Evaluating web PKIs

Jiangshan Yu*, Mark Ryan

Abstract—Certificate authorities serve as trusted parties to
help secure web communications. They are a vital component
for ensuring the security of cloud infrastructures and big data
repositories. Unfortunately, recent attacks using mis-issued cer-
tificates show this model is severely broken.

Much research has been done to enhance certificate man-
agement in order to create more secure and reliable cloud
architectures. However, none of it has been widely adopted yet,
and it is hard to judge which one is the winner.

This chapter provides a survey with critical analysis on the
existing proposals for managing public key certificates. This
evaluation framework would be helpful for future research on
designing an alternative certificate management system to secure
the internet.

Index Terms—Certificate management, certificate verification,
SSL/TLS validation, SSL/TLS Authentication.

I. INTRODUCTION

The term big data refers to the massive amounts of digital
information generated from multiple sources, such as social
media sites, climate monitoring sensors, digital pictures and
videos, online payment records, smart phones, and IoT de-
vices. Security and privacy issues are magnified by velocity,
volume, and variety of big data, such as large-scale cloud
infrastructures, diversity of data sources and formats, stream-
ing nature of data acquisition and high volume inter-cloud
migration.

Ensuring the security of big data requires encryption, and
in particular, requires public key encryption. The producers
of big data (sensors, websites, etc.) will have public keys,
and the consumers may also have public keys. The main
practical difficulty in deploying public key cryptography is
to ensure that the correct public key is being used. Public key
infrastructure (PKI) [1] is the name given to the policies and
procedures needed to create, manage, and distribute public-key
certificates in order to use public key encryption securely.

Putting good PKI in place would provide a range of benefits
for big data. As mentioned above, it would allow public key
encryption. But it also enables a range of other uses and
applications of public keys, such as digital signatures, secure
multi-party computation, privacy-preserving data mining, and
proofs of possession and proofs of knowledge [2], [3], [4], [S].

To give an intuition of potential security and privacy appli-
cations of PKI in big data, we present some example scenarios.
We then explain in a high level how PKI would help enable
these applications.

« Entity authenticity: A web user needs to verify that
a social network web server it is communicating with
really is the correct one. To achieve this, the web server

* Corresponding author.
Jiangshan Yu and Mark Ryan are with the School of Computer Science,
University of Birmingham, UK. E-mail: {jxy223, m.d.ryan} @cs.bham.ac.uk

typically sends its public key to the user’s web browser.
The browser needs PKI to ensure that the public key being
used really is the bank’s public key [6], [7], [8].

« Data authenticity: A server needs to ensure that data it
receives from a sensor is authentic. To achieve this, the
sensor can digitally sign the data. The server requires PKI
in order be sure to use the correct public key to verify
the sensor’s signature [9], [10].

o Data confidentiality: Data exchanged between two par-
ties should be secure, namely only the sender and the
recipient can read the data. To achieve this, the two parties
need to establish a session key between them. If they each
have a public key and PKI is in place, then there are
several protocols [11], [12], [13] they can use to establish
the session key.

o Data integrity: Any unintended changes to the ex-
changed data between two parties (for example, two
embedded devices in an ad hoc network) should be
prevented, or at least, detected. There are several ways to
achieve this (for example, one can use digital signatures
or message authentication codes [14]), but they all rely
on PKI to manage the public keys of the devices.

o Privacy-preserving data mining: Suppose a data owner
wants to subcontract the processing of customer data
(e.g. social security numbers or health records) to a third
party. This data is sensitive, and should not be divulged
freely. A variety of cryptographic techniques can be used
[15], [16], such as fully homomorphic encryption (which
allows the third party to compute with ciphertexts) [17],
[18], [19], [20], [21] and multi-party computation (which
allows the third party to contribute to a computation
without seeing all the plaintext data) [22], [23]. All
of these techniques require the various parties to have
public keys, and PKI is needed to ensure their correct
management.

o Verifiability of computational results: When subcon-
tracting data processing in the example above, another
party may wish to verify that the processing has been
done correctly. Once again, there are several techniques in
cryptography that can achieve this. Verifiable computing
is the name given to this field [24], [25], [26], [27]. It
starts from the assumption that the parties have public
keys and there is a PKI in place to manage them.

II. AN OVERVIEW OF PKI

The purpose of PKI is to ensure that a party has an
authentic copy of the genuine public key of another party.
For example, when a user logs in to Facebook through her
web browser, the web session will be secured by the public
key of the Facebook server. If the user’s web browser accepts

an inauthentic public key for Facebook created by an attacker,
then the traffic (including log-in credentials) can be intercepted
and manipulated by the attacker.

The authenticity of keys is assured at present by certificate
authorities (CAs). In the given example, the browser is pre-
sented with a public key certificate for Facebook, which is
intended to be unforgeable evidence that the given public key
is the correct one for the web site. A public key certificate is a
digital document declaring that the recorded subject owns the
public key presented in the certificate. It contains a public
key, the identity of the key owner, and a signature of an
entity that has verified the certificate’s contents are correct.
In a typical PKI scheme, the signer is a trusted party called
certificate authority (CA), usually a company (e.g. VeriSign
and Comodo) which charges customers to issue certificates
for them. The user’s browser is pre-configured to accept
certificates from certain known CAs. A typical installation of
Firefox has about 100 root certificates in its database. Each
root CA can empower many intermediate CAs. The EFF SSL
observatory has observed more than 1500 CAs [28].

Unfortunately, CA model that has been in use on the web for
the last 20 years is vulnerable to attacks. The main weakness
of CA model is that CAs must be assumed to be trustworthy.
If a CA is dishonest or compromised, it may issue certificates
asserting the authenticity of fake keys; those keys could be
created by an attacker or by the CA itself. In practice, the
assumption of honesty does not scale up very well. As already
mentioned, a browser typically has hundreds of CAs registered
in it, and the user cannot be expected to have evaluated
the trustworthiness and security of all of them. This fact
has been exploited by attackers [29], [30], [31], [32], [33],
[34]. In 2011, two CAs were compromised: Comodo [35] and
DigiNotar [36]. In both cases, certificates for high-profile sites
were illegitimately obtained (e.g. Google, Yahoo, Skype, etc.).
In the second case, these certificates reportedly used in a man
in the middle (MITM) attack [37]. See [38] for a survey on
CA compromises.

Another problem with CA model is the certificate revo-
cation management. The CA model it self does not provide
any effective way for managing certificate revocation. In
common practice, Certificate Revocation Lists (CRL) [39],
[40], [41], On-line Certificate Status Protocol (OCSP), and
certificate revocation trees [42], [43], [44] are used to handle
certificate revocation. In order to remove the need for on-
the-fly revocation checking, they mostly involve periodically
pushing revocation lists to browsers. However, such solutions
create a window during which the browser’s revocation lists
are out of date until the next push.

Several protocols are proposed to strengthen the current
certificate management system. However, none of them has
been widely adopted yet. On one side, this is partly because
the replacement of a large scale system is challenging. On
the other side, this is also because new proposals each have
different sets of advantages and disadvantages, and it may not
be clear what features are really needed in given applications.

Clark and Van Oorschot [45] have presented an analysis on
TLS mechanism and issues, by concerning themselves with
crypto weakness and implementation issues of HTTPS, and

trust issues of certificate management. However, they left the
public log based certificate management systems out of the
analysis. The use of public logs is now the dominant trend in
managing web certificates. The main idea of public log based
certificate management systems is to make certificate manage-
ment transparent by using public audit-able logs to record all
issued certificates. Clients will only accept a certificate if it is
recorded in the log. Site owners can compare their own local
record with the log to check whether a mis-issued certificate
has been recorded in the log. This gives the site owners the
ability to verify issued certificates for their sites, and make the
certificate management transparent.

