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Abstract. Payment channels emerged recently as an efficient method for performing cheap micro-
payment transactions in cryptographic currencies. In contrast to the traditional on-chain transactions,
payment channels have the advantage that they allow nearly unlimited number of transactions between
parties without involving the blockchain. In this work, we introduce Perun, a new system for payment
and state channels over cryptographic currencies, that has several advantages over the existing propos-
als. In particular, Perun offers a new method for connecting channels that is more efficient than the
existing technique of “routing transactions” over multiple channels. That is, in contrast to prominent
existing solutions such as the Lightning Network, Perun does not require involvement of the interme-
diary over which payments are routed. To achieve this, Perun introduces a new technique that we call
channel virtualization, which allows to build virtual payment channels over so-called multistate channels.
Multistate channels are a new primitive that we introduce as an independent concept in this work and
generalizes the notion of “state channels”. Our schemes can work over any cryptocurrency that provides
Turing-complete smart contracts. As a proof of concept, we implemented Perun in Ethereum.
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1 Introduction

Decentralized cryptocurrencies such as Bitcoin [20] or Ethereum [28] have gained great popularity
over the last years. They enable pseudonymous online payments, cheap remittance and many other
novel applications. Due to this flurry of applications decentralized cryptocurrencies process a steadily
increasing number of transactions, e.g., Bitcoin currently handles around 250.000 transactions per
day. The backbone [11] of these currencies is a technology called blockchain (or ledger), which can
be viewed as append-only register on which the transactions are stored, and whose entire contents
is publicly available, and is checked for consistency by the users that maintain the system — the
so-called miners. As the name suggests, blockchain is a chain of data blocks (containing transactions)
that are created by the system at some rate. Unfortunately, this approach faces an inherent scalability
problem that can significantly hinder further adaption. Since each transaction that is processed by the
network has to be stored on the blockchain, there is a fundamental limit on how many transactions
can be processed per second. For instance, in Bitcoin with its 1MB block size, and a block creation-
rate of approximately 10 minutes, the network is currently limited to process up to 7 transactions
per second [8].

A natural solution to this problem is to increase the block size, or the block creation rate, but
even with these changes it is unlikely that ledger-based cryptocurrencies can reach the efficiency of
centralized payment systems, e.g., the VISA network processes during peak times 56,000 transactions
per second [8]. Notice that already at the current transaction rate the ledger in Bitcoin grows by
approximately 10 GB every four months – reaching over 100GB in February 2017. Because the
miners need to store and verify the entire transaction history starting from the very first, so-called
genesis block, it would not be possible to maintain such a system in the long run.

The scalability problem is drastically amplified with the emergence of nanotransactions, which
is one of the expected “killer applications” when ledger-based currencies go mainstream [27]. Nan-
otransactions allow users to transfer very small amounts of money, typically less than 1 cent, and
can enable many novel business models, e.g., fair sharing of WiFi connection, or devices paying to
each other in the “Internet of Things”. Besides the scalability issues of nanotransactions, there are
also several other challenges that need to be addressed by ledger-based cryptocurrencies before they
can handle massive volumes of transactions. First, in many settings nanotransactions have to be
executed instantaneously (e.g., in the application of sharing the WiFi connection, or when a user
wants to read an article on a news webpage); which is a problem, since confirmation of transactions
in Bitcoin takes at least around 10 minutes3. Secondly, and more importantly, when miners process
transactions they ask for fees. While currently fees are relatively low, they are expected to rise when
millions of transactions compete for the scarce source of fast processing. Once these fees surpass
the actual value assigned to a transaction, nanopayments become much less attractive – something
which we also witness for traditional online payment systems via credit cards or PayPal. Both sys-
tems do not offer nanotransactions due their fee system, e.g., PayPal asks for at least 30 cents for
each transaction.

An exciting proposal to address the above challenges are so-called payment channels [7], which
allow two users to rapidly exchange money between each other without sending transactions to
the ledger. This is achieved by keeping the massive bulk of transactions off-chain, and using the
ledger only when parties involved in the payment channel disagree, or when they want to close the
channel. As long as the parties are not in conflict, they can freely update the balance of the channel
(i.e. transfer money between each other’s accounts). Because off-chain transactions can always be
settled on a ledger by the users involved, there is no incentive for the users to disagree, and hence
honest behavior is enforced. In the optimistic case, when the two parties involved in the payment
3 This is reduced in other cryptocurrencies such as Ethereum, or in Bitcoin via zero-confirmation transactions.
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channel play honestly, and off-chain transactions never hit the ledger before the channel is closed,
payment channels significantly reduce transaction fees, allow for instantaneous payments and limit
the load put on the ledger.

Technically, payment channels are implemented using so-called smart contracts, which informally
speaking are formal agreements written on the ledger and executed by the cryptocurrency itself (we
give a short introduction to this concept in Sect. 3). In the simplest case every channel has a corre-
sponding smart contract that is posted on the ledger when the channel is created. Such a contract is
later used to resolve disputes between users about the channel’s state, or simply to close the channel.
There are several ways to design such channels, ranging from very basic “unidirectional” construc-
tions such as the one described in the “Rapidly-adjusted (micro)payments to a pre-determined party”
section of [6], up to fully multidirectional ones, like some of those described in [22].

The concept of payment channels has been extended in several directions. One of the most
important extensions are the so-called payment networks, which enable users to route transactions
via intermediary hubs, hence reducing the on-chain transaction load, since the number of channels
opened on the blockchain is reduced. An example of such a network has been designed by Poon and
Dryja over Bitcoin [22]. In their system the payments are routed over the network in the following
way. Suppose two parties, Alice and Ingrid, established a payment channel (denote it: Alice ⇔
Ingrid), and Ingrid also has a payment channel with Bob, denoted Ingrid ⇔ Bob (but Alice and
Bob do not have a payment channel between each other). Then Alice can perform a nanopayment,
for x coins to Bob via the intermediary Ingrid. The main technique to achieve this in Bitcoin-
like cryptocurrencies are the so-called hash-locked transactions, which guarantee the following: the
transfer of x coins from Alice to Ingrid (over Alice ⇔ Ingrid) will be performed if and only if the
transfer of x coins from Ingrid to Bob (over Ingrid⇔ Bob) is performed. Note that using hash-locked
transactions for routing payments require interaction with Ingrid for every payment (but it does not
require touching the ledger, as long as everybody is behaving honestly). This can be generalized to
longer chains of payments.

A further generalization of payment channels are the state channels [9, 1], which significantly
enrich the functionality of payment channels (cf. Sect. 4.1 for more details). For a moment let us just
say that the users of state channels can, besides payments, execute some smart contract C “inside
of a channel” in an off-chain way (as long as the users do not enter into a dispute). Very informally,
this is done by letting the channel’s state contain, in addition to the financial balance, a string σ
that describes the current state of C ’s storage (i.e. the values of all the contract’s variables). As long
as there is no conflict between the users of the state channel, they can freely update σ. However,
once one of the parties starts to misbehave, the other one can post the latest version of σ on the
ledger, and the ledger will finish the execution of C (and take care of all its financial consequences),
starting from storage σ. In most of the cases, the parties will not need to do it, and all the execution
can be handled by simply updating the state σ in a “peaceful way”.

Hence, in some sense state channels provide a way to implement a “virtual 2-party ledger”, in the
following way: two parties that established a state channel can maintain a “simulated transaction
ledger” between themselves and perform the ledger transactions on it without registering them on
the real ledger. This happens as long as the parties do not enter into a conflict. The security of this
solution comes from the fact that at any time any party can pass the current state of the channel
to the real ledger.

1.1 Our contribution

Channel virtualization. Our main contribution is the development of a new technique for con-
necting channels, that we call “channel virtualization”. Our method is an alternative to “payment
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routing” used in existing payment channel schemes and does not rely on the hash-locked transac-
tions. Its main advantage is that channels created via channel virtualization are non-interactive,
in the sense that they minimize the need for interaction with the intermediaries, and in particular
there is no need for routing individual payments over the intermediates. More precisely, suppose we
are again in the situation as above, i.e. there exist channels between Alice and Ingrid and between
Ingrid and Bob. Our technique allows Alice and Bob to establish a virtual payment channel (denoted
Alice ↔ Bob) with the help of Ingrid (but without touching the ledger). As long as everybody is
honest, Alice and Bob need to interact with Ingrid only when the channel is created and when it
is closed. Each individual transaction between Alice and Bob that goes via this channel does not
require interacting with Ingrid! Our scheme is secure against arbitrary corruptions of Alice, Ingrid,
and Bob (in particular: no assumption about the honesty of the intermediary Ingrid is needed). To
distinguish such virtual channels from the ones that are created directly on the ledger (e.g., the
channels Alice⇔ Ingrid and Ingrid⇔ Bob) we call the latter basic.

Our construction is based on the idea of applying the channel construction recursively, by building
a payment channel “on top of” state channels. Recall that state channels provide a “simulated contract
ledger” between the involved parties. Our observation is that contracts in a state channel can be
used to construct payment channels in a way similar to how smart contracts on the ledger can be
used to build payment channels over the standard ledger.

There are many details that need to be taken care of in order for this general idea to work.
What is especially delicate is handling parallelism, i.e., ensuring that several virtual channels (with
overlapping sets of users) can be opened, updated, and closed simultaneously. In particular, we
introduce an extended version of standard state channels, that we call the “multistate channels”.
Defining and constructing them is a second main contribution of our work.

Multistate channels. The properties of “multistate channels” are tailored to the virtual channels
that we construct, but we believe that they are of independent interest. Their first important feature
is that they have a more fine-grained control over the process of updating the channel’s state. Suppose
Alice ⇔ Ingrid is some basic multistate channel. Our system consists of a mechanism that allows
Alice to propose an update of this channel to Ingrid additionally specifying time Υ that Ingrid has
to “respond” to this proposal (by accepting or rejecting it). The decision of party Ingrid can depend
on some external conditions, e.g., in case of the virtual channel creation procedure, it will depend
on the behavior of Bob. But we believe that such a conditional update mechanism can also be useful
in many other use-cases where state channels can be applied.

The second feature that a multistate channel has is that it consists of several “independent”
contract storage states σ1, . . . , σm (in contrast with a single storage state σ, in the standard state
channels). The σi’s correspond to contracts that can be created, updated, and executed in parallel
(we will call such contracts the “nanocontracts”, see Sect. 4.2). To readers familiar with state chan-
nels it may look like there is not that much difference between multistate channels and standard
state channels, as in principle we can simply view (σ1, . . . , σm) as a single storage of a contract
that operates on every σi independently. The main problem with this simple approach comes from
parallelism. Consider the following example. Let Alice and Bob be parties that have a multistate
channel that consists of contract storage states σ1, . . . , σm. Now, suppose that in the same moment
Alice proposes Bob to update each σi to some σ′i. In the multistate channels Bob can agree only
to some of these proposals. For example, he may agree to update only σ1 (and not agree to other
updates). On the other hand, if (σ1, . . . , σm) is treated as a single state, then he does not easily have
such flexibility. As it turns out, this feature is important for handling parallelism of virtual channels.
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We implemented our system called Perun4 in Solidity, which is one of the languages used in the
Ethereum currency [24] (see Appx. A). The most natural application of Perun is to provide a very
fast way to stream tiny payments. For example, consider the situation when a client Alice pays for
using WiFi to some Internet provider Bob (and they both have basic channels with an intermediary
Ingrid). The “routing payments” approach (from Lightning) puts some inherent limitations on the
size of each packet of data for which the client pays, as each payment requires interaction with Ingrid,
which introduces delays and puts heavy communication load on Ingrid. By using our approach Ingrid
is involved in the communication between Alice and Bob only when the session starts and when it
ends. Another natural application of our technique is the Internet of Things. Due to the cost pressure
to reduce the power consumption in many situations these devices will be connected via some short-
range communication technology (like Bluetooth or NFC), and will minimize the interaction with
remote devices. Hence, routing every payment via a third party server may not be an option in such
situations. Our technique removes the need for such interaction. Another, related scenario where our
solution can be applied is when the payment intermediary cannot be assumed to be always available.
For example imagine payments in the vehicular ad hoc networks — here the permanent availability
of the internet connections cannot be guaranteed (due to conditions like entering a tunnel, or a zone
with no mobile phone network access).

In the future we plan to extend Perun by adding an option to create longer channels, and to
create virtual state channels, which will allow their users to engage into contracts (and, e.g., play
lotteries, or card games). Such extension are a subject of our subsequent work (see Sect. 4.4).

Let us also mention that the virtual channels provide a higher degree of privacy than the standard
channels of [22], as the intermediary does not get information about the history of transfers between
the parties. We would like to stress, however, that privacy in the payment channels is not the focus
of this work (for more on this topic, see, e.g, [12, 13]).

Formal aspects. The focus of this work is an introduction of a new technique. Full formalization
of our protocols, and complete proofs in the UC-framework are beyond its scope (handling formally
all the security features in the fully concurrent settings requires several pages of definitions, not to
mention the proofs). Such formalization appears in a separate work, where we also show an extension
of this paper to longer virtual state channels.

1.2 Notation

Throughout this paper we will assume existence of a a signature scheme (KGen,Sig,Vf) that is
existentially unforgeable under an adaptive chosen-message attack (see, e.g., [15], Chapter 12). For
two strings a, b ∈ {0, 1}∗ the term a||b denotes their concatenation. A function f : A → B is called
partial if for some values a ∈ A we have f(a) = ⊥ (i.e. f(a) is “undefined”). An empty string will be
denoted with ε.

We will assume that all values like numbers, functions, pairs of values, etc. are implicitly encoded
as binary strings (e.g. when they are sent as messages). We will also use keywords, which are written
using sans serif font (“keyword), and (formally) represent some fixed binary strings. We will frequently
present tuples of values using the following convention. The individual values in a tuple T are
identified using keywords called attributes: attr1, attr2, . . .. Formally an attribute tuple is a function
from its set of attributes to {0, 1}∗. The value of an attribute attr in a tuple T (i.e. T (attr)) will
be referred to as T.attr . This convention will allow us to easily handle tuples that have dynamically
4 Perun is the god of thunder and lightning in the Slavic mythology. This choice of a name reflects the fact that one
of our main inspirations is the Lightning system. The name “Perun” also connotes with “peer” (which reflects its
peer-to-peer nature), and “run” (which stresses the fact that the system is very fast).
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changing sets of attributes. For example when we say that “we add an attribute attr to T and set it
to x” it means that T is replaced by T ′ with and additional attribute attr and T ′.attr = x.

1.3 Further related works

The most widely discussed recent proposals for the channel networks are Lightning and Raiden.
Both of them are routing payments using the interactive mechanism based on the hashlocked trans-
actions. Lightning is purely a payment network. Raiden, that uses the Ethereum cryptocurrency,
can potentially provide state channels. However, this system is still in development, and according
to the latest reports5 the project is “still in the infancy”, and the first experimental transactions that
were performed concerned the simple payment channels (not the state channels). According to other
recent reports [25] the developers of this product have focused on constructing a fully functional
payment channel under a name Raiden Minimum Viable Product, and renamed the full implementa-
tion of state channels to “Raiden 2.0” that will be implemented later. State channels have also been
recently defined and constructed in [19]. Compared to our work, they do not seem to have an easy
interface for handling multiple states in parallel, and for having the two-stage channel update (since
this is not needed in [19] for their application).

Payment channels were also constructed in [10]. Other micropayment systems that have been
proposed are based on probabilistic payments (see [26, 23, 18, 21]). Our technique for channel
virtualization could potentially be used to create such probabilistic payment channels. Channel con-
structions based on the sequence number maturity (that we use in this paper) have been mentioned
already in [22], and recently described in more detail (as “stateful duplex off-chain micropayment
channels”) in [5]. Payment channels bare some resemblance with the credit networks (see, e.g., [14]).
It would be interesting to see if our techniques also apply in this area.

A recent idea for micropayments over Bitcoin is based on the “trusted environments” [17]. It
would be interesting to see if our protocols can be implemented along the same lines.

2 Our model

We consider n-party protocols run by a set P = {P1, . . . , Pn} of parties. We assume that the parties
are connected by secure (secret and authenticated) communication channels. A protocol is executed
in the presence of an adversary A who can corrupt any party Pi, by which we mean that he takes
full control over Pi. We provide more details on our concrete choice of the model and assumptions
we make in the paragraphs below.

Communication model. We assume a synchronous communication network, where the execution
of the protocol happens in rounds. The parties and the adversary are always aware of a given
round (in practice one can think of it as equipping them with clocks that are synchronized). Let
time := N∪ {∞} denote the set of all possible round numbers. We assume that if in round i a party
sends a message to another party, then it arrives to it at the beginning of round i + 1. At the first
sight it may look unrealistic to assume synchronicity in a settings that is inherently asynchronous.
We would like to emphasize that this is just a technical assumption that simplifies the description
of our protocols. One can think of a “round” as the maximal time that is needed for a message to
arrive from one party to another. An assumption that such a bound is known is completely standard
in this area (as otherwise no security can be achieved), see, e.g. [2, 4]. We allow the adversary to
be rushing, i.e., he can decide about the order in which the messages arrive in a given round. For
simplicity we assume that computation takes no time and is “atomic”.
5 See https://goo.gl/e5LgQU, accessed on May 12, 2017.
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Whenever we say that some operation (e.g. delivering a message or simply staying in idle state)
takes time at most τ ∈ time we mean that it is up to the adversary to decide how long this operation
takes (as long as it takes at most τ rounds).

