid,m, σ, 0).
Else, if there is an entry (ssid,m, σ, b′) recorded, then set b := b′.
Else, set b := b∗, and record the entry (ssid,m, σ, b∗).

Output (Verified, sid, ssid,m, b) to P .

Figure 2: The multi-session functionality for certi�cate.

4

3 Modeling Liquid Democracy Voting
System architecture. Our liquid democracy e-voting system consists of a set of trustees T := {T1, . . . ,Tk}, a set of
voters V :=

{
V1, . . . ,Vn

}
, and an auditor Au. Similar to all existing end-to-end veri�able e-voting systems, our system

requires a consistent bulletin board, which is modelled as a global functionality ḠBB. We note that the auditor can be
performed by any party; for simplicity, we model auditor as a single entity.

Functionality FLiqid

The functionality FLiqid interacts with a set of voters V := {V1, . . . ,Vn}, a set of trustees T := {T1, . . . ,Tk}, and the
adversary S . Let Vhonest, Vcorrupt and Thonest, Tcorrupt denote the set of honest/corrupt voters and trustees, respectively. FLiqid
is parameterized by an algorithm TallyProcess, a table Tab, and variables result , T1, T2, T3, and Bi for all i ∈ [n].

Initially, set result := ∅, T1 := ∅, T2 := ∅, T3 := ∅; for i ∈ [n], set Bi := ∅.

Preparation:

1. Upon receiving input (InitialTrustee, sid) from the trustee Tj ∈ T, set T1 := T1 ∪ {Tj}, and send a noti�cation
message (InitialTrusteeNotify, sid,Tj) to the adversary S .

2. Upon receiving input (InitialVoter, sid, η) from the voter Vi ∈ V, if |T1| < k, ignore the input.
Otherwise, send (InitialVoterNotify, sid,Vi) to the adversary S . If |Tcorrupt| = k, then additionally send a message
(DelLeak, sid,Vi, η) to the adversary S .
Upon receiving (VoterID, sid,Vi, wi) from S ,
if Vi ∈ Vcorrupt, then set Tab[i] := wi;
otherwise, if Vi ∈ Vhonest and η = 0, then set Tab[i] := ⊥;
else, generate random temporal ID w′i ← {0, 1}λ, and set Tab[i] := w′i.

Voting/Delegation:

1. Upon receiving input (Delegate, sid,Vj) from the voter Vi ∈ V, if |T1| < k, ignore the input. Otherwise, record
Bi := (Tab[i],delegate,Tab[j]); send a message (ExecuteNotify, sid,Vi) to the adversary S . If |Tcorrupt| = k,
then additionally send a message (Leak, sid,Vi,Delegate,Vj) to the adversary S .

2. Upon receiving input (Vote, sid, vi) from the the voter Vi ∈ V, where vi ∈ V and V contains all possible votes, if
|T1| < k, ignore the input. Otherwise, record Bi := (Tab[i],vote, vi); send a message (ExecuteNotify, sid,Vi) to
the adversary S . If |Tcorrupt| = k, then additionally send a message (Leak, sid,Vi,Vote, vi) to the adversary S .

Tally:

1. Upon receiving input (Mix, sid) from the the trustee Tj ∈ T, set T2 := T2 ∪ {Tj}. Send a noti�cation message
(MixNotify, sid,Tj) to the adversary S . If |T2| = k, do

For i ∈ [n], if Bi is not de�ned, set Bi := (⊥,vote,⊥).
Sort (B1, . . . , Bn) lexicographically to form a new ballot vector (B̃1, . . . , B̃n).

2. Upon receiving input (Tally, sid) from the trustee Tj ∈ T2.
Otherwise, set T3 := T3 ∪ {Tj}.
Send a noti�cation message (TallyNotify, sid,Tj) to S .

3. If |T3 ∩ Thonest|+ |Tcorrupt| = k,
send (Reveal, sid, (B̃1, . . . , B̃n)) to S .

4. If |T3| = k,
compute result ← TallyProcess((B̃1, . . . , B̃n),Tab).

5. Upon receiving input (ReadResult, sid) from a voter Vi ∈ V, if result = ∅, ignore the input.
Else, return (ResultReturn, sid, result) to Vi.

Figure 3: The voting functionality.

The liquid democracy functionality. The ideal functionality for liquid democracy voting, denoted as FLiqid, is
formally described in Fig. 3. This functionality interacts with n voters, k trustees, and an auditor. It consists of three
phases – preparation, voting/delegation, and tally.

5

Preparation phase. During the preparation phase, both trustees and voters need to indicate their presence to FLiqid by
sending (InitialTrustee, sid)/(InitialVoter, sid, η) to it. Voters can be absent, but the election/voting will not start
until all the trustees have participated the preparation. Here η ∈ {0, 1} is used to indicate whether this voter is willing
to be delegated. Note that, in current version, for simplicity, we do not allow a voter to selectively reject the other voters’
delegations; however, we note that the functionality can be easily extended.
Voting/Delegation phase. During the voting/delegation phase, each voter can either directly vote for the candidate(s) or
delegate his vote to another voter. More speci�cally, if a voter wants to vote vi, he submits (Vote, sid, vi) to FLiqid;
else, if a voter wants delegate his vote to Vj , he submits (Delegate, sid,Vj). Due to delegation privacy, the voter only
knows the number of ballots that are delegated to her, but she does not know who delegate to her. This is an important
property to make coercion resistant and vote selling resistant possible in the context of liquid democracy. We remark
that, for simplicity, we consider the following policy: If a voter refuses to be delegated, all the ballots that have been
delegated to her will be re-set to blank ballots. If there exists a delegation loop, all the unde�ned ballots will also be
re-set to blank ballots. As brie�y mentioned in the Introduction, alternative policies can be enforced in our modeling.
FLiqid maintains a database of all the submitted ballots. When all the trustees are corrupted, FLiqid leaks the voters’
ballots to the adversary.

FunctionalityFLiqid hides the correspondence between the ballots and the voters, but leaks statistical data. To model
this fact, FLiqid randomly generates a mapping table Tab that assigns each voter Vi with a temporal ID Tab[i]. FLiqid
also allows the corrupted voters to show their own favourite temporal ID. The functionality replaces all the labels Vi
for some i ∈ [n] in the ballots with the corresponding temporal ID’s Tab[i], and then it sorts the anonymised ballots
lexicographically to hide the order information.

TallyProcess

Input: a set of ballots B := (B1, . . . , Bn) and a set of voter labels L := (V1, · · · ,Vn)

Output: the tally result result

Label Check:

• Check the uniqueness of each label in L. If there exist i1, . . . , it ∈ [n], i1 6= i2 6= · · · 6= it s.t. Vi1 = Vi2 = · · · = Vit ,
then replace all the labels Vi1 , . . . , Vit in B with ⊥.

Delegation statement interpretation:

• For each ballot Bi ∈ B, parse Bi in form of either (Vi,delegate,Vj) or (Vi,vote, vi) and do the following:

If Bi is in form of (Vi,delegate,Vj) and Vj 6= ⊥, try to locate a ballot Bj in form of (Vj , ·, ·). If founded,
replace Bi := Bj ; otherwise, if Bi is in form of (Vi,delegate,⊥) set Bi := (Vi,vote,⊥).
Repeat the above step, untilBi is in form of (·,vote, ·). If there is a delegation loop, de�neBi := (⊥,vote,⊥).

• Denote the processed ballot set as B′ := (B′1, . . . , B
′
n).

Tally computation:

• Compute result ← TallyAlg(B′1, . . . , B
′
n), where TallyAlg(·) is the original tally algorithm and (·,vote,⊥) is

viewed as a blank ballot.
• Return result .

Figure 4: The extended tally processing algorithm.

Tally phase. Let V be a set of valid votes. Let TallyAlg be a deterministic symmetric election tally function that takes V
and outputs the tally result. The concrete functionality of TallyAlg depends on the actual election, and we do not have
any restriction on TallyAlg. Take a simple 1-out-of-m election where there are m candidates C := (C1, . . . , Cm) as an
example. Each vote vi ∈ V is an element in C. The tally result is an m-vector Zm+ whose i-th coordinate is equal to the
number of times Ci was chosen in V . In the rest of this paper, we use vi = ⊥ to indicate blank vote, and TallyAlg should
ignore those inputs.