Kim et al. [46] have presented a comparison of web certifi-
cate management mainly based on the duration of compromise
and duration of unavailability. The former shows, given the
compromise of a domain’s private key, how long the domain
can be impersonated; and the later concerns the unavailability
time period of a domain’s certificate in a system.

The above two works are broad and they evaluate web
certificate management systems from different perspectives.
However, some important aspects are not considered in the
existing work. For example, offline verification is one of the
desired properties that have been left out from the above
analyses. This property ensures that internet users can verify a
received certificate without having to communicate with other
parties. This is extremely useful when a user needs to connect
from a captive portal in an airport or in a hotel, since the
user’s device cannot make other connections before they paid
for the internet connection. In addition, this property also
reduces the communication cost for certificate verification,
as the verifier is not required to have extra connections for
verifying a certificate.

Another important property not considered by the existing
works is trust agility [47] — it allows users to freely make
decisions on which certificate management service provider
they wish to trust, for establishing secure communications with
domain servers. In particular, we discovered a new aspect of
trust agility, namely independence of trust. It requires that one
or more service providers cannot not influence another service
provider’s service. It is in particular useful in the scenario
where there exists a set of service providers, and users need
to put their trust in a subset of these service providers for
certificate management. If a system does not offer this feature,
then it means that even if the set of service providers chosen
by a user is trustworthy, a malicious service provider that is not
trusted by the user can still influence the certificate verification
result, and put the user in the risk of accepting fake certificates.
Since the independence of trust is more strict, it is possible that
a system offers the generic trust agility, but it does not offer
independence of trust. In this case, users are free to make
their trust decisions, but servers that are not trusted by the
user are still able to affect the certificate management services
delivered to the user.

One more example of desired properties that is not con-
sidered by the existing evaluation frameworks is called anti-
oligopoly. 1t is proposed in [48] as a foundational property.
This property observes that the present-day certificate author-
ity model requires a fixed set of global certificate authorities

to be known to every browser, which implies an oligopoly. In
fact, the current set of CAs trusted by the browser is dominated
by U.S. organisations. This means that U.S. government agen-
cies are likely to be able to control these organisations. This
cannot be considered satisfactory in the presence of mutual
distrust between nations regarding cybersecurity and citizen
surveillance, and also trade sanctions which may prevent the
USA offering services (such as CA services) to certain other
countries.

To help research in securing the web certificate manage-
ment, we classify 16 prominent proposals into different cate-
gories, and provide a qualitative analysis on selected proposals
based on 15 criteria.

III. DESIRED FEATURES AND SECURITY CONCERNS

To evaluate different systems in a systemic way, we list
the desired features and security concerns for web certificate
management systems.

1) Trust

o Trust agility [47] allows users to freely decide which

entities they want to trust for confirming public key
information of domain servers, and to revise their
decision at any time.
In particular, we observed one aspect of the trust
agility that has not been discovered in the literature,
namely the independence of trust. It requires that
the trust relations between service providers will not
influence the trust relations between clients and the
service providers they trust. In other words, one or
more service providers cannot not influence another
service provider’s service to its clients.

o Free of trusted parties is the property says that no
party is required to be trusted for certificate issuance
and revocation. For example, a certificate authority
in the CA model is required to be trusted by all
browsers, so the CA model does not provide free
of trusted parties. This property is the strongest one
in all trust-related features.

o Verifiable trusted parties is the property says that the
behaviour of trusted parties is transparent to and can
be efficiently verified by users.

o Anti-oligopoly [48] is the feature that prevents the
monopoly or oligopoly of certificate management
services. To achieve this, the trust on any service
provider (e.g. CAs) should be minimised, and the
system should support self-issued certificates.

2) Availability

o Offline verification is a feature such that in a system,
clients can verify a given key or certificate without
having to connect to other parties.

This feature is desired when a user needs to connect
from a captive portal — a login page or payment
page — before using the Internet. The use of captive
portal is very common in public places, for example,
airports or hotels. When a user is presented a captive
portal, the user cannot establish a connection with
any party to check the obtained public key as no

internet is available. In addition, this feature also
reduces the communication cost and network latency,
as it does not require additional connections.

Built-in key revocation requires the system to have
its own mechanism to effectively manage certificate
revocation, rather than relaying on existing revoca-
tion protocols (e.g. certificate revocation list (CRL)
or on-line certificate status protocol (OCSP)).

The current certificate revocation management proto-
cols (e.g. CRL and OCSP) have different limitations
and cannot offer satisfactory services. So it is nec-
essary for systems to have an integrated revocation
mechanism to effectively manage certificate revoca-
tions.

Scalability is the property enabling a system to
handle increasing real world workload. It is important
that a system is capable to support enrolment from
existing and potential future HTTPS servers.
Multiple certificate support says that the certificate
verification system allows a domain to have multiple
certificates. The fact that many sites have multiple
certificates emphasises the importance of this feature.
Timely key verification says that the period from the
time a domain owner establishes a key and the time
a user can verify the key is short.

This is a feature that has not been prominent in
the literature. This feature is useful when a domain
server updates its certificates. A system that does not
offer this feature would cause the problem that the
newly issued certificate cannot be verified and will
not be accepted by web browsers within a short time
period after the certificate issuance. This reduces the
availability.

3) Security
o First connection protection is the feature that protects

the first connection between two communication par-
ties.

This is useful to prevent attacks on ’trust on first use’-
based systems. In addition, it is likely to be the first
connection when a user connects to a captive portal.
So the system should protect users’ first connection
to a domain server.

e Denial of service (DoS) attack protection is the

security guarantee that prevents attacks on the key
verification infrastructure in order to denial the veri-
fication services.

This feature is useful to prevent attacks that attempt
to block the verification servers to stop users verify-
ing the received certificates.

Use of mis-issued certificate prevention measures
whether the system can prevent MITM attacks
launched by an attacker with mis-issued certificates.
In other words, even if an attacker has obtained a
mis-issued certificate, web browsers should still not
accept this certificate. This gives users extra security
guarantee against compromised CAs.

o Use of mis-issued certificate detection measures

whether the system provides features allowing one to
detect MITM attacks launched by using mis-issued
certificates.

This is a weaker security guarantee, as it can only
detect attacks rather than prevent attacks. However,
CAs are business, and they are willing to maintain
their reputation to keep their customers. So they
might not launch attacks if their attacks will be
detected. So this feature still offers some sensible
security guarantee.

e Provably secure measures if the security of a given
system is formally verified.

It is well-known that security protocols are notori-
ously difficult to get right, and the only way to avoid
this is with systematic verification.
4) Usability

o No user involvement is a feature related to usability,
such that the key verification result and the decision
of accepting or rejecting a certificate do not need the
extra involvement of users.

This is an important feature to have, as users are not
qualified to make decisions on the browser warnings,
and they will likely to click through security warn-
ings [49].
5) Privacy

o Protecting browsing history says that the system does
not leak users browsing history to other parties. In a
PKI, if a user needs to ask another party to verify a
received certificate, then the user’s browsing activity
is leaked to the verification party, as the subject of
the to be verified certificate would very likely to be
the website that the user is going to visit.