The ledger accounts. We treat the money mechanics in the system in an abstract way, simplifying
several things that are not relevant to this paper. In particular we assume that each party Pi has
some amount xi ∈ R≥0 of coins in its account on the ledger. In our protocols all the operations on
parties’ accounts are performed only by the contracts (see Sect. 3), and the parties do not directly
operate on the accounts. Hence, there is no need to describe how the parties add, remove, or transfer
the coins. The way in which the contracts operate on the ledger accounts in described in Sect. 3. In
this paper, we ignore the transactions fees.

Public key setup. For simplicity of exposition, we assume that each party Pi is identified by its
public key pkPi , and it knows the corresponding private key skPi with respect to some fixed signature
scheme (KGen, Sig,Vf). Whenever a party P sends a message m we assume that it also attaches a
signature s := SignskP (m) to it. In particular the contracts (see Sect. 3) will verify the received
signature and only accept m, if s was a valid signature for m. To simplify the description of our
protocols and contracts, we will omit to explicitly mention that these signatures are attached to
messages sent to the contract, but the reader should keep in mind that the above described process
is what happens under the hood.

3 Protocols and contracts

Protocols. Our protocols consist of a number of subprotocols (e.g. “closing the channel” on Fig. 5,
page 15). The subprotocols can be executed in parallel, subject to some restrictions that will al-
ways be explicitly stated (see, e.g., Sect. 4.2.9). Each subprotocol will be defined using procedures
describing the behavior of the parties and the corresponding functions in the contracts (we explain
the notion of contracts below). The names of the protocols and the procedures will be denoted with
a typewriter font.

Every subprotocol involves some number of parties (in this paper this number is always 2 or 3),
one of them being the initiator of the subprotocol. The name of the subprocedure run by the initiator
have a word “Start” in it (e.g. UpdateStart in Sect. 4.2.6). One can think of this subprocedure as
being called by an external user, who also passes to it some parameters as input. When it comes to
the other parties participating in the subprotocol, we distinguish two following cases.

1. All the parties that execute a subprotocol agreed beforehand on starting it (with fixed agreed
parameters and starting time). In this case we can think of the procedures for all the parties
as being called by an external user. Typically procedures for the remaining parties have a word
‘Wait” as a part of their name (e.g. UpdateWait).

2. The initiator starts the subprotocol itself without agreeing with the other parties (this can
happen, e.g., when a party thinks that the other contract party is behaving maliciously, and
wants to close the contract). The other parties will be notified about this via a message from the
initiator or from the contract. In this case the procedure for the remaining parties have a word
‘React” as a part of their name (e.g. CloseReact). One can think of such procedures as being
called internally by the protocol.

If a procedure stops then it returns some value to the calling user. Note that “stopping” a
procedure means that just the corresponding thread of the execution stops.
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While presenting the subprotocols we will be estimating the time needed for them to execute.
We will use the terms standard and pessimistic execution times. By “standard” time we mean the
time needed to execute a given subprotocol if all the contributing parties are honest. “Pessimistic”
time concerns the situation when all the parties (except of one) are dishonest and do everything
they can to delay the execution. Of course, in reality in most cases the subprotocols will only take
the standard time. However, it is also important to know the exact pessimistic times, since strictly
speaking, from the honest user’s point of view the pessimistic times are the only times that are
“guaranteed” by the protocol.

Contracts. We make use of smart contracts, which, informally speaking, are agreements written
on the ledger, that can accept coins from the parties, and distribute these coins between the parties,
depending on some well-specified conditions. There is no space here to provide an introduction to
smart contracts, the reader may consult, e.g., [6, 16]. In this paper, we present contracts in a form
of a set of functions fun1, fun2, . . . written in an informal pseudocode, that operate on contract’s
storage σ, which is notion that we explain below (their code in Solidity is described in Appx. A).

Strictly speaking the term “contract” will have two different meanings. The first one is the actual
contract code (i.e. its algorithmic description), while the second one is the instance of the contract
that is running on a ledger (or in a state channel, see Sect. 4.2).6 Sometimes to avoid confusion we
will specifically say “contract code” (in the first case), and “contract instance” (in the second case).

It will be convenient to think of a contract instance as an independent entity that receives coins
and messages (in a form of function calls) from the parties and sends coins and messages back to
them.7 Whenever a party Pi “sends yi coins to a contract C ” the amount yi of coins is removed from
Pi’s account in the ledger and added to C ’s account (if Pi does not have enough coins, then it cannot
perform this operation). Similarly by saying that a contract “sends yi coins to a Pi” we mean that yi
coins are added to Pi’s account and removed from C ’s account (this can only happen if a contract
owns at least yi coins).

The reaction time of a contract is at most ∆ (where ∆ ∈ N is some parameter), i.e. posting a
contract on the ledger (see below) can take time at most ∆ rounds, functions called by the parties
are executed by a contract in time at most ∆, and sending money to C takes time at most ∆. To ease
description of our protocols, we assume that the contract’s local computation of a contract takes no
time and that the messages and coins sent by a contract arrive to the parties immediately. Most of
the time the contracts will be in the idle state, i.e., they will wait for a function call from a party.
A contract can also terminate, i.e., it can stop its operations and disappear from the ledger.8 If the
contract terminates then all its unspent money goes to the party that created it.

It is important to emphasize that contracts do not take any actions by themselves, in other
words: they need to be triggered by a function call from some party in order to take any action.
Between the function calls contract keeps the values of its internal variables in its storage9, which is
an attribute tuple (see Sect. 1.2). Hence, the function calls (together with the information about the
calling party, time, and the amount of coins) can be viewed as transformations on contract’s storage
(we elaborate on this in Sect. 3.1). On a high level the life cycle of a contract will look as on Fig. 1

Some function calls can be ignored10 when, e.g., the function inputs are of a wrong form. When-
ever some of its functions is called, the contract is informed (by the mechanics of the cryptocurrency)
about the identity of the party P that called this function and the actual amount of coins x that
6 This is similar to a distinction between a program and a process in the operating systems.
7 In practice in Solidity, sending messages from the contracts to the parties can be implemented, e.g., using a special
construction called “Events” (in our informal description we omit the details of this mechanism).

8 In Solidity this is performed using the selfdestruct command.
9 For a distinction between “storage” and “memory” see [24], Chapter 6.

10 In Solidity this translates to executing throw instruction.
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Fig. 1: Life cycle of a contract storage. Above, funi’s are the contract functions and Pi’s are users of the contract.

P attached to this call. Moreover the contract has access to a variable current-time that denotes the
exact time when the function is called.11

While describing the functions in the contracts we will often say that some function fun is “called
by party P̂ ∈ P with x̂ ∈ R≥0 coins”, where P̂ and x̂ are read from variables kept in contract’s
storage (see Fig. 4). This will implicitly mean that the function can be called by any P with any
amount of coins x, but before starting its execution the function checks if P = P̂ and x = x̂. If some
of these checks fail then the function ignores such a call. Otherwise it executes the function code.
Analogously, we will sometimes specify time when a function can be called.

Within the contract code each attribute attr in contract’s storage will be treated as a variable,
and referred to as this.attr (see, e.g., Fig. 4 (b) on page 14). Sometimes we will omit the word “this”
in and simply write attr when it does not lead to a confusion (e.g. we will frequently write “Alice”
and “Bob”, instead of “this.Alice” and “this.Bob”).

We only consider bilateral contracts that are a restricted class of contracts needed for our ap-
plication. In particular the bilateral contracts are executed by two parties (usually called Alice and
Bob) that agreed beforehand on parameters π of the contract. Each π is an attribute tuple with
attributes id,Alice,Bob, cash (and possibly some other ones), i.e., it is of a form

(π.id, π.Alice, π.Bob, π.cash, . . .),

where π.id is a (unique) identifier of the contract12, π.Alice is an identifier of Alice, π.Bob is an
identifier of Bob, and π.cash is a function π.cash : π.end-users→ R≥0 (where π.end-users is a short-
hand for {π.Alice, π.Bob}). For P ∈ π.end-users the value π.cash(P ) is called the amount of cash of
P in the contract. Moreover we define π.other-party : P → P as π.other-party(π.Alice) := π.Bob and
π.other-party(γ.Bob) := π.Alice.

3.1 Functions as storage transformations

As we already mentioned, one can view function calls in a contract code as transformations of
contract’s storage. More precisely, let Init be a function that on input (τ, π) (where τ denotes time
when the contract is created, and π are the initial parameters) outputs the contents σ := Init(τ, π)
of the storage of the contract constructed as follows: first let σ := π, and then set σ.init-time := τ .13

Further transformations of storage of a contract C are captured by a function Eval defined in
the following way. Let σ be contract’s storage, let fun be one of the functions in a contract code
C and let P ∈ σ.end-users. Moreover let τ ∈ N, z ∈ {0, 1}∗, and x ∈ R≥0. Then the value of
EvalC (σ;P, x, τ ; fun, z) is equal to

(σ′;ma, ya;mb, yb) := EvalC (σ;P, x, τ ; fun, z), (1)
11 In Solidity information about P , current-time, and x is passed to a contract via special fields denoted

msg.sender, block.timestamp, and msg.value, respectively (see http://solidity.readthedocs.io/en/develop/
units-and-global-variables.html).

12 In Solidity this is called an “address” of a contract.
13 Such an initialization will also have an effect that π.cash(π.Alice) and π.cash(π.Bob) coins are removed from π.Alice’s

and π.Bob’s deposits in the ledger or in a state channel (see Sect. 4.2), respectively.
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if a function fun called by P in time τ with parameter z and x coins when C ’s storage is σ, results
in new storage σ′, and messages ma ∈ {0, 1}∗ (with ya coins) and mb ∈ {0, 1}∗ (with yb coins) sent
to the parties that are running the contract (σ.Alice and σ.Bob, respectively). If the contract has
terminated then we assume that σ′ = terminated in (1). The diagrams presenting computation of
Init and Eval functions are depicted on Fig. 2.

π.Alice
parameters π and
π.cash(π.Alice)

coins from π.Alice
time τ

S := Init(τ, π)
“initial storage”

σ

π.Bob
parameters π and
π.cash(π.Bob)

coins from π.Bob

(a)

time τ
message ma and
ya coins to π.Alice

π.Alice

“old storage”
σ

(σ′;ma, ya;mb, yb) :=
EvalC (σ;P, x, τ ; fun, z)

“new storage”
σ′

P = π.Alice or π.Bob
function call fun(z) and
x coins from party P

message m and
yb coins to π.Bob

π.Bob

(b)

Fig. 2: Diagrams presenting computation of (a) Init and (b) Eval functions.

3.2 Creating contracts on the ledger

In this paper we consider two types of contracts. The first ones are standard contracts that are
posted on the ledger, which are sometimes called ledger contracts. The other type of contracts are
the nanocontracts that will be executed within the state channels (see Sect. 4.2). The ledger contracts
will have a special form allowing them to be easily initialized on the ledger, which we explain below.

The bilateral ledger contract creation procedure is always initiated by π.Alice who passes to
a contract code C parameters π ∈ {0, 1}∗ and posts contract instance of C on the public ledger
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(the contract appears on the ledger in time at most ∆). Technically “informing” C about the value
π is done by calling a special function called contract’s constructor that is a part of the contract
description and is denoted by C (i.e. it has the same name as C , but is written in the non-italic
font). The constructor is called by party P = π.Alice on input π together with xa = π.cash(π.Alice)
coins. If P is malicious then it can happen that P 6= π.Alice or xa 6= π.cash(π.Alice), in which case
the contract ignores this message. Otherwise the contract appears on the ledger, and from now on it
is denoted C id , where id = π.id. The fact that C id appeared on the ledger is communicated to the
parties by a message initializing(π) (sent by this contract). In a reaction to this, π.Bob immediately
calls a function confirm() in C id together with xb = π.cash(π.Bob) coins. Once the C id receives this
function call from π.Bob, it checks if xb indeed is equal to π.cash(π.Bob), and if yes, it sends a
message initialized to π.Alice and π.Bob and goes idle.

If π.Alice does not receive the initialized message from C id within time ∆ from the time when she
received the initializing message (which happens if π.Bob did not call the init(π) function message
together with xb coins), then she needs to ask C id to refund her money. This is done by sending a
message refund() to C id . The contract replies by sending back to π.Alice her xa coins together with
a message refunded and terminates. The details of this procedure are presented on Figures 4 and 3.

π.Alice C id π.Bob

—
tim

e
→

(xa coins,C(π))

(initializing, π) (initializing, π)

(xb coins, confirm())

initialized initialized

(a)

π.Alice C id π.Bob

—
tim

e
→

(xa coins,C(π))

(initializing, π) (initializing, π)

refund()

(xa coins, refunded)

π.Bob does
not react

wait time ∆

(b)

Fig. 3: The message flow between the subprocedure and the contract of Fig. 4: (a) the message flow in a successful
execution of the scheme, and (b) the message flow in an unsuccessful execution of the scheme in case π.Bob did not
call the confirm function.
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4 The Channels

In this section we describe the channel constructions. We start with describing simple payment
channels (in Sect. 4.1), which we mainly do for making the reader familiar with our framework and
the formalism that will be used to describe our contributions. Then, in Sect. 4.2 we describe the
multistate channels (our extension of the state channels). In Section 4.3 we give a full description of
the protocols and contracts that are needed for virtual channels, which is the main contribution of
this paper.

4.1 Payment channels

Recall (see Sect. 1) that payment channels enable its users to transfer coins between each other
without the need of touching the blockchain. In other words, payment channels are protocols that
mainly operate off-chain, but can be realized on the blockchain by its users in case of dispute. The
construction that we present below is based on the idea of “sequence numbers” (see [22]), which, in
our description, are referred to as “version numbers”.

4.1.1 Channel syntax. A basic payment channel over a set of parties P is an attribute tuple γ
of the form

γ = (γ.id, γ.Alice, γ.Bob, γ.cash), (2)

where γ.id ∈ {0, 1}∗ is called the identifier of γ and values γ.Alice and γ.Bob are two distinct elements
of P called the end-users of γ (we will also call them simply Alice and Bob, when γ is clear from the
context). We will use shorthands: γ.end-users and γ.other-party defined in the same way as we did it
for contract parameters (see Sect. 3). The attribute γ.cash is a function γ.cash : γ.end-users→ R≥0
and for P ∈ γ.end-users the value γ.cash(P ) is called the amount of cash of P in γ. Adding x coins
to P ’s deposit in γ is defined as setting γ.cash(P ) := γ.cash(P ) + x (removing x coins is defined
analogously). We will also say that γ is established between the parties in γ.end-users.

We assume that every correctly formatted γ.id contains information about the identities of
γ.Alice and γ.Bob plus two nonces. More precisely: every γ.id is of a form: γ.id = (γ.Alice, γ.Bob,
nonce1,nonce2), where noncei’s are some long (160 bits, say) random strings, such that nonce1 is
chosen when a new instance of the system is started (and it is fixed in every γ.id in this instance),
and nonce2 is chosen freshly for every new channel. Including γ.Alice, γ.Bob, and nonce2 is needed
to guarantee that the identifiers of the channels are unique, i.e., no two channels have the same
identifier (if at least one of their end-users is honest), while nonce1 is needed to guarantee that γ.id
is unique on the blockchain. This is important to ensure because the contract that we create for
handling γ will have the same identifier as γ (see below), and hence γ.id has to be “globally” unique.
To simplify the description, in the sequel we will not mention this requirement on the format of γ.id
explicitly.

The basic payment channels are implemented by a protocol PaymentChannels. Each channel
γ will have its corresponding contract PaymentContractγ.id on the ledger that will interact with
both γ.Alice and γ.Bob. A channel is active if the corresponding PaymentContractγ.id exists on the
ledger and it has not been terminated. In our protocols, each party P ∈ P maintains a channel
space ΓP that contains all the active basic channels that this party established. For every id the
values of attributes ΓP (id).id, ΓP (id).Alice, and ΓP (id).Bob will never change. The only value that
can change is the attribute ΓP (id).cash (except that the sum of γ.cash(γ.Alice) and γ.cash(γ.Bob)
will changes). When it is more convenient we will simply write (xa, xb) to represent γ.cash (where
(xa, xb) := (γ.cash(γ.Alice), γ.cash(γ.Bob)). The current value of γ.cash will also be called channel’s
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Protocol for initializing contract C

To initialize C with parameter π the parties execute the following protocol (let id := π.id).

Procedure InitializeStart(C ;π) run by π.Alice

1. Initialize C id using its constructor C with parameter π and post it on the ledger with xa = π.cash(π.Alice)
coins.

2. Upon receiving a message (initializing, π) from Cπ wait time at most ∆ to receive a message initialized from
this contract.

Procedure InitializeWait(C ;π) run by π.Bob

3. Upon receiving a message (initializing, π) from Cπ reply by calling a function confirm() together with xb =
π.cash(π.Bob) coins.