To handle the delegation statement, we extend the tally algorithm TallyAlg to TallyProcess, which can handle the
delegation. As depicted in Fig. 4, TallyProcess carried out three tasks: (i) label check, ensuring every label is unique; oth-
erwise, they are re-set to⊥; (ii) interpret the delegation statement, �guring out each voter’s �nal ballot; and (iii) compute
the tally result using the conventional tally algorithm TallyAlg. Each ballots is in form of either (X,delegate,Vj)
or (X,vote, vi), where X is either the corresponding voter’s label Vi for some i ∈ [n] or ⊥. If the voter allows to be

6

delegated, X is his label (temporal ID); otherwise, X is set to ⊥. If the voter wants to delegate his vote to Vj , her ballot
is (X,delegate,Vj). If the voter wants to directly vote vi ∈ V , her ballot is (X,vote, vi) where V is the set of all
possible votes de�ned by the voting committee. To resolve the delegation, the TallyProcess algorithm needs to “follow
the chain” of delegation. Namely, if (Vi,delegate,Vj), (Vj ,delegate,Vk) and (Vk,vote, v), then Vi’s e�ective
vote is v. On the other hand, the “chain” of delegation breaks by Vi wants to delegate his vote to Vj , while Vj does
not want to be delegated. In this case, there is no ballot is in form of (Vj , ·, ·); therefore, (Vi,delegate,Vj) does not
point to any ballot that might lead to an e�ective vote. Hence, we re-set Vi’s ballot as (Vi,vote,⊥), which is a blank
ballot.

Let T ′ be the set of trustees who decided to open the ballots. Let Thonest and Tcorrupt denote the set of honest
and corrupt trustees, respectively. Selective failure attack is modelled by leaking to the adversary all the ballots when
|T ′ ∩ Thonest| + |Tcorrupt| = k, i.e., the number of honest trustees who participate the tally process plus the number of
corrupted trustees is k.

4 Constructing Liquid Democracy Voting
In this section, we will present a construction for realizing the voting functionality that we de�ned.

4.1 Building blocks
4.1.1 Re-randomizable threshold PKE

Our construction requires a re-randomizable (t, n)-threshold public key encryption scheme. In addition, we expect the
key generation of scheme is distributed. Next, we extend the notion proposed by Shoup and Genarro [33] and by
Boneh et al. [10]. More concretely, a re-randomizable (t, n)-threshold public key encryption RTE consists of a tuple
of ppt algorithms RTE.DGen, RTE.Enc, RTE.ReRand, RTE.ShareDec, RTE.ShareVer, RTE.Merge, RTE.Combine, and
RTE.Combine−1, as follows:

RTE.DGen: On input of the security parameter 1λ, (t, n), an index i and random coins ω, outputs the i-th partial
public key and secret key pairs (pki, ski).
RTE.Merge: On input of (t, n) and a set of partial public keys {pki}ni=1, outputs the combined public key pk.
RTE.Enc: On input of the public key pk, a message m and random coins ω, outputs a ciphertext e.
RTE.ReRand: On input of the public key pk, a ciphertext e and random coins ω, outputs a re-randomized ciphertext
e′.
RTE.ShareDec: On input of the public key pk, the partial secret key ski and a ciphertext e, outputs a message share
mi.
RTE.ShareVer: On input of the public key pk, the ciphertext e and the message share mi, outputs 0/1.
RTE.Combine: On input of the public key pk, a ciphertext e and a set of t message shares {mi1 , . . . ,mit}, outputs
the reconstructed message m.
RTE.Combine−1: On input of the public key pk, a ciphertext e , the original messagem, and a set of (t−1) message
shares {mi1 , . . . ,mit−1

}, outputs the reconstructed message shares {m′j}j∈[n]\{i1,...,it−1}

De�nition 4.1. We sayRTE = {RTE.DGen,RTE.Enc,RTE.ReRand,RTE.ShareDec,RTE.ShareVer,RTE.Merge,RTE.Combine,
RTE.Combine−1} is a secure re-randomizable (t, n)-threshold public key encryption if the following properties hold:

• Correctness: For all valid key generation outputs: (pki, ski) ← RTE.DGen(1λ, (t, n), i, ωi), i ∈ [n]; let pk ←
RTE.Merge((t, n), {pki}ni=1), the following property hold.

– For any ciphertext e, ifmi ← RTE.ShareDec(pk, i, ski, e), then RTE.ShareVer(pk, pki, e,mi) = 1.

– If e← RTE.Enc(pk,m;ω) and S =
{
m1, . . . ,mt

}
is a set of decryption shares, where

mi ← RTE.ShareDec(pk, i, ski, e)

for t distinct partial secret keys, then RTE.Combine(pk, e, {m1, . . . ,mt}) = m.

• IND-CPA security: We say that the (t, n)-threshold PKE scheme achieves indistinguishability under plaintext attacks
(IND-CPA) if for any ppt adversary A the following advantage is negligible.

7

GCPA
t,n (1λ)

1. A outputs a set Icorr ⊂
{

1, . . . , n
}
of t− 1 corrupted indices.

2. For i = [n], run (pki, ski)← RTE.DGen(1λ, (t, n), i, ωi);
set pk← RTE.Merge((t, n), {pki}ni=1)

3. A(
{
pki
}
i∈[n]

,
{
ωj
}
j∈Icorr

) outputsm0,m1 of equal length;

4. b←
{

0, 1
}
; e← RTE.Enc(pk,mb;ω);

5. A(e) outputs b∗; It returns 1 if b = b∗; else, returns 0.

We de�ne the advantage of A as

AdvCPAA,t,n(1λ) =

∣∣∣∣Pr[GCPA
t,n (1λ) = 1]− 1

2

∣∣∣∣ .
• Unlinkability: We say a re-randomizable (t, n)-threshold PKE scheme to be unlinkable if for any ppt adversary A
the following advantage is negligible.

GUnlink
t,n (1λ)

1. The same as step 1 of GCPA
t,n (1λ).

2. The same as step 2 of GCPA
t,n (1λ).

3. A(
{
pki
}
i∈[n]

,
{
ωj
}
j∈Icorr

) outputs e0, e1;

4. b←
{

0, 1
}
; e′ ← RTE.ReRand(pk, eb;ω);

5. A(e′) outputs b∗; It returns 1 if b = b∗; else, returns 0.

We de�ne the advantage of A as

AdvUnlinkA,t,n(1λ) =

∣∣∣∣Pr[GUnlink
t,n (1λ) = 1]− 1

2

∣∣∣∣ .
• Decryption consistency: We say that the (t, n)-threshold PKE scheme achieves decryption consistency if for any ppt

adversary A the following advantage is negligible.

GDC
t,n(1λ)

1. The same as GCPA
t,n (1λ).

2. The same as GCPA
t,n (1λ).

3. A(
{
pki
}
i∈[n]

,
{
ωj
}
j∈Icorr

) outputs two set of decryption shares

S :=
{
m0, . . . ,mt

}
and S′ :=

{
m′0, . . . ,m

′
t

}
;

4. It returns 1 if and only if

(a) ∀m ∈ S ∪ S′ : RTE.ShareVer(pk, pki, e,m) = 1;
(b) RTE.Combine(pk, e, S) 6= RTE.Combine(pk, e, S′);

We de�ne the advantage of A as

AdvDCA,t,n(1λ) = Pr[GDC
t,n(1λ) = 1] .

