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Abstract. If q is a prime and n is a positive integer then any two finite
fields of order qn are isomorphic. Elements of these fields can be thought
of as polynomials with coefficients chosen modulo q, and a notion of
length can be associated to these polynomials. A non-trivial isomorphism
between the fields, in general, does not preserve this length, and a short
element in one field will usually have an image in the other field with
coefficients appearing to be randomly and uniformly distributed modulo
q. This key feature allows us to create a new family of cryptographic
constructions based on the difficulty of recovering a secret isomorphism
between two finite fields. In this paper we describe a fully homomorphic
encryption scheme based on this new hard problem.

Keywords: Finite field isomorphism, fully homomorphic encryption, lattice-
based cyrptopgraphy.

1 Introduction

Let q be a prime, let Fq be the finite field with q elements, and let f(x) ∈ Fq[x]
and F (y) ∈ Fq[y] be irreducible monic polynomials of degree n. Then

X := Fq[x]/(f(x)) and Y := Fq[y]/(F (y)) (1)

are isomorphic fields with qn elements. Given knowledge of f(x) and F (y),
it is easy to write down an explicit isomorphism X → Y and its inverse. We
normalize mod q polynomials by choosing their coefficients between − 1

2q and 1
2q,

and then we define the size of a polynomial to be the magnitude of its largest
coefficient. It is then an observation that, except in trivial cases, the isomorphism
X→ Y does not respect the Archimedian property of size. Indeed, when f and
F are distinct monic irreducible polynomials, we have observed that polynomials
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within a sphere of small radius (with respect to the L∞ or L2 norm) in X appear
to be essentially uniformly distributed in Y. We record this observation formally,
and construct arguments for its veracity in Section 2.2.1.

Observation 1 Let Mn,q be the set of all degree n monic irreducible polyno-
mials mod q and fix 1 ≤ β < q/2. Sample f ∈ Fq[x] and F ∈ Fq[y] uniformly
from Mn,q, and construct X, Y and the associated isomorphism φ : X → Y as
in (1). Let χβ be a distribution that produces samples with bounded length less
than β. Then the image in Y of a collection of polynomials in X sampled from χβ
is computationally hard to distinguish from a collection of polynomials sampled
uniformly in Y. By a proper choice of parameters, the ability to distinguish such
a collection can be made arbitrarily difficult.

Remark 1. We will refer to elements of X or Y as short if they have infinity norm
less than β, where generally β will be less than q/4.

We will find it essential to choose f from a subset ofMn,q consisting of monic
irreducible polynomials of degree n whose coefficients have absolute value less
than or equal to 1. Observation 1 appears to remain true, even when restricted
to this subset of Mn,q, and the security of our proposed homomorphic scheme
will rest on:

Observation 2 Observation 1 remains true if f ∈ Fq[x] is chosen from the
subset of polynomials in Mn,q whose coefficients have a maximal absolute value
of 1.

In this paper we base two distinct, but related, problems on Observation 2.

Definition 1 (FFI). Finite Field Isomorphism Problems Let k be a pos-
itive integer. Let X,Y, φ, χβ be as above. Let a1(x), . . . ,ak(x), b1(x) be samples
from χβ, and Ai = φ(ai) and B1 = φ(b1) be the corresponding images. Also
sample B2(y) uniformly from Y.

The computational FFI problem is: given Y,A1(y), . . . ,Ak(y), recover f(x)
and/or a1(x), . . . ,ak(x).

The decisional FFI problem is: given Y,A1(y), . . . ,Ak(y), B1 and B2, with
one of B1,B2 an image of a sample from χβ, identify the image with a probability
greater than 1/2.

Clearly, the decisional FFI problem can be solved if the computational FFI prob-
lem can be solved, and if Observation 1 is correct, then the decisional FFI prob-
lem can be made arbitrarily hard. We will demonstrate that if a certain lattice
reduction problem of dimension roughly 2n can be solved, then the decisional
FFI problem can be solved, and this lattice reduction problem can be made arbi-
trarily hard. We do not, however, have a reduction showing that ability to solve
the decisional problem implies the ability to solve a lattice reduction problem.
In other words, the strongest attacks we have found on the decisional problem
are via lattice reduction arguments, but we cannot rule out the possibility of
other, potentially stronger, attacks.
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Our plan is to build a somewhat homomorphic encryption scheme based on
the decisional FFI problem. This will have double exponential noise growth, but
will also have the advantage of being able to handle a reasonable number of
multiplications (and additions) of moderate sized integers. We will then analyze
the noise performance carefully, and introduce a bit-decomposition-based noise
management scheme that allows us to reduce the noise growth to single exponen-
tial. This will yield a bootstrappable, and thus fully homomorphic, encryption
scheme.

We will encode numbers, i.e messages, as short elements in X, with noise
added for semantic security, and view their corresponding images in Y as cipher-
texts. This will create a symmetric encryption algorithm, which will be somewhat
homomorphic in the following sense: Polynomials in elements of X can be eval-
uated, and lifted to polynomials over Z[x]/(f(x)) as long as their coefficients
do not exceed q/2 in absolute value. Knowledge of these output polynomials
will allow the user with knowledge of f(x) to recover the value of the polyno-
mial over Z, and the output of the computation. The corresponding ciphertext
polynomials in Y can be evaluated by anyone with knowledge of the public key
F (y), and substantial reduction modulo q will occur. Decryption will occur by
mapping isomorphically back to X, and the correct result will be output as long
as the coefficients do not exceed q/2 in absolute value.

This is where an important point arises. In 1996, (eventually published in
[24]), NTRU introduced the idea that if two short polynomials in Z[x] are multi-
plied, and the result is reduced modulo xn− 1, then the reduced product is also
(moderately) short. This observation has been used, in the years since then, in a
variety of cryptographic constructions. In this paper we make use of a variation
on this observation: This property remains true for a considerably larger class of
polynomials than xn ± 1. In particular, if f(x) is chosen to be monic, of degree
n, and have coefficients from the set {−1, 0, 1}, then a short polynomial times
a short polynomial remains moderately short when reduced modulo f(x). If pa-
rameters are chosen properly, the search space for f(x) can be made arbitrarily
large, making it impractical to locate f(x) by a brute force search.

The symmetric system sketched above can be converted into a public key
encryption scheme using the standard technique of publishing a list of encryp-
tions of 0 and adding short linear combinations of these encryptions as noise. Its
semantic security can be seen to be based on the decisional FFI problem, not
on the presumably harder computational FFI problem. It is not immediately
obvious that this is the case, as all ciphertexts of messages will be images of
short vectors in X, but in the simple instantiation we will present here, it can
be shown that this is true. (See Theorem 1 in Section 3.2.4.)

Remark 2. As mentioned, the finite field homomorphic encryption scheme pre-
sented here is based on the decisional problem (DFFI). It may be possible to
construct a homomorphic encryption scheme that solely depends on the com-
putational problem, (CFFI), but in the interest of simplicity we will not pursue
this here. It is certainly possible to construct a signature scheme, based on the
CFFI, and this will appear elsewhere.
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1.1 Subfield Attack

Despite major advances over the past few years the biggest challenge preventing
the deployment of FHE schemes in real life applications is efficiency. To address
the efficiency bottleneck, many optimizations were proposed including some that
take advantage of specialization of the underlying field/ring structure. Such spe-
cializations enable efficient batched parallel evaluations, make it possible to chose
parameters that support highly efficient number theoretical transforms, and in
some cases even reduce the size of evaluation keys.

However, such customizations may potentially introduce weaknesses in the
security assumptions of the schemes. A recent attack proposed by Albrecht,
Bai and Ducas [28] exploits the special structure in ring based FHE schemes.
The attack is demonstrated on several NTRU based FHEs with medium size
subfields which happens to be the case when the setup parameters are poorly
chosen. Specifically, if the NTRU scheme is constructed with the DSPR secu-
rity assumption, which is the case in some of the NTRU based FHE schemes
[3, 27], the assumed security level of the scheme can be significantly reduced.
While the authors suggest more caution on parameter selection by avoiding spe-
cialized fields in this particular case, there could be further attacks that exploit
specialized parameters. It has become quite clear that we need more generic con-
structions that avoid specialized structures as much as possible. Furthermore,
we need diversity in the FHE constructions, i.e. FHEs that remain secure even
if other conjectured hard problems, e.g. DSPR or Approximate GCD, are shown
to be weaker than expected.

These are among the goals of the FHE scheme proposed in this paper: The
proposed construction is based on the DFFI problem; a new problem we propose
and analyze here for the first time. The proposed construction avoids specializa-
tions. The FHE scheme is based on a fixed prime q and a class of short generic
private keys f(x) with the property that f(x) is monic, irreducible mod q, and
the Galois group of the associated finite field Zq[x]/(f(x)) is Sn.

1.2 Related work

The first Fully Homomorphic Encryption (FHE) scheme was constructed by
Gentry [17, 19] in 2009, answering a problem that had remained open for over
three decades. Gentry’s scheme is based on ideal lattices and the security as-
sumptions are based on hard problems in lattices. A key innovation in Gentry’s
construction is bootstrapping, which allows a party to refresh the noise level in
a ciphertext without having access to a secret key. Despite its success, boot-
strapping has remained the bottleneck in FHE implementations. After Gentry’s
original scheme, many other constructions followed that aimed to improve the
efficiency of FHE. These schemes are based on a variety of constructions and
hardness assumptions.

One such construction based on the learning-with-errors (LWE) problem was
proposed by Brakerski and Vaikuntanathan [7]. The security of the scheme is
based on the hardness of short vector problems. The LWE-based construction
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was later improved by Brakerski, Gentry and Vaikuntanathan (BGV) in [6] us-
ing a modulus switching technique that slows the noise accumulation drastically.
Modulus switching is applied at each multiplicative level, which prevents expo-
nential noise growth. Thereby the noise remains fixed throughout the homomor-
phic evaluation levels. Later, a new noise management technique was introduced
by Brakerski [5], applicable to LWE schemes, that decreases noise growth from
quadratic to linear using tensor products. Gentry, Halevi and Smart [20] demon-
strated that it is possible to perform deep homomorphic evaluations by providing
the first AES evaluation implemented using the BGV scheme embodied in a soft-
ware library called HElib [22]. The authors optimize the design using the SIMD
technique introduced in [29] to batch multiple messages and process parallel AES
operations.

Another FHE construction based on the assumed hardness of the Integer
Approximate-GCD problem was proposed by van Dijk et al. [12]. This work was
followed by Coron et al. [10], where the public key size was reduced from λO(κ10)
to O(κ7) where κ is the security parameter. In [11] the public key size was further
reduced from O(κ7) to O(κ5) and modulus switching methods were adapted to
the integer scheme. Another follow up work by Coron et al. [9] implements a
variant of van Dijk et al.’s scheme using the scale invariant property introduced
earlier by Brakerski [5].