4. Upon receiving a message initialized from C id conclude that the channel has been created, i.e., return
initialized.

Back to procedure InitializeStart(C ;π) run by π.Alice

5. If you receive a message initialized from C id within time ∆ conclude that the channel has been created, i.e.
return initialized.

6. Otherwise call a function refund() in C id and receive back a message refunded together with xa coins. Return
not-initialized.

(a)

C id

Constructor C(π) called by P ∈ P with x > 0 coins

If P 6= π.Alice or x 6= π.cash(π.Alice) then ignore this message. Otherwise let your storage be equal to
Init(current-time, π) and additionally set this.initialization := true.
Send a message (initializing, π) to Alice and Bob and go idle.

Function confirm() called by Bob with cash(Bob) coins

1. If current-time > init-time +∆ or flag this.initialization is undefined then ignore this call.
2. Otherwise send a message initialized to Alice and Bob, remove variable this.initialization from your

storage and go idle.

Function refund() called by Alice

1. If current-time ≤ init-time +∆ or flag this.initialization is undefined then ignore this call.
2. Otherwise send a message refunded to Alice and terminate the contract.

· · · other functions in the contract (they can be called only if flag this.initialization is undefined) · · ·

(b)

Fig. 4: The “Channel creation” subprocedure: (a) the subprotocol for the parties, and (b) the corresponding subcontract
of C id . Strictly speaking, Alice,Bob and cash are variables from contract’s storage, and should be referred to as
this.Alice, this.Bob and this.cash. We omit the “this” keyword, following the convention described in Sect. 3.

.
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state. The initial form of a channel with identifier id is equal to γ with all attributes defined as
when the channel was created.

4.1.2 Overview of the scheme. The protocol PaymentChannels consists of subprotocols called
“creating a channel”, “updating the channel”, and “closing the channel”, described in Sections 4.1.3,
4.1.4, and 4.1.5, respectively. The protocol uses a contract PaymentContract consisting of functions
for creating a ledger contract (the contract constructor, confirm, refund), and functions close and
finalize, used for closing the contract (the code of these functions is described later, see Sect. 4.1.5).

The general structure of the scheme, including the names of the procedures and the message
types that are sent between the parties and the contract, is depicted in Fig. 5. The protocol uses a
contract PaymentContract. The list of functions in this contract in presented on Fig. 6.

protocol PaymentChannels

Every party P ∈ P holds a set
ΓP of channels. Initially ΓP is
empty.

subprotocols:

creating a channel
(CreateStart,
CreateWait)

closing the channel
(CloseStart, CloseReact)

updating the channel
(UpdateStart, UpdateWait)

PaymentContractγ.id

creating a channel
(creating

the contract)

closing the channel

contract initialization
(see Fig. 3)

close

finalize

(coins, closed)

update

update-ok

Fig. 5: The general structure of the scheme for basic payment channels, including the messages that are sent between
the parties and the contract, and the names of the procedures.

Internally, the protocol extends the channel notation described in Sect. 4.1.1 by adding to γ
attributes γ.ver-num ∈ N and γ.sign ∈ {0, 1}∗ (invisible from the point of view of the external
user14). Hence γ has now the following form (cf. (2)):

γ = (γ.id, γ.Alice, γ.Bob, γ.cash, γ.ver-num, γ.sign).

14 One can think of γ.id, γ.Alice, γ.Bob, and γ.cash as “public variables”, and of γ.ver-num and of γ.sign as “private
variables”.
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PaymentContractγ.id

Functions:

– used for creating a contract (see Fig. 3):
• the contract constructor,
• confirm(),
• refund(),

– used for closing the channel (see Fig. 9 (b)):
• close(γP ),
• finalize()

Fig. 6: Functions in the PaymentContract.

The role of these variables will be explained in more detail later. For a moment let us just say that
γ.ver-num corresponds to the “version number” of the channel (it will be incremented with each up-
date of channel’s state), and γ.sign will be a signature of γ.other-party(P ) on (γ.id, γ.cash, γ.ver-num).
A tuple

(γ.id, γ.cash, γ.ver-num, γ.sign)

is be called a version of γ’s state signed by P ∈ γ.end-users if γ.sign is a signature of P on
(γ.id, γ.cash, γ.ver-num). If γ.ver-num is equal to 0 then we do not require γ.sign to do defined,
but, for the sake of consistency, also in this case we say that (γ.id, γ.cash, γ.ver-num) is “a version of
γ’s state signed by any P ∈ γ.end-users”.

4.1.3 Creating a channel. At any point in time parties Pa and Pb can decide to create a channel
γ such that γ.Alice = Pa and γ.Bob = Pb. This can be done only if no channel with identifier γ.id
has been created before, and if γ.Alice and γ.Bob have xa := γ.cash(γ.Alice) and xb := γ.cash(γ.Bob)
unspent coins on the ledger (respectively). It is the parties’ responsibility to choose γ such that γ.id
has not been used before. Recall that we assumed that γ.id contains information about the identities
of the parties that created it. Hence, as long as at least one of them is honest, there is no risk that
another correctly formatted channel with the same identifier has been already created. We assume
that the parties agree beforehand on all the attributes of γ and on the exact round τ when the
creation procedure starts. To start the channel γ.Alice and γ.Bob run the protocol for initializing
PaymentContract with parameter π = γ (see Fig. 4 on page 14).

4.1.4 Updating the channel. After the channel has been created, Alice and Bob can change its
state, i.e., the value of the pair (γ.cash(γ.Alice), γ.cash(γ.Bob)), as long as the sum of γ.cash(γ.Alice)+
γ.cash(γ.Bob) does not change. This is done via a procedure called “updating the channel” and does
not require communicating with PaymentContractγ.id (or the ledger). This mechanism is used for
performing “offline” payments between the parties. For instance, if the current channel state is
(xa, xb) and Alice wants to transfer 1 coin to Bob, the parties create a new state of the channel that
has state (x̃a, x̃b) = (xa − 1, xb + 1). The state of γ can be updated multiple times. The mechanism
behind the channel update procedure and the PaymentContractγ.id guarantees that if at some point
one of the parties wants to close out the channel, and receive back the funds blocked in the channel,
then it is always the latest state that will count.

At a technical level, this is implemented in the following way (a more detailed description,
including the message flow, is depicted on Fig. 8). Consider some fixed channel γ that has not been
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Subprotocol for creating a channel

Procedure CreateStart(γ) run by γ.Alice

1. Add an attribute ver-num to γ, and let
γ.ver-num = 0.

2. Let wa := InitializeStart(PaymentContract;
γ).

3. If wa = initialized then store γ in Γ and output
created.

4. Otherwise (if wa = not-initialized) output
not-created.

Procedure CreateWait(γ) run by γ.Bob

1. Add an attribute ver-num to γ, and let
γ.ver-num = 0.

2. Let wb := InitializeWait(PaymentContract; γ).
3. If wb = initialized then store γ in Γ and output

created.
4. Otherwise (if wb = not-initialized) output

not-created.

Fig. 7: The “Channel creation” subprocedure. Recall that InitializeStart and InitializeWait are procedures for
contract creation, described on Fig. 4. We let wa, wb ∈ {initialized, not-initialized} be the outputs of these procedures.

updated yet. Let (xa, xb) be its current state, and let id be its identifier. Suppose that Alice and
Bob agreed (via some other communication channel) that they both want to change the state of γ
to (x̃a, x̃b) (where x̃a + x̃b = xa + xb), and that one of them, denoted P will be the initiator of the
update subprotocol. First P constructs γP as equal to γ on attributes id and users, and

– (γP .cash(γ.Alice), γP .cash(γ.Bob)) := (x̃a, x̃b),
– γP .ver-num := 1, and
– γP .sign equal to P ’s signature on (γP .id, γP .cash, 1).

Then P sends a message (update, γP ) to P ′. If γP is correctly signed by P , then P ′ replaces γ in ΓP ′

with γP and sends back to P a message (update-ok, γP
′
) where γP ′ is equal to γP on all attributes,

except that γP ′ .sign is equal to P ′’s signature on (γP
′
.id, γP

′
.cash, γP

′
.ver-num).

Upon receiving this message, party P checks if γP ′ is correctly signed by P ′, and if yes then she
replaces γ in ΓP with γP . Note that after these steps are performed, the only difference between
ΓP (id) and ΓP ′(id) is on the sign attribute. As a result of this procedure, each party has a signature
of the other party on the updated state (x̃a, x̃b) of the channel, and when the channel is closed (see
Sect. 4.1.5) she can present it to the PaymentContractγ.id as an evidence that the other party agreed
for the update.

Further updates are performed in the same way, except that the value of the parameter ver-num is
incremented with each update. More precisely, let γ be the latest value of ΓP (id) and suppose P and
P ′ agreed to update the channel to a new state (x̃a, x̃b). Then everything is done exactly as before,
except that γP .ver-num gets incremented by 1. The idea behind the increasing “γ.ver-num” numbers
is pretty straightforward: when the channel is closed the signed state with the higher ver-num will
count as the valid one. Therefore a malicious party cannot trick PaymentContractγ.id to accept some
older version of the state (as the other party will always have a chance to send to the contract the
state with the higher γ.ver-num). We describe it in more detail in Sect. 4.1.5.

In the description above we assumed that the parties will always send the correct messages when
they are supposed to do so. For example, we did not describe what happens when the signatures
are incorrect, or when P ′ does not reply to P with the update-ok message. Note that an honest
P ′ always replies with the update-ok message, since we assumed the parties agreed beforehand that
the protocol will be initiated by P . Such cases will be handled in the following way. A party (P
or P ′) that notices such an incorrect behavior of the other party will simply conclude that this
party is corrupt. Usually after such a conclusion a party will simply proceed to the “channel closing
procedure” (see Sect. 4.1.5 below).
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Subprotocol for updating the channel

Let id be a channel identifier of some active channel. To update the channel with identifier id to a new state
(x̃a, x̃b) its end-users P and P ′ proceed as follows:

Procedure UpdateStart(id , x̃a, x̃b) run by P :

1. Let γP be equal to ΓP (id) on attributes id and users, let γP .cash be defined as
(γP .cash(γ.Alice), γP .cash(γ.Bob)) := (x̃a, x̃b), and let γP .ver-num = Γ (id).ver-num + 1. Moreover let
γP .sign := SignskP

(γP .id, γP .cash, γP .ver-num).
2. Send a message (update, γP ) to P ′.
3. Wait for 1 round.

Procedure UpdateWait(id , x̃a, x̃b) run by P ′:

4. Upon receiving message (update, γP ) check if (γP .id, γP .cash(γ.Alice), γP .cash(γ.Bob)) = (id , x̃a, x̃b), if
γP .ver-num = ΓP

′
(id).ver-num + 1, and if γP is correctly signed by P . If yes, then:

– let ΓP
′
(id) := γP ,

– let (γP
′
.id, γP

′
.cash, γP

′
.ver-num) := (id , x̃a, x̃b, γ

P .ver-num),
– let γP

′
.sign := SignskP ′ (γ

P .id, γP .cash, γP .ver-num),

– send a message (update-ok, γP
′
) to P ′ and return channel-updated.

Otherwise return channel-not-updated.

Back to procedure UpdateStart(id , x̃a, x̃b) run by P :

5. If you do not receive a message (update-ok, id , γP
′
) from P ′ then return channel-not-updated.

6. Otherwise (if you receive such a message) check if γP
′
and γP are equal on attributes id and cash, and if γP

′

is correctly signed by P ′. If yes, then let ΓP
′
(id) := γP and return channel-updated.

Otherwise return channel-not-updated.

(a)

P P ′

—
tim

e
→

wait
1 round

reply immediately
(update, γP )

(update-ok, γP
′
)

(b)

Fig. 8: The “Channel update” subprocedure: (a) the subprotocol for the parties, (b) a message flow in a successful
execution of the subprocedure.
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4.1.5 Closing the basic payment channel. When a party P ∈ γ.end-users wants to close the
channel with identifier id , she needs to “let the contract PaymentContractγ.id know” about the latest
state of channel γ. This is done via a procedure that we call “state registration”. Let γP := ΓP (id).
Party P calls a function close(γP ) in PaymentContractγ.id. The contract checks if γP is correctly
signed by P ′ := γ.other-party(P ) and if the sum of parties’ coins in γP is equal to the sum S of their
coins in the original channel γ (that the contract received when the channel was established). If it
is not, then the contracts ignores this call. Otherwise it sends a message closing to both γ.end-users.

Party P ′ replies immediately by calling a function close(γP
′
), where γP ′ := ΓP

′
(id). If within

time ∆ the contract receives this call from P ′ then it checks if if the sum of parties’ coins in γP is
equal to the S and if γP ′ is is correctly signed by P . If yes, then it lets γ∗ be equal to the one of γP

and γP ′ that has the higher version number (ties are resolved in favor of P )15, more precisely it lets:

γ∗ :=

{
γP if γP .ver-num ≥ γP ′ .ver-num

γP
′ otherwise

If party P ′ does not make such a call within time ∆ then only the parameters provided by P count
(and hence γ∗ = γP ). Informally, this means that P ′ had a chance to present his version of the
state, but failed to do so within time ∆. Since the contract never does anything “by itself”, P has
to wake up PaymentContractγ after this time passed by calling a function “finalize()”. The money is
then distributed according to γ∗.cash, i.e., each P receives γ∗.cash(P ) coins. The whole procedure is
depicted on Fig. 9. The corresponding message flows are depicted on Fig. 10.

4.2 Multistate channels

The multistate channels extend the payment channels by allowing their users to execute “inside of
them” a bilateral contract code C (see Sect. 3). More concretely, a multistate channel, in addition
to Alice’s and Bob’s cash, contains some number of attribute tuples called nanocontracts, each of
them being of a form:

ν = (ν.nid, ν.blocked, ν.storage), (3)

where ν.nid ∈ {0, 1}∗ is the identifier of this nanocontract and ν.blocked is a function referring
to the amount of money blocked in the nanocontract by the parties γ.end-users. More formally,
it has a type: ν.blocked : γ.end-users → R, where for P ∈ γ.end-users the value ν.blocked(P ) is
called the amount of coins blocked in ν by P . The total amount of coins blocked in ν is equal to
ν.blocked(γ.Alice)+ν.blocked(γ.Bob), and is denoted ν.total-blocked. Finally ν.storage is an attribute
tuple that contains the storage of nanocontract ν. This value will be interpreted by the bilateral
contract C using the EvalC function in the way described in Sect. 3.1.

We will provide more details on the semantics of the nanocontracts in a moment, for now let us
just focus on the syntax of multistate channels. Technically, the nanocontracts in a channel γ will
be stored in a set nspace called nanocontracts space. This set will have a property that for every nid
there exists at most one element ν ∈ nspace with ν.nid = nid . Hence nspace will also be viewed as
a partial function that assigns to every such nid the value nspace(nid) (equal to such a ν) or ⊥ (if
such a ν does not exist).

Formally a basic multistate channel over a set of players P is an attribute tuple γ of a form

γ = (γ.id, γ.Alice, γ.Bob, γ.cash, γ.nspace), (4)

where γ.id, γ.Alice, γ.Bob and γ.cash are as in the payment channels (see Sect. 4.1) and γ.nspace
is a nanocontract space. We assume that no two nanocontracts in the system will have the same
15 This does not matter, since a tie will never happen if at least one party in γ.end-users is honest.
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identifier. E.g. for every ν ∈ γ.nspace we have that ν.nid contains information about the identifier
γ.id (e.g. it is of a form ν.nid = (γ.id,nid ′) (where nid ′ is some string). The value of γ is is equal to

γ.cash(γ.Alice) + γ.cash(γ.Bob) +
∑

ν∈γ.nspace
ν(nid).total-blocked,

where the sum is taken over all nid ’s such that γ.nspace(nid) 6= ⊥.
A basic multistate channel space is defined in the same way as the the basic payment channel space

(see Sect. 4.1.1), and is also denoted with Γ . When a nanocontract is created, xa := ν.blocked(γ.Alice)
and xb := ν.blocked(γ.Bob) coins are removed from the deposits of γ.Alice and γ.Bob (respectively)
in γ. The value ν.storage will be set to Init(τ, π) (where τ is the current time, and π denotes the
parameters of the contract). We will refer to the current value of ν as nanocontract’s state. A user
P ∈ γ.end-users can change the state of a nanocontract by “executing” a call to a function fun
from C (with a parameter z) in time τ . This will be done by evaluating function EvalC (cf. (1))
in a way that is similar to the execution of a contract C over the ledger. The main difference is
that the financial operations are not performed on the users’ deposits on the ledger, but on parties’
deposits in γ. More precisely, if (σ′;ma, ya;mb, yb) is the output of EvalC then σ′ will become the
new storage of the nanocontract, Alice and Bob will receive messages ma and mb (respectively),
their respective amounts of coins blocked in ν will be decreased by ya and yb, and “moved” to their
respective deposits in γ (for technical details see Sect. 4.2.5). Before the execution starts the ledger
needs to determine what is the current state of a nanocontract. This is done in a procedure called
“nanocontract registration” (see Sect. 4.2.4).

