
Snarky Signatures:
Minimal Signatures of Knowledge from

Simulation-Extractable SNARKs

Jens Groth? and Mary Maller??

University College London
{j.groth, mary.maller.15}@ucl.ac.uk

Abstract. We construct a pairing based simulation-extractable SNARK
(SE-SNARK) that consists of only 3 group elements and has highly
efficient verification. By formally linking SE-SNARKs to signatures of
knowledge, we then obtain a succinct signature of knowledge consisting
of only 3 group elements.
SE-SNARKs enable a prover to give a proof that they know a witness
to an instance in a manner which is: (1) succinct - proofs are short
and verifier computation is small; (2) zero-knowledge - proofs do not
reveal the witness; (3) simulation-extractable - it is only possible to prove
instances to which you know a witness, even when you have already seen
a number of simulated proofs.
We also prove that any pairing based signature of knowledge or SE-
NIZK argument must have at least 3 group elements and 2 verification
equations. Since our constructions match these lower bounds, we have
the smallest size signature of knowledge and the smallest size SE-SNARK
possible.

1 Introduction

Non-Interactive Zero-Knowledge (NIZK) arguments enable a prover to convince
a verifier that they know a witness to an instance being member of a language
in NP, whilst revealing no information about this witness. Recent works have
looked into building NIZK arguments that are efficient enough to use in scenarios
where a large number of proofs need to be stored and where verifiers have limited
computational resources. Such arguments are called succinct NIZK arguments,
or zk-SNARKs (zero-knowledge Succinct Non-interactive Arguments of Knowl-
edge). A weakness of zk-SNARKs is that they are, currently without exception,
susceptible to man-in-the-middle attacks. As a result, any application intending
to use zk-SNARKs has to take additional measures to ensure security e.g. sign-
ing the instance and proof. Conversely, schemes that do not require succinctness
can take advantage of a primitive called Signatures of Knowledge (SoKs).

? The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 307937

?? Supported by a scholarship from Microsoft Research

Signatures of knowledge [16, 17] generalise signatures by replacing the public
key with an instance in an NP-language. A signer who holds a witness for the
instance can create signatures, and somebody who does not know a witness for
the instance cannot sign. SoKs should not reveal the witness, since this would
enable others to sign with respect to the same witness. Chase and Lysyanskaya
[17] therefore define signatures of knowledge to be simulatable: if you have a
trapdoor associated with some public parameters, you can simulate the signature
without the witness, and hence the signature cannot be disclosing information
about the witness. Moreover, in the spirit of strong existential unforgeability
for digital signatures, we want it to be the case that even after seeing many
signatures under different instances, it should still not be possible to create a
new signature unless you know a witness. Chase and Lysyanskaya capture this
property through the notion of simulation-extractability where you may obtain
arbitrary simulated signatures, but still not create a new signature not seen
before unless you know the witness for the instance.

Both zk-SNARKs and SoKs are key building blocks in cryptographic appli-
cations, including but not limited to: ring signatures, group signatures, policy
based signatures, cryptocurrencies, anonymous delegatable credentials and di-
rect anonymous attestation [22, 5, 3, 44, 6].

Our contribution. We construct a succinct simulation-extractable NIZK argu-
ment, or an SE-SNARK. Our construction is pairing based. Given three groups
with a bilinear map e : G1 × G2 7→ GT , our proofs consist of only 3 group ele-
ments from the source groups: 2 from G1 and 1 from G2. The proofs also have
fast verification with verifiers needing to check just 2 pairing product equations.

By exploring the link between SoKs and SE-NIZK arguments, we show that
our construction also yields a succinct SoK. We formally define the notions of suc-
cinct SoKs and SE-SNARKs. Then we construct SoKs from SE-NIZK arguments
and collision resistant hash functions, and also prove the reverse implication that
SoKs give rise to SE-NIZK arguments. Our SoK inherits the high efficiency of
the SE-SNARK, in particular that it consists of only 3 group elements.