Another leveled FHE scheme was presented by López-Alt, Tromer, Vaikun-
tanathan (LTV) in [27]. It is based on a variant of NTRU [24] constructed earlier
by Stehlé and Steinfeld [30]. The scheme is a multi-party scheme that is capable
of processing homomorphic functions for various users each with their individual
keys. The authors use the relinearization technique introduced in [7] and also
adapt modulus switching to mitigate the noise growth, thus keeping the growth
linear in size over the levels. To compute relinearization, the scheme requires eval-
uation keys, which increases the memory requirement and becomes prohibitive
especially in deep evaluations. The NTRU variant by Stehlé and Steinfeld [30]
was later modified and implemented by Bos et al. in [3]. Their scheme, named
YASHE, adopts the tensor product technique in [5] and achieves a scale-invariant
scheme with limited noise growth on homomorphic operations. Also, with the
use of the tensor product technique, the authors managed to improve the secu-
rity of the LTV scheme [27] by using much higher levels of noise and thereby
removed the Decisional Small Polynomial Ratio (DSPR) assumption. Instead,
the scheme relies only on standard lattice reductions as in [30]. However, as the
authors also note, the YASHE scheme requires a large evaluation key and a com-
plicated key switching procedure. In [3] the authors introduce a modification
(YASHE’) to their scheme to eliminate the problems of expensive tensor product
calculations and large evaluation keys. However, this modification re-introduces
the DSPR assumption. Another modified LTV-FHE implementation, along with
AES evaluation, was presented by Doröz et al. in [13]. The security of their
scheme depends on the DSPR and R-LWE assumptions as in [27]. Their imple-
mentation uses the relinearization and modulus switching methods as in [27] to
cope with noise, and it introduced a specialized ring structure to to significantly
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reduce the evaluation key size. Since both the YASHE’ and LTV-FHE schemes
rely on the DSPR problem, both are vulnerable to the Subfield Attack [28].

Motivated by the large evaluation key requirements come by complex noise
management techniques such as relinearization, modulus switching, and boot-
strapping employed by earlier FHE schemes Gentry, Sahai and Waters [21] pro-
posed a new scheme based on the approximate eigenvector problem. The system
uses matrix additions and multiplications, which makes it asymptotically faster.
At first, they constructed the GSW scheme as a somewhat homomorphic scheme,
since for a depth L circuit with B-bounded parameters, the noise grows with a

double exponential B2L . To convert the scheme into a leveled FHE, they intro-
duced a Flattening operation that decomposes the ciphertext entries into bits.
The secret key is also kept in a special powers-of-two form. With these modifi-
cations, the noise performance is improved significantly. For a depth L circuit
with B-bounded secret key entries and 1-bounded (flattened) ciphertexts, the
error magnitude is at most (N + 1)LB for N = log(q)(n+ 1). However, cipher-
texts still require a considerable amount space, roughly Θ(n2 log(q)2), and as
noted by GSW [21], in practice their scheme may not be as efficient as existing
leveled schemes. More recently, the Flattening technique was adapted by Doröz
and Sunar to NTRU in a new FHE scheme called F-NTRU [14]. Similar to the
GSW scheme F-NTRU does not require evaluation keys or key switching. More
significantly, the scheme eliminates the DSPR assumption and relies only on
the standard R-LWE assumption which makes it the only NTRU variant FHE
scheme immune to the Subfield Attack.

1.3 Paper Organization

In Section 2 we formally introduce the finite field isomorphisms problem, state
hardness assumptions, and study lattice and non-lattice techniques to establish
the difficulty of the problem against known techniques. We then show how to
construct a fully homomorphic public-key encryption scheme in Section 3 by
first building a somewhat homomorphic encryption scheme and then by con-
verting it into a bootstrapable scheme via a new bit decomposition based noise
management scheme.

In the appendices, we discuss how to construct field representations X and Y
and the necessary isomorphisms X → Y and Y → X (Section A), we give some
further details of a high-dimensional lattice attack (Section B) and other po-
tential attacks, including giving an example of a non-linear attack using small
parameters (Section C), we analyze the size of the remainder when reducing
modulo a small polynomial (Section D), and we give a more detailed noise anal-
ysis (Section E).
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2 The Finite Field Isomorphism (FFI) Problem

2.1 Preliminaries

We begin by formally introducing some notation that has already been used
in the previous section. Additional notation will be introduced at the start of
Sections 3.

For given degree n monic irreducible polynomials f(x) ∈ Fq[x] and F (y) ∈
Fq[y], we create two copies of Fqn , which we denote by X := Fq[x]/(f(x))
and Y := Fq[y]/(F (y)). In general, polynomials denoted by lower case letters
will be polynomials in X, and their isomorphic images in Y will be denoted with
the corresponding capital letters. The vector form of a polynomial is simply the
vector consisting of its coefficients. We often identify polynomials and vectors
when there is no ambiguity.

Consider a polynomial a(x) = a0 + a1x + · · · + an−1x
n−1 ∈ X. We will

informally say that a(x) is short if for all i, the congruence class ai mod q re-
duced into the interval (−q/2, q/2] is small relative to q. An important class of
such polynomials are those satisfying ai ∈ {−1, 0, 1}; these are called trinary
polynomials. We denote by

‖a‖ = ‖a‖∞ := max |ai| and ‖a‖2 := (a20 + · · ·+ a2n−1)1/2

the L∞ and L2 norms of a, respectively, where it is understood that the coeffi-
cents of a are always normalized to lie in the interval (−q/2, q/2].

Denote by Mn,q the set of all degree n monic irreducible polynomials mod
q. When there is no ambiguity, we will suppress the subscripts.

2.2 Discussions and proofs

2.2.1 Arguments for the truth of Observation 1

Lemma 1. For large n, for any fixed f(x) ∈ Fq[x], and any given degree n −
1 polynomial φ(y) ∈ Fq[y], there will exist, with probability approaching 1, a
unique monic irreducible F (y) ∈ Fq[y] such that the map x → φ(y) induces an
isomorphism between Fq[x]/(f(x)) and Fq[y]/(F (y)).

Proof. As Fqn/Fq is Galois, any irreducible polynomial with one root must split
completely, implying that f(x) has n distinct roots in Fq[y]/(F (y)), and simi-
larly, that no two monic irreducible polynomials of degree n in Fq[x] can share
a root. Fix a degree n monic irreducible polynomial f(x) ∈ Fq[x]. By the prime
number theorem for function fields, for fixed q and large n, |Mn,q|, i.e., the
number of distinct irreducible monic polynomials over Fq[x], is asymptotic to
qn/n; see [26, Chapter 7, Section 2, Corollary 2]. It follows that for any poly-
nomial f ∈ Mn,q there are asymptotically qn/n distinct isomorphic images
of Fq[x]/(f(x)) and hence also qn/n potential F . Choose at random a degree
n − 1 monic polynomial φ(y) ∈ Fq[y]. There are exactly qn such polynomials.
There are also, asymptotically, a total of n× qn/n = qn isomorphisms between
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Fq[x]/(f(x)) and all possible Fq[y]/(F (y)), where F (y) varies over all distinct
monic irreducible polynomials. These are given by sending x to each of the n
distinct roots of each F (y). With probability approaching 1, these sets have the
same order, and as one is contained in the other, they are asymptotically equal.

ut

This provides evidence for the truth of Observations 1 for the following rea-
son. Suppose one chooses, independently, a private monic irreducible f(x), and
a φ(y), with the coefficients of φ(y) chosen randomly and uniformly from Fq.
Then with high probability there will be a corresponding (monic, irreducible)
F 1(y) and a short polynomial a(x) will be mapped to A(y) = a(φ(y)) reduced
modulo F 1(y). As the coefficients of φ(y) are random and uniformly distributed
modulo q it is reasonable to assume that the coefficients of A(y) will be similarly
uniformly distributed modulo q. Unfortunately, because of the highly non-linear
aspect of this mapping, it appears to be hard to construct a proof of this. The
polynomial F 1(y) can be used as the public key, if desired. However, it may be
convenient to use a polynomial of a simpler form, such as F 2(y) = yn − y − 1
to make computations easier for the public party. In this case the composite
isomorphism of

Fq[x]/(f(x))→ Fq[y]/(F 1(y))→ Fq[y]/(F 2(y))

can be used for encryption. It is again reasonable to assume, though hard to
prove, that the composite mapping continues to cause coefficients of images of
short polynomials to be uniformly distributed modulo q.

Remark 3. Because of Observation 2, that non-trivial isomorphisms send short
polynomials in X to uniformly distributed elements of Y, we believe that there
are no easy cases of CFFI. Hence, similar to hard lattice problems such as those
described in [1], we suspect that there may well be an average-case/worst-case
equivalence for the computational finite field isomorphism problem. However,
research in this direction is beyond the scope of the present paper and clearly
requires considerable further study.

2.2.2 Arguments for the truth of Observation 2 In order to build a mul-
tiplicative homomorphic encryption scheme we require that products of short el-
ements in X are also short. Hence, we cannot simply sample f(x) uniformly from
Mn,q. Instead, we will sample f(x) uniformly from Mn,q with the requirement
that ‖f(x)‖ is bounded.

In order to estimate the size of the search space for f(x), we will rely on the
following very reasonable assumption:

Assumption 1 Monic irreducible polynomials are uniformly distributed over Fq[x].

This assumption implies that Observation 2 is true. It also implies (together with
the argument that |Mn,q| is on the order of qn/n) that for 1 ≤ β ≤ 1

2q there are
approximately (2β)n/n distinct irreducible monic polynomials a(x) over Fq[x]
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satisfying ‖a(x)‖ ≤ β. This quantifies the size of the set of all possible f and
enables us to verify that with well chosen parameters it is large enough to be
robust against a brute force search.

This shortness of f(x) is exploited via the following useful property:

Property 1. If f(x) is short, and if a(x) and b(x) are short elements of X, then
the product a(x)b(x) mod f(x) is also a reasonably short element of X.

As remarked earlier, Property 1 has been widely exploited in ideal and lattice-
based cryptography, especially with f(x) = xn ± 1, starting with the original
NTRUEncrypt [25]. We refer the reader to Appendix D for a discussion and
quantitative analysis of Property 1, as well as a description of our method of
choosing short f(x).

2.3 An Algorithm to Find an Isomorphism

We explain how to find suitable polynomials f(x) and F (y) and an explicit
isomorphism

Fq[x]/(f(x)) 7→ Fq[y]/(F (y)).

We need to find four polynomials (f ,F ,φ,ψ) satisfying:

• f(x) ∈ Fq[x] is irreducible monic of degree n with ‖f(x)‖ ≤ β.
• F (y) ∈ Fq[y] is irreducible monic of degree n with random coefficients.
• φ(y) ∈ Fq[y] and ψ(x) ∈ Fq[x] have degree less than n.
• F (y)

∣∣ f(φ(y)
)
.

• φ
(
ψ(x)

)
≡ x (mod f(x)).

The algorithm for finding such an isomorphism is shown in Algorithm 1.

Algorithm 1 Finite Field Isomorphism Generation

1: Sample f(x) and F (y) as required.
2: Find a root of f(x) in the finite field Fq[y]/(F (y)) ∼= Fqn and lift this root to a

polynomial φ(y) ∈ Fq[y] of degree less than n.
3: Construct the unique polynomial ψ(x) ∈ Fq[x] of degree less than n satisfying
ψ
(
φ(y)

)
≡ y (mod F (y)).

4: return f(x), F (y), φ(y) and ψ(x).