IV. EXISTING PROPOSALS

Several protocols are proposed to strengthen the current
certificate management system. According to the principles
of each design, we classify leading certificate management
systems into three categories, namely difference observation,
scope restriction, and certificate management transparency.

A. Classic

CA-based certificate management system is the current
deployed PKI. It is highly usable and scalable. Unfortunately,
it requires users to fully trust all certificate authorities, and
the trust cannot be modified without sacrificing users’ ability
to securely communicate with some domains securely. As a
result, it does not provide trust agility, implies an oligopoly
(on CA), and cannot easily prevent nor detect MITM attacks
when a CA is compromised.

B. Difference observation

Difference observation is a concept aiming to detect untrust-
worthy CAs, by enabling a browser to verify if the received
certificates are different from those that other people are being
offered [50], [51], [52], [53], [47].

1) Perspectives: In 2008, Wendlandt, Andersen and Per-
rig implemented a Firefox addon, called Perspectives [50].
It is proposed to improve the security of trust-on-first-use
authentication by asking different observers (a.k.a. notary
servers) to detect inconsistent public keys of the same server.
In Perspectives, observers are decentralised and independent.
Each observer stores all observed keys or certificates with
corresponding timestamps, and periodically checks updates
and revocations. When a client wants to make a secure con-
nection with a domain server, the client requests the server’s
public key from the server and from multiple observers, then
compares the received keys. If the obtained public keys are
consistent, the client considers the public key is trustworthy
and uses this key to establish a secure connection. Otherwise,
it might indicate that an attacker has launched man-in-the-
middle (MITM) attack by offering a different public key to
the client. So the client needs to make a decision on whether
to use the obtained key or not.

o Strength
Perspectives makes MITM attacks using mis-issued cer-
tificates difficult to launch without being detected, as an
attacker would have to additionally intercept all connec-
tions between observers and the victim. In addition, it
provides trust agility as users can choose which observer
they want to use for certificate verification. Moreover,
since it supports self-signed certificates, and does not
require a fixed set of observers, it provides anti-oligopoly.
o Weakness

With Perspectives, if a server has multiple public keys
or certificates, then clients will likely get a warning of
receiving inconsistent public keys. This is due to the
fact that a client might receive two different genuine
certificates of the same domain from the domain server
and an observer. In addition, a new public key or a new
server will suffer an unavailability period in the system.
Since observers periodically check new public keys and
revocations, the latest information about new public keys
and revocations will not be immediately available from
the observers. So, Perspectives does not offer timely key
verification. Also, when a browser receives the latest
genuine one from the server, and the revoked one from
observers, then the browser will show a pop-up window
warning the user that two different keys are observed,
although what the server provided is a valid certificate.
Such faulty warnings reduce usability of the system.
Moreover, if two different certificates are detected, then
the user needs to make a decision on whether to continue
the connection. However, users are not qualified to make
such a decision and they are likely to click through the
warnings [49]. Furthermore, any observer can learn a
user’s browsing history when the user requests verifica-
tion on a certificate. Last, it does not work when a user
needs to connect from a captive portal, as no internet is
available for connecting to an observer.

2) DoubleCheck: In 2009, Alicherry and Keromytis [51]
proposed DoubleCheck to solve the issue of leaking user
browsing history, and the issue that new keys might suffer an

TABLE I
EXISTING PROMINENT PROPOSALS

Category Existing Proposals

Classic

CA-based certificate management system;

Perspectives (C08) [50]; DoubleCheck (C09) [51];

Difference observation

Convergence (’11) [47]; Certificate Patrol ("11) [52]; CertLock ("11) [53]; TACK (°12) [54].

Scope restriction

Public key pinning ("11) [55]; DANE (’11) [56];CAge (’13) [57].

Sovereign Keys (*12) [58]; Certificate Transparency (*12) [59];

Certificate management transparency

AKI (’13) [46]; CIRT(’14) [60]; ARPKI (*14) [61]; DTKI (’14) [62], [48]

unavailable period in Perspectives. The main idea is to query
the certificate from a target server twice: once through a TLS
connection, and once through 7or [63].
o Strength
Compared to Perspectives, it additionally protects user
browsing history, and new keys does not suffer an un-
availability period. Moreover, it can be deployed without
requiring any new infrastructure.
o Weakness
The use of Tor adds extra time cost (up to 15 sec-
onds [53]) for each certificate verification. In addition, a
use is likely to get a warning when a server has multiple
certificates. Also, when a warning is given, a user will
need to make a decision on which certificate to trust, and
they are likely to click through the warning. Moreover,
it will not work when a user needs to connect from a
captive portal.
3) Convergence: Marlinspike proposed Convergence [47],
a Firefox addon and an improvement on Perspectives, in Black
Hat 2011. In Convergence, to protect users’ browsing history,
instead of directly communicating with notary servers (i.e.
observers), users randomly choose one notary server to pass
the client request to other notary servers, through an onion
routing like mechanism. So the intermediate notary server does
not know what a requester is requesting, and the end notary
server does not know who is the requester. In addition, to
reduce the number of connections a user has to make, users
store verified certificates in their browser cache and only query
notary servers when they received a different one. Moreover,
rather than querying the certificate of a domain server from
a notary server, users send the certificate received from the
server to notary servers. The notary server will request a
certificate from the domain server if the received certificate
does not match the notary’s cache.
o Strength
As an improvement of Perspectives, it additionally sup-
ports timely key verification, does not require user to
make decisions on which certificate to trust, and it pro-
tects user privacy. Moreover, it offers offline verification
if the site has been visited before.

o Weakness
Similar to Perspectives, Convergence does not support
multiple certificates, and does not protect users when they
are connected to a captive portal.

4) Certificate Patrol: Certificate Patrol [52] is another
Firefox add-on for managing web certificates. It monitors and
stores all SSL certificates a browser has obtained. Since the
validity period of a certificate is fairly long, it is unlikely a
certificate being changed in a short time. So, when a different
certificate is observed, it is possible that one of them is a mis-
issued certificate used by attackers. With Certificate Patrol, if
the newly received certificate is different from the previously
stored certificate of the same domain, the browser will display
to the user the difference between the two certificates, and the
user needs to make a decision on whether to trust the newly
received one.

o Strength
It is a lightweight tool to protect user browsing history,
and to offer an extra layer of security — it can help users
to detect any change of the previously received certificate.
o Weakness
This addon will not work if a domain has multiple
certificates, and it requires users to make decisions. In
addition, it does not protect user’s first connection to a
website nor protect user connection from a captive portal.

5) CertLock: CertLock [53] is a Firefox addon for moni-
toring CAs’ location. In particular, it observes the country of
the CA who issued the received certificate. On the detection
that two CAs from different countries have issued certificates
for the same site, the browser will display a warning to the
user.

o Strength
CertLock can help users to detect attacks in some spe-
cific scenario. For example, a site authorised certificate
authority CA; in country A to issue certificate for its
domain. A malicious government agency in country B
wants to intercept the communication between users and
the site. The malicious government agency can compel
a certificate authority CA, located in country B to issue

fake certificates for the site, then uses this mis-issued
certificate to launch MITM attacks. CertLock can help
users to detect such attacks.
o Weakness

CertLock won’t be able to detect attacks using fake
certificates that are issued by CAs in the same country.
In addition, a false warning will be displayed if a site
has switched from a CA in country A to a CA in country
B. In addition, it still relies on the CA trust model, so
it does not offer trust agility nor anti-oligopoly. Also, it
cannot protect user’s first connection and cannot protect
a user who is connected to a captive portal.