We also prove a lower bound: a pairing based SE-NIZK argument for a non-
trivial language in NP must have at least 2 verification equations and 3 group
elements. Due to our proof that any pairing based SoK yields a pairing based
SE-NIZK (where the signature size equals the proof size and the number of ver-
ification equations are equal), this lower bound also applies to the signature size
and the number of verification equations in SoKs. Our constructions are therefore
optimal with respect to size and number of verification equations. We note that
the lower bound improves on previous lower bounds on standard NIZK argu-
ments by explicitly taking advantage of the simulation-extractability properties
in the proof.

Our construction of an SE-NIZK argument compares well with the state
of the art pairing based zk-SNARKs. Groth [36] gave a 3 element zk-SNARK,
however, it is not simulation-extractable and it only has a proof of security in
the generic group model. While we pay a price in computational efficiency, our

2

simulation-extractable SNARK matches the size of Groth’s zk-SNARK. We also
get comparable verification complexity and unlike Groth’s zk-SNARK we give
a security proof based on concrete intractability assumptions instead of relying
on the full generic group model. Ben-Sasson, Chiesa, Tromer, and Virza gave
an 8 element zk-SNARK which is also not simulation extractable, however they
do have smaller prover computation [4]. Compared to other pairing based zk-
SNARKs in the literature we have both the simulation-extractability property
and also better efficiency. In Table 1 we give a comparison of our simulation-
extractable SNARK with these prior zk-SNARKs.

Groth BCTV This work

CRS size
m+ 2n+ 3 G1

n+ 3 G2

6m+ n− ` G1

m G2

m+ 4n+ 5 G1

2n+ 3 G2

Proof size 2 G1, 1 G2 7 G1, 1 G2 2 G1, 1 G2

Prover comp.
m+ 3n− `+ 3 E1

n+ 1 E2

6m+ n− ` E1

m E2

m+ 4n− ` E1

2n E2

Verifier comp. ` E1, 3 P ` E1, 12 P ` E1, 5 P

Vfy Eq. 1 5 2
Table 1: Comparison for arithmetic circuit satisfiability with ` element instance, m
wires, n multiplication gates. Since our work uses squarings gates, we have conser-
vatively assumed n multiplication gates translate to 2n squaring gates; if a circuit
natively has many squaring gates our efficiency would therefore improve compared to
Groth and BCTV. Units: G means group elements, E means exponentiations and P
means pairings.

Our construction of a succinct signature of knowledge is the first in any com-
putational model. This reduces the size of the signatures, albeit at the expense
of having more public parameters. For applications where the public parameters
need only be generated once, such as DAA and anonymous cryptocurrencies,
this can be advantageous. A comparison with the most efficient prior signature
of knowledge by Bernhard, Fuchsbauer and Ghadafi [6] is given in Table 2. The
BFG scheme uses standard assumptions, as opposed to ours which uses knowl-
edge extractor assumptions. It is difficult to directly compare computational
efficiency since the languages are different; our work uses arithmetic circuits
whereas the BFG scheme uses satisfiability of a set of pairing product equations.
Therefore, we get better efficiency for arithmetic circuits and they get better
efficiency for pairing product equations. However, what is clear is that we make
big efficiency gains in terms of the signature size and the number of verification
equations.

Techniques and challenges. Standard definitions of signatures of knowl-
edge [17] and simulation-extractable NIZK proofs [34] assume the ability to
encrypt the witness, which can then be decrypted using a secret extraction key.
However, since we are interested in having succinct signatures and proofs, we

3

BFG This work

Public Parameters 10 + λ 8 + 6n+m

Signer Computation. Ω(|w|+ np) m+ 6n

Signature Size O(m+ np) 3

Verification Equations O(np) 2
Table 2: Comparison of signatures of knowledge schemes. We use m and n for the
number of wires and multiplication gates in our arithmetic curcuit, λ refers to the
security parameter; |w| is the witness size and np is the number of pairing product
equations in BFG (one can translate an arithmetic circuit to pairing product equations,
in which case np = n). Size is measured in number of group elements and computation
in the number of exponentiations.

do not have space to send a ciphertext. Instead we give new definitions that use
non-black-box extraction. Roughly, the definitions say that given the signer’s or
prover’s state it is possible to extract a witness if it succeds in creating a valid
signature or proof.