Remark 4. We note again that the secret polynomial f(x) and the public polyno-
mial F (y) are chosen independently, so in particular, knowledge of F (y) reveals
no information about f(x). In other words, any polynomial satisfying the norm
bound is a potential candidate for f(x). The attacker only begins to acquire infor-
mation about f(x) when she is given isomorphic images in Y of (short) polynomi-
als in X. Further, the fact that there are no security issues in the choice of F (y),
other than the requirement that it be irreducible in Fq[y], means that F (y) may
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be chosen to simplify field operations in the quotient field Fq[y]/(F (y)). For ex-
ample, one could take F (y) to be a trinomial. The point is that the attacker can
always replace your F (y) with her choice of F ′(y), since she can easily construct
an isomorphism from Fq[y]/(F (y)) to Fq[y]/(F ′(y)).

We now discuss the steps in the generation algorithm in more details. In
Step 2, we are required to find a root of a polynomial f(x) in a finite field Fqn
that is given explicitly as a quotient Fq[y]/(F (y)). There are fast polynomial-
time algorithms for doing this.4 We note that in our set-up, the polynomial f(x)
is irreducible of degree n, so any one of its roots generates the field Fqn , and
since any two fields with qn elements are isomorphic, it follows that f(x) must
have a root in Fq[y]/(F (y)). Further, since Fqn/Fq is Galois, any irreducible
polynomial with one root must split completely, so in fact f(x) has n distinct
roots in Fq[y]/(F (y)). We may take φ(y) mod F (y) to be any one of these roots.

In Step 3, we need to construct ψ(x). We describe three ways to do this. All
are efficient. Method 2 is always faster than method 1. It is not clear which is
the more efficient between method 2 and 3.

1. One can compute the roots of F (y) in Fq[x]/(f(x)). As above, there will
be n distinct roots, and one of them will be the desired ψ(x).

2. One can compute a root of φ(y)− x in the field Fq[x]/(f(x)).
3. One can use linear algebra as described in Appendix A.

2.4 Known Approaches to Recovering the Secret Isomorphism

In this section, we explore three possible methods to solve the finite field isomor-
phism problem. Such an isomorphism will be described as an n-by-n matrix M .
The first two approaches are based on lattice reduction. The third approach is
a highly non-linear attack of unknown but, we believe, high difficulty.

2.4.1 High-Dimensional Lattice Attack: dim = 2n2 Let a1(x), . . . ,ak(x)
be k > n distinct polynomials in X with infinity norm bounded above by β, and
denote by A1(x), . . . ,Ak(x) their images in Y. We describe a lattice attack on
the associated vectors a1, . . . ,ak in a lattice L satisfying:

dimL = kn,

Gaussian expected λ1(L) ≈
√
kn/πe · q1−

n
k ,

Target size ≈
√
n2 + kn · β/6.

Here we show how to construct the lattice L. In Appendix B we describe in
detail how these formulas are obtained.

If we ignore the multiplicative structure, then the isomorphism

X −→ Y, a(x) mod f(x) 7−→ a
(
φ(y)

)
mod F (y)

4 For example, Pari-GP [31] provides the routine polrootsff.
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may be viewed as an Fq-linear transformation from Fqn to Fqn . More precisely,
taking 1, x, . . . , xn−1 and 1, y, . . . , yn−1 as bases for X and Y, respectively, for
each 0 ≤ i < n we write

xi 7−→ φ(y)i mod F (y) =

n−1∑
j=0

mijy
j .

Let M = (mij) be the associated matrix. Then the formula

A(y) = a
(
φ(y)

)
mod F (y)

becomes the vector/matrix

A ≡ aM (mod q).

In this formula, the attacker knows A, and she knows that a is short, but she
does not know M . So there are n2 + n unknowns, namely the coordinates of M
and the coordinates of a, of which n coordinates are small. So this single equation
does not reveal much information about Ma or M . However, since the attacker
has access to a large number of images

a1,a2, . . . ,ak,

writing ai = (ai0, ai1, . . . , ai,n−1) and similarly for Ai, we form the matrices

S = (aij)1≤i≤k
0≤j<n

and C = (Aij)1≤i≤k
0≤j<n

.

This gives the matrix formula

C ≡ SM (mod q). (2)

The unknown matrix S has small entries, so it is a short vector in the
space Zk×n of k-by-n matrices having integer coefficients. This allows us to
set up a lattice problem to find S. Let U be the k-by-n matrix defined by

C = SM + qU.

Then we have a matrix equation(
C qI

)( M−1

−UM−1
)

= S.

We observe that the dimensions of these matrices are(
C qI

)
∈ Zk×(n+k),

(
M−1

−UM−1
)
∈ Z(n+k)×n, S ∈ Zk×n.

The small target matrix S thus lives in the known sublattice of Zk×n defined by

L(C, q) :=
{(
C qI

)
W : W ∈ Z(n+k)×n

}
= Image

(
Z(n+k)×n −−−−−−−−−−→

W 7→(C qI)W
Zk×n

)
.
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2.4.2 Lattice Attack II (dim ≈ 2n) In this subsection we describe an
alternative lattice attack, again using a transcript of ciphertexts. We formu-
late this abstractly by saying that there is an unknown n-by-n matrix M with
mod q coefficients and known vectors A1,A2, . . . ,Ak with the property that the
unknown vectors

MAi mod q are small for all i = 1, 2, . . . , k.

In Section 2.4.1 the lattice attack used the entire vectors MA1, . . . ,MAk. In
this section we concentrate on a single coordinate. So let m be some (unknown)
row of M and let

bi = m ·Ai for i = 1, 2, . . . , k

be the corresponding (unknown) small values of the indicated dot products. If
m is the jth row of M then

A = (A1 | A2 | · · · | Ak), a = (a1 | a2 | . . . | ak), bj = (b1, b2, . . . , bk),

and we set

D =

(
A
qI

)
.

Thus A and a are two n-by-k matrices, and D is an (n + k)-by-k matrix. The
vector bj is a “slice” consisting of the jth coordinates of the ai, which are the
inverse images in X of the Ai.

Let L(D) denote the row span of D, so dimL(D) = k. Then L(D) contains
the short row vector of bj .

If we choose k sufficiently large, then the vectors bj will stand out as unusu-
ally short, relative to the Gaussian heuristic, and a successful lattice reduction
argument would recover them, or short linear combinations of them.

This means that an attacker with sufficient lattice reduction resources could
solve the decisional FFI problem, in the following way. Suppose the attacker is
provided with a list of Ai, images in Y of short vectors in X, and a vector B,
which might or might not be the image in Y of a short vector in X. Considering

(A1 | A2 | · · · | Ak | B),

a successful lattice reduction could produce a slice through the jth coordinates.
If each

Ai = (ai,1, ai,2, . . . , ai,n)T

then
(a1,j , a2,j , . . . , ak,j , bj)

will be in L(D). IfB is the image of a short vector in X then (a1,j , a2,j , . . . , ak,j , bj)
will have all short entries and a successful lattice reduction argument should re-
cover it. If B is not the image of a short vector in X then (a1,j , a2,j , . . . , ak,j , bj)
will have k short entries and one entry that is random mod q. This wold enable
the decision problem to be solved with greater than 50% probability.

12



Since ‖a‖ ≤ β, the length of the target vector is roughly

‖a‖2 � β
√
k.

The determinant of L(D) is the gcd of the k-by-k minors of the matrix D. Each
such minor includes at least k − n rows from the bottom part of the matrix,
which gives a factor of qk−n to each k-by-k minor. Since the entries of A are
more-or-less random, it is likely that detL(D) is some small multiple of qk−n.
Hence the Gaussian expected shortest vector in L(D) has length roughly

γ
(
L(D)

)
�
√

dimL(D)

2πe

(
DetL(D)

)1/ dimL(D)
=

√
k

2πe
· (qk−n)1/k.

To analyze the hardness of recovering this vector via lattice reductions, we focus
on the k-th root of the ratio between the Gaussian expected length and the
unique shortest vectors: (

q
k−n
k

β
√

2πe

) 1
k

.

This attack appears to be optimal when k ≈ 2n. In the meantime, analyses in
[16] and [8] suggest that recovering this vector is hard for BKZ 2.0 algorithm
when

q
1
4n β−

1
2n / 1.005.

Remark 5. This lattice is a little different from those used in instantiating the
unique shortest vector problem, as in our lattice, there are roughly n unique
shortest non-zero vectors of similar length. Previous results in [16] and [15] show
that the hardness of finding a short vector in q-ary lattices that contain many
unique shortest vectors depends not on the gap, but rather on the ratio between
the Gaussian heuristic and the actual length of the shortest vector. We conjecture
a similar property applies to our lattice.

2.4.3 A Non-Lattice Attack On Small Solutions There are two pieces of
structure lurking within the isomorphism X→ Y that are not used in the lattice
attacks described in Sections 2.4.1 and 2.4.2:

1. The map X→ Y is a field isomorphism between two copies of Fqn , not merely
an Fq-vector space isomorphism between two copies of Fnq ;

2. The secret polynomial f(x) used to define one of the copies of Fqn has
small coefficients. (And the attacker may, in principle, take F (y) to be any
irreducible polynomial that she chooses.)

In this section we explain how to exploit these properties to formulate an attack
that requires finding small solutions to systems of higher degree multivariable
polynomial equations. We note that solving such systems appears to be expo-
nentially difficult.
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The polynomials f(x) and F (y) almost, but not quite, determine the poly-
nomials φ(y) and ψ(x) used to define the isomorphism

Fq[x]/(f(x)) ∼= Fq[y]/(F (y)).

More precisely, if x→ φ′(y) is some other isomorphism, then necessarily

φ′(y) = φ(y)q
t

(mod F (y)) for some 0 ≤ t < d.

This follows immediately from the fact that Gal(Fqd/Fq) is cyclic of order d, gen-
erated by the q-power Frobenius map. Alternatively, the possible values for φ(y)
are exactly the roots of f(x) in the field Fq[y]/(F (y)), so in any case there are
exactly d possible φ(y)’s.

As stated in Remark 4, an attacker knows no useful information about f(x)
until she acquires an image, since as already noted, the public value F (y) is
chosen independently of f(x). So as in Section 2.4.1, we assume that the attacker
is given the value of an arbitrary number of images.

As per Definition 1, the attacker is given A1, . . . ,Ak ∈ Y with the promise
that ai, . . . ,ak ∈ X are small, in other words:

Ai(y) = ai
(
φ(y)

)
mod F (y), (3)

where ai has small coefficients.
The equation (3) contain 2n quantities that are unknown to the attacker,

namely the coefficients of a and φ. Of these, the coefficients of a are small, so
she can try to eliminate the coefficients of φ. We note that (3) really gives n
equations for the coefficients, since both sides are polynomials of degree n − 1.
Unfortunately, this doesn’t quite allow her to eliminate all n of the coefficients
of φ.

If she uses both A1(y) and A2(y), then she obtains 2n equations for the 3n
unknowns consisting of the coefficients of a1, a2, and φ. So using elimination
theory (as a practical matter, using Gröbner basis algorithms), she can eliminate
the coefficients of φ and obtain a system of n equations for the 2n coefficients
of a1 and a2. These are highly non-linear equations over the field Fq, so the
attacker is faced with the problem of finding an Fq-point with small coordinates
on a high degree n-dimensional subvariety of F2n

q . As far as we are aware, there
are no algorithms to solve such problems that are faster than an exhaustive (or
possibly collision-based) search. Indeed, there does not appear to be an efficient
algorithm to solve the decision problem of whether a small solution exists.