• Reconstructability: We say that the (t, n)-threshold PKE scheme achieves reconstructability if for allm and any ppt

adversary A we have∣∣∣∣ Pr[A(〈pk, e,m, {pki}i∈[n]〉, 〈{mi}i∈[n]〉) = 1]
−Pr[A(〈pk, e,m, {pki}i∈[n]〉, 〈{mj}j∈{i1,...,it−1}}, {m′j}j∈[n]\{i1,...,it−1}}〉) = 1]

∣∣∣∣ ≤ negl(λ)

where

– (pki, ski)← RTE.DGen(1λ, (t, n), i, ωi) for all i ∈ [n],

– pk← RTE.Merge((t, n), {pki}ni=1), and e← RTE.Enc(pk,m;ω)

– mi ← RTE.ShareDec(pk, i, ski, e), for all i ∈ [n],

– {m′j}j∈[n]\{i1,...,it−1} ← RTE.Combine−1(pk, e,m, {mi1 , . . . ,mit−1
})

8

4.1.2 Non-interactive zero-knowledge proofs/arguments

Here we brie�y introduce non-interactive zero-knowledge (NIZK) schemes in the Random Oracle (RO) model. LetR be
an e�ciently computable binary relation. For pairs (x,w) ∈ R we call x the statement and w the witness. Let LR be
the language consisting of statements in R, i.e. LR = {x|∃w s.t. (x,w) ∈ R}. An NIZK scheme includes following
algorithms: a ppt algorithm Prov that takes as input (x,w) ∈ R and outputs a proof π; a polynomial time algorithm
Verify takes as input (x, π) and outputs 1 if the proof is valid and 0 otherwise.

De�nition 4.2 (NIZK Proof of Membership in the RO Model). NIZKro

R.{Prov,Verify, Sim,Ext} is an NIZK Proof of

Membership scheme for the relationR if the following properties hold:

• Completeness: For any (x,w) ∈ R,

Pr
[
ζ ← {0, 1}λ;π ← ProvRO(x,w; ζ) : VerifyRO(x, π) = 0

]
≤ negl(λ).

• Zero-knowledge: If for any ppt distinguisher A we have∣∣ Pr[ARO,O1(1λ) = 1]− Pr[ARO,O2(1λ) = 1]
∣∣ ≤ negl(λ).

The oracles are de�ned as follows: O1 on query (x,w) ∈ R returns π, where (π, aux) ← SimRO(x); O2 on query

(x,w) ∈ R returns π, where π ← ProvRO(x,w; ζ) and ζ ← {0, 1}λ.

• Soundness: For all ppt adversary A,

Pr
[

(x, π)← ARO(1λ) : x 6∈ LR ∧ VerifyRO(x, π) = 1
]
≤ negl(λ).

De�nition 4.3 (NIZK Proof of Knowledge in the RO Model). NIZKro

R.{Prov,Verify, Sim,Ext} is an NIZK Proof of Knowl-

edge scheme for the relation R if the completeness, zero-knowledge, and extraction properties hold, where the extraction is

de�ned as follows.

• Extractability: For all ppt adversary A,

Pr
[

(x, π)← ARO(1λ);w ← ExtRO(x, π) : (x,w) ∈ R if VerifyRO(x, π) = 1
]
≥ 1− negl(λ).

We need non-interactive zero-knowledge proofs/arguments of knowledge and non-interactive zero-knowledge proofs/arguments
of membership. For simplicity, we will drop RO from the superscript if the context is clear. In addition, we introduce
several convenient notations below. We use the following notation to denote the NIZK for the knowledge of the secret
key sk and randomness ω the correctness of RTE.DGen algorithm.

NIZKR1

{
(pk), (ω, sk) : (pk, sk) = RTE.DGen(1λ, (t, n), i;ω)

}
Similarly, we denote the NIZK for the correctness of RTE.Enc algorithm as the following.

NIZKR2

{
(pk, e), (ω,m) : e = RTE.Enc(pk,m;ω)

}
Moreover, we need a NIZK to show the given ciphertext e′ is re-randomized from one of a set of ciphertexts e1, . . . , en
as follows.

NIZKR3

{
(pk, (e1, . . . , en), e′), (ω, i) : e′ = RTE.ReRand(pk, ei;ω)

}
Finally, let Π be a permutation over [n]. We also need a NIZK for the correctness of shu�e re-encryption as follows.

NIZKR4

{
(pk, (e1, . . . , en), (e′1, . . . , e

′
n)), (Π, (ω1, . . . , ωn)) : ∀i ∈ [n] : e′i = RTE.ReRand(pk, eΠ(i);ωi)

}
We use (NIZKRi .Verify, NIZKRi .Sim) to denote the corresponding veri�cation algorithm and simulator.

4.2 Protocol description

In this section, we formally describe the construction of our protocol. The protocol is designed in the {ḠBB, F̂Cert}-hybrid
world and it consists of three phases: preparation, voting/delegation, and tally. For the sake of notation simplicity, we
omitted the processes of �ltering invalid messages on ḠBB. In practice, ḠBB main contains many messages with invalid
signatures, and all those messages should be ignored.

9

4.2.1 Preparation phase

As depicted in Fig. 5, in the preparation phase, each trustee Tj , j ∈ [k] �rst picks a randomness generates αj and
generates a partial public key using (pkj , skj)← RTE.DGen(1λ, (k, k), j;αj). It then uses

π
(1)
j ← NIZKR1

{
(pkj , k, j), (αj , sk) : (pkj , skj) = RTE.DGen(1λ, (k, k), j;αj)

}
to show that this process is executed correct; namely, it shows knowledge of (αj , skj) w.r.t. to the generated partial
public key pkj . It then signs and posts (pkj , π

(1)
j) to ḠBB.

Preparation:
Upon receiving (InitialTrustee, sid) from the environment Z , the trustee Tj , j ∈ [k], operates as the follows:

Generate (pkj , skj)← RTE.DGen(1λ, (k, k), j;αj) where αj is the fresh randomness, and then compute

π
(1)
j ← NIZKR1

{
(pkj , k, j), (αj , skj) : (pkj , skj) = RTE.DGen(1λ, (k, k), j;αj)

}
Send (Sign, sid, ssid, (pkj , π

(1)
j)) to F̂Cert and receives (Signature, sid, ssid, (pkj , π

(1)
j), σ

(1)
j) from F̂Cert, where ssid =

(Tj , ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (pkj , π
(1)
j), σ

(1)
j 〉) to ḠBB.

Upon receiving (InitialVoter, sid, η) from the environment Z , the voter Vi, i ∈ [n] operates as the follows:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If

{
〈ssid, (pkj , π

(1)
j), σ

(1)
j 〉
}
j∈[k]

is contained in state ,

then for j ∈ [k], send (Verify, sid, ssid, (pkj , π
(1)
j), σ

(1)
j) to F̂Cert, and receive (Verified, sid, ssid, (pkj , π

(1)
j), b

(1)
j)

from F̂Cert; If
∏k
j=1 b

(1)
j = 1, check NIZKR1 .Verify((pkj , k, j), π

(1)
j) = 1 for j ∈ [k]. If any of the checks is invalid,

halt.
Compute and store pk← RTE.Merge((k, k), {pkj}

k
j=1).

If η = 0, set wi = ⊥; else, if η = 1, randomly selects wi ← {0, 1}λ and compute Wi ← RTE.Enc(pk, wi;βi) with
fresh randomness βi together with

π
(2)
i ← NIZKR2

{
(pk,Wi), (βi, wi) : Wi = RTE.Enc(pk, wi;βi)

}
.

Send (Sign, sid, ssid, (Wi, π
(2)
i)) to F̂Cert, and receive (Signature, sid, ssid, (Wi, π

(2)
i), σ

(2)
i) from F̂Cert, where ssid =

(Vi, ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (Wi, π
(2)
i), σ

(2)
i 〉) to ḠBB.

Figure 5: Liquid democracy voting scheme ΠLiqid in the {ḠBB, F̂Cert}-hybrid world (Part I).

After that, each voter Vi, i ∈ [n] on receiving (InitialVoter, sid, η) �rst fetches the trustees’ partial public keys
{pkj}kj=1 from ḠBB. She then checks the validity of their attached NIZK proofs. If all the NIZK proofs are veri�ed, she
computes and stores the election public key as pk ← RTE.Merge((k, k), {pkj}kj=1). The value of η indicates whether
the voter allowed to be delegated or not. If η = 0, Vi sets wi = ⊥; otherwise, she randomly picks wi ← {0, 1}λ.
Afterwards, Vi then uses the election public key pk to encrypt wi asWi ← RTE.Enc(pk, wi;βi) with fresh randomness
βi. She also computes

π
(2)
i ← NIZKR2

{
(pk,Wi), (βi, wi) : Wi = RTE.Enc(pk, wi;βi)

}
to show that she is the creator of this ciphertext. Vi then signs and posts (Wi, π

(2)
i) to ḠBB.