6) TACK: In 2012, Marlinspike and Perrin proposed trust
assertions for certificate keys (TACK) [54] to remove the
need of trusting CAs. In TACK, a domain server generates
a TACK private/public key pair, and uses the TACK private
key to certify its TLS public keys. After a client observes a
consistent TACK public key of a domain multiple times, it
pins the public key to the domain name, and trusts this “pin”
for a period, and accepts the public key if it is certified by
the private key corresponding to the observed TACK public
key. If a certificate becomes compromised and the observed
information has not been pinned, then the client must delete
the observed TACK information and re-start the observation
process. To be scalable, TACK will need an online pin store,
where users can share their observed pins. However, the
problem of how to design a secure pin store for users to share
their observations, while prevent attackers to spoof or poison
the store, remains unsolved.

o Strength
TACK removes the need of CA, offers trust agility, does
not require users to any trusted party', and provides anti-
oligopoly. Once local observations are built, TACK allows
offline verification, supports multiple certificates.

o Weakness
Since TACK relies on visit patterns by clients to pin
the domain’s public key, the first several connections
to a domain server will not be protected, and every
new TACK key pair or new domain suffers an initial
unavailability period. In addition, the revoked key will
still be accepted by the client if the client still trusts its
previous observation.

To be scalable, TACK requires an on-line store to share
TACK keys observed by different clients. The use of
such on-line stores make TACK difficult to provide the
independence of trust required by trust agility. Because
a client Alice, might choose to trust some stores or
clients for the TACK keys they observed. However, the
store or clients trusted by Alice might put their trust on
other stores and clients. This transitive trust relation could
effect Alice’s trust option and Alice’s observation on the
TACK keys. Currently, it is hard to judge whether TACK
offers the independence of trust required by trust agility,
as the online store is not designed yet.

'Here, we only consider the TACK without having an online pin store

C. Scope restriction

Scope restriction is the concept aiming to reduce the power
of CAs by restricting the domain scope that a CA can vouch
for.

1) Public key pinning (PKP): Public key pinning (a.k.a.
certificate pinning) is a mechanism for domain servers to
specify which CAs are authorised to certify public keys for
a given domain. Langley et al. implemented it in Google
Chrome [64].

Scalability is a main challenge for key pinning, due to the
need of pre-knowledge of the mapping between each domain
server and CAs. Public key pinning extension for HTTP [65]
addresses the scalability challenge by allowing a domain server
to declare the authorised CAs for its sites in an HTTP header.

o Strength

As PKP is a way to restrict CAs’ power by specifying
which CAs are authorised for a given website, it protects
user communications against attackers who have mis-
issued certificates from CAs that are not authorised for
the victim. In addition, PKP allows a website to have
multiple certificates, does support offline verification, and
is scalable with the PKP extension for HTTP.

o Weakness

The weakness of PKP is that it cannot completely protect
all user connections. For example, it cannot protect when
a user does not have a pin of a website, which is generally
the case for the first connection. Also, it cannot protect the
connection when the pin is expired in the user browser.
Moreover, it cannot effectively detect attacks when a CA
has mis-issued certificates for the domains that the CA
is pinned for. Furthermore, it does not offer trust agility
nor anti-oligopoly.

2) DANE: Domain name system (DNS)-based authentica-
tion of named entities (DANE) [66], [67] binds the public
key information to a domain name by using DNS Security
Extensions (DNSSEC). More specifically, DANE enables a
domain server to certify its public keys by storing the public
keys in its DNS records. This DNS record is valid only if it is
correctly signed as specified in DNSSEC [68]. So, the parent
domain servers are the authority of their child domains. In
other words, only the parent domain can certify public keys
of its child domains. In this way, DANE limits the damage of
dishonest or compromised authorities.

o Strength
Compared to PKP, DANE is highly scalable since it is
based on DNSSEC. In addition, it can protect a user even
when the user connects from a captive portal.

o Weakness
The security of DANE strongly relies on the trustworthi-
ness of parent domains according to the DNS hierarchy.
As a result, ICANN, top-level domains (TLDs), and
second-level domains (SLDs) become to be very powerful
and fully trusted CAs. So, DANE does not provide trust
agility and anti-oligopoly. In addition, domain servers
cannot choose which CA they want to get service from,
as they have to get their keys to be certified by their
parent domain.

3) CAge: In 2013, Kasten, Wustrow and Halderman pro-
posed CAge [57] to restrict the scope of domains that a CA
can certify public keys for. According to the data observed
in [69], they show that only a small number of CAs have
signed certificates for TLDs. Based on this observation, CAge
suggests to limit a CA’s certification scope by only allowing
a CA to issue certificates on a restricted set of TLDs. CAge
limits the scale of MITM attacks using mis-issued certificates,
but cannot completely solve this problem.

« Strength
As all systems in the category of scope restriction, CAge
reduces the damage from a compromised CA by limiting
the set of domains that a CA can vouch for.

o Weakness
Since CAge is still based on the CA trust model although
with restrictions on a CA’s ability, it does not offer trust
agility and anti-oligopoly. In addition, domain servers
have less flexibility to choose which CA they want to
use, because only a subset of CAs will be eligible for
certifying keys for given domains.

D. Certificate management transparency

Certificate management transparency is the concept aiming
to make CA’s behaviour transparent. The basic idea is to use a
publicly visible log to record issued certificates. So interested
parties can check the log to detect any mis-issued certificates.

1) Sovereign Keys: Sovereign Keys (SK) [70] aims to get
rid of browser certificate warnings, by allowing domain owners
to establish a long term (“sovereign”) key and by providing
a mechanism by which a browser can hard-fail if it doesn’t
succeed in establishing security via that key. A sovereign key
is a long-term key used to cross-sign operational TLS keys,
and it is stored in an append-only log on a “timeline server”,
which is abundantly mirrored.

When a browser connects to a website, it sends a query to
a mirror of the “timeline server” to check if the site has a
sovereign key. If the site does have a sovereign key, then the
browser only accepts a certificate for this site if the certificate
is issued by CAs and is cross-signed by the sovereign key.
If the certificate is not cross-signed, then rather than emit
certificate warnings, the browser will try to find a way to
make a sovereign key connection to the site. There are several
ways to establish a connection without having a cross-signed
certificate. The strongest way is to compute a hash of the
sovereign key, and use that as the .onion address of the Tor
hidden service which allows the secure connection. Weaker
ways include stapling to the sovereign key and trying to
connect through other means such as proxy and VPN, until
the browser gets a verified connection.

o Strength
SK introduces the first public log based PKI. It elimi-
nates browser certificate warnings, reduces the trust put
on CAs, allow a site to have multiple certificates, and
prevents attacks from an attacker who compromised CAs.
« Weakness
Sovereign Keys doesn’t have an efficient way for the

timeline server and mirrors to prove their correct be-
haviour. The only way for verifying it is to download an
verify the entire log. So internet users and domain owners
have to trust mirrors of time-line servers. Additionally, it
doesn’t provide any mechanism for key revocation, either
of TLS keys or sovereign keys. If a domain owner loses
the sovereign private key, they lose the ability to switch to
new TLS keys, and may even lose control of their domain,
until the sovereign key expires. Another security concern
is that if a site does not have a sovereign key yet, then a
determined attacker could register his own sovereign key
for the site and intercept secure connections made to the
site.

2) Certificate transparency: Certificate transparency
(CT) [59] is proposed by Google aiming to allow domain
owners to efficiently detect mis-issued certificates, by making
certificate issuance transparent.