We note that the attacker may continue eliminating variables until eventually
arriving at a single equation in Fn+1

q . But this is likely to be counter-productive,
since it greatly increases the degree of the underlying equation while discarding
the information that the eliminated variables are small.

Alternatively, the attacker can use one element in Y and the knowledge that
there is a polynomial f(x) with small coefficients that satisfies

f
(
φ(y)

)
= 0 mod F (y). (4)
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Thus (3) and (4) again provide 2n equations, this time for the 3n coefficients
of a, f , and φ. The first two polynomials have small coefficients, so eliminating
the coefficients of φ again yields an n-dimensional subvariety in F2n

q on which
the attacker must find a small point.

3 Fully Homomorphic Encryption based on DFFI
Problem

In this section we use the approach of López-Alt et. al. [27] to show how to turn
our scheme into a fully homomorphic encryption scheme. First, we present Gen-
try’s definitions and theorems on fully homomorphic encryption [17, 18]. Later,
we show that our scheme satisfies the definitions on somewhat homomorphism,
but it does not reach the circuit depth required for evaluating decryption cir-
cuit homomorphically. We resolve the issue by turning our scheme into a leveled
homomorphic encryption scheme using a technique to reduce the noise growth
from doubly exponential to singly exponential. We then describe our leveled ho-
momorphic scheme and show that it is fully homomorphic by showing that it is
able to evaluate its decryption circuit homomorphically.

3.1 Fully Homomorphic Encryption Definitions

We give the definitions of fully homomorphic encryption and leveled homomor-
phic encryption.

Definition 31 (C-Homomorphic Encryption [7]). Let C = {Cκ}κ∈N be a class of
functions with security parameter κ. A scheme E is C-homomorphic if for any
sequence of functions fκ ∈ Cκ and respective inputs µ1, . . . , µ` ∈ {0, 1} (where
` = `(κ)), it is true that

PR[E .Decsk(E .Evalevk(f, c1, . . . , c`)) 6= f(µ1, . . . , µ`)] = negl(κ),

where (pk, evk, sk)← E .KeyGen(1κ) and ci ← E .Encpk(µi).

Definition 32 (Fully Homomorphic Encryption [27]). An encryption scheme E
is fully homomorphic if it satisfies the following properties:

Correctness: E is C-homomorphic for the class C of all circuits.
Compactness: The computational complexity of E’s algorithms is polynomial

in the security parameter κ, and in the case of the evaluation algorithm, i.e.
the size of the circuit.

Now as given in [27], we continue with the leveled homomorphic encryption
definition that is taken from [6]. It is a modified definition of fully homomorphic
encryption (Definition 32) into a leveled homomorphic encryption scheme. It
removes the requirement that the scheme is able to evaluate all possible circuits
and instead imposes a circuit depth D. It requires the scheme to be able to
evaluate all circuits (including the decryption circuit) that are depth at most D.
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Definition 33 (Leveled Homomorphic Encryption [27]). Let C(D) be the class
of all circuits of depth at most D (that use some specified complete set of gates).
We say that a family of homomorphic encryption schemes {E(D) : D ∈ Z+} is
leveled fully homomorphic if, for all D ∈ Z+, it satisfies the following properties:

Correctness: E(D) is C(D)-homomorphic.
Compactness: The computational complexity of E(D)s algorithms is polyno-

mial in the security parameter κ and D, and in the case of the evaluation
algorithm, the size of the circuit. We emphasize that this polynomial must
be the same for all D.

3.2 Somewhat Homomorphic FF-Encrypt Construction

We present a somewhat homomorphic version of our FF-Encrypt construc-
tion. We first give the details of our construction, and then we prove that our
scheme is able to evaluate homomorphic circuits (multiplications and additions)
of bounded depth.

3.2.1 Preliminaries Here we give some preliminary notation and information
that we use for the construction of our homomorphic schemes:

• The error distribution χ is a truncated Gaussian distribution DZn
r

with
standard deviation r.

• The random polynomials r(x) are ephemeral short noise polynomials that
are sampled from χ.

• The message space uses a fixed polynomial p(x), which we take for this
instantiation to be the number 2.

• The message m(x) consists of a monomial with a single coefficient that
is chosen from {0, 1}.

Polynomial Multiplication Noise in X. The noise of the product of two
polynomials is significantly affected by the choice of the polynomial f(x). Two
factors that affect noise growth are the choice of the coefficient bound βf for f(x)
and the degree d := deg(f ′(x)), where we write f(x) = xn + f ′(x). The noise
bound for the product of two β-bounded polynomial a(x) and b(x) for d < n/2
satisfies ∥∥a(x)b(x) mod f(x)

∥∥
∞ ≤ n[(d+ 1)2 + 1]β2. (5)

A detailed noise analysis for general f(x) is given in Appendix E.

3.2.2 Secret-Key Instantiation The secret key version of our Somewhat
Homomorphic Finite Field scheme uses the following four algorithms:

– SHFF-SK.Keygen(1κ):
• Input a security parameter κ.
• Generate a parameter set Ξ = {n, q, β} as a function of κ.
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• Use Algorithm 1 ( from the FF-Encrypt paper) to generate a finite field
homomorphism {f ,F ,ψ,φ}.

• Output {f ,F ,ψ,φ}. Also output p(x) and γ > 0.
– SHFF-SK.Enc(f ,F ,φ,m):
• Encode a plaintext by some method into a short polynomial m(x) ∈ X;
• Sample a polynomial r(x) ∈ X from the distribution χβ .
• Compute C(y) = p(φ(y))r(φ(y)) +m(φ(y)) mod F (y).
• Output C(y) as the ciphertext.

– SHFF-SK.Dec(f ,ψ,C):
• For a ciphertext C(y), compute c′(x) = C(ψ(x)).
• Output m′(x) = c′(x) mod

(
p(x),f(x)

)
.

– SHFF-SK.Eval(C,C1,C2, . . . ,C`):
• The circuit C is represented by two input binary arithmetic circuits with

gates {+,×}. Then, we can evaluate the circuit C homomorphically, since
we can perform homomorphic addition and homomorphic multiplication.

Homomorphic Addition (+). A homomorphic addition is evaluated by sum-
ming the ciphertexts,

C(y) = C1(y) +C2(y) (mod F (y)).

Decryption reveals the sum of the messages m1(x) and m2(x),

m(x) = (p(x)r1(x) +m1(x)) + (p(x)r2(x) +m2(x)) (mod f(x),p(x)).

This results in
m(x) = m1(x) +m2(x) (mod p(x)).

Homomorphic Multiplication (×). A homomorphic multiplication is evalu-
ated by multiplying the ciphertexts,

C(y) = C1(y)×C2(y) (mod F (y)).

Decryption reveals the product of the messages m1(x) and m2(x),

m(x) = p2(x)r1(x)r2(x) + p(x)r1(x)m2(x)

+ p(x)r2(x)m1(x) +m1(x)m2(x) (mod f(x),p(x)).

This results in
m(x) = m1(x)×m2(x) (mod p(x)).

3.2.3 Public-Key Instantiation The public key version of our Somewhat
Homomorphic Finite Field scheme is similar to the secret key instantiation in
most aspects. We use a subset sum problem to instatiate the public key version.
The scheme uses the following four algorithms:

– SHFF-PK.Keygen(1κ):
• Perform the key generation as in secret key instantiation SHFF-SK.Keygen(1κ).
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• Choose two integers S, s which
(
S
s

)
> 2κ for security parameter κ.

• Set ci = SHFF-PK.Enc(f ,F ,φ, 0)i, create an array of zero encryptions
pk = S = {C0(y),C1(y), . . . ,CS−1(y)}.

– SHFF-PK.Enc(S,m):
• Choose s random encryptions of zero Ci(y) from S and compute their

summation with message C(y) =
∑
i=rand(S)Ci(y) +m(y).

• Output C(y) as the ciphertext.
– SHFF-PK.Dec(f ,ψ,C):
• Compute and output SHFF-SK.Dec(f ,ψ,C).

– SHFF-PK.Eval(C,C1,C2, . . . ,C`):
• Compute and output SHFF-SK.Eval(C,C1,C2, . . . ,C`).

Lemma 2. The encryption scheme

ESHFF = (SHFF.KeyGen,SHFF.Enc,SHFF.Dec,SHFF.Eval)

described above is somewhat homomorphic for circuits having depth less than
D < log log q − log (3 log n) where q = 2n

ε

with ε ∈ (0, 1), and χ is a β-bounded
Gaussian distribution for random sampling.

Proof. We denote the encryptions of two messages m1 and m2 by C1(y) and
C2(y). Then we want the noise of the ciphertexts after an addition or a multi-
plication to be smaller than q/2 so that it can be correctly decrypted.

Addition. Set C(y) = C1(y) +C2(y). Dropping y from the notation, we have

C =
(∑

p(φ)r1(φ) +m1(φ)
)

+
(∑

p(φ)r2(φ) +m2(φ)
)
.

Apply ψ(x) as the first step of the decryption:

C(ψ) =
(∑

p(φ(ψ))r1(φ(ψ)) +m1(φ(ψ))
)

+
(∑

p(φ(ψ))r2(φ(ψ)) +m2(φ(ψ))
)
,

C(x) =
(∑

p(x)r1(x) +m1(x)
)

+
(∑

p(x)r2(x) +m2(x)
)
.

Then the infinity norm of C(x) is

‖C(x)‖∞ = 2sβ′.

Multiplication. As with addition, we compute:

C =
(∑

p(φ)r1(φ) +m1(φ)
)
·
(∑

p(φ)r2(φ) +m2(φ)
)

=
∑

p(φ)2r1(φ)r2(φ) +
∑

p(φ)r1(φ)m2(φ)

+
∑

p(φ)r2(φ)m1(φ) +m1(φ)m2(φ).
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We calculate the infinity norm of C(x) using Equation 5,

‖C(x)‖∞ = n
(
(d+ 1)2 + 1

)
(sβ′)2 + 2sβ′.

Multiplicative Level D. For D-level homomorphic operations, we need to

compute the bound of
∥∥(p(x)r(x) +m(x)

)2D∥∥
∞. Since p(x)r(x)�m(x), this

is essentialy equal to
∥∥(p(x)r(x)

)2D∥∥
∞. This gives an error bound equal to

(nd′)2
D−1(sβ′)2

D

with d′ = (d+ 1)2 + 1. We want this noise to be smaller than
q/2, so we impose the inequality

(nd′)2
D−1(sβ′)2

D

< q/2.

Taking the logarithms, we rewrite this as

(2D − 1) log(nd′) + (2D) log(sβ′) < log q − 1

Taking logarithm again yields

D + log(log (nd′) + log(sβ′)) < log(log q + log (nd′)− 1).

We can simplify this inequality by noting that d′ ≈ n2/4, which makes log (nd′) ≈
3 log (n) > log(sB′) and log (q) > 3 log (n). Omitting small terms, we obtain

D < log log q − log (3 log n)

Taking q = 2n
ε

, our upper bound for the multiplicative depth D is O(ε log n).ut

3.2.4 Security Our construction relies on two security assumptions. The first
assumption is the hardness of the Decisional Finite Field Isomorphism problem,
which ensures that small norm elements in X are mapped to random-looking
elements in Y. The mapping function is secret, and an attacker has to find some
way of identifying images of short objects in X in order to break the scheme.
The second assumption is the difficulty of the subset sum problem that is used
to generate encryptions of 0 to add to encryptions of messages. We will choose
s ciphertexts from a list length S, so the pair of parameters (S, s) should give
reasonable combinatorial security, e.g.,

(
S
s

)
> 2256.