To formalise the close link between SoKs and SE-NIZK arguments, we illus-
trate how to build a relation which includes the signature’s message as part of
the instance to be proved. Given an SE-NIZK for this relation, we build an SoK
for the same relation only without the message encoded. This SoK is built solely
from a collision resistant hash function and the SE-NIZK argument. The SoK
is proven to be simulation-extractable directly from the definition of simulation-
extractability of the NIZK argument. Once this link has been formalized, the
rest of the paper focuses on how to build SE-SNARKs with optimum efficiency.

Our SE-SNARK is pairing based. The common reference string describes a
bilinear group and some group elements, the proofs consist of group elements,
and the verifier checks that the exponents of the proofs satisfy quadratic equa-
tions by calculating products of pairings. The underlying relation is a square
arithmetic program, which is a SNARK-friendly characterisation of arithmetic
circuits. Square arithmetic programs are closely related to quadratic arithmetic
programs [30], but use only squarings instead of arbitrary multiplications. As
suggested by Groth [36] the use of squarings give nice symmetry properties,
which in our case makes it possible to check different parts of the proof against
each other and hence make it intractable for an adversary to modify them with-
out knowing a witness.

The security of our construction is based on concrete intractability assump-
tions. For standard knowledge soundness our strongest intractability assumption
is similar to the power knowledge of exponent assumption used in [19]. To go
beyond knowledge soundness to the stronger simulation-extractability property
requires a stronger assumption, probably unavoidably so. We formulate the eX-
tended Power Knowledge of Exponent (XPKE) assumption, which assumes that
an adversary cannot find elements in two source groups that have a linear rela-

4

tionship between each other unless it already knows what this relationship is -
not even if it can query an oracle for functions of these exponents.

Finally, we rely on Groth’s [36] definition of pairing based non-interactive
arguments and rule out the existence of SE-NIZK arguments with 1 verifica-
tion equation or 2 group elements. Groth [36] already ruled out 1 element NIZK
arguments by exploiting that if there is only one group element then the ver-
ification equations are linear in the exponents and easy to fool. It is an open
problem from [36] whether regular NIZK arguments can have 2 group element
proofs, a more difficult problem since a pairing of two group elements gives
rise to quadratic verification equations in the exponents. We show that in the
case of SE-NIZK arguments 2 group elements is not possible by leveraging the
simulation-extractability property to deal also with quadratic verification equa-
tions.

Related work. Signatures of knowledge are a core ingredient in many cryp-
tographic protocols. For example, [15, 29, 7, 6, 52, 26] are DAA schemes that use
SoKs. Anonymous cryptocurrencies can also be constructed using signatures of
knowledge, for example Zero-Coin [44]. In order to make sufficient efficiency
gains so that it could be deployed, the Zcash cryptocurrency [48] instead uses
zk-SNARKs. To use zk-SNARKs, Zcash has to take extra steps to avoid mal-
leability (MiTM) attacks. Specifically, Zcash samples a key pair for a one-time
signature scheme; computes MACs to tie the signing key to the identities secret
keys; modifies the instance to include signature verifying key and the MACs; and
finally uses the signing key to sign the transaction. However, the use of succinct
SoKs for cryptocurrencies would yield the same, if not better, efficiency as the
use of zk-SNARKs and the resulting models would be simpler.