The basic idea is to use public audit-able logs to record all
issued certificates. In this way, interested parties can monitor
the log to verify all of CAs’ behaviour. To enforce CAs to
publish all issued certificates into the log, web browsers only
accept certificates if a verifiable evidence is provided to prove
that the certificate is present in the log.

In more detail, domain owners request from the log main-
tainer signed confirmations saying that their certificates are
included in the log, and then they can provide this confirmation
together with the corresponding certificate to web browsers.
Browsers only accept a certificate if both the certificate and
the signed confirmation are valid. Browsers also need to
periodically verify received signed confirmation against the
public log to check if the certificate is indeed being inserted
in the log.

To reduce the trust put on CAs and log maintainers, CT
uses an append-only log which is organised as an append-
only Merkle tree. In the tree, data items (i.e. certificates or
references to certificates) are stored left-to-right in chronolog-
ical order at the leaves, and added by extending the tree to the
right. This structure enables the log maintainer to provide two
types of verifiable cryptographic proofs: (a) a proof that the log
contains a given certificate, and (b) a proof that a snapshot of
the log is an extension of another snapshot (i.e., only appends
have taken place between the two snapshot). The time and
size for proof generation and verification are logarithmic in
the number of certificates recorded in the log. To ensure the
log maintainer is behaving correctly, CT requires monitors to
check the consistency of logs.

¢ Strength
Since CA’s behaviour is transparent, CT does not require
users to blindly trust CAs, i.e. the behaviour of CAs
are verifiable. This makes CT to offer trust agility. In
addition, CT enables domain owners to readily detect any
mis-issued certificates.

o Weakness
A main weakness of CT is that users still have to
trust “monitors” for verifying the behaviour of logs. In
addition, CT does not provide an efficient scheme for
key revocation. Also, CT does not provide anti-oligopoly,

because although the set of log servers are not fixed, it
doesn’t have any method to allocate different domains
to different logs. In CT, when a domain owner wants
to check whether mis-issued certificates are recorded in
logs, he needs to contact all existing logs, and download
all certificates in each of the logs, because there is no
way to prove to the domain owner that no certificates
for his domain is in the log, or to prove that the log
maintainer has showed all certificates in the log for his
domain to him. Thus, to be able to detect fake certificates,
CT has to keep a very small number of log maintainers.
This prevents new log providers being flexibly created,
creating an oligopoly. Another limitation is that CT can
only detect mis-issued certificates, rather than prevent
attacks that use mis-issued certificates.

3) Accountable key infrastructure: Accountable key infras-
tructure (AKI) [46] also uses public logs to make certificate
management more transparent.

Similar to SK, AKI allows domain owners to define their
own security policy by specifying several additional attributes
of a certificate, such as which CA and log maintainer a domain
owner wants to get services from, what is the minimum
number of CA signatures to validate a certificate for her
domain, etc. To obtain a certificate, a domain owner contacts
at least a minimum number of CAs that she wishes to trust
based on the policy, and to cross sign her public key with her
security policy. Then she requests log maintainers to update
her certificate, and expects a signed proof that the certificate
is recorded in the log. Clients only accept a certificate if the
certificate satisfies defined security policy, and is currently
recorded in the log.

To be able to manage key revocations, AKI stores only the
current valid certificates of domains in a public log. The log
is organised as a hash tree, where certificates stored in leaves
ordered lexicographically.

To detect mis-behaviours, AKI uses the “checks-and-
balances” idea that allows parties to monitor each other’s
behaviour. So AKI limits the requirement to trust any party.
Moreover, AKI prevents attacks that use fake certificates rather
than merely detecting such attacks (as in CT).

o Strength
AKI extends the previous architectures in several ways.
First, it allows multiple CAs to sign a single certificate.
Additionally, the domain can specify in its certificate
which CAs and logs are allowed to attest to the cer-
tificate’s authenticity. These features provide resilience
against a certificate signed by a compromised or unau-
thorised CA. AKI can also handle key loss or compromise
through cool-off periods. For example, if a domain loses
its private key and registers a new certificate not signed
by its old private key, the new certificate will be subject
to a cool-off period (e.g., three days) during which the
certificate is publicly visible but not usable. This ensures
that even if an adversary obtains and registers a fake
certificate, the domain has the opportunity to contact the
CAs and logs to resolve the issue.

o Weakness

To ensure that any log server can provide a proof for
a domain’s certificate, AKI logs maintain a globally
consistent view of the entries that they have for a
given domain name. This applies for every certificate
operation (registration, update, and revocation), meaning
that even frequent certificate updates (such as in the
case of short-lived certificates) are subject to successful
log synchronisation. In addition, AKI requires that each
domain name only has one active and valid certificate
associate with it at any given time. Moreover, AKI needs
to rely on third parties called validators to ensure that the
log is maintained without improper modifications, and to
assume that CAs, public log maintainers, and validators
do not collude together.

4) Certificate issuance and revocation transparency: Cer-
tificate issuance and revocation transparency (CIRT) [60]
improves certificate transparency by providing transparent key
revocation, and reducing reliance on trusted parties.

To provide an effective way for certificate revocation, CIRT
proposes a new log structure that consists of two tree structures
presenting the same set of data. The first tree is called a
ChronTree, which is an append-only Merkle tree (as in CT)
ordered chronologically. The second tree is called LexTree,
which is a Merkle tree ordered lexicographically by the subject
of the certificate. The ChronTree stores in the leaves a pair
(C,h), where C' is a certificate appended in the ChronTree,
and h is the hash root value of the LexTree in which the last
inserted data is C'. The LexTree stores h(d;) in every node for
some 7, where d is an ordered list of certificates that has the
same subject. The last element in the list is the current valid
certificate of the subject.

This log structure enables the log maintainer to provide
efficient proofs that (A) some data is present in the log, (B)
any data having a given attribute (e.g. an identity) is absent
from the log, (C) some data is the latest valid one in the log,
and (D) the current log is extended from a previous version.

Loosely speaking, by proving a proof that a certificate C' is
the last element in an ordered list d, and h(d) is present in
the LexTree of the log, a verifier is ensured that C is the
currently valid certificate, i.e. not revoked. Due to the use
of two different trees presenting the same set of data, it is
crucial to ensure that the data presented by the two trees are
consistent. To verify the consistency of the two trees, CIRT
distributes the monitoring role among user browsers. To do so,
each user browser verifies if a randomly selected certificate
stored in the ChronTree is also in the LexTree. If the number
of such random verification is big enough, then the consistency
between the two trees is likely to be verified.

o Strength

CIRT provides a solution for managing both certificate
issuance and revocation by using a new log structure,
and reduces reliance on trusted parties by using user
side random verifications. It also allows a domain to
have multiple certificates, and to update keys timely.
In addition, similar to all other systems in certificate
management transparency category, it does not need users
to be involved.

o Weakness
A weakness of CIRT is that it can only detect attacks that
use fake certificates; it cannot prevent them. Also, since
CIRT was proposed for email applications, it does not
support the multiplicity of log maintainers that would be
required for web certificates.