We prove the semantic security via the following theorem.

Theorem 1. If there is an algorithm A that breaks the semantic security with
parameter Ξ = {n, q, β} and p(x) = p, i.e., if one inputs of any public keys
(C1, . . . ,Ck), a ciphertext D which encrypts a message m of either 0 or 1,
and A outputs the message m with probability 1/2 + ε for some non-negligible
ε > 0, then there exist another algorithm B that solves the decisional FFI with
parameter {n, q, β/p} with probability 1/2 + ε.
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Proof. First, notice that if the input (C1, . . . ,Ck,D) to algorithm A is invalid
(either D cannot be written as subset sum of Ci, or D does not encrypt 0 or
1), it will either output an error or output 0 or 1 with equal probability. On the
other hand, if the input is valid, it will output the correct m with probability
1/2 + ε.

Now we can use A to build an algorithm B as follows. LetA1, . . . ,Ak,B1,B2

be the input to the decisional FFI problem. Upon receiving those inputs, algo-
rithm A calls algorithm B with a “public key” (pB1, pA2, . . . , pAk) and a ci-
phertext 0. Therefore, if B1 has short images in X, then (pB1, pA2, . . . , pAk) is
a legit public key, while if B1 is uniformly sampled in Zq[x], then the probability

of (pB1, pA2, . . . , pAk) been a legitimate public key is negligible, roughly ( βpq )n.
Notice that 0 is a subset sum of the “public key” regardless if the “public

key” is legitimate or not. So from A’s point of view, 0 is a legit ciphertext
that encrypts 0 if B1 has a short image. Upon receiving those public key and
ciphertext, A will return 0 with probability 1/2 + ε if B1 has a short image. It
will return error or random if B1 doesn’t. Thus B solves the decisional FFI with
probability 1/2 + ε.ut

For completeness sake, we also show that if one can solve the Decisional FFI,
one can also break the semantic security.

Given a ciphertextC with an image c = pr+`m, one can compute p−1C mod
q (assuming p is an integer, say 2) which has a reverse image r + p−1`m. If
m = 0, this quantity will be short. If m = 1, this quantity will be of length
‖p−1` r mod q‖. This is highly probable to be large, as if, say, p = 2, then
‖p−1 mod r mod q‖ will probably be of a size that takes random values mod q
as ` varies.

3.3 From Somewhat Homomorphic to Fully Homomorphic
Encryption

We give the definitions of bootstrappable scheme and weak circular security [17,
18]. Later, we use these two definitions to describe the bootstrapping theorem.

Definition 34 (Bootstrappable Scheme [18]). Let E = (Keygen,Enc,Dec,Eval)
be a C-homomorphic encryption scheme, and let fadd and fmult be the augmented
decryption functions of the scheme defined as

f c1,c2add (sk) = Dec(sk, c1) XOR Dec(sk, c2),

f c1,c2mult (sk) = Dec(sk, c1) AND Dec(sk, c2).

Then we say that E is bootstrappable if {f c1,c2add , f c1,c2mult }c1,c2 ⊆ C, i.e., if E can
homomorphically evaluate fadd and fmult.

Definition 35 (Weak Circular Security [18]). A public-key encryption scheme
E = (Keygen,Enc,Dec) is weakly circular secure if it is IND-CPA secure even
for an adversary with auxiliary information containing encryptions of all secret
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key bits: {Enc(pk, sk[i])}i. In other words, no polynomial-time adversary can dis-
tinguish an encryption of 0 from an encryption of 1, even given this additional
information.

Theorem 2. Let E be a bootstrappable scheme that is also weakly circular se-
cure. Then there exists a fully homomorphic encryption scheme E ′.

In its current construction, our scheme is not bootstrappable, because it
cannot reach the required multiplicative depth for decryption. For de-
tails on the evaluation of the depth of decryption circuit, see Section 3.3.5. The
current scheme is only able to compute circuits with depth ε log(n). In order to
convert our scheme into a bootstrappable one, in the next section we introduce a
multiplication method with better noise management. This helps to significantly
improve the depth of the circuits that the scheme can evaluate.

3.3.1 Regular Multiplication A straightforward multiplication in the SHFF

scheme causes the noise to grow doubly exponentially (nd′)2
D−1(sβ′)2

D

with
respect to the level D. To reduce the growth to singly exponential, we introduce
a multiplication technique similar to the flattening in [21].

In rest of this section for notational simplicity, we drop x and y and represent
elements of X with lowercase letters and elements of Y with uppercase letters,
e.g., r ∈ X and R ∈ Y satisfy r(φ(y)) = R(y). We first consider the product for
two ciphertexts,

C1 =
∑

PR1 +M1 and C2 =
∑

PR2 +M2.

To ease notation we write R =
∑
R. Then

C1 ·C2 = P 2R1R2 + PR1M2 + PR2M1 +M1M2.

Remark 6. Obviously this method creates a significant noise term P 2R1R2 +
PR1M2 + PR2M1. If we map it back to X, the norm of the noise is bounded
by ‖p2s2r2 + 2psr‖ for m ∈ {0, 1}.

We look at the steps more closely. If we expand the second ciphertext C2(y)
and and do not expand C1(y), we obtain

C1 ·C2 = PR2C1 +C1M2.

Here C1M2 gives the desired message product, with the side effect that the
PR2C1 term adds a significant amount of noise. To curb the noise growth, we
have to find a way to evaluate C1M2 while avoiding PR2C1.

3.3.2 Multiplication with Noise Management In this section we explain
the idea behind computing the ciphertext product while avoiding the noisy
PR2C1 term. To achieve this we change the format of the ciphertexts and
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define two ciphertext operands: the Left-Hand-Side (LHS) and the Right-Hand-
Side (RHS).

LHS Operand: The LHS-operand format is simply a matrix formed by bit de-
composition of the ciphertext. We write Ĉ

m

BD for the bit decomposition matrix
of the ciphertext C = PR+M with message m(x). We denote the elements of

the matrix by Ci,j = Ĉ
m

BD[i][j] for 0 < i < n and 0 < j < `. More precisely, in
the matrix, the entry Ci,j denotes the jth bit of the ith coefficient of C. From

this point on, we denote matrices by using a hat on top of the letters, e.g., Ĉ
means that it is a matrix.

RHS Operand: We create an n-by-` matrix Ĉ, where each entry is a ciphertext
that holds the message m with a specific construction. For simplicity we drop
the indices on R, so each R represents a different sample. Then, the entries of
the matrix are computed as

Ĉ
m

[i][j] = PRi,j + 2iψ(φ)jM for 0 ≤ i < n and 0 ≤ j < `.

Note that with each new row, we multiply the message by 2, and for each
new column, we increase the power of ψ(φ). Since y = ψ(φ), this matrix is equal
to

Ĉ
m

[i][j] = PRi,j + 2iyjM for 0 ≤ i < n and 0 ≤ j < `

One-Sided Homomorphic Multiplication: In the first method we use an
LHS operand and an RHS operand to create an LHS operand, i.e., LHS = LHS×
RHS. The homomorphic product is computed by computing a component-wise
product followed by a summation over the products:

〈Ĉ
m1

BD , Ĉ
m2〉 =

∑
i<n

∑
j<`

Ci,j ·
(
PRi,j + 2jyiM2

)
=
∑∑

PRi,j +C1M2

=
∑∑

PRi,j + PR1M2 +M1M2.

If we look more closely, each column in the component-wise product creates
an encrypted version of the coefficients of the ciphertext C1. The result of the
product is a standard FF-Encrypt ciphertext. To continue using the result, we
apply bit decomposition BD to obtain an LHS ciphertext.

An LHS operand can be computed from a regular ciphertext on the fly via
bit-decomposition. An RHS operand must be constructed before it is given to
the cloud/server. This means that the ciphertext size grows by a factor of n` for
RHS operands only.

Remark 7. Noise growth in multiplications is significantly reduced compared to
the earlier method. Using this one-sided multiplication approach and having
fresh ciphertexts on the right-hand side, with flattening we obtain a new noise
bound of n`‖psr‖. Therefore the noise growth is no longer doubly exponential,
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and we can support deep evaluations with reasonably sized parameters as long
as we restrict evaluations to be one sided evaluations. This may be achieved by
expressing the circuit first using NAND gates and then evaluating left to right
similar to GSW.

Remark 8. Another significant contribution is that we eliminate polynomial mul-
tiplications and only perform polynomial additions. This way, the effect of f(x)
is omitted for noise analysis, i.e., it does not have any effect on noise.

Lemma 3. Let n be the polynomial degree, let q = 2n
ε

be the modulus, let
χ = DZn,r be the β-bounded Gaussian distribution, and let D be the multiplicative
level. Then, the proposed One-Sided Homomorphic Multiplication algorithm has
noise bound (2D − 1)(n`+ 1)‖psr‖ = O(2Dn log q) for fixed s and β.

Generic Homomorphic Multiplication: This second method uses two RHS
operands to do multiplication and achieves an RHS product as the result of
the multiplication, i.e., RHS = RHS× RHS. The multiplication is similar to the
multiplication algorithm for LHS and RHS operands. We represent an element
(ciphertext) in the RHS operand matrix as Cm[k][l] (kth row and lth column).
In order to compute all the elements in the matrix we compute the following:

Cm1·m2 [k][l] = 〈Ĉ
m1

BD [k][l], Ĉ
m2〉 =

∑
i<n

∑
j<`

Ci,j [k][l] ·
(
PRi,j + 2jyiM2

)
=
∑∑

PRi,j +C1[k][l]M2

=
∑∑

PRi,j + PR1M2 + 2kylM1M2.

Here we compute an element of the matrix using same approach that we
used for LHS-RHS multiplication. We take an element in the matrix at any
location (k, l) and apply the bit decomposition of that element Cm1

BD [k][l]. Later,
we compute component-wise products, which gives us the ciphertext result at
location (k, l) in the result matrix.

One RHS×RHS multiplication requires n` multiplications of LHS×RHS type.
Also, multiplication does not require one-sided evaluation as in the One-Sided
Homomorphic Multiplication method. Since we can create an RHS operand,
we can evaluate an arbitrary circuit, which gives an advantage over One-Sided
Homomorphic Multiplication.

The noise growth in multiplications is still low, but it accumulates as we
compute depth D multiplication using a binary tree multiplication. This leads
to a worse noise growth compared to LHS-RHS multiplication. But just as in
method 1, we have still eliminated the effect of f(x) on noise.

Lemma 4. Let n be the polynomial degree, let q = 2n
ε

be the modulus, let
χ = DZn,r is the β-bounded Gaussian distribution, and let D be the multiplicative
level. Then, the proposed Generic Homomorphic Multiplication algorithm has
noise bound (n`+ 1)D‖psr‖ = O((n log q)D) for fixed s and β.
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3.3.3 Leveled Homomorphic Public Key Scheme Instantiation We
construct a leveled homomorphic scheme using the noise management technique
described above and the SHFF-PKscheme. Here we list the primitive functions
of the Leveled Homomorphic Public Key scheme:

– LHFF-PK.Keygen(1κ):
• Compute SHFF-PK.Keygen(1κ).