NIZK proofs originated with Blum, Feldman and Micali [2, 12] and there
has been many works making both theoretical advances and efficiency improve-
ments [25, 21, 41, 20, 18, 37, 35, 31]. Groth, Ostrovsky and Sahai [38] proposed the
first pairing based NIZK proofs and subsequent works [34, 39] have yielded ef-
ficient NIZK proofs that can be used in pairing based protocols. NIZK proofs
with unconditional soundness need to be linear in the witness size. However,
for NIZK arguments with computational soundness it is possible to get succinct
proofs that are smaller than the size of the witness [43, 40].

The practical improvements have been accompanied by theoretical works on
how SNARKs compose [4, 51, 8] and on the necessity of using strong crypto-
graphic assumptions when building SNARKs [1, 32, 11, 9, 14]. The latter works
give methods to take SNARKs with long common reference strings and build
SNARKs with common reference string size that is independent of the instance
size, i.e., fully succinct SNARKs. Using these techniques on our simulation-
extractable SNARK, which has a long common reference string, gives a fully
succinct SE-SNARK.

Simulation-soundness of NIZK proofs was a notion introduced by Sahai [47]
to capture the notion that even after seeing simulated proofs it is not possible to
create a fake proof for a false instance unless copying a previous simulated proof.

5

Combining this with proofs of knowledge, Groth [34] defined the even stronger
security notion that we should be able to extract a witness from an adversary
that creates a valid new proof, even if this adversary has seen many simulated
proofs for arbitrary instances. Faust, Kohlweiss, Marson, and Venturi discuss
how to achieve simulation soundness in the random oracle model [24]. Kosba
et al. [46] discuss how to lift any zk-SNARK into a simulation-extractable one,
however they do so by appending an encryption of the witness to the proof, so
the result is not succinct.

Camenisch [16] coined the term signatures of knowledge to capture zero-
knowledge protocols relying on techniques used in Schnorr signatures [49]. Sig-
natures of knowledge have been used in many constructions albeit without a
precise security definition. Chase and Lysyanskaya [17] gave the first formal def-
inition of signatures of knowledge. They also broke the tight connection with
Schnorr signatures and NIZK arguments based on cyclic groups and the Fiat-
shamir heuristic and instead provided a general construction from simulation-
sound NIZK proofs and dense public key encryption. An alternative definition
of signatures of knowledge was given by Fischlin and Onete [27] which requires
witness indistinguishability as opposed to full zero-knowledge.

2 Definitions

2.1 Notation

We write y = A(x; r) when algorithm A on input x and randomness r, outputs
y. We write y ← A(x) for the process of picking randomness r at random and
setting y = A(x; r). We use the abbreviation PPT for probabilistic polynomial
time. We also write y ← S for sampling y uniformly at random from the set S.
We will assume it is possible to sample uniformly at random from sets such as
Zp. For an algorithm A we define transA to be a list containing all of A’s inputs
and outputs, including random coins.

When considering security of our cryptographic schemes, we will assume
there is an adversary A. The security of our schemes will be parameterised by a
security parameter λ ∈ N. The intuition is that the larger the security parameter,
the better security we get. For functions f, g : N → [0; 1] we write f(λ) ≈ g(λ)
if |f(λ) − g(λ)| = λ−ω(1). We say a function f is negligible if f(λ) ≈ 0 and
overwhelming if f(λ) ≈ 1. We will always implicitly assume all participants
and the adversary know the security parameter, i.e., from their input they can
efficiently compute the security parameter in unary representation 1λ.

We use games in security definitions and proofs. A game G has a number
of procedures including a main procedure. The main procedure outputs either
0 or 1 depending on whether the adversary succeeds or not. Pr[G] denotes the
probability that this output is 1.

2.2 Relations

Let R be a relation generator that given a security parameter λ in unary returns
a polynomial time decidable relation R ← R(1λ) in NP. For (φ,w) ∈ R we

6

call φ the instance and w the witness. We define Rλ to be the set of possible
relations R(1λ) might output.