5) Attack Resilient Public-Key Infrastructure: Attack Re-
silient Public-Key Infrastructure (ARPKI) [61] is an improve-
ment on AKIL. In ARPKI, a client can designate n service
providers (e.g. CAs and log maintainers), and only needs
to contact one CA to register her certificate. Each of the
designated service providers will monitor the behaviour of
other designated service providers. As a result, ARPKI pre-
vents attacks even when n — 1 service providers are colluding
together, whereas in AKI, an adversary who successfully
compromises two out of three designated service providers
can successfully launch attacks [61].

o Strength
ARPKI is the first formally verified log-based PKI sys-
tem. Its security properties are proved by using a pro-
tocol verification tool called Tamarin prover [71]. The
verification uses several abstractions during modelling.
For example, they represent its underlying log structure
(a Merkle tree) as a list.

o Weakness
The weakness of ARPKI is that all n designated service
providers have to be involved in all the processes (i.e.
certificate registration, confirmation, and update), which
would cause considerable extra latencies and the delay of
client connections.

6) Distributed Transparent Key Infrastructure: Distributed
Transparent Key Infrastructure (DTKI) [62] is an improvement
on CIRT [60].

In DTKI, each domain owner has two types of keys — TLS
keys and a master key. Browsers only accept a certificate if it is
issued by the corresponding master key. Both master keys and
TLS keys are recorded in public auditable logs. So dishonest
CAs and log maintainers cannot issue fake certificates for a
domain unless they have the corresponding master key.

To support multiple logs, DTKI has two different types of
log maintainers, namely certificate log maintainers (CLMs)
and the mapping log maintainer (MLM). Each CLM maintains
a database of all certificates for a particular set of domains
for which it is responsible. DTKI does not fix the set of
certificate logs, but the MLM is unique. The MLM maintains
association between certificate logs and the domains they are
responsible for. So an internet user can query the MLM for
the association, and query the corresponding CLM for the
certificate of the target domain. All log maintainers are not
required to be trusted, as they behave transparently, and can
provide the same set of efficient proofs as in CIRT. Similar to
CIRT, the consistency between logs are verified by user side
random verification, and the behaviours of all trusted parties
are efficiently verifiable.

The complex data structure in systems like CIRT and DTKI
prevents them to use the verification method proposed for
ARKEPI, as the method requires abstractions on the underlying

log data structure. To bridge this gap, in DTKI, the underlying
log structure of DTKI is formalised, and the properties of log
structures are formally proved. Then, the security property of
the protocol is proved by using Tamarin prover.

o Strength
It is the first system which allows all parties to collude
together, while is still able to prevent MITM attacks using
mis-issued certificates rather than merely detect them. It
formalises its underlying log data structure, and formally
proved its security properties also by using Tamarin
prover. DTKI requires a single global mapping log server,
which might imply a monopoly. However, the mapping
log is a lightweight governing party, is not required to
be trusted, is not involved in every day communications,
and it does not directly manage certificates for sites. So,
DTKI provides anti-oligopoly at some level.

o Weakness
The weakness of DTKI is that it adds extra latency com-
pared to other systems, its complexity make it difficult
to be deployed, and it suffers the same problem of SK,
namely a domain owner who loses the sovereign key also
loses the ability to switch to new operational keys until
the SK expires.

V. OBSERVATIONS

Based on the above analysis, we observed the advantage
and weakness in each category. This section discusses the ob-
servations based on different perspectives, i.e. on the property
perspective and on the system perspective. In addition, this
section summarises our observation regarding to the leading
proposals in Table II.

A. Property Perspective

We summarise our observations on different system cate-
gories according to the perspective of identified properties.

Trust agility

The current CA model does not provide this feature, since any
compromised CA can issue valid certificates for any domain
server. Similarly, systems in the category of Scope restriction
also do not provide this feature, because they merely restrict
the set of domains that CAs can issue certificates for. Most
systems in difference observation offer this feature, as any
one can be a notary server, and users can select which notary
servers they want to trust, and any notary server will not be
influenced by other notary servers.

Anti-oligopoly

Systems in the category of difference observation normally
provide this feature, as the number of observers are not fixed.
In addition, the certificate verification result relies on the out-
of-band checking through a different path. So, as far as the
observed certificates are the same one, the client will accept
it. Thus, the role of CA is minimised.

10

“UTBWIOP WIOIA JY) JOJ PISLIOYINE JOU ST YD) SNOII[EW Sy} JI PIYSHes ST Imed iYL, ,,

*9)BOYIIAD SIT

pajepdn jou sey 2JeoYNISd Y3 JO QNS Y)Y pur ‘dYdLI [BI0[Sy} UI PUNOY 3G UBD 3)edYNId A3y orjqnd paAIedar sy Ji A[Uo pue JI paysyes ST ey SIyY, .
(194 pasodoid uaaq jou sey a103s urd oY) ‘pauSISIP SI 2I0]S A}
Moy uo Surpuddap JUAIOYIP 99 JYSIW NS Ay UIY) ‘pasn ST Aojs utd aur[uo ue JJ 103s uId PAOINOS-PIMOID SUI[-UO UE FUISN JNOYIM ISED JY) IOPISUOD M
"3yOErD [8O0[AY) UI PUNOY 3G UL LOYNII/AY o1qnd paAIeda1 dy Ji A[UO pue 1 paysnes ST ey SIyL, |
*9IMBIJ ST JJJO Jou saop 19a[gns Ay, — X
"SUISOUOD JAYIO IIA NG 2IMIEd) SIY) SI940 10fqns dYL, — ()

"Imeay s1y) s193jo 199lqns oy, — S

N N N N N z A N X VA 10381y Sursmolq Furo9joid
Adearq
N N S N N % N X N JUQUISAJOAUT J3SN ON
Anpqesn
N N X X X X X X X amoas A[qeaoiq
N N N R +® /N N N X UONOA)IP J)BIYIIAD PANSSI-SIW JO S}
N N X R +® /N N A X uonuaaald 9JeoyNIdd PanssI-SIW Jo S()
N N N N N A e® X /N uonoajoxd yoepe SO
N N N N N X N N N uonojold uordAUU0d ISIT]
£anddg
N N N N N X N X N UONBOYLIOA A9 A[owIL],
N X A A N N X X N 1oddns 9jeoynied opdnny
A VA A A A e X A N N Anpqeeog
N N X X X X X X X UOIBO0AAI AQY UI-)[Ing
% N N N N N ® X N UONBOYLIdA JUIPJO
Anpqerreay
N X X X X A A A X Arodosto-nuy
\/ \z \z X X X X X X sonJed pajsnn 9[qeYLIoA
X X X X X z N X X X sonted pejsny Jo Qo1
A VA A X X o A N X Anpide Jsnay,
ysnay,

DILd DIddV 1D ANVA dMd | JMOVL 9ouoBioAuo) seAnoadsiod | poseq-vD
Kouaredsuen juowaSeuew 9eoynId) | uonosar odoog UONBAIISQO QOUAISPI] a1sse) SQINJB, PAIISa(]

STVSO0dOdd 40 NOILVNTVAH

II 419VL

Offline verification

In the current CA model, clients only need to verify the
validity of the received certificate. So, it satisfies offline
verification. Systems in the category of scope restriction also
provide this feature, as the way they work is similar to the
current CA model, but with some restrictions.

Most systems in the category of certificate management
transparency offer this feature as well, because in these sys-
tems the proofs to be verified about a certificate are provided
together with the certificate. In contrast, most systems in
the difference observation category don’t offer this feature,
because with these systems, clients have to make additional
connections to verify the certificates they obtained.

Built-in key revocation

Most systems in the category of difference observation and
scope restriction do not provide this feature. Most systems in
the category of certificate management transparency do offer
this feature. For example, CIRT proposed a way to manage
certificate revocation by using an advanced log structure;
and AKI and ARPKI manage certificate revocation by only
recording the latest certificates of domains in their logs.