– LHFF-PK.Enc(S,m):
• We form n by ` ciphertext matrix Ĉ by computing its elements
C(y)[i][j] = SHFF− PK.Enc(S, 2iψjm) for i < ` and j < n.

• Output Ĉ as the ciphertext.
– LHFF-PK.Dec(f ,ψ, Ĉ):
• Compute SHFF-PK.Dec(f ,ψ,C[0][0]).

– LHFF-PK.Eval(C, Ĉ1, Ĉ2, . . . , Ĉ`):

• We follow a similar approach to that we used in SHFF-SK. We show
that the homomorphic properties are preserved under the binary circuit
evaluation with gates {+,×}. This proves that any circuit C can be
evaluated using two gates with two binary inputs.

Homomorphic Addition (+). Homomorphic addition of two ciphertext ma-
trices Ĉ1 and Ĉ2 is evaluated by performing a matrix addition,

Ĉ = Ĉ1 + Ĉ2.

Namely, we compute the elements of the ciphertext matrix at each location (k, l)
by computing

C(y)[k][l] = C1(y)[k][l] +C2(y)[k][l] (mod F (y)).

The summation at each location preserves the ciphertext matrix property,

C[k][l] = (PR1 + 2kylM1) + (PR2 + 2kylM2),

which simplifies to

C[k][l] = P (R1 +R2) + 2kyl(M1 +M2).

This shows that the ciphertext property of the matrix holds. Also, the first
element C[0][0] is decryptable and gives us the result of the summation.

Homomorphic Multiplication (×). Homomorphic multiplication is evalu-
ated using the multiplication method that is explained in Section 3.3.2. A ma-
trix ciphertext multiplication preserves its format, which allows it to continue
the homomorphic process. This may be sees by comparing the format of a fresh
ciphertext and a product of ciphertexts. First we recall the format of an element
of a fresh ciphertext:

Cm1 [k][l] = PR1 + 2kylM1
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Next we recall the result of multiplication using multiplication method 2:

Cm1·m2 [k][l] = 〈Ĉ
m1

BD [k][l], Ĉ
m2〉

=
∑∑

PRi,j + PR1M2 + 2kylM1M2.

When we compare the ciphertext elements, it is clear that in a multiplication,
we preserve the ciphertext matrix format while computing the multiplication,
i.e., 2kylM1M2. Also, in order to decrypt successfully, we need only decrypt
the first element C[0][0] of the matrix .

Multiplicative Level D. We capture the multiplicative depth of the leveled
homomorphic scheme as follows.

Lemma 5. The encryption scheme

ELH{LHFF− PK.KeyGen, LHFF− PK.Enc, LHFF− PK.Dec, LHFF− PK.Eval}

described above is leveled homomorphic for circuits having depth D = O(nε/log n)
where q = 2n

ε

with ε ∈ (0, 1), and χ is a β-bounded Gaussian distribution for
random sampling.

Proof. In order to determine an upper bound for depthD, we use the noise bound
that is calculated in Section 3.3.2. The noise has a bound (n log q + 1)D‖pr‖,
which is equal to (n log q + 1)D(sβ′). We require that this be smaller than q/2,
which gives an upper bound for multiplicative level D in the form

(n log q + 1)D(sβ′) < q/2.

Taking the logarithm of both sides gives

D log (n log q + 1) + log (sβ′) < log q − 1.

Since 1� n log q, we can rewrite this inequality as

D <
log q − 1− log (sβ′)

log n+ log log q
.

Using q = 2n
ε

yields

D <
nε − 1− log (sβ′)

log n+ ε log n
.

In big-O notation, this gives an upper bound of the form O(nε/log n).ut

3.3.4 Security The construction of the leveled homomorphic encryption is
based on the Somewhat Homomorphic Finite Field Encryption scheme. Since
there is not any significant change that affects the security, the leveled version
of our construction is based on the same security assumptions as SHFF-PK: the
hardness of the Decisional FFI and the subset sum problems.
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Lemma 6. Let n be the polynomial degree, let q = 2n
ε

be the modulus, and let
χ = DZn,r be a Gaussian distribution. Then, the proposed leveled homomorphic
encryption scheme

ELH{LHFF− PK.KeyGen, LHFF− PK.Enc, LHFF− PK.Dec, LHFF− PK.Eval}

is secure under the assumptions of hardness of the Decisional Finite Field Iso-
morphism problem and the subset sum problem.

3.3.5 Bootstrapping In order to demonstrate that E is fully homomor-
phic, we show that the depth of the decryption circuit can be homomorphically
achieved by our scheme. First we look at the depth of the decryption circuit.

Decryption Circuit Depth. We recall that decryption is given by evaluating

c′(x) = C(ψ(x)) (mod p(x),f(x)).

Denoting the coefficients of C(y) by ζi, this can be expanded as

c′(x) = ζ0 + ζ1ψ(x) + ζ2ψ(x)2 + . . . ζn−1ψ(x)n−1 (mod f(x),p(x)).

Modular reduction by f(x) can be avoided by pre-computing ψ′(i)(x) = ψ(x)i

(mod f(x)). This turns decryption into summation of polynomials are multiplied
by scalars,

c′(x) =
∑
i<n

ζiψ
′(i)(x).

Let c′j be the coefficients of the result c′(x). Then each coefficient is evaluated
by computing

c′j =
∑
i<n

ζiψ
′(i)
j

where ψ
′(i)
j denotes the jth coefficient of ψ′(i).

In [7, Lemma 4.5] the authors prove that evaluating the sum of n elements
with log q bits results in circuit depth O(log n+ log log q). They also show that
they can do modular reduction mod q with circuit depthO(log n+log log q). Since
p(x) is small, say p(x) = 2, we can perform modular reduction mod p by taking
the first bit, which does not require any circuit. Therefore, the bootstrapping
operation has an upper bound O(log n+ log log q).

Theorem 3. Let χ is a β-bounded distribution for β = poly(n), and let q = 2n
ε

for 0 < ε < 1. Then there exists a fully homomorphic encryption scheme based
on the the leveled homomorphic encryption scheme E = LHFF-PK with the as-
sumptions that scheme is secure under the Decisional Finite Field Isomorphism
Problem and that it is weakly circular secure.

Proof. The decryption circuit requires O(log n+log log q) depth, and our scheme
can compute O(nε/log n) depth circuits (Lemma 5). Therefore, the following
inequality is sufficient in order to be bootstrappable:

Υ (log n+ log log q) < nε/log n
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where Υ > 0 is used to capture the constants in the circuit. Since 0 < ε < 1, in
worst case scenario we obtain 2Υ < log q/ log2 n. ut

4 Conclusion

In this work we proposed a new conjectured hard problem: the finite field isomor-
phism problem. Informally, the FFI problem asks one to construct an explicit
isomorphism between two representations of a finite field, given only access to
long (large norm) representations of field elements and the assurance of the ex-
istence of a representation where each of these elements has a short (low norm)
expression. We formalized the FFI problem and study the effectiveness of var-
ious approaches, including lattice attacks and non-lattice algebraic techniques,
for recovering the secret isomorphism.

Relying on the assumed hardness of the decisional-FFI problem, we first
presented a secret-key somewhat homomorphic encryption scheme. This was
extended, using a subset-sum problem technique, to a public-key scheme. We
briefly analyze the noise performance of both schemes and introduced a bit-
decomposition-based noise managements scheme that allows us to reduce the
noise growth to single exponential. This yielded a bootstrapable, and thus a
fully homomorphic encryption scheme.
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A Constructing the Inverse Isomorphism

The map defined by x 7→ φ(y) is a field isomorphism. It follows that there is an
inverse isomorphism, and that inverse isomorphism is determined by the image
of y. So we write the inverse isomorphism as

y 7−→ ψ(x) =

n−1∑
i=0

cix
i, (6)

and our goal is to determine the ci coefficients. We know that the composition

y 7−→ ψ(x) 7−→ ψ
(
φ(y)

)
gives an automorphism of Fq[y]/(F (y)), so

ψ
(
φ(y)

)
≡ y (mod F (y)). (7)

Hence it suffices to determine the (unique) polynomial ψ(x) of degree less than n
satisfying (7). Using the expression (6) for ψ(x), we want to find ci so that

n−1∑
i=0

ciφ(y)i ≡ y (mod F (y)).

We write each power φ(y)i modulo F (y) as a polyomial of degree less than n.
In other words, we use the known values of φ(y) and F (y) to write

φ(y)i =

n−1∑
j=0

aijy
j (mod F (y)) for 0 ≤ i < n.
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Substituting this into ψ
(
φ(y)

)
yields

ψ
(
φ(y)

)
=

n−1∑
i=0

ciφ(y)i

≡
n−1∑
i=0

ci

n−1∑
j=0

aijy
j (mod F (y))

≡
n−1∑
j=0

(
n−1∑
i=0

aijci

)
yj (mod F (y)).

Hence ψ will satisfy (7) if we choose c0, . . . , cn−1 to satisfy

n−1∑
i=0

aijci =

{
1 if j = 1,

0 if j 6= 1.

This is a system of n equations for the n variables c0, . . . , cn−1 over the finite
field Fq, hence is easy to solve, which gives the desired polynomial ψ(y) satisfy-
ing (7)

B Analysing the High Dimensional Lattice

We have
dimL(C, q) = kn.

We use the notation Eij for a matrix (of the appropriate dimensions) with a 1
in the ij-entry and 0 elsewhere. In order to compute (estimate) the determinant,
we take the images of each of the n2 + kn basis matrices in Eij ∈ Z(n+k)×n and
write these as linear combinations of the kn basis matrices Eij ∈ Zk×n. Thus

Eij 7−→ (C qI)Eij = (0 0 · · · 0 ∗ 0 · · · 0),

where ∗ denotes the i’th column of (C qI), which now occupies the j’th
column in the image space. In other words, if we write the columns of C
as (c′0 c

′
1 · · · c′n−1) and let e1, . . . , ek be the standard basis vectors in Zk,

then

(C qI)Eij = (0 · · · 0
j
↓
v 0 · · ·0) with v =

{
c′i if 1 ≤ i ≤ n,

qei−n if n < i ≤ n+ k.

In particular, we have

(C qI)Eij = qEi−n,j for all 0 ≤ j < n and all n < i ≤ n+ k.

So among the n2 +kn matrices that we know span L(C, q), there are nk of them
that are q times a basis matrix.
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We now view matrices in Zk×n as simply being vectors of dimension kn.
Then L(C, q) is the row span of a (n2 + kn)-by-kn matrix, so its determinant
is the gcd of the kn-by-kn minors of that matrix. But from our computation,
the bottom kn-by-kn block of this matrix is q times the identity matrix. In
other words, the determinant of L(C, q) is the gcd of the kn-by-kn minors of a
(n2 + kn)-by-kn matrix of the form(

∗
qIkn

)
,

where the top block is n2-by-kn and the bottom block is kn-by-kn. Now any kn-
by-kn block must include at least kn − n2 rows from the bottom block, hence
its determinant will be divisible by qkn−n

2

. (This assumes that k ≥ n.) We have
proven that

qkn−n
2 ∣∣ DetL(C, q).

(In practice, they are likely to be equal, or differ by a very small factor.) The
Gaussian expected norm of the smallest vector in a lattice L is

γ = γ(L) =
√

dimL/πe(DetL)1/ dimL,

so for L(C, q) we have

γ = γ(C, q) ≈
√
kn/πeq1−n/k.