Typically, such an execution will happen only if the parties disagree. As long as the parties are not
in a dispute, they can freely update nanocontract’s state. This means, in particular, that they may
transfer additional coins from γ.cash to the nanocontract, move coins between different nanocon-
tracts, or change its state. Hence, they can also agree to “execute a function in a peaceful way”, i.e.,
each of them can compute EvalC locally and update the nanocontract according to the output of this
computation. We emphasize that in case of such a “peaceful” execution the nanocontract will not go
on the ledger, but the execution will merely happen locally by the parties and technically realized
by updating the state of the nanocontract. The procedure of first trying to execute a nanocontract
peacefully, and then (if it fails) running the standard execution is called “optimistic execution” (it
is described in Sect. 4.2.8).

The values xa := ν.blocked(γ.Alice) and xb := ν.blocked(γ.Bob) can change during the lifetime
of the nanocontract (as a result of nanocontract updating, or nanocontract function execution). We
will allow xa and xb to be negative numbers, as long as their sum is non-negative. This is interpreted
as follows. A positive value xa denotes the fact that Alice “invested” xa coins into the nanocontract.
In other words: xa of her coins (that she has in channel γ) are blocked in the nanocontract, and if the
nanocontract is closed with such a value of xa, then Alice loses xa coins. A negative value of xa means
that Alice should receive −xa coins from the nanocontract, and, in case of nanocontract closing,
Alice gains xa coins in her account in channel γ (the situation of xb in case of Bob is analogous).
Intuitively, xa+xb denotes the net amount of coins that is blocked in the nanocontract. If xa+xb = 0
(or equivalently xa = −xb) then there are no more coins blocked in the nanocontract, and normally
the nanocontract will be terminated. If xa > 0 then as a consequence of this nanocontract Alice
“pays” xa coins to Bob, and if xb > 0 then, symmetrically, Bob “pays” xb coins to Alice. This way
of modeling cash in nanocontracts may look a bit complicated. The reason why it is done this way,
is that we need to be ready to handle parallelism, i.e., we have to be prepared for a situation when
several nanocontract are executed simultaneously.
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Subprotocol for closing the channel

To close the basic payment channel with identifier id a party P that is one of the end-users of the channel with
identifier id proceeds as follows:

Procedure CloseStart(id) run by party P :

1. Let γP := ΓP (id) and call a function close(γP ) in PaymentContractγ.id.

Procedure CloseReact(id) run by party P ′:

2. Upon receiving a message closing from PaymentContractγ.id let γP
′
:= ΓP

′
(id) and call a function close(γP

′
)

in PaymentContractγ.id.
3. Upon receiving a message closed from PaymentContractγ.id (together with some coins) remove the channel

with identifier id from ΓP
′
and return channel-closed.

Back to procedure CloseStart(id) run by party P :

4. After receiving message closing from PaymentContractγ.id wait time at most ∆ to receive a message closed
(with some coins) from PaymentContractγ.id. If you do not receive it then call a function finalize() in
PaymentContractγ.id.

5. Upon receiving a message closed from PaymentContractγ.id (together with some coins) remove the channel
with identifier id from ΓP

′
and return channel-closed.

(a)

Function close(γP ) called by P ∈ end-users

Check if γP is correctly signed by P ′ := other-party(P ), if γP .id = id and if γP .total-cash = this.total-cash.
If at least one of the above does not hold then go idle. Otherwise consider three cases:

– A variable this.recorded is defined and is equal to (P̂ , γ̂, τ̂) with P̂ = P — in this case go idle.
– A variable this.recorded is defined and is equal to (P̂ , γ̂, τ̂) with P̂ = other-party(P ) — in this case let:

γ∗ :=

{
γP if γP .ver-num ≥ γ̂.ver-num
γ̂ otherwise.

For each T ∈ end-users send a message closed together with γ∗.cash(T ) coins to T and terminate.
– Otherwise (if this.recorded is undefined) set this.recorded := (P, γP , current-time), send a message closing to

both parties in end-users, and go idle.

Function finalize() called by P ∈ end-users

If your storage contains a tuple (P̂ , γ̂, τ̂), such that τ̂ + ∆ < current-time then for each T ∈ end-users send a
message closed together with τ̂ .cash(T ) coins to T and terminate. Otherwise go idle.

(b)

Fig. 9: Closing the channel: (a) the subprotocol, and (b) the corresponding contract functions.
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P PaymentContractγ.id P ′

—
tim

e
→

close(γP )

closingclosing

(close(γP
′
)

(γ∗.cash(P ) coins,
closed)

(γ∗.cash(P ′) coins,
closed)

(a)

P PaymentContractγ.id P ′

—
tim

e
→

close(γP )

closingclosing

malicious P ′ does not
send his messsage

(γP .cash(P ) coins,
closed)

(γP .cash(P ′) coins,
closed)

finalize()

time ∆ passes

(b)

Fig. 10: The message flows for closing the channel in case when P ′ replies (a), and in case P ′ does not reply (b).
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A nanocontract is active if its storage is not equal to terminated, and is inactive otherwise. We
assume that a nanocontract can be made inactive only if the total amount of coins that is blocked
in it is zero.

The important thing is that once the parties start to execute the nanocontract, none of them can
lose more money than it deposited in the nanocontract. This is because the values ya and yb (that
are output by Eval) are always non-negative and hence as a result of every step of the execution the
values xa and xb blocked in the nanocontract can only decrease. Note that this means that the users
have to initially block the maximum amount of coins that they can potentially lose in the contract.
We emphasize that this is necessary if we want a guarantee that every party will always pay the
amount that the nanocontract requires them to pay (see Sect. 4.4 for a discussion on alternative
approaches).

As a concrete example consider a nanocontract for tossing two symmetric coins (this paragraph
assumes some familiarity with the topic of fair coin tossing over cryptocurrencies, see [2, 3]). Alice
and Bob first deposit 2 coins (each) and then they execute a nanocontract, that tosses two coins.
After each toss: if the result is “heads” then Alice wins one coin, and if the result is “tails” then Bob
wins one coin. Then the possible evolution of the pair (xa, xb) looks as on Fig. 11 Note that both

xa = 2, xb = 2

xa = 0, xb = 2

xa = −2, xb = 2

heads

xa = 0, xb = 0

tails

heads

xa = 2, xb = 0

xa = 0, xb = 0

heads

xa = 2, xb = −2

tails

tails

Fig. 11: The tree presenting the evolution of the (xa, xb) pair in a nanocontract that tosses two coins (when the result
is “heads” Alice wins 1 coin, and otherwise Bob wins 1 coin).

parties need to initially deposit 2 coins (since this is the maximal amount of coins that a party can
lose). “Heads” results in decreasing xa by ya = 2 and “tails” in decreasing xb by yb = 2. Informally: if
the result is “heads” then Alice gets 1 coin from Bob, and 1 coin back from her own blocked deposit
(symmetrically for “tails” and Bob). In other words, the output of the Eval function in this case will
have a form (σ′; “heads”, 2; “heads”, 0).

A basic multistate channel can be closed (see Sect. 4.2.7) if it contains no active nanocontracts.
This is checked by performing the state registration for every nanocontract. Once the channel is
closed, the money in γ.cash is given back to the channel participants.

4.2.1 Overview of the scheme. The basic multistate channels are implemented by a protocol
denoted MSChannelsC (where C is the bilateral contract code that parametrizes the system). Each
multistate channel γ will have its corresponding contract MSContractC

γ.id on the ledger that will
interact with both γ.Alice and γ.Bob. The names of the functions in MSContractC

γ.id are listed on
Fig. 12.

A channel is active if the corresponding MSContractC
γ.id exists on the ledger and it has not

been terminated. The general picture is very similar to the one for the payment channels (see
Sect. 4.1.2). Each party P ∈ P maintains a channel space ΓP that contains all the active basic
channels that this party established. The initial form of a channel with identifier id is equal to γ
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MSContractC
γ.id

Functions:

– used for creating a contract (see Fig. 3):
• the contract constructor,
• confirm(),
• refund(),

– used for registering nanocontract’s state (see
Fig. 15):
• state-register(ν),
• finalize-register(),

– used for executing a nanocontract (see Fig. 17)
• execute(nid , fun, z)

– used for closing the channel (see Fig. 21):
• close(γP ),
• finalize()

Fig. 12: Functions in the MSContract.

with all attributes defined as when the channel was created. For every id the values of attributes
ΓP (id).id, ΓP (id).Alice, and ΓP (id).Bob will always be the equal to the corresponding values in the
initial form of this channel. MSContractC

γ.id will be initialized with the initial form of γ, however,
unlike in the case of payment channels, γ stored by MSContractC

γ.id will evolve. In particular: γ.nspace
will initially be empty, and it will get filled-in with nanocontracts as a result of the “nanocontract
state registration” procedure (see Sect. 4.2.4).

The general structure of our system, including the message types that are sent between the
parties and the contract, are depicted on Fig. 13.

4.2.2 Maintaining channel state. Maintaining the state of the multistate channels without
touching the ledger is a little bit more tricky than for the payment channels (see Sect. 4.1). This is
because a channel can contain several nanocontracts, that can be created and updated in parallel. At
the first sight it may look natural to extend the idea from Sect. 4.1 by letting every P add to γ two
attributes γ.ver-num and γ.sign, where where γ.ver-num ∈ N is a counter that is incremented with
every channel update and γ.sign is a signature of P ′ = γ.other-party(P ). Unfortunately, for reasons
explained in Sect. 4.2.9, we need a more fine-grained control over the state of the nanocontracts in
the channel.

Our solution is as follows. The parties will maintain an independent version number of each
nanocontract in γ.nspace. Concretely, for each nanocontract we add the attributes ver-num and sign
that are internally used by the parties for the protocol’s execution. The counter ν.ver-num ∈ N
is incremented with every nanocontract update (see Sect. 4.2.6) and ν.sign is a signature of P ′ =
γ.other-party(P ) on (ν.nid, ν.blocked(γ.Alice, ), ν.blocked(γ.Bob), ν.storage, ν.ver-num). Hence, every
tuple ν ∈ γ.nspace has the following form (cf. Eq. (3)):

(ν.nid, ν.blocked, ν.storage, ν.ver-num, ν.sign).

If ν.sign is a correct signature of P on (ν.nid, ν.blocked(γ.Alice), ν.storage, ν.blocked(γ.Bob), ν.ver-num)
then we say that it is a version of a state of a nanocontract (with identifier ν.nid) signed by P . The
role of the attributes ver-num and sign is similar to their role in the basic payment channel. They are
“private” and can only be accessed by the parties locally during the protocols execution. The value
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protocol MSChannelsC

subprocedures:

creating a channel
(CreateStart, CreateWait)

registration of nanocontract’s state
(RegisterStart, RegisterReact)

executing a nanocontract
(ExecStart, ExecReact)

closing the channel
(CloseStart, CloseReact)

updating the channel
(UpdateStart, UpdateWait,

UpdateReply)

MSContractC
γ.id

Every party P ∈ P holds a set
ΓP of channels. Initially ΓP is
empty.

creating a channel
(creating a contract)

registration of nanocontract’s state

executing a nanocontract

closing the basic channel

contract initialization
(see Fig. 3)

state-register

finalize-register

state-registered

execute

executed

not-executed

close

finalize

coins, closed

update

update-ok

update-not-ok

subroutine call

subroutine call

subroutine call

Fig. 13: The general structure of the scheme for basic multistate channels, including the messages that are sent between
the parties and the contract, and the names of the procedures.
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ν.ver-num denotes a counter indicating the latest version number of ν that a party P has stored
locally. The attribute ν.sign, on the other hand, is a signature of P ′ on (ν.nid, ν.blocked, ν.ver-num).
Jumping a little bit ahead, ν.ver-num will be incremented by 1 in every nanocontract update (see
Sect. 4.2.6), and in case of a dispute between Alice and Bob ν will be considered to be the valid one
if it has the highest version number.

4.2.3 Creating a channel. The subprotocol for creating a multistate channel γ consists of
procedures CreateStart (executed by the party that initiates the subprotocol, which in our case
will always be γ.Alice), and CreateStart (executed by the other party, γ.Bob). Both procedures get γ
as input. We assume that the channel γ has γ.nspace = ∅ (in other words: there are no nanocontracts
in the “default” state of the channel). The procedure is very similar to the creation procedure for
the payment channels (see Sect. 4.1.3). It is depicted on Fig. 14. Essentially, the only difference is
that in this case we do not define the γ.ver-num attribute. This is because the (extended) multistate
channels do not have the .ver-num attribute. Instead, as described in Sect. 4.2.2, this attribute is
placed in the nanocontract (and will be set in the “update” procedure, see Sect. 4.2.6). The only
other technical change is that the contract is now called MSContract.

At any point in time parties Pa and Pb can decide to create a multistate channel γ such that
γ.Alice = Pa and γ.Bob = Pb and channel γ has γ.nspace = ∅ (in other words: we require that there
are no nanocontracts in the “default” state of the channel). This can be done only if no channel
with identifier γ.id has been created before, and if γ.Alice and γ.Bob have xa := γ.cash(γ.Alice) and
xb := γ.cash(γ.Bob) unspent coins on the ledger (respectively). We assume that the parties agree
beforehand on all the attributes of γ and on the exact round τ when the creation procedure starts.
The subprotocol for creating a multistate channel γ consists of procedures CreateStart (executed
by the party that initiates the subprotocol, which in our case will always be γ.Alice), and CreateWait

(executed by the other party, γ.Bob). Both procedures get γ as input. To create γ parties γ.Alice
and γ.Bob simply run the protocol for initializing MSContract (see Sect. 3.2) with parameter π := γ.
Since the response time of ledger contracts is at most ∆ time, the standard execution time is 2 ·∆
and pessimistic execution time of this procedure is 3 ·∆ (because γ.Alice may need to use refund()).

Subprotocol for creating a channel

Procedure CreateStart(γ) run by γ.Alice

1. Let wa := InitializeStart(MSContract; γ).
2. If wa = initialized then store γ in Γ and output

created.
3. Otherwise (if wa = not-initialized) output

not-created.

Procedure CreateWait(γ) run by γ.Bob

1. Let wb := InitializeWait(MSContract; γ).
2. If wb = initialized then store γ in Γ and output

created.
3. Otherwise (if wb = not-initialized) output

not-created.

Fig. 14: The “Multistate channel creation” subprocedure

4.2.4 Registration of the state of a nanocontract. The goal of the “nanocontract state reg-
istration” procedure is to convince the MSContractC

γ.id about the current state of the a nanocontract
in the channel. This is done in a manner similar to the one for determining the current state of
the payment channel (used in the closing procedure, see Sect. 4.1.5), except that the procedure is
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performed independently for every nanocontract. This procedure will be executed in two cases. The
first one is when Alice and Bob enter into a disagreement about the state of some nanocontract
(during the execution of nanocontract update procedure, or at the beginning of the nanocontract
execution procedure, see Sections 4.2.6 and 4.2.5, resp.), which happens only if one of them is cor-
rupt. The second one is when they want to close the channel with to which the nanocontract belongs
(in which case it will be performed for every nanocontract in this channel, see Sect. 4.2.7). Let id be
the identifier of a channel between Alice and Bob, and let nid be the identifier of a nanocontract in
this channel. To register the state of this nanocontract each party sends to MSContractC

γ.id her latest
versions of the nanocontract with identifier nid signed by the other party, and the nanocontract with
the higher ver-num attribute “wins”, i.e., is considered by MSContractC

γ.id to be the one that counts.
Going a bit more into technical details, the state registration procedure works as follows. Since

MSContractC
γ.id cannot take any actions by itself, it has to be “woken up” by a message from a

user P ∈ γ.end-users who wants to register the state (since he thinks that the other user turned
malicious, or he wants to close the channel). This will be done by calling a function state-register(νP )
in MSContractC

γ.id, were νP = ΓP (id).nspace(nid).
After receiving such an initialization call, MSContractC

γ.id notifies both parties P and P ′ that it
received a call state-register(νP ) and waits time ∆ for a function call state-register(νP

′
) from party

P ′ (where νP ′ = ΓP
′
(id).nspace(nid)). After receiving this call the contract decides what is the

current state of the nanocontract by taking ν with a higher version number. More precisely, it lets:

ν∗ :=


(νP .nid, νP .blocked, νP .storage) if νP .ver-num ≥

νP
′
.ver-num

(νP
′
.nid, νP

′
.blocked, νP

′
.storage) otherwise,

stores ν∗ as the value of nspace(nid), and sends a confirmation message (state-registered, ν∗) to both
parties (we now say that the state of the nanocontract with identifier nid is registered). Note that we
do not define the values of the ver-num and sign attributes, since once the state of a nanocontract is
registered they are not needed anymore.

If the state-register call is not received from P ′ within time ∆, then only the call from P counts
(hence ν∗ := νP ). Since the contract never does anything “by itself”, P has to wake up MSContractC

γ.id

after this time passed by calling a “wake up” function finalize-register.
The state registration procedure is depicted on Fig. 15 and the message flow in both scenarios

(when P replied to the contract, and when it did not) is depicted on Fig. 16.
We assume that once the state of a nanocontract has been registered, this nanocontract will

never be updated by the users via the update procedure (see Sect. 4.2.6). This can be done without
loss of generality, since the state registration procedure will be executed only if Alice and Bob are in
disagreement (or if they are closing the channel), and the updates are performed only between the
parties that do not have any disagreements between each other. Once the channel state is registered,
the only changes in the channel state can now come from performing the “execution” procedure,
described below.