Multiple certificate support

The current CA model offers this feature. Systems in the
category of difference observation generally don’t provide this
feature. Because when clients see different certificates of the
same website from different paths or observers, a warning will
be displayed to clients even if the received certificates are
all genuine. Systems in the category of scope restriction and
certificate management transparency provide this feature.

Timely key verification

Systems in difference observation are likely to not provide this
feature, as the observers might not be always up to date with
all domains.

First connection protection

Systems such as Certificate Patrol, Certlock, and TACK in
difference observation do not provide this feature, because they
verify the certificate based on what has been observed in the
previous connections.

Denial of service (DoS) attack protection

The CA model offers this feature. All systems in the category
of scope restriction and most systems in the category of
certificate management transparency provide this feature as
well. However, some systems in difference observation require
out-of-band observation, so they will not provide this feature,
as the verification server can be blocked.

Use of mis-issued certificate prevention

All systems in difference observation, and some systems in the
category of certificate management transparency, provide this
feature. In contrast, systems in the category of scope restriction
do not provide this feature if the mis-issued certificate is issued
by a CA who is authorised for the victim domain. For example,
DANE cannot prevent MITM attacks when the fake certificate
used by an attacker is issued by the parent domain of the victim
domain.

Use of mis-issued certificate detection
All systems in difference observation and in certificate man-
agement transparency provide this feature.

B. System Perspective

As shown in the table, systems in the category of difference
observation provide better trust-related features. However, they
can have difficulties to provide a better availability, because
the observer might not have the latest update, the systems in
general do not provide an effective key revocation manage-
ment, and they require user involvement to make decisions.
Moreover, they can suffer from DoS attacks on the observers.

Systems in the category of scope restriction provide better
usability and availability. However, they have only restricted
the power of each trusted parties, but internet users still need
to trust them. This can limit the damage from attacks launched
by malicious CAs, but cannot completely solve the problem.

Systems in the category of certificate management trans-
parency provide better security and availability. However, anti-
monopoly might be a problem for these systems. DTKI shows
the possibility of providing anti-monopoly, but it still needs
lightweight governing party. It is desired to provide a fully
distributed system and still be able to remove the need of
trusted parties.

All proposed systems have different advantages compared
to the current PKI, and they are trying to solve different
problems. However, none of them is satisfactory of being
a replacement of the current PKI, as the authors were not
concerned with all desired features while designing web PKI
alternatives.

VI. CONCLUSION

The production, processing and consumption of big data
requires that all the agents involved in those operations can
authenticate each other reliably. Unfortunately, authentication
of servers and services on the Internet is a surprisingly hard
problem. The classical CA model that we have been relying
upon for 20 years is no longer adequate.

We reviewed solutions proposed, and divided them into
three categories. Of the three categories, the last one, based
on transparent public logs, has had the most success in
the real world. Unfortunately, the version of this idea being
implemented by Google doesn’t handle revocation, and doesn’t
properly allow a multiplicity of log maintainers. We have
reviewed solutions that do allow these additional features, and
we think that those solutions are the most comprehensive so
far.

We hope our evaluation framework will help the ongoing
research on web certificate management alternatives.

REFERENCES

[1]1 P. Yee, “Updates to the Internet X.509 Public Key Infrastructure Certifi-
cate and Certificate Revocation List (CRL) Profile,” RFC 6818 (Proposed
Standard), Internet Engineering Task Force, Jan. 2013.

[2] W. Mao, Modern cryptography: theory and practice, ser. HP
Professional Series. Prentice Hall PTR, 2004. [Online]. Available:
http://books.google.com/books?id=H42WQgAACAAJ

[3] N. Ferguson and B. Schneier, Practical cryptography. Wiley, 2003.

[4]
[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

B. Schneier, Applied cryptography - protocols, algorithms, and source
code in C (2. ed.). Wiley, 1996.

N. P. Smart, Cryptography Made Simple, ser. Information Security and
Cryptography. Springer, 2016. [Online]. Available: http://dx.doi.org/
10.1007/978-3-319-21936-3

E. Rescorla, “HTTP over TLS,” RFC 2818 (Informational), Internet
Engineering Task Force, May 2000. [Online]. Available: http:
/Iwww.ietf.org/rfc/rfc2818.txt

T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol
version 1.1,” RFC 4346 (Proposed Standard), Internet Engineering Task
Force, Apr. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4346.txt
S. Turner and T. Polk, “Prohibiting secure sockets layer (SSL) version
2.0,” RFC 6176 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6176.txt

J. L. Massey, “Cryptographya selective survey,” Digital Communica-
tions, vol. 85, pp. 3-25, 1986.

A. Aziz and W. Diffie, “Privacy and authentication for wireless local area
networks,” IEEE Personal Commun., vol. 1, no. 1, pp. 25-31, 1994.
W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644-654,
November 1976.

W. Diffie, P. C. van Oorschot, and M. J. Wiener, “Authentication
and authenticated key exchanges,” Des. Codes Cryptography, vol. 2,
no. 2, pp. 107-125, 1992. [Online]. Available: http://dx.doi.org/10.
1007/BF00124891

H. H. Kilinc and T. Yanik, “A survey of SIP authentication and key
agreement schemes,” I[EEE Communications Surveys and Tutorials,
vol. 16, no. 2, pp. 1005-1023, 2014.

S. Turner and L. Chen, “Updated Security Considerations for the
MDS5 Message-Digest and the HMAC-MDS5 Algorithms,” RFC 6151
(Informational), Internet Engineering Task Force, Mar. 2011.

C. Dwork and K. Nissim, “Privacy-preserving datamining on vertically
partitioned databases,” in Advances in Cryptology - CRYPTO 2004, 24th
Annual International CryptologyConference, Santa Barbara, California,
USA, August 15-19, 2004, Proceedings, 2004, pp. 528-544.

B. Pinkas, “Cryptographic techniques for privacy-preserving data min-
ing,” SIGKDD Explorations, vol. 4, no. 2, pp. 12-19, 2002.

M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Advances in Cryptology
- EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, French Riviera,
May 30 - June 3, 2010. Proceedings, 2010, pp. 24-43.

C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009.

C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” EURASIP Journal on Information Security, vol. 2007,
no. 1, pp. 1-10, 2007.

V. Vaikuntanathan, “Computing blindfolded: New developments in fully
homomorphic encryption,” in IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2011, Palm Springs, CA, USA,
October 22-25, 2011, 2011, pp. 5-16.

C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” EURASIP J. Information Security, vol. 2007, 2007.

W. Du and M. J. Atallah, “Secure multi-party computation problems
and their applications: a review and open problems,” in Proceedings of
the New Security Paradigms Workshop 2001, Cloudcroft, New Mexico,
USA, September 10-13, 2001, 2001, pp. 13-22.

S. Goldwasser, “Multi-party computations: Past and present,” in Pro-
ceedings of the Sixteenth Annual ACM Symposium on Principles of
Distributed Computing, Santa Barbara, California, USA, August 21-24,
1997, 1997, pp. 1-6.

K. Yang, X. Jia, and K. Ren, “Secure and verifiable policy update
outsourcing for big data access control in the cloud,” [EEE Trans.
Parallel Distrib. Syst., vol. 26, no. 12, pp. 3461-3470, 2015.

Q. Zheng and S. Xu, “Verifiable delegated set intersection operations
on outsourced encrypted data,” in 2015 IEEE International Conference
on Cloud Engineering, IC2E 2015, Tempe, AZ, USA, March 9-13, 2015,
2015, pp. 175-184.