On the other hand, the coordinates of the plaintexts are random numbers mod-
ulo p, and the matrix M has n2 + kn entries, so its Euclidean norm is roughly

‖M‖ ≈
√
n2 + kn · p

3
.

Hence the root Hermite ratio is(
γ

‖M‖

)1/kn

≈

(√
1

1 + n/k

q1−n/k

p

)1/kn

.

So taking (say) k = 2n, the root Hermite ratio is roughly (p−1
√
q)1/2n

2

. So if
(say) n ≥ 100, even quite a large value of q yields a tiny root Hermite ratio,
making a lattice attack infeasible. For example, if we take n = 100 and p = 1,
then we achieve a root Hermite ratio smaller than 1.001 provided q < 1017.
(Currently a Hermite ratio smaller than 1.006 appears to achieve reasonable
security; cf. [8].)

Remark 9. One might make the more conservative assumption that the attacker
knows a large number of plaintext/ciphertext pairs{

(m1, c1), . . . , (mk, ck)
}
,

where
m′ = pr +m.
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(Of course we must assume that the attackers does not know the random quan-
tities ri that were used for encryption.) Letting R = (rij) and M = (mij), we
have

M ′ = pR+M ,

so the matrix equation (2) becomes

C = pRA+MA (mod q).

In this formula, the attacker knows C and M , and she knows that R is small.
So she can set up a closest vector problem to find R. The net effect is ‖R‖ ≈
‖M ′‖/p, so the target vector becomes smaller, leading to a root Hermite ratio
of roughly (

√
q)1/kn, rather than (p−1

√
q)1/kn.

C A Non-Linear Attack

It is possible to use multiplication and reduction modulo F (y) in Y to set up an
attack in which one has to find small solutions to certain non-linear equations.
Such problems appear to be completely infeasible, which we illustrate with a toy
example with n = 3.

The attacker knows the polynomials

c′(y) = c′0 + c′1y + c′2y
2, c′′(y) = c′′0 + c′′1y + c′′2y

2, h(y) = y2 + h0y + h1.

To make life easier, we take h(y) = y3 + y + 1. The attacker tries to find the
small polynomials

m′(x) = m′0 +m′1x+m′2x
2 and m′′(x) = m′′0 +m′′1x+m′′2x

2

by eliminating the polynomial φ(y) = φ0 + φ1y + φ2y
2 from the congruences

c′0 + c′1y + c′2y
2 ≡ m′0 +m′1(φ0 + φ1y + φ2y

2) +m′2(φ0 + φ1y + φ2y
2)2

(mod y3 + y + 1),

c′′0 + c′′1y + c′′2y
2 ≡ m′′0 +m′′1(φ0 + φ1y + φ2y

2) +m′′2(φ0 + φ1y + φ2y
2)2

(mod y3 + y + 1).

Expanding and reducing modulo y3 + y + 1, we find that

c′0 + c′1y + c′2y
2 = (m′2φ

2
0 +m′1φ0 − 2m′2φ2φ1 +m′0)

+ (2m′2φ1φ0 − 2m′2φ2φ1 +m′1φ1 −m′2φ22)y

+ (2m′2φ2φ0 +m′2φ
2
1 −m′2φ22 +m′1φ2)y2,
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and similarly for c′′. So we get 6 equations

m′2φ
2
0 +m′1φ0 − 2m′2φ2φ1 +m′0 = c′0

2m′2φ1φ0 − 2m′2φ2φ1 +m′1φ1 −m′2φ22 = c′1

2m′2φ2φ0 +m′2φ
2
1 −m′2φ22 +m′1φ2 = c′2

m′′2φ
2
0 +m′′1φ0 − 2m′′2φ2φ1 +m′′0 = c′′0

2m′′2φ1φ0 − 2m′′2φ2φ1 +m′′1φ1 −m′′2φ22 = c′′1

2m′′2φ2φ0 +m′′2φ
2
1 −m′′2φ22 +m′′1φ2 = c′′2

in the 9 variables m′0,m
′
1,m

′
2,m

′′
0 ,m

′′
1 ,m

′′
2 , φ0, φ1, φ2. These equations are linear

in the small variables m′i and m′′i , but are non-linear in the large variables φi
that need to be eliminated. Eliminating the large variables, we are left with
three highly non-linear polyomials in the six unknowns m′i,m

′′
i . In other words,

we need to find points with small coordinates on a 3-dimensional variety sitting
in 6-dimensional space.

To investigate further, we computed an explicit example. We worked over F11

and took (c′0, c
′
1, c
′
2, c
′′
0 , c
′′
1 , c
′′
2) = (1, 2, 3, 4, 5, 6). We use the Grobner-basis routine

in Magma [4] to eliminate φ0, φ1, φ2 from the 6 equations. The resulting equations
for the 6 variables m′i,m

′′
i covered more then two pages of small type and had

no discernable structure.

D Size of the Remainder

In this section we investigate the size of the coefficients of the remainder when
a polynomial b(x) is divided by some other polynomial f(x), and in particular,
how the coefficients of the remainder depend on the magnitude of the roots
of f(x).

What follows is a rigorous analysis of how the spread of the coefficient range
is very dependent on the size of the largest complex root of f(x). These roots
will in general be considerably smaller if there is a large gap between the leading
coefficient of highest degree, and the non-zero coefficient of highest degree below
the leading coefficient.

Fix integers m ≥ n > 0. Fix a polynomial

f(x) =

n∏
i=1

(x− θi) ∈ C[x].

Let

b(x) =

m−1∑
i=0

bix
i

be chosen with each bi satisfying some probability distribution. Different coeffi-
cients may have different distributions, but we assume that they are independent
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and have mean 0, which implies that5

E(bibj) = E(bi)E(bj) = 0 if i 6= j,

while the numbers E(b2i ) depend on the distributions satisfied by the various bi.
We perform division with remainder,

b(x) = f(x)q(x) + r(x) with 0 ≤ deg r < n.

As usual, we view the polynomials as vectors,

b = (b0, . . . , bm) and r = (b0, . . . , bn).

We let V denote the vanderMonde matrix of the θi’s,

V = (θji )1≤i≤n
0≤j<n

=


1 θ1 · · · θn−11

1 θ2 · · · θn−12
...

. . .
...

1 θn · · · θn−1n

 ,

and we set

θ(j) =


θj1
θj2
...
θjn

 .

Then we set

b(θ) =


b(θ1)
b(θ2)

...
b(θn)

 =

m−1∑
j=0

bjθ
(j),

and similarly for r(θ).
We take the relation b(x) = f(x)q(x) + r(x) and substitute x = θ1, . . . , θn.

Since f(θi) = 0, this gives

r(θi) = b(θi) for all 1 ≤ i ≤ n.

With our earlier notation, this is simply the equality of vectors

r(θ) = b(θ).

5 In practice, our b(x) will be a product of plaintexts, so it will be a product of t
polynomials whose coefficients are independent and more-or-less uniform in some
interval. This means that the coefficients of b(x) each satisfy some sort of t-fold
hypergeometric distribution, but note that the middle coefficients will be much larger
than the ones near the top and the bottom. That is why we allow the coefficients of
our b to have different distributions.
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Now we observe that since r has degree at most n− 1, we can write r(θ) as

r(θ) =

n−1∑
j=0

rjθ
(j) = V r.

Hence
r = V −1b(θ).

We now compute the expected value of ‖r‖2 as b(x) varies.

E
(
‖r‖2

)
= E

(
‖V −1b(θ)‖2

)
(8)

= E
(
tb(θ)tV −1V −1b(θ)

)
= E

m−1∑
j,k=0

bk
tθ(k)tV −1V −1bjθ

(j)


=

m−1∑
j,k=0

E (bkbj)
tθ(k)tV −1V −1θ(j)

=

m−1∑
j=0

E(b2j )
tθ(j)tV −1V −1θ(j)

=

m−1∑
j=0

E(b2j )
∥∥∥V −1θ(j)∥∥∥2 .

This last formula explains what’s going on. If we assume that f(x) is fixed
and that deg b(x) is large compared to n = deg f(x), then we obtain the rough,
but useful, estimate

E
(
‖r‖2

)
� max

0≤j<m

(
E(b2j ) · max

1≤i≤n
|θi|j

)
.

Which term dominates will depend on the relative size of E(b2j ) and max |θi|j
for 0 ≤ j < m.

In our scenario, we have b(x) = a1(x) · · ·at(x) with degai ≈ n, so m ≈ nt.
The coefficients of the ai are uniform and small, so most of the coefficients of b
are roughly Ct. Then E

(
‖r‖2

)
is roughly Ct max |θi|nt. So in order for decryption

to work, we need roughly

q >
(
C max |θi|n

)t
.

As expected, we get exponential growth in t. But this shows very clearly how
the largest root of f(x) has a major influence on the required size of q.

Definition 2. Let f(x) ∈ C[x] be a monic polynomial and let θ1, . . . , θn be the
roots of f . We let

M(f) = max
1≤i≤n

|θi|.
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Example 1. Experiments clearly reveal the effect of the size of the roots of f(x).
We fixed an f(x) of degree 11, chose 100 polynomials g(x) of degree 32 with
random coefficients in [−2, 2] and computed the largest coefficients of g(x) mod-
ulo f(x). We used the polynomials

f1(x) = x11 − x10 + x9 + x6 − x5 + x2 − x− 1

f2(x) = x11 + x10 + x5 − x4 + x3 − x2 − x− 1

f3(x) = x11 − x10 + x7 + x6 + x5 − x3 − x2 − 1.

Then

f M(f) Avg |g mod f |∞ St.Dev. |g mod f |∞
f1 1.1835 43.420 16.226
f2 1.3511 352.250 191.452
f3 1.4307 1167.720 666.196

Example 2. We now consider if there is an advantage in taking the non-zero
coefficients of f(x) to be in the lower degree terms. So we take f(x) to have the
form

f(x) = xn + f̃(x),

where f̃(x) is random trinary of small degree. Simple estimates make it clear
that such polynomials tend to have smaller roots than polynomials whose non-
zero monomials have higher degree. In order to compare with the experiments
in Example 1, we took polynomials f(x) of degree 11 with non-zero coefficients
only on monomials of degree at most 4, more precisely, we took

f(x) = x11 + a4x
4 + a3x

3 + a2x
2 + a1x− 1

with the ai randomly chosen from {±1}. The polynomial

f4(x) = x11 − x4 + x3 − x2 + x− 1

has
M(f4) = 1.18225,

so M(f4) is comparable to M(f1) for the f1(x) in Example 1. For f4 and 100
samples, we found

Avg |g mod f4|∞ = 28.450 and St.Dev. |g mod f4|∞ = 15.658.

These may be compared with the roughly similar values 43.4 and 16.2 for f1. A
likely reason for the difference is due to secondary effects due to the other roots.
Thus the magnitudes of the roots of f1 are

1.18, 1.18, 1.15, 1.15, 1.08, 1.08, 1.00, 1.00, 0.890, 0.890, 0.578,

while the magnitudes of the roots of f4 are

1.18, 1.18, 1.00, 1.00, 1.00, 1.00, 1.00, 0.953, 0.953, 0.888, 0.888.
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So the second largest root of f1 is significantly larger than the second largest
root of f4.