2.3 Hard Decisional Problems

A relation R is sampleable if there are two algorithms, Yes and No such that:

– Yes samples instances and witnesses in the relation.
– No samples instances outside the language LR defined by the relation.

When proving our lower bounds for the efficiency of SE-NIZK arguments, we
will assume the existence of sampleable relations where it is hard to tell whether
an instance φ has been sampled by Yes or No.

Definition 2.1. Let R a relation generator, and let Yes, No be two PPT al-
gorithms such that for (R, aux) ← R(1λ) we have Yes(R) → (φ,w) ∈ R and
No(R) → φ 6∈ LR, and let A be an adversary. Define AdvDPR,Yes,No,A(1λ) =

2 Pr[GDPR,Yes,No,A(1λ)]− 1 where GDPR,Yes,No,A(1λ) is given by

main GDPR,Yes,No,A(λ)

(R, aux)← R(1λ); φ0 ← No(R); (φ1,w)← Yes(R)
b← {0, 1}; b′ ← A(R, aux,φb)
return 1 if b = b′ and else return 0

We say Yes,No is a hard decisional problem for R if for all PPT adversaries A,
AdvDPR,Yes,No,A(1λ) ≈ 1

2 .

2.4 Signatures of Knowledge

Signatures of knowledge [17] (SoKs) generalise digital signatures by replacing
the public key with an instance in a language in NP. If you have a witness for
the instance, you can sign a message. If you do not know a witness, then you
cannot sign. The notion of SoKs mimic digital signatures with strong existential
unforgeability; even if you have seen many signatures on arbitrary messages
under arbitrary instances, you cannot create a new signature not seen before
without knowing the witness for the instance.

Signatures of knowledge are closely related to simulation-extractable NIZK
arguments and previous constructions have also explored the link between SoKs
and NIZK proofs. In the following, we define signatures of knowledge, simulation-
extractable NIZK arguments, and give a formal proof that signatures of knowl-
edge can be constructed from simulation-extractable NIZK arguments. When we
later in the article construct compact and easy to verify SE-NIZK arguments, i.e.,
simulation-extractable SNARKs, we will therefore automatically obtain compact
and easy to verify SoKs.

For our definition of a simulation-extractable signature of knowledge, we
follow the game based definitions of Chase and Lysyanskaya [17]. However, Chase
and Lysyanskaya define their relations with respect to Turing Machines, whereas

7

in our definitions the use of Turing Machines is implicit in the relation generator.
Another more important difference is that since we want compact signatures, we
give a non-black-box of simulation-extractability.

Definition 2.2. Let R be a relation generator and let {Mλ}λ∈N be a sequence
of message spaces. Then the quintet of efficient algorithms (SSetup,SSign,SVfy,
SSimSetup,SSimSign) is a simulation-extractably secure signature of knowledge
scheme for R and {Mλ}λ∈N if it is correct, simulatable and simulation-extractable
(defined below) and works as follows:

– pp ← SSetup(R): the setup algorithm is a PPT algorithm which takes as
input a relation R ∈ Rλ and returns public parameters pp.

– σ ← SSign(pp,φ,w,m): the signing algorithm is a PPT algorithm which
takes as input the public parameters, a pair (φ,w) ∈ R and a message
m ∈Mλ and returns a signature σ.

– 0/1 ← SVfy(pp,φ,m,σ): the verification algorithm is a deterministic poly-
nomial time algorithm, which takes as input some public parameters pp, an
instance φ, a message m ∈Mλ, and a signature σ and outputs a 0 or a 1
depending on whether it considers the signature to be valid or not.

– (pp, τ)← SSimSetup(R) : the simulated setup algorithm is a PPT algorithm
which takes as input a relation R ∈ Rλ and returns public parameters pp
and a trapdoor τ .

– σ ← SSimSign(pp, τ ,φ,m) : the simulated signing algorithm is a PPT algo-
rithm which takes as input some public parameters pp, a simulation trapdoor
τ , and an instance φ and returns a signature σ.