Q. Zheng, S. Xu, and G. Ateniese, “VABKS: verifiable attribute-
based keyword search over outsourced encrypted data,” in 2074 IEEE
Conference on Computer Communications, INFOCOM 2014, Toronto,
Canada, April 27 - May 2, 2014, 2014, pp. 522-530.

J. Wang, X. Chen, X. Huang, I. You, and Y. Xiang, “Verifiable auditing
for outsourced database in cloud computing,” IEEE Trans. Computers,
vol. 64, no. 11, pp. 3293-3303, 2015.

“The EFF SSL Observatory.” [Online]. Available: https://www.eff.org/
observatory

[29]

[30]

[31]

[32]

(33]

[34]
[35]
[36]
[37]

[38]
(391

[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]
[55]
[56]

(571

(58]

P. Eckersley, “Iranian hackers obtain fraudulent HTTPS certificates:
How close to a web security meltdown did we get?” Electronic Frontier
Foundation, 2011. [Online]. Available: https://www.eff.org/deeplinks/
2011/03/iranian-hackers-obtain- fraudulent-https

J. Leyden, “Trustwave admits crafting SSL snooping certificate:
Allowing bosses to spy on staff was wrong, says security biz,” The
Register, 2012. [Online]. Available: www.theregister.co.uk/2012/02/09/
tustwave_disavows_mitm_digital_cert

“MSO01-017: Erroneous Verisign-issued digital certificates
spoofing hazard,” Microsoft Support. [Online].
http://support.microsoft.com/kb/293818

P. Roberts, “Phony SSL certificates issued for Google, Yahoo, Skype,
others,” Threat Post, March 2011. [Online]. Available: http://threatpost.
com/phony-ssl-certificates-issued-google-yahoo-skype-others-032311
T. Sterling, “Second firm warns of concern after dutch hack,” Yahoo!
News, September 2011. [Online]. Available: http://news.yahoo.com/
second- firm-warns-concern-dutch-hack-215940770.html

L. O. M. N. Falliere and E. Chien, “W32.stuxnet dossier. Technical
report, symantec corporation,” 2011.

J. Appelbaum, “Detecting certificate authority compromises and web
browser collusion,” Tor Blog, 2011.

“Black tulip report of the investigation into the DigiNotar certificate
authority breach,” Fox-IT (Tech. Report), 2012.

C. Arthur, “Rogue web certificate could have been used to attack Iran
dissidents,” The Guardian, 2011.

A. Niemann and J. Brendel, “A survey on CA compromises,” 2013.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” RFC 5280 (Proposed
Standard), Internet Engineering Task Force, May 2008, updated by
RFC 6818. [Online]. Available: http://www.ietf.org/rfc/rfc5280.txt

R. L. Rivest, “Can we eliminate certificate revocation lists?”” in Financial
Cryptography. Springer, 1998, pp. 178-183.

A. Langley, “Revocation checking and Chrome’s CRL,” ImperialViolet
(blog), 2012.

P. Kocher, “A quick introduction to certificate revocation trees,” 1998,
unpublished work.

K. Nissim and M. Naor, “Certificate revocation and certificate update.”
in USENIX Security. Citeseer, 1998.

B. Laurie and E. Kasper, “Revocation transparency,” September 2012,
google Research.

J. Clark and P. C. van Oorschot, “SoK: SSL and HTTPS: Revisiting
past challenges and evaluating certificate trust model enhancements,” in
IEEE Symposium on Security and Privacy, 2013, pp. 511-525.

T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and V. Gligor,
“Accountable key infrastructure (AKI): A proposal for a public-key
validation infrastructure,” in the 22nd International World Wide Web
Conference (WWW 2013), 2013.

M. Marlinspike, “SSL and the future of authenticity,” in Black Hat, USA,
2011.

J. Yu, V. Cheval, and M. Ryan, “DTKI: A new formalized PKI with
verifiable trusted parties,” Comput. J., vol. 59, no. 11, pp. 1695-1713,
2016.

D. Akhawe and A. P. Felt, “Alice in warningland: A large-scale field
study of browser security warning effectiveness.” in Usenix Security,
2013, pp. 257-272.

D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: improving
SSH-style host authentication with multi-path probing,” in USENIX
Annual Technical Conference, 2008, pp. 321-334.

M. Alicherry and A. D. Keromytis, “Doublecheck: Multi-path verifica-
tion against man-in-the-middle attacks,” in ISCC, 2009, pp. 557-563.
“Certificate patrol.” [Online]. Available: http://patrol.psyced.org

C. Soghoian and S. Stamm, “Certified lies: Detecting and defeating gov-
ernment interception attacks against SSL,” in Financial Cryptography,
2011, pp. 250-259.

M. Marlinspike and T. Perrin, “Internet-draft: Trust assertions for
certificate keys (TACK),” 2012.

“Public key pinning,” http://www.imperialviolet.org/2011/05/04/pinning.
html, May, 2011.

R. L. Barnes, “Dane: Taking tls authentication to the next level using
dnssec,” IETF journal, October, 2011.

J. Kasten, E. Wustrow, and J. A. Halderman, “CAge: Taming certicate
authorities by inferring restricted scopes,” in Financial Cryptography,
2013.

P. Eckersley, “Internet-draft: Sovereign key cryptography for internet
domains,” 2012.

pose
Available:

[59]
[60]
[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,” RFC
6962 (Experimental), Internet Engineering Task Force, 2013.

M. Ryan, “Enhanced certificate transparency and end-to-end encrypted
mail,” in NDSS, 2014.

T. H. Kim, P. Gupta, J. Han, E. Owusu, J. I. Hong, A. Perrig, and D. Gao,
“ARPKI: attack resilient public-key infrastructure,” in ACM CCS, 2014.
J. Yu, V. Cheval, and M. Ryan, “DTKI: a new formalized PKI with no
trusted parties,” CoRR, vol. abs/1408.1023, 2014. [Online]. Available:
http://arxiv.org/abs/1408.1023

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in In Proceedings of the 13th USENIX Security
Symposium, 2004, pp. 303-320.

A. Langley, “Public-key pinning,” ImperialViolet (blog), 2011.

C. Evansm, C. Palmer, and R. Sleevi, “Internet-draft: Public key pinning
extension for http,” October 2014, draft 21.

R. Barnes, “Use Cases and Requirements for DNS-Based Authentication
of Named Entities (DANE),” RFC 6394 (Informational), Internet
Engineering Task Force, Oct. 2011. [Online]. Available: http:
/Iwww.ietf.org/rfc/rfc6394.txt

P. Hoffman and J. Schlyter, “The DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA,”
RFC 6698 (Proposed Standard), Internet Engineering Task Force, Aug.
2012. [Online]. Available: http://www.ietf.org/rfc/rfc6698.txt

S. Weiler and D. Blacka, “Clarifications and Implementation Notes
for DNS Security (DNSSEC),” RFC 6840 (Proposed Standard),
Internet Engineering Task Force, Feb. 2013. [Online]. Available:
http://www.ietf.org/rfc/rfc6840.txt

N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman,
“Mining your Ps and Qs: detection of widespread weak keys in
network devices,” in Proceedings of the 21st USENIX conference
on Security symposium, ser. Security’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 35-35. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2362793.2362828

P. Eckersley, “Sovereign key cryptography for internet domains,” Internet
Draft, 2012.

S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The TAMARIN
prover for the symbolic analysis of security protocols,” in Computer
Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, 2013, pp. 696-701.