As the formula (8) makes clear, the size of the inverse of the vanderMonde
matrix Vf also has an effect. We list the sup norm and the spectral radius of V −1f

for our two example polynomials.

f1 f4

Spectral Radius of V −1f 7.766 5.522

Sup Norm of V −1f 0.666 0.263

We note that the remainder coefficients for division by f1 and f4 resemble
one another much more closely than do the remainder coefficients for division
by f2 or f3. This suggests that it is not so much the distribution of non-zero
monomials that affects the remainder coefficients as it is the size of the roots
of f . However, if one desires to find an f with comparatively small roots, it is
definitely advantageous to select f with non-zero monomials only in the lower
degree terms.

E Noise Analysis

To estimate the noise, we need to find the effect of modular reduction reduction
operation (with f(x)) on the norm. One way is to use Barrett’s Reduction algo-
rithm. In Barrett’s algorithm, a precomputed factor M(x) = x2n/f(x) plays a
key role in estimating the quotient of the division with the modulus. Therefore,
determining M(x) will give us the main contributing factor to the noise level.
Our goal is to bound the norm of the factor M(x) as tightly as possible. We
start by rearranging M(x)

M(x) =
⌊
x2n/f(x)

⌋
=

⌊
x2n

xn + f ′(x)

⌋
=

⌊
xn

1 + f ′(x)
xn

⌋

Note that deg(f ′(x)) < n and the floor operator simply truncates the polynomial
beyond the constant term. This allows us to write the Taylor Series expansion
(polynomial equivalent for 1/(1 + x)) as follows

M(x) =

⌊
xn[1− f

′(x)

xn
+
f ′(x)2

x2n
− f

′(x)3

x3n
+ · · · ]

⌋
=

⌊
xn +

i=∑̀
i=1

(−1)i
f ′(x)i

x(i−1)n

⌋

Set d = deg(f ′(x)). Then, each element in the series contributes up to a poly-
nomial degree in the summation. The table below shows the terms and their
degrees in Taylor Series expansion. Note that the degrees actually decrease
d > 2d− n > 3d− 2n > · · · > 0 with each additional expansion term.
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i f ′(x)i

x(i−1)n degree

1 f ′(x) d cdx
d + cd−1x

d−1 + cd−2x
d−2 + · · ·+ c1x

1 + c0
2 f ′(x)2/xn 2d− n c2d−nx

2d−n + c2d−n−1x
2d−n−1 + · · ·+ c1x

1 + c0
3 f ′(x)3/x2n 3d− 2n c3d−2nx

3d−2n + c3d−2n−1x
3d−2n−1 + · · ·+ c1x

1 + c0

It is important to notice that since n > d each term in the expansion of M(x)
the degree is bounded by d (except of course the xn term. Therefore

deg(M(x)− xn) ≤ d .

In the series expansion a power f ′(x)i contributes to the series as long as

(i− 1)n ≤ id .

For larger i values the new additive term is simply truncated away, i.e. has no
effect on M(x). Therefore in the summation we only need to consider up to a
degree ` which is determined as follows

` = bn/(n− d)c .

In the special case of d < n/2 we have ` = 1 and M(x) = 1 − f ′(x) and
βM = βf . In the general case, to bound the norm of M(x), we have to find the
largest possible value for each term in the expansion. Assume that we sample
f ′(x) from a β-bounded distribution. We first assume β = 1 and later generalize
the worst and average case bounds to cover arbitrary β values.

E.1 Worst Case Analysis

For clarity we first consider the first few terms in the expansion and then gen-
eralize the contribution to an arbitrary term:

– f’(x): Since this is a fresh polynomial, the coefficients are sampled from a
β-bounded distribution. For β = 1 in the worst case all coefficients are set
to 1, i.e. f ′(x) = xd + xd−1 + xd−2 + · · · + x1 + 1. Therefore, the largest
coefficient is bounded by β = 1.

– f’(x)
2
/xn: Assume we compute the square of f ′(x) using as schoolbook

multiplication. It is easy to see that starting from the middle degree d, the
coefficients of the result decrease as we go to lower and higher degrees. In
other words, the coefficients of f ′(x)2 are symmetric around the middle
degree. Since β = 1, we can write the polynomial as x2d+2x2d−1 +3x2d−2 +
· · ·+(d+1)xd+ · · ·+2x+1. The division by xn eliminates the first n terms.
This results in following polynomial x2d−n + 2x2d−n−1 + 3x2d−n−2 + · · · +
(2d− n+ 1)x0. Since d < n then 2d− n < d and thus the largest coefficient
is the constant coefficient with value (2d− n+ 1).

– f’(x)
3
/x2n: We write f ′(x)

3
= f ′(x)

2 · f ′(x). Since f ′(x) = xd + xd−1 +
xd−2 + · · ·+ x1 + 1, we can think f ′(x)3 as the addition of shifted versions
of f ′(x)2. Although we are adding the shifted versions of f ′(x)2, the largest
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coefficient of f ′(x)2 does not have any effect. The reason is that only the
highest degree 3d− 2n+ 1 coefficients of f ′(x)3 survive after the division by
x2n. Therefore, the largest coefficient coming from f ′(x)2 is one of the highest
degree 3d− 2n+ 1 coefficients. When we continue iterating recursively, the
last 3d− 2n+ 1 coefficients of f ′(x)2 are determined by the last 3d− 2n+ 1
coefficients of f ′(x). This recursive approach gives us an upper bound for
the largest value as (3d− 2n− 1)2 for f ′(x)3/x2n.

– f’(x)
i
/x(i−1)n: We are now ready to generalize the approach to find the

largest coefficient for a degree i. When computing f ′(x)i = f ′(x)i−1 · f ′(x)
since it is divided by x(i−1)n, we only use the last id−(i−1)n+1 coefficients
of f ′(x)i−1. We multiply f ′(x)i−1 with each coefficient of f ′(x) and only take
the last id− (i− 1)n+ 1 coefficients. If βi−1 = max(f ′(x)i−1), then we add
id− (i− 1)n+ 1 of Bi−1 · β which makes the upper bound (id− (i− 1)n+
1) · βi−1 · β. If we apply this recursively to compute for previous values of i,
we achieve an upper bound (id− (i− 1)n+ 1)i−1 for β = 1.

E.2 Worst Case for Arbitrary β

f ’(x)
i
/x(i−1)n. We use the general formula as explained in the section above.

For the current i we have (id− (i−1)n+1) ·βi−1 ·β as the upper bound. For any
β, recursively we have βi so the upper bound will be (id− (i− 1)n+ 1)i−1 · βi.
The overall bound on M(x) is therefore

BM = ||M(x)|| ≤
∑

i=1,..,`

(id− (i− 1)n+ 1)i−1βi

where B0 = β and as established before ` = bn/(n − d)c. Our goal is to
bound the norm ||a(x)b(x) mod f(x)|| using Barrett Reduction. We assume both
||a(x)||, ||b(x)|| ≤ β and deg(f(x)) = n. We compute the worst case noise bound
using the following steps:

– Step 1. ComputeM(x) =
⌊
x2n/f(x)

⌋
(M(x) is the quotient of the division).

Also assume ||M(x)|| = βM .
– Step 2. Compute regular product c(x) = a(x)b(x). ||c(x)|| = nβ2.
– Step 3. Estimate quotient of c(x)/f(x) (dropping (x) for brevity)
q1 = bc/xnc. Since we take half of c, worst case noise still remains: ||q1|| =
nβ2.
q2 = Mq1. This yields ||q2|| = (d+ 1) · βM · nβ2 = n(d+ 1)βMβ

2

q3 = bq2/xnc. Worst case noise remains the same as q2: ||q3|| = n(d+1)βMβ
2

– Step 4. Fix the result using the lower half of c(x)
r1 = c mod xn, thus ||r1|| = nβ2,
r2 = q3f mod xn ||r2|| = n·(d+1)2βMβ

2 ·βf , where we choose ||f(x)|| = βf .

r = r1 − r2 = a(x)b(x) mod f(x). This gives us an overall bound of

||a(x)b(x) mod f(x)|| ≤ nβ2 + n(d+ 1)2β2βMβf
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For d < n/2 and βf = 1, we have βM = 1 and the worst case norm simplifies to

||a(x)b(x) mod f(x)|| ≤ n[(d+ 1)2 + 1]β2

In the average case the noise norm can be approximated by

||a(x)b(x) mod f(x)||avg ≈ n1/2β2 + n1/2(d+ 1)β2βMβf

F Sample parameters and their security estimates

In Table 1 we present some parameters for the somewhat homomorphic en-
cryption scheme. The proposed parameter set does not take into account our
noise management technique. We computes the levels (circuit depth) by doing
straightforward multiplications. In all 5 examples, we choose β = 2 and d = n/2
(recall that d is the degree of f ′(x) where f(x) = xn + f ′(x)). For each level we
give a noise estimate and also give a maximum selectable q size.

Level n lognoise logmax(q) Ciphertext Size root of Ratio BKZ 2.0 cost

1 256 13 15 0.4 KB 1.0060 > 2145

2 2048 50 83 12.5 KB 1.0065 > 2135

3 4096 127 161 63.5 KB 1.0066 > 2136

4 8192 293 317 293 KB 1.0066 > 2137

5 32768 698 1250 2.7 MB 1.0066 > 2139

Table 1: Sample parameters for somewhat homomorphic encryption

Target Root Hermite Factor 1.01 1.009 1.008 1.007 1.006

Approximate Block Size 85 106 133 168 216

Table 2: Requried Blocksize for target root Hermite factor [8]

block size b 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

LogNodes(b) 39 44 49 54 60 66 72 78 84 96 99 105 111 120 127 134

Table 3: Upper bounds on log2 number of nodes enumerated in one call to
enumeration subroutine of BKZ 2.0 [8].

To estimate the cost of BKZ 2.0, we follow the cryptanalysis in [2, 23]. We
use Table 2 and 3 to estimate the block size and the number of nodes for a
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given root Hermite factor. Then we use the following formula ([23], which is an
interpolation of data reported in [8] to get the cost of BKZ 2.0).

BKZCost(dim, b, rounds) = LogNodes(b) + log2(dimension · rounds) + 7.

G Testing Results for Observation 2

We test the soundness of Observation 2 as follows:

– We setup toy size isomorphisms with n ∈ {20, 30, 40, 80} and q ∈ {1031, 2053, 220+
7}.

– For each test we generate a long transcript of elements in X and Y;
– We examine the distribution of the coefficients in Y and compare it with

uniform distribution;
– We show that the Renyi divergence between our distribution and a uniform

distribution scales properly with log2(q/n).

Two example distribution of the coefficients are shown in Figure 1. We com-
pute the Renyi divergence with α = 2. Our results shows that our distribution is
less than 2−14 away from a uniform distribution for out toy example with n = 20
and q = 1031.
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Fig. 1: Testing results for Observation 2

We summarize the testing result in Table 4. As one can see the exponent of
the divergence is linear in log2(q/n). We estimate that for moderate n ≈ q the
divergence is around 2−11.
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q n = 20 n = 30 n = 40 n = 80

1031 2−14.3 2−14.8 2−15.3 2−16.2

2053 2−13.3 2−13.9 2−14.3 2−15.3

220+7 2−4.3 2−4.8 2−5.3 2−6.2

Table 4: Renyi Divergence
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