10

4.2.2 Voting/Delegation phase

As depicted in Fig. 6, in the voting/delegation phase, each voter Vi, i ∈ [n] �rst fetches all the posted encrypted temporal
IDs from ḠBB, and checks their attached NIZK proofs. For any missing or invalid (encrypted) temporal IDs, the voters
replace them with RTE.Enc(pk,⊥; 0), which is encryption of ⊥ with trivial randomness. Moreover, the voters also
de�nes W0 ← RTE.Enc(pk,⊥; 0). (For those voters who want to vote themselves, they will re-randomize W0.)

If a voter Vi wants to vote vi, she will produce Vi as a re-randomized W0 and Ui as encryption of vi. Meanwhile,
she also gives a NIZK proof showing that Vi is re-randomized from one of the ciphertexts in (W0, . . . ,Wn) and another
NIZK proof showing Ui is created by her. Denote the corresponding proofs as π(3)

i and π(4)
i , respectively. Vi signs and

posts (Ui, Vi, π
(3)
i , π

(4)
i) to ḠBB.

If a voter Vi wants to delegate to voter Vj , she will produce Vi as a re-randomized Wj and Ui as encryption of ⊥.
Similarly, she also gives a NIZK proof showing that Vi is re-randomized from one of the ciphertexts in (W0, . . . ,Wn)

and another NIZK proof showing Ui is created by her. Denote the corresponding proofs as π(3)
i and π(4)

i , respectively.
Vi signs and posts (Ui, Vi, π

(3)
i , π

(4)
i) to ḠBB.

Voting/Delegation:
Upon receiving (Vote, sid, vi)/(Delegate, sid,Vj) from the environment Z , the voter Vi operates as the follows:

If pk is not de�ned yet, return (Error, sid) to Z and halt.
Otherwise, send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB.
For ` ∈ [n], if 〈ssid, (W`, π

(2)
`), σ

(2)
` 〉 is contained in state , then send (Verify, sid, ssid, (W`, π

(2)
`), σ

(2)
`) to F̂Cert, and

receive (Verified, sid, ssid, (W`, π
(2)
`), b

(2)
j) from F̂Cert;

For ` ∈ [n], set W` ← RTE.Enc(pk,⊥; 0) if W` is missing or b(2)
` = 0 or NIZKR2 .Verify((pk,W`), π

(2)
`) = 0.

De�ne W0 ← RTE.Enc(pk,⊥; 0).
If (Vote, sid, vi) compute

• Vi ← RTE.ReRand(pk,W0; γi)

and π(3)
i ← NIZKR3

{
(pk, (W0, . . . ,Wn), Vi), (γi, `) : Vi = RTE.ReRand(pk,W`; γi)

}
where ` = 0.

• Ui ← RTE.Enc(pk, vi; δi) and π(4)
i ← NIZKR2

{
(pk, Ui), (δi, vi) : Ui = RTE.Enc(pk, vi; δi)

}
.

If (Delegate, sid,Vj), compute
• Vi ← RTE.ReRand(pk,Wj ; γi)

and π(3)
i ← NIZKR3

{
(pk, (W0, . . . ,Wn), Vi), (γi, `) : Vi = RTE.ReRand(pk,W`; γi)

}
where ` = j.

• Ui ← RTE.Enc(pk,⊥; δi) and π(4)
i ← NIZKR2

{
(pk, Ui), (δi,⊥) : Ui = RTE.Enc(pk,⊥; δi)

}
.

Send (Sign, sid, ssid, (Ui, Vi, π(3)
i , π

(4)
i)) to F̂Cert and receive (Signature, sid, ssid, (Ui, Vi, π(3)

i , π
(4)
i), σ

(3)
i) from

F̂Cert, where ssid = (Vi, ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (Ui, Vi, π(3)
i , π

(4)
i), σ

(3)
i 〉) to ḠBB.

Figure 6: Liquid democracy voting scheme ΠLiqid in the {ḠBB, F̂Cert}-hybrid world (Part II).

4.2.3 Tally phase

The tally phase is depicted in Fig. 7. The trustees �rst fetches (Wi, Vi, Ui) (which is viewed as the submitted ballot for
voter Vi) from ḠBB and check their attached NIZK proofs. All the invalid ballots will be discard. Let n′ be the number
of valid ballots. All the trustees then jointly shu�e the ballots via a re-encryption mix-net. More speci�cally, each
trustee sequentially permutes (Wi, Vi, Ui) as a bundle using shu�e re-encryption. To ensure correctness, the trustee
also produces a NIZK proof showing the correctness of the shu�e re-encryption process. After that, upon receiving
(Tally, sid) from the environment, all the trustees Tj check the correctness of the entire mix-net and then jointly
decrypt the mixed ballots using RTE.ShareDec. More speci�cally, each trustee will sign and post its decryption shares
to ḠBB.

Each voter can then compute the tally result as follows. The voter �rst fetches all the decryption shares and checks
their validity using RTE.ShareVer. Upon success, the voter uses RTE.Combine to reconstruct the messages. She then
use TallyProcess as described in Fig. 4 to calculate the �nal tally.

11

Tally:
Upon receiving (Mix, sid) from the environment Z , the trustee Tj , where j ∈ [k], operates as the follows:

If j = 1, send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. For ` ∈ [n]:

• If 〈ssid, (W`, π
(2)
`), σ

(2)
` 〉 is contained in state , then send (Verify, sid, ssid, (W`, π

(2)
`), σ

(2)
`) to F̂Cert, and receive

(Verified, sid, ssid, (W`, π
(2)
`), b

(2)
j) from F̂Cert;

• If 〈ssid, (U`, V`, π(3)
` , π

(4)
`), σ

(3)
` 〉, is contained in state , then send (Verify, sid, ssid, (U`, V`, π(3)

` , π
(4)
`), σ

(3)
`) to

F̂Cert, receive (Verified, sid, ssid, (U`, V`, π(3)
` , π

(4)
`), b

(3)
j) from F̂Cert;

Set i = 0. For ` ∈ [n], de�ne e(0)
i := (W`, U`, V`) and i = i+ 1 if the following holds:

• W`, U`, V` exist in state and b(2)
` · b

(3)
` = 1;

• NIZKR2 .Verify((pk,W`), π
(2)
`) = 1;

• NIZKR3 .Verify((pk, (W0, . . . ,Wn), V`), π
(3)
`) = 1;

• NIZKR2 .Verify((pk, U`), π
(4)
`) = 1;

Assume i = n′ after the above process.
(If j > 1, Tj sends (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB; Tj then fetches
(e

(j−2)
i)n

′
i=1, e

(j−1)
i)n

′
i=1, π

(5)
j−1 from state and checkNIZKR4 .Verify((pk, (e

(j−2)
1 , . . . , e

(j−2)

n′), (e
(j−1)
1 , . . . , e

(j−1)

n′)), π
(5)
j−1).)

Tj randomly picks a permutation Πj over [n’]; For i ∈ [n′], set e(j)
i,1 ← RTE.ReRand(pk, e

(j−1)

Πj(i),1
; r

(j)
i,1), e(j)

i,2 ←
RTE.ReRand(pk, e

(j−1)

Πj(i),2
; r

(j)
i,2), and e(j)

i,3 ← RTE.ReRand(pk, e
(j−1)

Πj(i),3
; r

(j)
i,3), where r(j)

i,1 , r
(j)
i,2 , r

(j)
i,3 are fresh random-

ness. Compute

π
(5)
j ← NIZKR4


(
pk, (e

(j−1)
1 , . . . , e

(j−1)

n′), (e
(j)
1 , . . . , e

(j)

n′)
)
,
(

Πj , (r
(j)
i,1 , r

(j)
i,2 , r

(j)
i,3)i∈[n′]

)
:

∀i ∈ [n′] : e
(j)
i,1 = RTE.ReRand

(
pk, e

(j−1)

Πj(i),1
; r

(j)
i,1

)
∧
e

(j)
i,2 = RTE.ReRand

(
pk, e

(j−1)

Πj(i),2
; r

(j)
i,2

) ∧
e

(j)
i,3 = RTE.ReRand

(
pk, e

(j−1)

Πj(i),3
; r

(j)
i,3

)


Send (Sign, sid, ssid, (e(j)
i)n

′
i=1, π

(5)
j)) to F̂Cert and receive (Signature, sid, ssid, (e(j)

i)n
′
i=1, π

(5)
j), σ

(4)
j) from F̂Cert,

where ssid = (Tj , ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (e(j)
i)n

′
i=1, π

(5)
j , σ

(4)
j 〉) to ḠBB.