Let us finally provide some details about the timing about the registration of the state of a
nanocontract. The pessimistic execution time of this procedure is 3 ·∆, since in the worst case the
procedure takes 3 rounds of interaction with the ledger: (a) P sends a message to a ledger, (b) P ′

has time ∆ to reply, (c) if P ′ did not reply then P sends the finalize-register message. The standard
execution time is 2 ·∆ (since Step (c) is not needed).

4.2.5 Execution of a nanocontract. Some general intuitions behind the nanocontract execution
were already provided at the beginning of Sect. 4.2. For the sake of simplicity we do not allow the
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Registration of the state of a nanocontract:

To register the state of the nanocontract with identifier nid in the basic multistate channel with identifier id , a
party P (that is one of the end-users of this channel) proceeds as follows:

Procedure RegisterStart(id ,nid) run by party P :

1. Let νP := ΓP (id).nspace(nid) and call a function state-register(nid , νP ) in MSContractC
γ.id.

Procedure RegisterReact(id ,nid) run by party P ′:

2. Upon receiving a message (state-registering,nid) from MSContractC
γ.id let ν

P ′
:= ΓP

′
(id).nspace(nid) and call

a function state-register(nid , νP
′
) in MSContractC

γ.id.
3. Upon receiving a message (state-registered, ν∗) from MSContractC

γ.id let Γ
P ′
(id).nspace(nid) := ν∗ and return

established(ν∗).

Back to procedure RegisterStart(id ,nid) run by party P :

4. After receiving message state-registering from MSContractC
γ.id wait time at most ∆ to receive a message

(state-registered, ν∗) from MSContractC
γ.id. If you do not receive it, then call a function finalize-register() in

MSContractC
γ.id.

5. Upon receiving (state-registered, ν∗) let ΓP (id).nspace(nid) := ν∗ and return established(ν∗).

(a)

Function state-register(ν) called by P ∈ end-users

Check if ν is correctly signed by P ′ := other-party(P ). If not, then ignore this call. Otherwise consider two cases:

– Your storage contains a value (P̂ , n̂id , ν̂, τ̂) with P̂ = P — in this case ignore this call.
– Your storage contains a value (P̂ , n̂id , ν̂, τ̂) with P̂ = other-party(P ) and n̂id = ν.nid — in this case let:

ν∗ :=

{
(ν.nid, ν.blocked, ν.storage) if ν.ver-num ≥ ν̂.ver-num
(ν̂.nid, ν̂.blocked, ν̂.storage) otherwise.

Let nspace(nid) := ν∗, erase (P̂ , n̂id , ν̂, τ̂) from your storage, send a message (state-registered, ν∗) to both
parties in end-users and go idle.

– Otherwise store (P,nid , ν, current-time) in your storage, send a message state-registering(nid) to both parties
in end-users, and go idle.

Function finalize-register() called by P ∈ end-users

If your storage contains a value (P̂ , n̂id , ν̂, τ̂) such that P̂ = P , n̂id = ν.nid, and τ +∆ < current-time then set

ν∗ := (ν̂.nid, ν̂.blocked, ν̂.storage).

Let nspace(nid) := ν∗, erase (P̂ , n̂id , ν̂, τ̂) from your storage, send a message (state-registered, ν∗) to both parties
in end-users and go idle.

(b)

Fig. 15: The state registration procedure: (a) the subprotocol, and (b) the corresponding functions in the contract.
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P MSContractC
γ.id P ′

—
tim

e
→

state-register(νP )

(state-registering,nid)(state-registering,nid)

state-register(νP
′
)

(state-registered, ν∗) (state-registered, ν∗)

(a)

P MSContractC
γ.id P ′

—
tim

e
→

state-register(νP )

(state-registering,nid)(state-registering,nid)

malicious P ′ does not
send his messsage

(state-registered, ν∗) (state-registered, ν∗)

finalize-register()

time ∆ passes

(b)

Fig. 16: The message flows for registration of nanocontract’s state in case when P ′ replies (a), and in case P ′ does not
reply (b).
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parties to add coins when the nanocontract is executed, i.e., we will only allow calls to Eval where
x = 0 (cf. (1)). That is, once the nanocontract has been put on the ledger, the users cannot add
coins to it anymore. Instead, the nanocontract can only release coins to the deposits in the basic
multistate channel γ (see Sect. 4.2.10 for explanations of the reasons for this, and an outline of a
construction that does not have this limitation.

Let us not provide some more details about the execution procedure. Let ν := γ.nspace(nid)
be some nanocontract in channel γ, and let (xa, xb) := (ν.blocked(γ.Alice), ν.blocked(γ.Bob)). Then,
each end user of γ can execute a function fun in C with parameters z and x coins starting from
storage σ = ν.storage. The MSContract will compute β := EvalC (σ;P, 0, τ ; fun, z) (where τ is the
current time, and “0” corresponds to the fact that we do not allow the parties to attach any coins
when nanocontracts are forcefully executed). If β = ⊥ then nothing happens16; otherwise, parse β
as (σ′, (ma, ya), (mb, yb)). As a result of the “channel execution”, the new state of the nanocontract
is (xa − ya, xb − yb, σ′) (i.e.: ya + yb coins get “unblocked” in the nanocontract) and Alice and Bob
gain ya and yb coins (respectively) in their deposits in channel γ, and σ′ becomes the new storage
of the nanocontract. Moreover Alice and Bob receive messages ma and mb (respectively).

Technically, execution of a nanocontract is done in the following way (see also Fig. 17). First,
before any computation takes place, the contract MSContractC

γ.id needs to understand what is the
current state of the nanocontract. To this end, the initiating party P performs the “state regis-
tration” procedure described in Sect. 4.2.4. After the state of the nanocontract is registered the
contract MSContractC

γ.id will accept function calls execute(nid , fun, z) from P ∈ γ.end-users. Once
MSContractC

γ.id such a call, the it computes (σ′, (ma, ya), (mb, yb)) := EvalC (σ;P, 0, current-time; fun, z).
He then defines ν ′ as

ν ′.nid := nid

ν ′.blocked(γ.Alice) := ν.blocked(γ.Alice)− ya
ν ′.blocked(γ.Bob) := ν.blocked(γ.Bob)− yb

ν ′.storage := σ′.

Next, the contract sends ν ′ to both γ.Alice and γ.Bob together with messages ma and mb re-
spectively. Finally, MSContractC

γ.id updates the state of the nanocontract as γ.nspace(nid) := ν ′.
The above description assumes that P and P ′ = γ.other-party(P ), behave honestly, in the sense

that its P that sends the execute message to the MSContractC
γ.id after the state registration of the

nanocontract has been completed. In general, however, the parties can behave arbitrarily, and hence
we also accept that execute is sent by P ′ (and reaches the contract before the execute message sent
by P ). We accept such a situation as correct behavior of the system (such issues are discussed in
more detail in Sect. 4.2.9). Another issue that may happen when parties do not follow the protocol
is that neither P nor P ′ sends the execute message. This is not a problem, since in this case the
result is simply that the state of the nanocontract is registered, but no execution was performed.
Notice that of course in the latter case parties can execute the nanocontract at some later points in
time.

The execution of a nanocontract can be performed multiple times. The only difference between
the first execution and all subsequent executions is that in the latter case there is no need to perform
the state registration procedure (since the state of a nanocontract is already registered). The details
of the protocol and the part of the MSContract contract that corresponds to the forceful execution
are shown on Figure 18.

16 Recall that the role of the ⊥ output is to indicate that the input α was incorrect. For example this will be output
if the message msg is sent by Alice, while its “Bob’s turn” to send a message, or if msg is wrongly formatted.
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Nanocontract execution

To execute a nanocontract with identifier nid in the basic multistate channel γ with identifier id , a party P (that
is one of the end-users of this channel) proceeds as follows (let P ′ := γ.other-party(P )):

Procedure ExecStart(id ,nid , fun, z) for party P

1. If you have not yet run the RegisterStart or RegisterReact procedure with parameters (id ,nid) then start
the RegisterStart(id ,nid) procedure and wait until its finished.

Procedure ExecReact(id ,nid) for party P ′

2. If P initiates the RegisterStart(id ,nid) procedure then P ′ engages in it (i.e., it executes
RegisterStart(id ,nid).

Back to procedure ExecStart(id ,nid , fun, z) for party P

3. Call a function execute(nid , fun, z) in MSContractC
γ.id.

Rest of the procedures ExecStart(id ,nid , fun, z) and ExecReact(id ,nid) for T = P and T = P ′ (respectively):

4. Upon receiving a message (executed, ν′,m) from MSContractC
γ.id, party T does the following (below let γT :=

ΓT (id)):
– γT .cash(γT .Alice) := γT .cash(γ.Alice) + ν′(γ.Alice),
– γT .cash(γT .Bob) := γT .cash(γ.Bob) + ν′(γ.Bob),
– γT .nspace(nid) := ν′.
– Return m.

Function execute(nid , fun, z) called by P ∈ end-users

If the state of the nanocontract with identifier nid has not been registered or if nspace(nid).storage = terminated,
then send a message not-executed to P and go idle. Otherwise proceed as follows:

1. Let:
ν := nspace(nid),
xa := ν.blocked(Alice), and
xb := ν.blocked(Bob)

2. Let β = EvalC (ν.storage;P, 0, current-time; fun, z). If β = ignore then ignore this call.
Otherwise set (σ, (ma, ya), (mb, yb)) := β. If ya + yb > xa + xb then stop without sending any message.
Otherwise:
(a) Set:

ν′.blocked(Alice) := xa − ya,
ν′.blocked(Bob) := xb − yb, and
ν′.storage := σ.

(b) Let nspace(nid) := ν′.
(c) Send (executed, ν′,ma) and (executed, ν′,mb) to Alice and Bob respectively.

Fig. 17: The nanocontract execution procedure and contract.
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(executed, ν,ma,mb) (executed, ν,ma,mb)

Fig. 18: Message flow for the nanocontract execution procedure.
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Finally, let us discuss the execution time of the nanocontract execution procedure. In the pes-
simistic case, a execution will take 4 · ∆ rounds, where 3 · ∆ rounds come from the pessimistic
execution time of the state registration procedure, and ∆ from the time that is needed to run the
nanocontract execution.

4.2.6 Updating the channel. As in the case of the basic payment channels, we allow the end-
users of the basic multistate channel to update the nanocontract’s state multiple times without
touching the blockchain. This procedure will also be used to create nanocontracts (see Sect. 4.2.8).
Conceptually, this is done in a similar way as for the basic payment channels. Namely, to update
the state of nanocontract nid (or to create it, if it does not exist) with values (x̃a, x̃b, σ̃) the parties
P, P ′ ∈ γ.end-users proceed in the three round protocol shown in Figure 19 (we again assume that
the parties agreed beforehand that they want to start this subprotocol). We give further explanation
of the protocol execution below.

The updating procedures take an additional parameter Υ ∈ time that denotes the time that the
non-initiating party (P ′) has to decide if she accepts the proposed update, or not. This is needed for
constructing higher-level protocols such as our virtual payment channels from Section 4.3. In this
protocol we will need to allow party P ′ to abort the update procedure initiated by party P , without
resulting into a situation where the state of the nanocontract nid is registered on the ledger.

Party P , who initiates the update, starts procedure UpdateStart(id ,nid , σ̃, x̃a, x̃b, Υ ), while
P ′ starts procedure UpdateWait(id ,nid , σ̃, x̃a, x̃b, Υ ). If the protocol succeeds, then the parties
update their local information about their deposits in the channel with identifier id , i.e., both
T ∈ Γ (id).end-users let γT := Γ T (id) and νT := γT .nspace(nid), and then:

Γ T (id).cash(γT .Alice) := γT .cash(γT .Alice)

+νT .blocked(γT .Alice)− x̃a,
Γ T (id).cash(γT .Bob) := γT .cash(γT .Bob)

+νT .blocked(γT .Bob)− x̃b.

Moreover, the state of the nanocontract with identifier nid held by party T changes in the following
way (below where T ′ := γT .other-party(T )):

Γ T (id).nspace(nid).blocked(γT .Alice) := x̃a
Γ T (id).nspace(nid).blocked(γT .Bob) := x̃b
Γ T (id).nspace(nid).storage := σ̃
Γ T (id).nspace(nid).ver-num := νT .ver-num + 1
Γ T (id).nspace(nid).sign := SignskT ′

(ν),

(5)

Let us now describe the nanocontract update protocol in more detail. To initiate the update of the
nanocontract with identifier nid , party P runs a procedure denoted UpdateStart(id ,nid , σ̃, x̃a, x̃b, Υ ),
and runs a procedure P ′ := γP .other-party(P ) denoted UpdateWait(id ,nid , σ̃, x̃a, x̃b, Υ ). As the first
step of her procedure, party P sends a message update with a signature of the new state to P ′, i.e.,

SignskP (x̃a, x̃b, σ̃, ν
P .ver-num + 1).

If P ′ receives such a message within one round, then P ′ has to react to it by calling a procedure
denoted UpdateReply within time at most Υ , and either agreeing for the update, or not. More
precisely P ′ has to following options.
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1. P ′ calls UpdateReply(ok, id ,nid) by sending an update-ok message along with the signature

SignskP ′
(x̃a, x̃b, σ̃, ν

P ′ .ver-num + 1)

to party P . This results in updating the local state of the parties P and P ′ and successfully
terminating the nanocontract update.

2. P ′ calls UpdateReply(not-ok, id ,nid): P ′ reverts to the state νP ′ that the nanocontract with
identifier nid has held before the update was started. Technically, this is done by P ′ by sending
to P a update-not-ok message with the following signature:

SignskP ′
(νP

′
.blocked(γP

′
.Alice), νP

′
.blocked(γP

′
.Bob), νP

′
.storage, νP

′
.ver-num + 2),

where the only change compare to νP ′ is the higher version number (i.e.,νP ′ .ver-num+2 instead
of just νT ′ .ver-num). Notice that P ′ need to add 2 to the version number, because νP ′ .ver-num+1
has already been used when P initiated the nanocontract update.

In the next phase of the protocol UpdateStart executed by P is activated within time at most
Υ + 1 by one of the following three events.

1. It received a update-ok message, in which case it will update its local state to the new state from
Eq. (5).

2. It received a update-not-ok message, in which case it will revert to the state before the update
was called, but now with a higher version number. Notice that in this case P will also send a
signature of the state with higher version number to P ′.

3. Time Υ + 1 has passed and non of the above messages has been received. In this case, P ′ is
corrupt and P will establish its state using the RegisterStart(id ,nid) subprocedure.

In the optimistic case when the parties follow the protocol, then the execution time is upper
bounded by Υ + 3. Υ comes from the fact that we give party P ′ additionally time Υ to react to an
update message received by P . Moreover, if P ′ calls the procedure UpdateReply with z = not-ok, then
the parties need additionally 3 rounds to complete the protocol. In the pessimistic case, when one of
the parties does not follow the protocol, then we may need to register the state of the nanocontract
on the ledger, which requires additionally 3 ·∆ rounds. Hence, in the pessimistic case the maximal
running time of the protocol is Υ + 3 ·∆+ 3 rounds.

4.2.7 Closing the basic multistate channel. At some point in time, one of the parties may
want to close the channel γ (to “convert” her money xP to real coins on the ledger). We will assume
that a contract MSContractC

γ.id will allow any party P ∈ {γ.Alice, γ.Bob} to close the channel if
it does not contain any active nanocontracts. Recall that a nanocontract ν is called active, when
ν.total-blocked > 0. If the parties do not have any dispute then they can simply update the state of
the channel in such a way that it does not contain a nanocontract with non-zero amount of coins
blocked (via the update procedure from Sect. 4.2.6).

What is a little bit more tricky is handling the situation when the parties are in disagreement.
Note that in principle there can exists a nanocontract ν in γ such that a party P is not able to
“execute” ν in such a way that all the money from x is removed (for example: ν is waiting for a
message from γ.other-party(P ), and P has no way to “push” it forward). Hence, P may end up with
a channel that is impossible to close. We solve this problem in the following way: technically, we
allow such a situation to happen, and we say that it is up to the users to choose the specification of
the contract C such that each party can always close the nanocontract.17

17 For example, C can accept a special message “kill” such that if kill is sent by any party P after some time τ ′

(determined in σ) then the money from the nanocontract is distributed in some specified way, and the nanocontract
is emptied.
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Subprotocol to update a nanocontract nid in basic multistate channel with identifier id

Let P be one of the end-users of the basic multistate channel with identifier id . For T ∈ γ.end-users let γT :=
ΓT (id) be T ’s local version of the basic multistate channel with identifier id and define the following abbreviations:

– νT := γT .nspace(nid).
– xTa := νT .blocked(γT .Alice) and xTb := νT .blocked(γT .Bob) (if νT is undefined, then set xTa = 0 and xTb = 0).
– σT := νT .storage (if νT is undefined, then set σT := ⊥.)
– ver -numT := νT .ver-num.

The protocol is run between the two end-users P and P ′ of the channel with identifier id . It enables the end-users
to update the nanocontract with identifier nid with values (σ̃, x̃a, x̃b) and consists of multiple procedures defined
below.