Upon receiving (Tally, sid) from the environment Z , the trustee Tj , where j ∈ [k], operates as the follows:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. For j ∈ [k], if 〈ssid, (e(j)

i)n
′
i=1, π

(5)
j , σ

(4)
j 〉 is contained in

state , then send (Verify, sid, ssid, (e(j)
i)n

′
i=1, π

(5)
j), σ

(4)
`) to F̂Cert, and receive (Verified, sid, ssid, (e(j)

i)n
′
i=1, π

(5)
j), b

(4)
j)

from F̂Cert; if b(4)
j = 1, check NIZKR4 .Verify((pk, (e

(j−1)
1 , . . . , e

(j−1)

n′), (e
(j)
1 , . . . , e

(j)

n′)), π
(5)
j) = 1. If any of the above

checks is invalid, halt.
For i ∈ [n′], t ∈ [3] compute m(j)

i,t ← RTE.ShareDec(pk, skj , e(k)
i,t).

Send (Sign, sid, ssid, (m(j)
i,t)i∈[n′],t∈[3]) to F̂Cert and receives (Signature, sid, ssid, (m(j)

i,t)i∈[n′],t∈[3], σ
(5)
j) from F̂Cert,

where ssid = (Tj , ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (m(j)
i,t)i∈[n′],t∈[3], σ

(5)
j 〉) to ḠBB.

Upon receiving (ReadResult, sid) from the environment Z , the voter Vi, where i ∈ [n], operates as the follows:
Send (Read, sid) to ḠBB, and and obtain (Read, sid, state) from ḠBB.
For j ∈ [k], if 〈ssid, (m(j)

i,t)i∈[n′],t∈[3], σ
(5)
j 〉 is contained in state , send (Verify, sid, ssid, (m(j)

i,t)i∈[n′],t∈[3], σ
(5)
j) to

F̂Cert, and receive (Verified, sid, ssid, (m(j)
i,t)i∈[n′],t∈[3], b

(5)
j) from F̂Cert. If

∏k
j=1 b

(5)
j = 1, for all j ∈ [k], i ∈ [n′], t ∈

[3], check RTE.ShareVer(pk, e(k)
i,t ,m

(j)
i,t) = 1. If any of the above checks is invalid, return (Error, sid) to the environ-

ment Z and halt.
For i ∈ [n′]: compute mi,t ← RTE.Combine((k, k), e

(k)
i,t , {m

(j)
i,t }

k
j=1), t ∈ [3]; de�ne Bi := (mi,1,mi,2,mi,3).

Calculate election result result ← TallyAlg({Bi}i∈[n′], (mi,1)n
′
i=1), and return (ReadResultReturn, sid, result) to Z .

Figure 7: Liquid democracy voting scheme ΠLiqid in the {ḠBB, F̂Cert}-hybrid world (Part III).

12

4.3 Security
We have the following the theorem.

Theorem 4.4. Protocol ΠLiquid described in Figure 5, Figure 6 and Figure 7 UC-realizes FLiqid in the {ḠBB, F̂Cert}-hybrid
world against static corruption.

The security proof can be found in Appendix A.

5 Instantiations
In this section, we give e�cient instantiations to all the building blocks described in Section 4.1. Our instantiations
typically take the advantage of random oracle (RO), aiming for practical e�ciency.

5.1 Re-randomizable threshold PKE instantiation
We adopt threshold ElGamal encryption as a candidate for the (k, k)-threshold PKE scheme. For any given security
parameter 1λ, we pick a cyclic group 〈g〉 = G with prime order q where the DDH assumption holds. The group
information is an implicit input of every algorithm.

• RTE.DGen(1λ, (k, k), i): randomly pick ski ← Zq and output (pki := gski , ski).

• RTE.Merge((k, k), {pki}ki=1): set h :=
∏k
i=1 pki and output pk := (h, pk1, . . . , pkk).

• RTE.Enc(pk,m): randomly picks r ← Zq and output e := (gr,m · hr).

• RTE.ReRand(pk, (e1, e2)): randomly picks s← Zq and output e′ := (gs · e1, h
s · e2).

• RTE.ShareDec(pk, ski, (e1, e2)): output mi := (i, m̂i := eski1 , πi), where πi ← NIZKR5

{
(pki, e1, m̂i), (ski) :

pki = gski ∧ mi = eski1

}
.

• RTE.ShareVer(pk, (e1, e2), (i, m̂i, πi)): check and output NIZK.Verify(pki, e1, m̂i, πi).

• RTE.Combine((k, k), (e1, e2), {(i, m̂i, π)}ki=1): output m := e2/
∏k
i=1 m̂i.

• RTE.Combine−1(pk, e,m,m1, . . . ,mk−1): computesmk := m/
∏k−1
i=1 mi and πk ← NIZKR5

.Sim(pkk, e1,mk);
it then outputs mk := (k,mk, πk).

The NIZK proof of membership

NIZKR5

{
(pki, e1, m̂i), (ski) : pki = gski ∧ mi = eski1

}
invoked above can be instantiated by strong Fiat-Shamir heuristic on the well-known Chaum-Pedersen proof [18] for
DDH tuples.

First of all, the correctness of the above scheme follows by inspection. Now let’s examine the security properties.
It is easy to see that AdvCPAA,k,k(1λ) = negl(λ) is guaranteed by the IND-CPA security of the underlying ElGamal
encryption which is under the DDH assumption. Besides, AdvUnlinkA,k,k(1λ) = 0, as each re-randomized ciphertext
has the same distribution as a freshly encrypted ciphertext. Moreover, AdvDCA,k,k(1λ) = negl(λ) is guaranteed by
the uniqueness of the valid message share and the soundness of the NIZK proof NIZKR5

. Finally, in terms of the
reconstructibility, it is obvious that we have an e�cient RTE.Combine−1 algorithm such that mk is indistinguishable
from the honestly generated ones. This is guaranteed by the uniqueness of the �nal message share and the simulatability
of the NIZK proof NIZKR5

.

5.2 NIZK instantiations
Several NIZK proofs are used in our construction. Hereby, we provide RO-based instantiation for these primitives.

13

NIZK for distributed key generation. In the preparation phase, we used a NIZK proof of knowledge for knowledge
of the secret key and correctness of the distributed key generation, i.e.,

NIZKR1

{
(pk), (ω, sk) : (pk, sk) = RTE.DGen(1λ, (t, n), i;ω)

}
In terms of ElGamal encryption, this NIZK can be realized by strong Fiat-Shamir heuristic of the Schnorr’s proof [32].
Schnorr’s proof is Sigma proof of knowledge of discrete logarithm; however, its RO-NIZK version has a small caveat,
i.e., the knowledge extraction is based on RO rewinding. Alternatively, to enable extractability, we propose to a NIZK
in Fig. 8, where H1 : {0, 1}∗ 7→ G is a hash function. NIZKR6 allows the prover to show an ElGamal ciphertext
is encryption of 0/1 using a Sigma disjunction of Chaum-Pederden Sigma protocol. NIZKR7

is strong Fiat-Shamir
heuristic of Chaum-Pederden Sigma protocol for DDH tuples.

NIZK for Discrete Logarithm

Statement: h = gs

Witness: s1, . . . , sκ ∈ {0, 1} s.t. s =
∑κ
i=1 2i−1si

Prove:
Set u := H1(h) and pick r1, . . . , rκ ← Zq .
For i ∈ [κ], compute ei,1 := gr1 , ei,2 := gsiur1 , and prove

πi ← NIZKR6

{
(g, u, ei,1, ei,2), (si, ri) : (ei,1 = gri ∧ ei,2 = uri) ∨ (ei,1 = gri ∧ ei,2/g = uri)

}
.

Compute e1 :=
∏κ
i=1(ei,1)2i−1

, e2 :=
∏κ
i=1(ei,2)2i−1

and r :=
∑κ
i=1 2i−1ri. Prove

φ← NIZKR7

{
(g, u, e1, e2), (r) : (e1 = gr ∧ e2/h = ur)

}
.

Output π := ((ei,1, ei,2)i∈[κ], π1, . . . , πκ, φ).
Verify:

Set u := H1(h), e1 :=
∏κ
i=1(ei,1)2i−1

, and e2 :=
∏κ
i=1(ei,2)2i−1

.
For i ∈ [κ], check NIZKR6 .Verify

{
(g, u, ei,1, ei,2), πi

}
.

Check NIZKR7 .Verify
{

(g, u, e1, e2), φ
}

.

Figure 8: NIZK for Discrete Logarithm

Theorem 5.1. The NIZK described in Fig. 8 is an NIZK proof of knowledge of s ∈ Zq for h = gs with extractability.

Proof. The completeness and soundness follow directly by the completeness of the underlying NIZKR6
and NIZKR7

.
For ZK, the simulator generates (ei,1, ei,2) as encryption of 0 and computes NIZKR6 honestly. It then simulates φ
using NIZKR7 .Sim. In terms of extractability, the knowledge extractor simulates the RO for H1, and it outputs u = gx

for a randomly chosen x ∈ Zq . Now the extractor can decrypt (ei,1, ei,2) and obtain si, for i ∈ [κ]; it then outputs
s =

∑κ
i=1 2i−1si.

Remark 5.2. We note that it is also possible to use Schnorr’s proof (without extractability) for better computational e�-

ciency, but at the cost of one more round. Namely, instead of directly posting the partial public keys on the bulletin board,

we let the trustees �rst post a commitment of their partial public keys, and then decommit them. For instance, we can use

simple hash based commitment. To commitm, pick a random d← {0, 1}λ, output c := H(m‖d). To verify a commitment,

just check if c = H(m‖d). Now the simulator can �x the combined public key to the one that the simulator knows its

corresponding secrete key by equivocating the commitments. (cf. [8] for more details of this technique.)

NIZK for knowledge of plaintext. In our scheme, the voters post encryptions of their temporal ID on the BB. In
order to prevent the adversary from copying and modifying their temporal ID, we use NIZK for the correctness of
RTE.Enc algorithm as the following.

NIZKR2

{
(pk, e), (ω,m) : e = RTE.Enc(pk,m;ω)

}
With regard to ElGamal encryption, the proof of knowledge of plaintext and randomness is the same as proof of knowl-
edge of randomness, as given r, everyone can computem := e2/pk

r . Therefore, we only need to use strong Fiat-Shamir

14

heuristic on Schnorr’s proof [32]. Again, such a proof is not extractable in the UC setting; nevertheless, we don’t need
the extractor in our security proof.
One-out-of-many NIZK. In our scheme, the voters need to use

NIZKR3

{
(pk, (e1, . . . , en), e′), (ω, i) : e′ = RTE.ReRand(pk, ei;ω)

}
to show that e′ is re-randomized from one of a set of ciphertexts as follows. The statement can be re-stated as to
show that one of the ciphertexts (e1/e

′, . . . , en/e
′) is encryption of 0; namely, the prover knows i and r such that

ei/e
′ := RTE.Enc(pk, 0; r). Groth and Kohlweiss [23] proposed an e�cient one-out-of-many proof, whose proof size

is O(log n). Their proof is a 3-move public coin special honest veri�er zero-knowledge proof that allows the prover
to convince the veri�er that one out of a set of commitment commits to 0. Although they instantiate their proof to
Pedersen commitment, their protocol is also compatible with ElGamal commitment/encryption. Therefore, we can use
strong Fiat-Shamir heuristic on their proof to instantiate our NIZKR3

, and no knowledge extractor is needed. Due to
space limitation, we refer interested readers to [23] for more details.
NIZK for shu�le correctness. Each trustee is shu�ing the set of triple ciphertext (ballot) in turn. We need shu�e
NIZK for the correctness of re-encryption mix-net, i.e.,

NIZKR4

{
(pk, (e1, . . . , en), (e′1, . . . , e

′
n)), (Π, (ω1, . . . , ωn)) : ∀i ∈ [n] : e′i = RTE.ReRand(pk, eΠ(i);ωi)

}
.

There are many ZK/NIZK of shu�ing correctness for ElGamal re-encryption. To our best knowledge, the most e�cient
one is proposed by Bayer and Groth [4]. The proof size of their ZK is O(

√
n). Although the original proof is for

shu�ing single ElGamal ciphertexts rather than bundles of three ciphertexts, it is easy to modify their proof to meet
our requirement. More concretely, the modi�ed protocol consists of two sub-protocols. Let ρ be the permutation.
The prover �rst uses generalized Pedersen commitment to commit xρ(1), . . . , xρ(n) and prove its correctness, where x is
randomly chosen by the veri�er; after that, the prover uses multi-exponentiation argument to show that

∏n
i=1(ei,j)

xi =

RTE.Enc(pk, 0; s) ·
∏n
i=1(e′i,j)

xπ(i) for j ∈ [3], where s is some randomness known to the prover. Their protocol is Fiat-
Shamir friendly, and we refer interested readers to [4] for more details.

6 Discussions
Voting policy. We initiate the study of statement voting and liquid democracy in this work. Our statement voting
concept can be signi�cantly extended to support much richer ballot statements, which opens a door for designing a
new class of e-voting schemes. This line of research is far from being completed, and our design and modeling ideas
can be further improved. For example, if there is a delegation loop in which a set of voters delegate their votes to each
other while no one votes, then what should be the “right” policy? Should the ballots be reset as blank ballots? This
might not be ideal in reality. One possible approach is to extend the delegation statement to include a default vote.
When a delegation loop exists, the involved ballots could be counted as their default votes. We also remark that, voting
policies can be heavily in�uenced by local legal and societal conditions. How to de�ne “right” voting policy itself is a
very interesting question. We believe our techniques here have the potential to help people to identify suitable voting
policies which can further eliminate the barriers to democracy.

Trusted setup. Typically, trusted setup assumptions2 are required for constructing UC-secure e-voting systems. Com-
mon Reference String (CRS) and Random Oracle (RO) are two popular choices in practice. If an e-voting system uses
CRS, then we need to trust the party who generates the CRS, which, in our opinion, is a stronger assumption than believ-
ing no adversary can break a secure hash function, e.g., SHA3. Therefore, in this work, we realize our liquid democracy
voting system in the RO model.

As a future direction, we will construct more solutions to liquid democracy. For example, an alternative approach is
as follows: we �rst use multi-party computation (MPC) to generate a CRS; then we construct liquid democracy voting
system by using the CRS. As argued above, we need to trust the parties who generate the CRS; here, at least one of
the MPC players must be honest. This approach has previously been used for anonymous cryptocurrency; please see
Ben-Sasson et al’s recent e�ort [6]. We remark that, this approach might be problematic for cryptocurrency systems:
typically a cryptocurrency system will last for many years and it is very di�cult to ensure there is no attack on the CRS
during this long time period. Interestingly, this limitation does not apply to liquid democracy voting systems. If there
is an issue with the current CRS, we can use multiple party computation to generate a new CRS.

2Most non-trivial functionalities (including the e-voting functionality) cannot be UC-realized in the plain model [14, 12, 15].

15

References
[1] B. Adida. Helios: Web-based open-audit voting. In USENIX Security, pages 335–348, 2008.
[2] D. Alger. Voting by proxy. Public Choice, 126(1):1–26, 2006.
[3] J. Alwen, R. Ostrovsky, H.-S. Zhou, and V. Zikas. Incoercible multi-party computation and universally composable receipt-free

voting. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 763–780. Springer,
Heidelberg, Aug. 2015.