Procedure UpdateStart(id ,nid , σ̃, x̃a, x̃b, Υ ) run by P :

1. Compute the signature
sP := SignskP

(nid , x̃a, x̃b, σ̃, ver -num
P + 1),

and send (update, sP ) to P ′ := γP .other-party(P ). Wait for at most Υ + 1 rounds.

Procedure UpdateWait(id ,nid , σ̃, x̃a, x̃b, Υ ) run by P ′:

Upon receiving a message (update, sP ) from party P , party P ′ proceeds as follows:

2. If sP is a signature of the following form:

SignskP
(nid , x̃a, x̃b, σ̃, ver -num

P ′
+ 1),

then return update-requested and wait at most until round Υ for a call to the procedure UpdateReply defined
below.

Procedure UpdateReply(z, id ,nid) run by P ′:

If z = ok then execute the following:

3. Update local version of nanocontract with ΓP
′
(id).nspace(nid) := (x̃a, x̃b, σ̃, ver -num

P ′
+ 1, sP ).

4. Set ΓP
′
(id).cash(γP

′
.Alice) := γP

′
.cash(γP

′
.Alice)−x̃a and ΓP

′
(id).cash(γP

′
.Bob) := γP

′
.cash(γP

′
.Bob)−x̃b.

5. Compute the following valid signature:

sP
′
:= SignskP ′ (nid , x̃a, x̃b, σ̃, ver -num

P ′
+ 1)

and send (update-ok, sP
′
) to P and return updated.

Otherwise (if z = not-ok) then execute the following:

6. Compute a valid signature

sP
′
:= SignskP ′ (nid , x

P ′
a , xP

′
b , σP

′
, ver -numP ′

+ 2),

and send the message (update-not-ok, sP
′
) to party P and wait 1 round.

Procedure for updating nanocontract (continued on the next page).
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Subprotocol to update a nanocontract nid in basic multistate channel with identifier id
(continued)

Back to procedure UpdateStart(id ,nid , σ̃, x̃a, x̃b, Υ ) run by P :

Depending on whether one of the following events happen, party P wakes up and proceeds as follows:

7. Upon receiving message (update-ok, sP
′
) from P ′, where sP

′
is SignskP ′ (nid , x̃a, x̃b, σ̃, ver -num

P +1), proceed
as follows:
(a) Update local version of nanocontract with ΓP (id).nspace(nid) := (blocked , σ̃, ver -numP +1, sP

′
), where

blocked(γ.Alice) := x̃a and blocked(γ.Bob) := x̃b.
(b) Set ΓP (id).cash(γP .Alice) := γP .cash(γP .Alice) + xPa − x̃a and ΓP (id).cash(γP .Bob) :=

γP .cash(γP .Bob) + xPb − x̃b and return updated.
8. Upon receiving message (update-not-ok, sP

′
) from P ′, where sP

′
is SignskP ′ (nid , x

P
a , x

P
b , σ, ver -num

P + 2),

set ΓP (id).nspace(nid).ver-num := ver -numP + 2 and ΓP (id).nspace(nid).sign := sP
′
and send message

(update-not-ok, sP ) with sP := SignskP
(nid , xPa , x

P
b , σ

P , ver -numP + 2) to P ′. Then return notupdated.
9. If until time Υ + 1 from the time you started UpdateStart you did not receive any of the above messages

from P ′, then call the subprocedure RegisterStart(id ,nid). Once the subprocedure returns established(ν∗)
and if ν∗.ver-num > ver -numP , then set:

ΓP (id).cash(γP .Alice) := γP .cash(γP .Alice)+xPa−x̃a and ΓP (id).cash(γP .Bob) := γP .cash(γP .Bob)+xPb −x̃b.

Back to the procedure UpdateReply(z, id ,nid) run by P ′:

10. Upon receiving the message (update-not-ok, sP ) from P with sP := SignskP
(nid , xP

′
a , xP

′
b , σP

′
, ver -numP ′

+2)

set ΓP
′
(id).nspace(nid).ver-num := ver -numP ′

+ 2 and ΓP
′
(id).nspace(nid).sign := sP .

11. Otherwise call the subprocedure RegisterStart(id ,nid). Once the subprocedure returns established(ν∗),
return notupdated.

Fig. 19: Procedure for updating nanocontract (continued from the previous page).
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Fig. 20: Message flows in (a) a successful execution of the “nanocontract update” procedure, and (b) an unsuccessful
execution of the “nanocontract update” procedure.
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The closing procedure works as follows. First, the parties need to inform the MSContractC
γ.id about

the current state of all the contracts (recall that at this point the state of some of the nanocontracts
may still be off-chain). This is done as follows. The initiating party P runs the state registration
subprotocol for every nanocontract in the channel, and at the same time it calls the function close
in the contract MSContractC

γ.id. Note that a dishonest P may try to cheat by not starting the state
registration protocol for some of the existing nanocontracts. Therefore, MSContractC

γ.id needs to give
to P ′ the opportunity to execute the state registration subprotocol on the remaining nanocontracts.
Hence, MSContractC

γ.id sends a closing message to P ′, and if P ′ can see that some of the nanocontracts
have not been registered yet, run for these remaining nanocontracts the state registration procedure.
The details of the closing procedure are presented on Fig. 21.

In the standard case when the parties agree then closing takes time 3 ·∆, where 2 ·∆ comes from
registering the state, and ∆ for the call to the function finalize-close(). In the pessimistic case state
registration takes 3 ·∆, so the total time is 4 ·∆.

4.2.8 Using nanocontracts in practice. In the previous sections, we introduced protocols and
contracts for implementing basic multistate channels in which nanocontracts can run. To complete
our description, we need to give some guidelines how to use contracts in the multistate channels
(they will also be used in Sect. 4.3 for creating the virtual channels).

Let C be some contract code and let π be contract parameters (with some fresh identifier
π.id). Suppose π.Alice and π.Bob created a basic multistate channel γ with (γ.Alice, γ.Bob) =
(π.Alice, π.Bob) using protocol MSChannelsC (see Sect. 4.2.3). Moreover assume that each P ∈
γ.end-users has at least π.cash(P ) coins in her deposit in channel γ. Suppose that the parties agreed
that in time in time τ they will start nanocontract C with parameters π in the channel γ. Then
π.Alice and π.Bob start the UpdateStart and UpdateWait procedure (respectively) with parameters
(γ.id,nid , σ, xa, xb, 0), where nid is chosen in such a way that it is unique (e.g. nid = (γ.id, π.id))
and (xa, xb) = (γ.cash(γ.Alice), γ.cash(γ.Bob) and σ := Init(τ, π). If as a result of the UpdateWait

execution γ.Bob gets an output updated then he immediately runs the UpdateReply(ok, γ.id,nid)
procedure.

At the end either both P ∈ γ.end-users receive an output updated, in which case they conclude
that the nanocontract with identifier nid has been created. Otherwise they both receive not-updated
in which case they conclude that the contract C has not been created.

Now, suppose that the one of the parties P ∈ γ.end-users wants to execute a function fun
with parameter z in the nanocontract with identifier nid in channel with identifier id . Then P
can try to perform a “peaceful execution of the nanocontract”. Let τ be the current time, and
let σ := ΓP (id).nspace(nid).storage. Party P simply contacts P ′ by sending to her a message
(optimistic, id ,nid , fun, z). Both parties compute EvalC (σ;P, 0, fun, z) locally, and update the nanocon-
tract nid according to the output of this procedure. Only if this procedure fails, P will start the real
execution of the nanocontract (to distinguish such execution from the “optimistic” one we will called
it sometimes “forced execution”). For a detailed description of the optimistic execution procedure
see Fig. 22.

The standard execution time of this procedure is 2 (since 2 rounds are needed for nanocontract
update). The pessimistic execution time is 3 · ∆ + 3 (needed for the update) plus 4 · ∆ for the
forced execution. It is easy to see however, that this second value can be reduced to ∆, since the
remaining 3 · ∆ comes from the “state registration” that does not need to be performed if it was
already performed in the channel update. Therefore the total pessimistic time of this procedure is
4 ·∆+ 3.
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4.2.9 A discussion on parallelism. As already mentioned, we assume that the above procedures
can be executed in parallel. There are some small natural limitation to this. In particular, we require
that the parties do not establish channels that they “cannot afford”, and before a channel creation
procedure starts they check if they don’t execute another channel creation procedure that uses the
same coins. The same restrictions apply to the nanocontract update.

4.2.10 Some optimizations and extensions. One obvious drawback of the above construction
is that it requires the parties to store forever all the ν tuples that every appeared for a given multistate
channel, just in case the other party will post some old version of ν on the ledger. Also, in the closing
procedure the parties need to send every ν to MSContract. Fortunately, our protocol can be easily
modified to get rid of this problem. This can be done by allowing the parties to “clean” γ.nspace in
the following way. Every channel γ will contain a special list of inactive (expired) nanocontracts,
from time to time the parties will run an update procedure that will update this list. This can be
optimized further, by having special field in γ that invalidates all nanocontracts satisfying certain
condition, e.g. those whose identifier starts with certain string, or those that are were created before
some time (in this case nid ’s needs to contain also the timestamp that indicates when they were
created).18 In the simplest case (when there is no conflict between the users) they can simply make
an update that removes all nanocontract (or, in other words, “converts the multistate channel into
a payment channel).

Another limitation of our construction is that we do not allow the users to add coins into a
nanocontract during the execution (cf. “0” in the argument of Eval in Sect. 4.2.5). We note that it
is possible to allow it, however, for this we would need to make the contract MSContract “aware” of
the current value of γ.cash. For this, we would need to execute the state establishment procedure
for every nanocontract in the channel, before the execution starts. This extension is discussed in
Sect. 4.4.

4.3 Virtual payment channels

As already highlighted in the introduction the main contribution of this paper is a method for
“channel virtualization”. In this paper we focus here on virtual payment channels, but our ideas
can be extended to virtual state channels (see Sect. 4.4). In virtual payment channels, we consider a
setting with 3 parties called Alice, Ingrid, and Bob (where “Ingrid” connotes with the “intermediary”).

The virtual channel protocol that we denote VirtualChannels is built “on top” of a basic state
channel protocol MSChannelsC , where C = VPC is a contract that we call a virtual payment contract,
which is presented on Fig. 24, and that is explained in detail later in this section . Suppose the parties
already created basic state channels (Alice γa⇐⇒ Ingrid) and (Ingrid

γb⇐⇒ Bob) using the MSChannelsVPC

protocol. Our main idea is to build a virtual channel over these two basic nanocontract channels,
where the intermediate party Ingrid acts as “payment hub” between Alice and Bob. In contrast
to current payment networks such as the Lightning network, in our construction the intermediate
Ingrid is not involved in all the individual payments that may be carried out between Alice and Bob.
Instead, Ingrid is solely needed for the initial creation of the virtual payment channel and for its
closing (which may involve handling disputes between Alice and Bob). Hence, conceptually Ingrid’s
role in our channel virtualization approach is similar to the role that the blockchain takes for the
basic channels.

Similar to the PaymentContract from the basic payment channels, the main goal of the VPC is
to guarantee a distribution of the money in the virtual channel according to its latest state. An
18 Another option to avoid the need for remembering old nanocontracts is to simply “reuse” their identifiers (once a

nanocontract became inactive, use its identifier for a new nanocontract).
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important difference, however, is that in our protocols whenever there is a dispute between Alice
and Bob, the parties first try to resolve this dispute through Ingrid, i.e., without touching the
blockchain. If this first stage fails, then the execution of the VPC s gets escalated to the blockchain.
The advantage of this two stage approach is that in the case when, for instance, Alice and Ingrid
are honest, they do not need to touch the blockchain when they want to resolve a dispute between
Alice and Bob, and hence conflict resolution can be instantaneous.

In the following subsections we will describe in detail how virtual payment channels are real-
ized at a technical level. We start in Section 4.3.1 by introducing some syntax that is needed for
the virtual payment channels. Then, in Sect 4.3.2 we given an a overview of the scheme, and in
Sections 4.3.3, 4.3.4, and 4.3.5, we describe the sub-protocols for the channel creation, update, and
closing (respectively).

4.3.1 Syntax for virtual payment channels. We start with describing the syntax that is
needed for the exposition of our protocol; most of the notation is borrowed from the syntax used
by the basic payment channels. A virtual payment channel γ over a set of players P is an attribute
tuple of the form:

(γ.id, γ.Alice, γ.Ingrid, γ.Bob, γ.cash, γ.subchan, γ.validity), (6)

where γ.id, γ.Alice, γ.Bob and γ.cash are as in Eq. (4) in Section 4.1.1 (in particular: we assume that
γ.id is freshly chosen), γ.Ingrid ∈ P is a party that we will sometimes call the intermediary. We also
have that γ.subchan is a function from γ.end-users to {0, 1}∗, where γ.end-users = {γ.Alice, γ.Bob}.
Finally γ.validity ∈ time denotes the channel validity, i.e., the time until which the virtual payment
channel stays open (we discuss the need for such a parameter below). Moreover γ.end-users and
γ.total-cash are defined as for the case of basic channels.

For P ∈ γ.end-users the value γ.subchan(P ) will be called the identifier of P ’s subchannel,
and it will be used to indicate the corresponding identifier of the basic multistate channel (con-
structed using MSChannelsVPC ) that is used to construct γ. That is, the values γ.subchan(γ.Alice) and
γ.subchan(γ.Bob) are pointers to basic channels (γ.Alice

γa⇐⇒ γ.Ingrid) and (γ.Ingrid
γb⇐⇒ γ.Bob), respec-

tively. To distinguish virtual channels from basic channels we will denote them by γ.Alice
γ←→ γ.Bob,

i.e., we use a single-lined arrow.
The purpose of having γ.validity is as follows. In our construction every virtual channel will have

a corresponding nanocontract in the basic subchannels γa and γb. Recall from Sect. 4.1 that the
basic channels cannot be closed as long as nanocontracts are active. Therefore, a malicious Alice or
Bob could block the channels γa and γb forever, by not closing the virtual channel γ. We prevent
this by adding an automatic closure time γ.validity when the corresponding nanocontracts will be
closed.

Observe that, since in this section we are only interested in virtual payment channels, Eq. (6)
does not have a storage attribute. We discuss the possibility of creating virtual nanocontract channels
in Section 4.4. Another restriction that we have is that the channels are just of length 2 (i.e. there
is one intermediary). An extension of our idea to longer channels is also discussed in Section 4.4.

4.3.2 An overview of the construction. Technically, the system that we construct will be an
extension of the basic multistate channel system from Sect. 4.2, with contract code C being equal
to VPC (defined below). In other words, we assume that all the procedures for handling the basic
channels are handled by the MSChannelsVPC protocol, and the only thing that is needed is to specify
the procedures for the virtual channels. A channel space is defined in the same way as the the basic
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Channel closing by one of the parties

To close a basic multistate channel with identifier id , a party P (that is one of the end-users of this channel)
proceeds as follows (let P ′ := γ.other-party(P )):

Procedure CloseStart(id) for party P

1. Do the following in parallel:
– for each nid such that ΓP (id).nspace(nid) 6= ⊥ and the state registration procedure has not been run

for this nanocontract before, call the RegisterStart(id ,nid), and
– call the function close() in MSContractC

γ.id.
2. Upon receiving a message closing from MSContractC

γ.id wait at most 3∆ rounds.

Procedure CloseReact(id) for party P ′:

3. Upon receiving a message closing from MSContractC
γ.id do the following:

– for each nid such that ΓP
′
(id).nspace(nid) 6= ⊥ and the state registration procedure has not been run

for this nanocontract before, call the RegisterStart(id ,nid).
4. Then wait.

Back to procedure CloseStart(id) for party P

After time 3∆ has passed from Step (2), or when all nanocontracts in ΓP (id) have been registered, then call the
function finalize-close() in MSContractC

γ.id.

Rest of the procedures CloseStart(id) and CloseReact(id) for T = P, P ′ (respectively):

5. Upon receiving a message closed from MSContractC
γ.id erase γ from ΓT and return closed.

6. Upon receiving a message not-closed from MSContractC
γ.id return not-closed.

(a)

Function close() called by P ∈ end-users

Store (P, close, current-time) and send closing to both parties in γ.end-users. Then go idle.

Function finalize-close() called by P ∈ end-users

If your storage contains a value (P̂ , close, τ̂) such that P̂ = P and current-time > 3∆+ τ̂ , then do the following:

– if there exists nid such that γ.nspace(nid).total-blocked > 0, then send a message not-closed to both users
in γ.end-users and go idle,

– otherwise send to each T ∈ γ.end-users a message closed together with γ.cash(T ) coins and terminate.

(b)

Fig. 21: (a) Procedure for closing the basic multistate channel, and (b) the corresponding functions in the contract.
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Optimistic nanocontract execution

To optimistically execute a nanocontract with identifier nid in the basic multistate channel γ with identifier id ,
a party P (that is one of the end-users of this channel) proceeds as follows (let P ′ := γ.other-party(P )):

Procedure OptimisticExecStart(id ,nid , fun, z) for party P

1. If you have already executed the RegisterStart or RegisterReact procedure with parameters (id ,nid) then
go to Step 6.