[4] S. Bayer and J. Groth. E�cient zero-knowledge argument for correctness of a shu�e. In D. Pointcheval and T. Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280. Springer, Heidelberg, Apr. 2012.

[5] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

[6] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. Secure sampling of public parameters for succinct zero knowledge
proofs. In 2015 IEEE Symposium on Security and Privacy, pages 287–304. IEEE Computer Society Press, May 2015.

[7] J. C. Benaloh and M. Yung. Distributing the power of a government to enhance the privacy of voters (extended abstract). In J. Y.
Halpern, editor, 5th ACM PODC, pages 52–62. ACM, Aug. 1986.

[8] D. Bernhard, O. Pereira, and B. Warinschi. How not to prove yourself: Pitfalls of the Fiat-Shamir heuristic and applications to
Helios. In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 626–643. Springer, Heidelberg, Dec. 2012.

[9] C. Blum and C. I. Zuber. Liquid democracy: Potentials, problems, and perspectives. Journal of Political Philosophy, 24(2):162–182,
2016.

[10] D. Boneh, X. Boyen, and S. Halevi. Chosen ciphertext secure public key threshold encryption without random oracles. In
D. Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS, pages 226–243. Springer, Heidelberg, Feb. 2006.

[11] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report
2000/067, 2000. http://eprint.iacr.org/2000/067.

[12] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS, pages 136–145. IEEE
Computer Society Press, Oct. 2001.

[13] R. Canetti. Universally composable signatures, certi�cation and authentication. Cryptology ePrint Archive, Report 2003/239,
2003. http://eprint.iacr.org/2003/239.

[14] R. Canetti and M. Fischlin. Universally composable commitments. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages
19–40. Springer, Heidelberg, Aug. 2001.

[15] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally composable two-party computation without set-up
assumptions. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 68–86. Springer, Heidelberg, May 2003.

[16] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM, 24(2):84–88, 1981.
[17] D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. Sherman, and P. Vora. Scantegrity: End-to-End Voter-Veri�able

Optical- Scan Voting. IEEE Security & Privacy Magazine, 6(3):40–46, May 2008.
[18] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages

89–105. Springer, Heidelberg, Aug. 1993.
[19] D. Chaum, P. Y. A. Ryan, and S. A. Schneider. A practical voter-veri�able election scheme. In S. D. C. di Vimercati, P. F. Syverson,

and D. Gollmann, editors, ESORICS 2005, volume 3679 of LNCS, pages 118–139. Springer, Heidelberg, Sept. 2005.
[20] DAO. Create a democratic autonomous organization, 2017. https://www.ethereum.org/dao.
[21] B. Ford. Delegative democracy. 2002. http://www.brynosaurus.com/deleg/deleg.pdf.
[22] J. Groth. Evaluating security of voting schemes in the universal composability framework. In M. Jakobsson, M. Yung, and

J. Zhou, editors, ACNS 04, volume 3089 of LNCS, pages 46–60. Springer, Heidelberg, June 2004.
[23] J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin. In E. Oswald and M. Fischlin,

editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 253–280. Springer, Heidelberg, Apr. 2015.
[24] S. Hardt and L. Lopes. Google votes: A liquid democracy experiment on a corporate social network. Technical Disclosure

Commons, 2015. http://www.tdcommons.org/dpubs_series/79.
[25] A. Kiayias, T. Zacharias, and B. Zhang. DEMOS-2: Scalable E2E veri�able elections without random oracles. In I. Ray, N. Li, and

C. Kruegel:, editors, ACM CCS 15, pages 352–363. ACM Press, Oct. 2015.
[26] A. Kiayias, T. Zacharias, and B. Zhang. End-to-end veri�able elections in the standard model. In E. Oswald and M. Fischlin,

editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 468–498. Springer, Heidelberg, Apr. 2015.
[27] A. Kiayias, H.-S. Zhou, and V. Zikas. Fair and robust multi-party computation using a global transaction ledger. In M. Fischlin

and J.-S. Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734. Springer, Heidelberg, May 2016.

16

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2003/239
https://www.ethereum.org/dao
http://www.brynosaurus.com/deleg/deleg.pdf
http://www.tdcommons.org/dpubs_series/79

[28] R. Merkle. Daos, democracy and governance. Manuscript, 2016. http://merkle.com/papers/
DAOdemocracyDraft.pdf.

[29] J. C. Miller. A program for direct and proxy voting in the legislative process. Public Choice, 7(1):107–113, 1969.
[30] T. Moran and M. Naor. Receipt-free universally-veri�able voting with everlasting privacy. In C. Dwork, editor, CRYPTO 2006,

volume 4117 of LNCS, pages 373–392. Springer, Heidelberg, Aug. 2006.
[31] K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical solution to the implementation of a voting booth. In

L. C. Guillou and J.-J. Quisquater, editors, EUROCRYPT’95, volume 921 of LNCS, pages 393–403. Springer, Heidelberg, May 1995.
[32] C.-P. Schnorr. E�cient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, 1991.
[33] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack. Journal of Cryptology, 15(2):75–96,

2002.
[34] D. Unruh and J. Müller-Quade. Universally composable incoercibility. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,

pages 411–428. Springer, Heidelberg, Aug. 2010.

A Proof for Theorem 4.4
Proof. To prove the theorem, we construct a simulator S such that no non-uniform PPT environment Z can distin-
guish between (i) the real execution EXECḠBB,F̂Cert

ΠLiqid,A,Z where the parties V := {V1, . . . ,Vn} and T := {T1, . . . ,Tk} run
protocol ΠLiqid in the {ḠBB, F̂Cert}-hybrid world and the corrupted parties are controlled by a dummy adversary A
who simply forwards messages from/to Z , and (ii) the ideal execution EXECḠBB

FLiqid,S,Z where the parties interact with
functionality FLiqid in the ḠBB-hybrid model and corrupted parties are controlled by the simulator S . Let Vcorrupt ⊆ V
and Tcorrupt ⊆ T be the set of corrupted voters and trustees, respectively. We consider following cases.

Case 1: 0 ≤ |Vcorrupt| < n ∧ 0 ≤ |Tcorrupt| < k.

Simulator. The simulator S internally runs A, forwarding messages to/from the environment Z . The simulator S
simulates honest voters Vi ∈ V \ Vcorrupt, honest trustees Tj ∈ T \ Tcorrupt and functionalities F̂Cert. In addition, the
simulator S simulates the following interactions with A.

• In the preparation phase:

Upon receiving (InitialTrusteeNotify, sid,Tj) from the external FLiqid for an honest trustee Tj ∈ T \
Tcorrupt, the simulator S acts as Tj , following the protocol ΠLiqid as if Tj receives (InitialTrustee, sid) from
Z .
Monitoring ḠBB, when a valid (pkj , π

(1)
j) is posted on ḠBB from a corrupted trustee Tj ∈ Tcorrupt, use

NIZKR1 .Ext
RO(pkj , π

(1)
j) to extract the corresponding secret key skj .

Upon receiving (InitialVoterNotify, sid,Vi) from the externalFLiqid for an honest voter Vi ∈ V\Vcorrupt,
the simulator S acts as Vi, following the protocol ΠLiqid as if Vi receives (InitialVoter, sid, 1) from Z .
The simulator S monitoring ḠBB; once a (Wi, π

(2)
i) is posted from a corrupted voter Vi ∈ Vcorrupt, the simu-

lator S uses the extracted
{
skj
}
j∈[k]

to decryptWi to the temporal ID wi. The simulator S acts as Vi to send
(InitialVoter, sid, 0) to FLiqid if wi = ⊥; send (InitialVoter, sid, 1) to FLiqid, otherwise. Upon receiving
(InitialVoterNotify, sid,Vi) from FLiqid, the simulator S sends (VoterID, sid,Vi, wi) to FLiqid. Denote
the vector of temporal ID asW := (w1, . . . , wn).

• In the voting/delegation phase:
Upon receiving (ExecuteNotify, sid,Vi) from the external FLiqid for an honest voter Vi ∈ V \Vcorrupt, the
simulator S creates Vi ← RTE.Enc(pk, 0) and Ui ← RTE.Enc(pk, 0). It then simulates the corresponding
proofs π(3)

i and π(4)
i . The simulator S then follows the protocol to post (Vi, Ui, π

(3)
i , π

(4)
i) to ḠBB.

Monitoring ḠBB, when a valid (Vi, Ui, π
(3)
i , π

(4)
i) is posted on ḠBB from a corrupted voter Vi ∈ Vcorrupt, uses

the extracted
{
skj
}
j∈[k]

to decrypt Vi to w and Ui to vi. If w ∈ W , i.e. w = wj for some j ∈ [n], the
simulator S acts as Vi to send (Delegate, sid,Vj); otheriwse, it acts as Vi to send (Vote, sid, vi) to FLiqid
to FLiqid.

17

http://merkle.com/papers/DAOdemocracyDraft.pdf
http://merkle.com/papers/DAOdemocracyDraft.pdf

• In the tally phase:
Upon receiving (MixNotify, sid,Tj) from the external FLiqid for an honest trustee Tj ∈ T \ Tcorrupt, the
simulator S acts as Tj , following the protocol ΠLiqid as if Tj receives (Mix, sid) from Z .
The simulator S monitoring ḠBB; once (e

(j)
i)n

′

i=1, π
(5)
j is posted from a corrupted trustee Tj ∈ Tcorrupt, the

simulator S acts as Tj to send (Mix, sid) to FLiqid.
Upon receiving (TallyNotify, sid,Tj) from the external FLiqid for an honest trustee Tj ∈ T \ Tcorrupt, if
m

(j)
i,t are not de�ned yet, the S acts as Tj , following the protocol ΠLiqid as if Tj receives (Tally, sid) from
Z .
Upon receiving (Reveal, sid, (B̃1, . . . , B̃n)) from the external FLiqid, the simulator S uses the extracted
secret key skj to compute m(j)

i,t ← RTE.ShareDec(skj , e(k)
i,t) for all the corrupted trustees Tj ∈ Tcorrupt. The

simulator S then uses RTE.Combine−1 to compute the message shares of the rest honest T`’s message shares
m

(`)
i,t according to (B̃1, . . . , B̃n).

Indistinguishability. The indistinguishability is proven through a series of hybrid worldsH0, . . . ,H4.
HybridH0: It is the real protocol execution EXECḠBB,F̂Cert

ΠLiqid,A,Z .
HybridH1: H1 is the same asH0 except thatH1 runs NIZKR1 .Ext

RO(pkj , π
(1)
j) to extract the corrupted trustee’s secret

key skj . H1 halt if the extraction fails.

Claim A.1. H1 andH0 are indistinguishable.

Proof. According to Def. 4.3, the probabilityExtRO extraction fails (a.k.a. knowledge error) is negligible, so the probability
that any adversary A and the environment Z can distinguishH1 fromH0 is negl(λ).

Hybrid H2: H2 is the same as H1 except the following: During the tally phase, uses the extracted skj from Hy-
brid H1 to decrypt each ciphertext, and the last honest trustee’s message shares of each ciphertext are calculated by
RTE.Combine−1 instead of using RTE.ShareDec.

Claim A.2. H2 andH1 are indistinguishable.

Proof. By the decryption consistency property, AdvDCA,k,k(1λ) = negl(λ), i.e. there is a negligible probability that the
adversary can produce another set of valid message shares such that the reconstructed message is di�erent. Since the
distribution of the message shares output byRTE.Combine−1 have identical distribution to the real ones, the adversary’s
advantage of distinguishingH2 fromH1 is negl(λ).

HybridH3: H3 is the same asH2 except the followings. During the vote phase,H3 uses NIZKR3 .Sim to simulate π(3)
i

and uses NIZKR2
.Sim to simulate π(4)

i for all the honest voter Vi ∈ V.

Claim A.3. H3 andH2 are indistinguishable.

Proof. The advantage of the adversary is bounded by the ZK property of NIZK as de�ned by Def. 4.2.

HybridH4:H4 is the same asH3 except the followings. During the vote phase, the simulator postsVi ← RTE.Enc(pk, 0)
and Ui ← RTE.Enc(pk, 0) for all the honest voter Vi ∈ V.

Claim A.4. H4 andH3 are indistinguishable.

Proof. The probability that any adversaryA can distinguishH4 fromH3 is bounded byAdvCPAA,k,k(1λ) andAdvUnlinkA,k,k(1λ)
which are negligible.

The adversary’s view ofH4 is identical to the simulated view EXECḠBB
FLiqid,S,Z . Therefore, no PPT Z can distinguish

the view of the ideal execution from the view of the real execution with more than negligible probability.

Case 2: 0 ≤ |Vcorrupt| < n ∧ |Tcorrupt| = k.

18

Simulator. Similar as Case 1, the simulator S internally runs A, forwarding messages to/from the environment Z .
The simulator S simulates honest voters Vi ∈ V \ Vcorrupt, honest trustees Tj ∈ T \ Tcorrupt and functionalities F̂Cert.
In addition, the simulator S simulates the following interactions with A.

• In the preparation phase:

Monitoring ḠBB, when a valid (pkj , π
(1)
j) is posted on ḠBB from a corrupted trustee Tj ∈ Tcorrupt, use

NIZKR1 .Ext(pkj , π
(1)
j) to extract the corresponding secret key skj .

Upon receiving (DelLeak, sid,Vi, η) from the external FLiqid for an honest voter Vi ∈ V \ Vcorrupt, the
simulator S acts as Vi, following the protocol ΠLiqid as if Vi receives (InitialVoter, sid, η) from Z .

• In the voting/delegation phase:
Upon receiving (LEAK, sid,Delegate,Vj) or (Leak, sid,Vi,Vote, vi) from the external FLiqid for an hon-
est voter Vi ∈ V \ Vcorrupt, the simulator S acts as Vi, following the protocol ΠLiqid as if Vi receives
(Delegate, sid,Vj) or (Vote, sid, vi) from Z .
Monitoring ḠBB, when a valid (Vi, Ui, π

(3)
i , π

(4)
i) is posted on ḠBB from a corrupted voter Vi ∈ Vcorrupt, uses

the extracted
{
skj
}
j∈[k]

to decrypt Vi to wj for some j ∈ [0, n] and Ui to vi. If wj = ⊥, the simulator S acts
as Vi to send (Vote, sid, vi) to FLiqid; otheriwse, it acts as Vi to send (Delegate, sid,Vj) to FLiqid.

• In the tally phase:

The simulator S monitoring ḠBB; once a (e
(j)
i)n

′

i=1, π
(5)
j is posted from a corrupted trustee Tj ∈ Tcorrupt, the

simulator S acts as Tj to send (Mix, sid) to FLiqid.

Indistinguishability. The indistinguishability in this case is straightforward, as S never simulate a single message to
either any corrupted parties or the external ḠBB. The simulator S knows all the honest voters’ ballot from the external
FLiqid, it simply acts as the honest voters according to the protocol ΠLiqid. Meanwhile, it also extracts the ballot of
the malicious voters by using the extracted trustees’ secret keys. Hence, the simulator S can submit the extracted ballot
to the external FLiqid on the malicious voters’ behave. Therefore, when NIZK extraction for trustees’ secret keys are
successful, the view of Z in the ideal execution has identical distribution to the view of Z in the real execution.

Case 3: |Vcorrupt| = n ∧ 0 ≤ |Tcorrupt| ≤ k.

Simulator. Trivial case. There is nothing needs to extract, as the trustees do not have input. The simulator S just run
trustee according to protocol ΠLiqid.
Indistinguishability. The view of Z in the ideal execution has identical distribution to the view of of Z in the real
execution.

19

	Introduction
	Preliminaries
	The UC framework
	Ideal functionalities
	Bulletin board functionality
	Certificate functionality

	Modeling Liquid Democracy Voting
	Constructing Liquid Democracy Voting
	Building blocks
	Re-randomizable threshold PKE
	Non-interactive zero-knowledge proofs/arguments

	Protocol description
	Preparation phase
	Voting/Delegation phase
	Tally phase

	Security

	Instantiations
	Re-randomizable threshold PKE instantiation
	NIZK instantiations

	Discussions
	Proof for Theorem 4.4