2. Otherwise send a message (optimistic, id ,nid , fun, z) to P ′.
3. Let τ be the current time, and let σ := ΓP (id).nspace(nid).storage. Compute

(σ̂;ma, ya;mb, yb) := EvalC (σ;P, 0, τ ; fun, z).

Execute the UpdateStart procedure with parameters

params = (γ.id,nid , σ̂, xa + ya, xb + yb, 0),

where nid is chosen in such a way that it is unique (e.g. nid = (γ.id, π.id)) and (xa, xb) =
(γ.cash(γ.Alice), γ.cash(γ.Bob), and wait 1 round.

Procedure OptimisticExecReact for party P ′

4. Upon receiving a message (optimistic, id ,nid , fun, z) (that P sent in Step 2):
If in the previous round you started OptimisticExecStart with the same id and nid and if P ′ = γ.Bob then
stop (This technical step is needed to handle the unlikely case when both parties simultaneously decided to
execute the same nanocontract. To “break the symmetry” of the channel we assume that in this case Bob
“behaves nicely” and gives Alice the priority.)
If you have already executed the RegisterStart or RegisterReact procedure with parameters (id ,nid) then
do nothing.
Otherwise let τ be the current time, σ′ = ΓP

′
(id).nspace(nid).storage and compute

(σ̂′;m′a, y
′
a;m

′
b, y
′
b) := EvalC (σ′;P, 0, τ − 1; fun, z).

If σ̂′ = ignore then do nothing. Otherwise execute the UpdateWait procedure with parameters

params ′ = (γ.id,nid , σ̂′, xa + y′a, xb + y′b, 0),

(if P and P ′ are honest then σ′ = σ and hence (σ̂′;m′a, y
′
a;m

′
b, y
′
b) = (σ̂;ma, ya;mb, yb) and params ′ =

params). If, as a result of this execution, you get as output update-requested then immediately run the
UpdateReply(ok, γ.id,nid) procedure and go to Step 7.

Back to procedure OptimisticExecStart(id ,nid , fun, z) for party P

5. If UpdateStart returns updated then go to Step 7.
6. Otherwise run ExecStart(id ,nid , fun, z).

Rests of procedures OptimisticExecStart(id ,nid , fun, z) and OptimisticExecReact

for T = P and T = P ′ respectively

7. Change γ′ ∈ ΓP
′
(id).nspace by adding ya and yb coins to the deposits of γ.Alice and γ.Bob (resp) and change

ν ∈ γ′.nspace as follows:
– ν.storage := σ̂′,
– ν.cash(γ.Alice) := ν.cash(γ.Alice)− ya,
– ν.cash(γ.Bob) := ν.cash(γ.Bob)− yb,

8. Return (executed, id ,nid ,ma) (if T = γ.Alice) or (executed(id ,nid ,mb) (if T = γ.Bob).

Fig. 22: Optimistic nanocontract execution
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γ.Ingrid

γ.Alice γ.Bob

γa := basic state channel from
protocol MSChannelsVPC

with identifier γ.subchan(γ.Alice)

nanocontract with identifier
nid = (Alice||γ.id)

xa := γ.cash(γ.Alice) coins

xb := γ.cash(γ.Bob)
coins

γb := basic state channel from
protocol MSChannelsVPC

with identifier γ.subchan(γ.Alice)

nanocontract with identifier
nid = (Bob||γ.id)

xb := γ.cash(γ.Bob) coins

xa := γ.cash(γ.Alice)
coins

virtual channel γ

Fig. 23: A virtual channel built “on top” of two basic channels.
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payment channel space (see Sect. 4.1.1). It will now contain both the virtual channels and the basic
channels.

To build a virtual channel γ “on top” of two basic channels γa and γb, we create two nanocontracts
νa and νb with identifiers (Alice, γ.id) and (Alice, γ.id) in γa and γb, respectively. These nanocontracts
are responsible for handling the channel γ and work as follows. Initially, party γ.Alice will have
xa = γ.cash(γ.Alice) coins blocked in νa, while γ.Ingrid will have xb = γ.cash(γ.Bob) coins blocked
in it. Symmetrically, γ.Bob will initially have xb coins blocked in νb, and γ.Ingrid will have xa coins
blocked in it.

Similarly to what was done in the previous sections, the end-users of a virtual payment channel
γ, will internally extend γ by adding two attributes to it: γ.ver-num ∈ N and γ.sign ∈ {0, 1}∗. We
say that such an extended γ is a version of γ’s state signed by P ∈ γ.end-users if γ.ver-num ≥ 1 and
γ.sign is a signature of P on (γ.id, γ.cash, γ.ver-num). When γ.ver-num = 0 the attribute γ.sign will
be undefined, but for consistency also in this case we say that (γ.id, γ.cash, γ.ver-num) is a version
of γ’s state signed by any P ∈ γ.end-users. Recall that the idea that we had for the basic payment
channels was: in every update the end-users of γ send to each other a signed new version of γ with
γ.ver-num incremented by 1, In case of a dispute between them, the contract StateChannelContract
that parametrized the system could decide what is the latest version of γ by looking at the γ.ver-num
numbers and checking the signatures.

The main challenge in designing the virtual payment channels is that we want γ.Ingrid to be the
entity that resolves conflicts between γ.Alice and γ.Bob, while we do not want to make any trust
assumptions about her. The important thing from Alice’s point of view is that she has to be sure
that when she sends to γ.Ingrid her latest version of γ, then γ.Ingrid will transfer γ.cash(γ.Alice)
coins from νa to γ.Alice’s deposit in the basic channel γa. Of course, Bob needs to have a symmetric
guarantee, and finally, also γ.Ingrid needs to be sure that she can get γ.cash(γ.Bob) coins from
nanocontract νa, and γ.cash(γ.Alice) coins from nanocontract νb. The exact mechanics of this is
described in Sect. 4.3.5 which contains the protocol for closing a channel. First, however, we present
the procedures for creating and updating the virtual channels.

Virtual contract contract VPC

Let γ be a virtual channel. The bilateral contract VPC is initialized with an attribute tuple π such that either

– (π.Alice, π.Bob) := (γ.Ingrid, γ.Bob),

and (π.cash(π.Alice), π.cash(π.Bob)) := (γ.cash(γ.Alice), γ.cash(γ.Bob)).Moreover π has one additional attribute
“virtual-channel” defined as π.virtual-channel := γ. The contract consist of the following functions.

– close(γP ) and
– finalize().

Both of them are described on Fig. 30.

Fig. 24: The Virtual Payment Contract. This contract interacts with the “channel closing” procedure, see Sect. 4.3.5,
page 48.

4.3.3 Creating a virtual payment channel. Before describing how the nanocontracts νa and
νb take care of fair money distribution, let us show how a virtual payment channel γ is created. Let
xa, xb, γa, γb,nida, and nid b be defined as in the beginning of Sect. 4.3.2. Initially γ.Alice puts xa
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protocol VirtualChannels

Every party P ∈ P holds a set
ΓP of channels. Initially ΓP is
empty.

subprotocols:

closing the channel
(CloseStart, CloseReact)

updating the channel
(UpdateStart, UpdateWait)

creating a channel
(CreateStart,

CreateIngridWait,
CreateBobWait)

VPC

subcontracts:

closing the channel

close

(coins, closed)

update

update-ok

Fig. 25: The general structure of the scheme for virtual payment channels, including the messages that are sent between
the parties and the contract, and the names of the procedures.

46



and γ.Bob puts xb coins into the virtual channel. Hence, nobody loses money if the channel closes
in its initial state. The channel creation sub-protocol is presented on Fig. 26, and the graphical
representation of the procedure calls is depicted on Fig. 28.

The protocol for creating a virtual channel is run between the parties γ.Alice, γ.Bob and γ.Ingrid
and starts with the three procedures CreateStart (executed by γ.Alice), CreateIngridWait (exe-
cuted by γ.Ingrid), and CreateBobWait (executed by γ.Bob) depicted on Fig. 26. We assume that
all the parties start execution of their procedures in the same round (τinit). Initially (see Step 0),
each of them “internally” blocks the corresponding coins in γa and γb, so they cannot be used for
any other purpose until γ is closed, or it becomes clear that γ will not be created.

Then, in Step 1 , γ.Alice proposes to γ.Ingrid to update a channel γa by creating a nanocon-
tract νa and moving γ.Alice’s xa coins and γ.Ingrid’s xb coins to the nanocontract νa. By “propos-
ing” we mean that γ.Alice starts the UpdateWait procedure from MSChannelsVPC with parameters
(γa.id ,nid , Init(γ), xa, xb, 3 ·∆+1). Concretely, this update should result in creating a new nanocon-
tract (with identifier nida) that handles γ in γa. The initial storage of this nanocontract is Init(γ),
the values xa and xb are the funds that shall be blocked in the nanocontract and 3 · ∆ + 1 is the
amount of time that γ.Alice gives to γ.Ingrid in addition to the standard execution time needed for
the update subprotocol to finish in the pessimistic case.

Party γ.Ingrid starts her execution of the channel creation process by waiting for a signal that
γ.Alice proposed an update. Technically, this is done by starting the UpdateWait procedure and
waiting to obtain update-requested (see Step 2). Once such a signal is obtained (in round τinit+1, see
Step (3a)) then γ.Ingrid does not confirm to γ.Alice the update of γa immediately. This is because
γ.Ingrid cannot be sure if γ.Bob will also agree for the corresponding update of γb. Notice that if νa
is created, and νb is not created, then γ.Ingrid is “exposed” in the following way: she has to honor
γ.Bob’s obligations with respect to γ.Alice (i.e. pay to γ.Alice all the money that γ.Bob has to pay in
channel γ), but she cannot get this money back from γ.Bob (since officially channel γb is not “aware”
of the fact that γ has been created). Therefore before confirming the update to γ.Alice, γ.Ingrid
asks γ.Bob to update the channel γb by creating the nanocontract νb and moving γ.Ingrid’s xa coins
and γ.Bob’s xb coins to a νb. This is done by starting the UpdateStart procedure with parameters
paramsb (see Eq. (8), Step (3a)). If on the other hand γ.Ingrid does not obtain update-requested from
her call to UpdateWait then she concludes that γ.Alice does not intend to create a channel γ, and
unblocks the money that she blocked in Step 0 and stops (this happens in Step (3b)).

Finally, let us take a look how party γ.Bob starts the channel creation process. He calls the
procedure UpdateWait(paramsb) and waits to obtain update-requested (see Step 4). If such a signal
is obtained within round τinit+2 (see Step (5a)) then γ.Bob confirms the update by calling UpdateOK
procedure with input ok, which notifies γ.Ingrid that the update of channel γa was completed, and
contains the nanocontract νa. Otherwise he concludes that one of the other parties does not intend
to create a channel γ, unblocks the money that he blocked in Step 0 and stops (this happens in Step
(5b)).

Only once γ.Ingrid receives information from the UpdateWait procedure that γ.Bob confirmed
the update, she sends back her update confirmation to γ.Alice (this happens in Step (6a). If γ.Ingrid
receives information from the UpdateWait that γ.Bob did not confirm the update then she informs
γ.Alice that channel γ cannot be created, by starting an UpdateReply procedure with input not-ok
(see Step (6b). Recall that execution of UpdateWait can take pessimistic time 3 · ∆ (since it may
involve the “state registration” procedure if the parties do not cooperate). Therefore the pessimistic
execution time of this part is 1 + 3 · ∆. This is exactly the reason why γ.Alice waits additionally
time Υ .

Finally, γ.Alice receives an output from the UpdateStart procedure. If it is updated then she
concludes that the channel has been created, and sends a final confirmation message channel-ok to
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γ.Bob (see Step (7a)). Otherwise she concludes that one of the other parties does not intend to
create a channel γ, unblocks the money that she blocked in Step 0 and stops. (this happens in Step
(7b)). Once γ.Bob receives message channel-ok he also concludes that the channel has been created
(see Step 8).

Observe that in our procedure the order of signing the channel updates is γ.Alice→ γ.Ingrid→
γ.Bob→ γ.Ingrid→ γ.Alice (see Fig. 27). Therefore the only party that potentially can be “exposed”
is γ.Alice, in the sense that only γ.Alice signs an update to a channel (γa) before receiving a corre-
sponding signature from the other party. The reason why it is not a problem is that the only way
in which γ.Ingrid could use the γ.Alice’s signature on channel update is to post it on the blockchain
together with her signature sb (otherwise the contract would not accept it). In this way, however,
she reveals sb, so it can as well count as “sending sb to γ.Alice”. Sending the confirmation to γ.Bob
in the last step is needed to guarantee that, in case both γ.Alice and γ.Bob are honest, they will
have an identical view on the fact whether the channels was created. The total pessimistic time of
the execution of this procedure is 2 · (1+ 3 ·∆)+ 1 = 6 ·∆+3. The standard time is 5 rounds (since
we just need to count the rounds in which the messages are sent between the parties).

4.3.4 Updating a channel. Let id be an identifier of some virtual payment channel γ. Updating
the state of γ (i.e. the value of cash) is implemented in the same way as for the basic payment
channels (see Sect. 4.1.4 with a detailed description, including the message flow on Fig. 8, page 18).
The optimistic execution of the update takes 2 rounds. The pessimistic time is only bounded by
γ.validity.

4.3.5 Closing a channel. The tuples that the parties γ.end-users store after an update have
practical meaning only if they can be sure that Ingrid will “honor them”. Technically, as already
described in Sect. 4.3.2, this will be guaranteed by the nanocontracts νa and νb in the channels γa
and γb (respectively). Let us now informally discuss how to guarantee that every party is treated
fairly (the subprotocol for channel closing is depicted on Fig. 29, the corresponding contract functions
are presented on Fig. 30, and the message flows are on Figures 31 and 32). Assume that a virtual
channel γ has already been created, and suppose time γ.validity comes and the channel should be
closed. For a moment assume that γ.Ingrid is a trusted party. Consider the following procedure in
which γ.Ingrid determines what is the latest state version cash : γ.end-users → R≥0 of γ (below let
id = γ.id).

1. Each P ∈ γ.end-users sends her tuple γP := ΓP (id) to γ.Ingrid,
2. Upon receiving γP from P in Step 1, party γ.Ingrid checks if γP is correctly signed by γ.other-party(P )

and accepts it only if the signature is correct. Then, consider the following cases:
(a) If both γγ.Alice and γγ.Bob are correctly signed, then γ.Ingrid checks which of these messages

has a higher version number. Let γ∗ be this message (choose γ∗ arbitrarily if the version
numbers are equal). Ingrid assumes that the latest version cash of the channel with identifier
γ.id is γ∗.cash.

(b) only one correctly signed γP was received by γ.Ingrid — in this case γ.Ingrid assumes that
cash := γP .cash.

(c) no correctly signed γP was received by γ.Ingrid — in this case she assumes that cash :=
γinit.cash, where γinit is the initial version of the channel (when it was created).
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Subprotocol for creating a virtual payment channel

To create the virtual payment channel γ the parties proceed as follows (we assume that all parties P start in the
same round τinit, and we let xa, xb, γa, γb,nida, and nidb be as defined at the beginning of Sect. 4.3.2).

Procedures CreateStart(γ), CreateIngridWait(γ) and CreateBobWait(γ) run by
γ.Alice, γ.Ingrid, and γ.Bob (respectively)

0. Party γ.Alice removes xa coins from her deposit in channel γa ∈ Γ γ.Alice.
Party γ.Ingrid removes xb and xa coins from her deposits in channels with identifiers γa and γb (respectively)
in Γ γ.Ingrid.
Party γ.Bob removes xb coins from his deposit in channel γb ∈ Γ γ.Bob.

Procedure CreateStart(γ) run by γ.Alice:

1. Call procedure MSChannelsVPC .UpdateStart(paramsa), where the parameters are defined as follows:

paramsa := (γa.id,nida, Init(γ), xa, xb, 3 ·∆+ 1) (7)

and wait.

Procedure CreateIngridWait(γ) run by γ.Ingrid:

2. Call MSChannelsVPC .UpdateWait(paramsa) and wait until at most round τinit + 1 to obtain the return
update-requested.

3. Distinguish two cases:
(a) update-requested returned: call MSChannelsVPC .UpdateStart(paramsb) of the basic state channel proto-

col, where the parameters are defined as follows:

paramsb := (γb.id,nidb, Init(γ), xa, xb, 0). (8)

and wait.
(b) Otherwise: Unblock the money that you removed in Step 0 in your deposits in the channels in Γ γ.Ingrid

and stop.

Procedure CreateBobWait(γ) run by γ.Bob:

4. Call MSChannelsVPC .UpdateWait(paramsb). Wait until at most round τinit + 2 to obtain the return
update-requested.

5. Distinguish two cases:
(a) update-requested returned: call MSChannelsVPC .UpdateReply(ok, γb.id,nidb) and wait until the “channel

closing subprotocol” is started at time γ.validity (see Sect. 4.3.5).
(b) Otherwise: unblock the money that you removed in Step 0 in your deposits in channel γb in Γ γ.Bob and

stop.

Back to procedure CreateIngridWait run by γ.Ingrid:

6. Wait at most until round τinit+3 ·∆+1 for an output of MSChannelsVPC .UpdateStart(paramsb), and proceed
as follows:
(a) updated returned: Add γ to Γ γ.Ingrid, call MSChannelsVPC .UpdateReply(ok, γa.id,nida), and wait until the

“channel closing subprotocol” is started at time γ.validity.
(b) not-updated returned: γ.Ingrid calls MSChannelsVPC .UpdateReply(not-ok, γa.id,nida). Then, it unblocks

xb coins in γa ∈ Γ γ.Ingrid and stops.

Subprotocol for creating a virtual payment channel (continued on the next page).
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Subprotocol for creating a virtual payment channel (continued)

Back to procedure CreateStart run by γ.Alice:

7. Wait at most until round τinit + 6 · ∆ + 2 for MSChannelsVPC .UpdateStart(paramsa), and distinguish the
following cases:
(a) updated returned: Send a message (channel-ok, γ.id) to γ.Bob. Then, add γ to Γ γ.Alice and wait until the

“channel closing subprotocol” is started at time γ.validity.
(b) not-updated returned: γ.Alice unblocks the money that it previously locked in γa and updates Γ γ.Alice

and stops.

Back to procedure CreateStart run by γ.Bob:

8. If until round τinit + 6 ·∆+ 3 you receive a message (channel-ok, γ.id) from γ.Alice, then add γ to Γ γ.Bob.
9. Wait for the “channel closing subprotocol” at time γ.validity.

Fig. 26: Subprotocol for creating a virtual payment channel (continued from the previous page).

γ.Alice γ.Ingrid γ.Bob

A signature on νa B signature on νb

C signature on νa D signature on νb

Fig. 27: The order of signing the channel updates in the procedure for virtual channel creation.
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Once γ.Ingrid establishes the value of cash she transfers the coins in channels γa and γb in the
following way (let (xa, xb) := (cash(γ.Alice), cash(γ.Bob))): she adds xa coins to γ.Alice’s deposit in
γa and xb coins to γ.Bob’s deposit in γb, as well as xb coins in her own deposit in γa and xa coins in
her own deposit in γb.

In reality, unfortunately, there is no reason to trust γ.Ingrid that she will always be honest. In
this case there are several problems with this procedure, probably the most obvious one being that
γ.Alice and γ.Bob have no proof that they indeed sent their messages γγ.Alice and γγ.Bob in Step 1.
It is also easy to see that such proofs need to have a special form. More precisely: they need to be
such that later the parties can claim their money from γ.Ingrid, even if she misbehaves.

This is exactly where the contract VPC and the nanocontracts νa and νb will be used. Take for
example γ.Alice (the case of γ.Bob is handled analogously). The contract VPC will be constructed in
such a way that γ.Alice can send γa (defined in Step 1 above) to νa, and γa will be stored in the νa’s
state. Of course, as long as γ.Ingrid and γ.Alice are not in dispute, this can be resolved “peacefully”:
the parties would simply exchange their signatures on the new state (i.e., the new money distribution
as described above). However, if the parties enter into a disagreement (this can only happen when
one of them is corrupt), γ.Alice always has an option to execute νa “by force” via the blockchain. In
parallel, γ.Bob will perform a symmetric procedure with Ingrid (for “sending γb”). The corresponding
code for γ.Alice and γ.Bob is given in Step 2 and for γ.Ingrid in Step (3a) (Fig. 29). Note that such
an execution requires pessimistic time T (where T = 4 · ∆ + 2 is the time needed for the forced
execution of a nanocontract), and optimistic time 2.

Party γ.Ingrid, after receiving (via the channel update, or forced execution) the message γa
forwards it to γ.Bob by calling a corresponding function in νb(see Step 3a on Fig. 29) . This again is
done by updating (or executing) the nanocontract νb. Symmetrically, γ.Ingrid forwards γb to γ.Alice.
Moreover the contracts νp (for p ∈ {a, b}) will be constructed in such a way that once a contract
receives both γa and γb it internally decides how to distribute money that it has in the same way as
it is done in Step (2a) above (see case 1 in the code of close(γP ) on Fig. 30).

Observe that “sending γp via a nanocontract νp” can take time at most T . After time T passed19

and γ.Ingrid did not receive any message from γ.Alice (say) then γ.Ingrid can assume that γ.Alice
will not send any message (this will happen only if γ.Alice is corrupt). In such a case γ.Ingrid calls a
function finalize of νb (the case when γ.Bob sends no message is handled analogously). The purpose
of this message is to “push” the contract to proceed (after the deadline T has passed). This is needed
since the contracts never execute anything “by themselves”, and always need an external message to
start an execution

On the other hand γ.Ingrid should be guaranteed that she can forward γp to the other party even
if he receives this message late (e.g. just before the “deadline” T ). Hence we let the nanocontracts
accept calls from γ.Ingrid also after time T , and in particular they can arrive to γ.Alice and γ.Bob
in time at most 2 · T (pessimistically). If γ.Alice or γ.Bob do not receive a message from γ.Ingrid
within this time, then they call a function finalize() to the nanocontract to finish its execution.

Another technical thing that we need is to handle the situations when one of the parties does
not send its message at all — for example, if γ.Ingrid does not forward any message to γ.Alice, or
does not call finalize. Since this can happen only if γ.Ingrid is corrupt, we simply allow γ.Alice to call
finalize() herself after time 2 · T has passed (see Step 5 on Fig. 29), and take the money that was
specified in γa away from γ.Ingrid (the same happens with Bob). This can take in the pessimistic
case additionally T rounds. Hence, in total the pessimistic time is 3 · T = 12 ·∆+ 6. This bound
can be substantially reduced if we take into account the fact that the “state registration” procedure
(which is a subroutine for the “forced execution”) needs to be executed only once. We do not perform

19 We count time from γ.validity.
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a more careful analysis of the pessimistic running time, in order to keep our presentation as simple
as possible. It is also easy to see that the standard running time is 2.

4.4 Discussion

There are several things that we omit in this paper, in order to simplify the exposition. In particular,
we do not formally model the transaction fees (this approach is common in this area, see, e.g., [4,
2]). Let us emphasize that the transaction fees will be relevant only when the basic channels are
open or closed (the virtual channels will have no fees, unless the intermediaries decide to provide
their services at a fee). Although our system grantees that no party will be cheated by another one,
it is still possible that some money will be lost on the transaction fees. Therefore the parties should
open the channels only with the other users only if they can be relatively sure that these channels
will not need to be closed immediately. In practice, we believe that in the standard case when Ingrid
plays a role of a “bank” most of the transaction fees should be payed by the clients (especially in the
situations when the clients have no confirmed identity or reputation).

We note that this problem exists in every channel network, and in our case it seems to be less
severe, since the amounts of money claimed from the intermediaries will be larger (as they will
“accumulate” several nanotransactions), and hence proportionally the fees will be lower than in the
hash-locked-based solution.

Let us also remark that our construction implicitly assumes (as all the other payment channel
constructions do) that there are no congestions on the blockchain. For example, a party can close
several nanocontracts that it has, in a short period of time. In practice it should not be a big problem
when a currency like Ethereum is used. Firstly, Ethereum has no official limit on the block size, and
new blocks are appearing at a very high rate (so assuming a generous limit on transaction processing
time should solve the problem). Secondly, Ethereum can process many messages that are sent to
one contract in one block, so the nanocontracts can be closed in parallel (note that the order of
executing different nanocontracts does not matter).

Another obvious problem is the need for permanent online availability by the parties, since they
need to constantly monitor the network to see if the other party did not submit and old version of
the channels. Again, this problem appears also in other payment networks, and solutions for this
exists (e.g. network monitoring can be outsourced) [22].

Let us also say that we did not attempt to optimize the pessimistic execution times, since it
would obscure the presentation of the main idea. However, some obvious optimizations can be done,
for example, the first message that executes the nanocontract could be sent together with the first
message of the “state registration” protocol.

One natural question is if one can have virtual channels that are (a) longer, (b) have a state. It
turns out that this is possible, and in fact these two questions are closely related. More precisely:
if one constructs virtual state channels, then one can apply our idea recursively for an arbitrary
number of times. For example: suppose one wants to create a virtual state channel of length n
among parties P1, . . . , Pn (such that a basic state channel exists between each Pi and Pi+1). Then
one can proceed as follows: (1) create a virtual state channel P1 ↔ P3 from basic channels P1 ⇔ P2

and P2 ⇔ P3, (2) create a virtual state channel P1 ↔ P4 from P1 ↔ P3 and P3 ⇔ P4, and so on
(until the channel P1 ↔ Pn) is created. This solution has pessimistic time complexity for channel
creation and execution proportional to the length of the channel (where the unit is time ∆ need
to post transactions on a blockchain). However, it can be improved to constant time by letting the
parties look into the blockchain and react appropriately to the conflicts resolved there publicly by
other chain members (a similar idea has been recently presented for the Lightning-style channels in
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Subprotocol for closing a virtual payment channel γ with identifier id when time γ.validity comes

Below for P ∈ γ.end-users let γP := ΓP (id) be P ’s local version of the virtual payment channel with identifier
id . Moreover, define the following abbreviations:

– nida := (Alice, id),
– nidb := (Bob, id),
– ida := γ.subchan(γ.Alice), and
– idb := γ.subchan(γ.Bob).

Procedure CloseStart(id) executed by P ∈ γ.end-users:

1. Erase γP from ΓP .
2. Execute procedure OptimisticExecStart with parameters:

(ida,nida, close, Γ γ.Alice(id)) if P = γ.Alice
(idb,nidb, close, Γ γ.Bob(id)) if P = γ.Bob

Go to Step 4.

Procedure CloseStart(id) executed by γ.Ingrid

3. Execute the following in parallel for

(ident ,nid , ident ′,nid ′) :=

{
(ida,nida, idb,nidb) and
(idb,nidb, ida,nida)

(a) For time at most 4∆+2 wait for an output (executed, ident ,nid , (closing, γ̂)) from OptimisticExecReact.
Upon receiving such a message execute OptimisticExecStart(ident ′,nid ′, close, γ̂).

(b) If you do not receive the message in Step (3a) then execute

OptimisticExecStart(ident ′,nid ′, close, γinit),

where γinit := virtual-channel, and

OptimisticExecStart(ident ,nid , finalize, ()).

Procedure CloseStart(id) executed by P ∈ γ.end-users:

4. For time 8∆+ 4 wait to receive from OptimisticExecStart or OptimisticExecReact an output

(executed, ida,nida, closed, γ′) if P = γ.Alice
(executed, idb,nidb, closed, γ′) if P = γ.Bob

(9)

5. If you do not receive the above output, then execute procedure OptimisticExecStart with parameters:

(ida,nida, finalize, ()) if P = γ.Alice
(idb,nidb, finalize, ()) if P = γ.Bob.

Fig. 29: The protocol description for closing a virtual channel γ when time γ.validity has come.
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Function close(γP ) called by P ∈ end-users after time virtual-channel.validity has passed

Denote γinit := virtual-channel. If

current-time > γinit.validity + T if P ∈ virtual-channel.end-users
current-time > γinit.validity + 2T if P = virtual-channel.Ingrid.

then go idle. Otherwise check if γP is correctly signed by P ′ := γP .other-party(P ), if γP .total-cash = total-cash,
and if (γ.id, γ.Alice, γ.Bob) = (γinit.id, γinit.Alice, γinit.Bob). If at least one of these conditions does not hold then
go idle.
Otherwise consider two cases:

1. Your storage contains a value (P̂ , γ̂, τ̂) with P̂ = other-party(P ) — in this case let:

γ∗ :=

{
γP if γP .ver-num ≥ γ̂.ver-num
γ̂ otherwise.

For each T ∈ end-users send a message closed together with γ∗.cash(T ) coins to T and terminate.
2. Otherwise store (P, γP , current-time) in your storage, send a message (closing, γP ) to both parties in end-users,

and go idle.

Function finalize() called by P ∈ end-users

If your storage contains a tuple (P̂ , γ̂, τ̂), such that

τ̂ +∆ < current-time (in case P ∈ virtual-channel.end-users), or
τ̂ + 2∆ < current-time (in case P = virtual-channel.Ingrid)

then for each T ∈ end-users send a message closed together with τ̂ .cash(T ) coins to T and terminate. Otherwise
ignore this call.

Fig. 30: Contract functions used in virtual channel closing.

55



nanocontract νa: nanocontract νb:

γ.Alice

γ.Ingrid

γ.Bob

γa

γa

γb

γb

(a)

nanocontract νa: nanocontract νb:

γ.Alice

γ.Ingrid

γ.Bob

finalize
γinit

γ.Alice does not send
her message

γb

γb

(b)

nanocontract νa: nanocontract νb:

γ.Alice γ.Ingrid γ.Bob

finalize finalize

γinit

γ.Alice does not send
her message

γ.Bob does not send
his message

γinit

(c)

Fig. 31: The message flow in the virtual channel closing procedure. The snake arrows denote messages “passing through”
the nanocontract. Channels γa and γb denote the channels that Alice and Bob (resp.) have with Ingrid, and γinit is
the initial version of the virtual channel.
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nanocontract

P γ.Ingrid

γp

γ.Ingrid does not
send her message

finalize

Fig. 32: The message flow in the virtual chanel closing procedure when Ingrid does not reply (γp is the version of γ
stored by P ).
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[19]). Formally modeling this idea, constructing protocols, and proving security is beyond the scope
of this paper. We are currently in the process of writing it down in a separate, subsequent paper.

Let us also mention, that our protocol can be improved to allow the parties to put money in
the nanocontract execution (i.e. have a non-zero value as an argument for function Eval in Step 2,
Fig. 17, page 31). This can be done by modifying the protocol in the following way: whenever a
single nanocontract is registered on the ledger, all the other nanoconctracts in the same channel
have to be also registered. As a result, the ledger becomes “aware” of the fact how much cash is left
in the channel, and can decide if a user has enough coins in the channel to perform this execution.

Another obvious problem in our construciton is the fact that the intermediaries need to block
the coins that are used for constructing the channels. This can be addressed by slightly relaxing
the security guarantees. Namely, we can replace the full cheating-resilience (that has been assumed
in this work), by a weaker “cheating-evidence”. More precisely, the security guarantee in this case
would be: “if an intermediary cheats then you can either get your money back, or you can post an
evidence of this fact on the blockchain”. Hence the risk that one gets cheated by an intermediary
that has been functioning for a long time already is low, and probably acceptable in practice in case
of nanotransactions.
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A Solidity Contracts

We implemented our contracts over Ethereum. The code of all the contracts and a simple user
interface is available at https://github.com/VirtualPaymentChannels2017/VPM2017 (currently
the code handles just one nanocontract in the state channel). To implement the state channels in
Ethereum we need two contracts created on the blockchain (plus a singleton library contract LibSig-
natures that provides the signature verification functionality). The main contract is a MSContract
which internally requires another contract, the Virtual Payment Contract (VPC ). Below we provide
some explanations of this code.

MSContract The state channel is initiated by one of the parties by creating the MSContract with the
addresses of Alice and Bob. Next, the parties call the confirm function which is used to send funds
to the contract during a predefined timeout period after channel creation. Should one of the parties
not call this function in time, the other party’s money is refunded (by calling the refund function).
Otherwise, the MSContract is created and can be closed if both parties call the closeChannel function
(or only one of them if the other party disappears).

Virtual Payment Contract If both parties have a MSContract connecting them to a third party,
they can add a virtual payment contract VPC to their MSContract contracts. Ideally, this is done
without interaction with the blockchain. But in order to create such a link they need an address
of a VPC contract which means that this contract needs to be created on the blockchain at this
point. Note that this contract needs to be created only once and then it can be used for all possible
virtual channels (between any parties) so most likely it has already been created. Should some
problem occur, the parties first establish the states of the MSContract contracts using the function
stateRegister which fixes the blocked money, address and parameters for the VPC . Then, the parties
spanning up the virtual channel need to run the exec functionality of the VPC contract. After the
VPC machine is executed and its state is settled, one of the parties calls the function execute in the
MSContract which internally queries the state of VPC . Only if this function returns a distribution
of the blocked money, the State Channels can be closed. The settlement of state, execution of the
machine and closing of the channel can always be executed by one party alone (Alice, Bob or Ingrid).

A.1 Transaction costs

The transaction costs are presented on Fig. 33. As expected, the most expensive operations are the
creation of MSContract and VPC . However, the VPC has to be created only once and can be reused
in all the virtual channels, so its cost is not a problem. On the other hand MSContract is destroyed
when the parties close the channel between them and some of the gas used in the creation procedure
is returned to Alice.

We note that we did not attempt to optimize transaction costs, and therefore they are likely to
be lower if some optimization is performed.
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operation gas ETH
LibSignatures create 325149 0.00650298
MSContract create 1981539 0.03963078
MSContract confirm 44287 0.00088574
MSContract refund 11456 0.00022912
MSContract stateRegister 213241 0.00426482
MSContract finalizeRegister 34214 0.00068428
MSContract execute 43372 0.00086744
MSContract close 78688 0.00157376
MSContract finalizeClose 23005 0.00046010
VPC create 1217912 0.02435824
VPC exec 399299 0.00798598
VPC finalize 40061 0.00080122

Fig. 33: Transaction costs for concrete operations.
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