Perfect Correctness: A signer with a valid witness can always produce a
signature that will convince the verifier.

Definition 2.3. A signature of knowledge scheme is perfectly correct if for all
λ ∈ N, for all R ∈ Rλ, for all (φ,w) ∈ R, and for all m ∈Mλ

Pr[pp← SSetup(R);σ ← SSign(pp;φ,w,m) : SVfy(pp,φ,m,σ) = 1] = 1.

Perfect Simulatability: The verifier should learn nothing from a signature
about the witness that it did not already know. The secrecy of the witness is
modelled by the ability to simulate signatures without the witness. More pre-
cisely, we say the signatures of knowledge are simulatable if there is a simulator
that can create good looking public parameters and signatures without the wit-
ness.

Definition 2.4. For a signature of knowledge SoK, define Advsimul
SoK,A(λ) = 2 Pr[Gsimul

SoK,A(λ)]−
1 where the game Gsimul

SoK,A is defined as follows

8

main Gsimul
SoK,A(λ)

R← R(1λ); pp0 ← SSetup(R); (pp1, τ)← SSimSetup(R)

b← {0, 1}; b′ ← AP bppb,τ (ppb)
return 1 if b = b′ and return 0 otherwise

P 0
pp0,τ

(φi,wi,mi) 00000000000000 P 1
pp1,τ

(φi,wi,mi)

assert (φi,wi) ∈ R ∧ mi ∈Mλ assert (φi,wi) ∈ R ∧mi ∈Mλ

σi ← SSign(pp0,φ,w,m) σi ← SSimSign(pp1, τ ,φ,m)
return σi return σi

A signature of knowledge SoK is perfectly simulatable if for any PPT adversary
A, Advsimul

SoK,A(λ) = 1
2 .

Simulation-Extractability: An adversary should not be able to issue a new
signature unless it knows a witness. This should hold even if the adversary gets
to see signatures on arbitrary messages under arbitrary instances. We model
this notion in a strong sense, by letting the adversary see simulated signatures
for arbitrary messages and instances, which potentially includes false instances.
Even under this strong attack model, we require that whenever the adversary
outputs a valid signature not seen before, it is possible to extract a witness for
the instance if you have access to the internal data of the adversary.

Definition 2.5. For a signature of knowledge SoK, define Advsig-ext
SoK,A,χA

(λ) =

Pr[Gsig-ext
SoK,A,χA

(λ)] where the game Gsig-ext
SoK,A,χA

is defined as follows

main Gsig-ext
SoK,A,χA

(λ)

R← R(1λ); Q = ∅
(pp, τ)← SSimSetup(R)
(φ,m,σ)← ASSimSignpp,τ (pp)
w ← χA(transA)
assert (φ,w) 6∈ R
assert (φ,m,σ) 6∈ Q
return SVfy(pp,φ,m,σ)

....

SSimSignpp,τ (φi,mi)

σi ← SSimSign(pp, τ ,φi,mi)
Q = Q ∪ {(φi,mi,σi)}
return σi

A signature of knowledge SoK is simulation-extractable if for any PPT adversary
A, there exists a PPT extractor χA such that Advsig-ext

SoK,A,χA
(λ) ≈ 0.

2.5 Non-interactive Zero-Knowledge Arguments of Knowledge

Definition 2.6. Let R be a relation generator. A NIZK argument for R is a
quadruple of algorithms (ZSetup,ZProve,ZVfy,ZSimProve), which is complete,
zero-knowledge and knowledge sound (defined below) and works as follows:

– (crs, τ) ← ZSetup(R): the setup algorithm is a PPT algorithm which takes
as input a relation R ∈ Rλ and returns a common reference string crs and
a simulation trapdoor τ .

9

– π ← ZProve(crs,φ,w): the prover algorithm is a PPT algorithm which takes
as input a common reference string crs for a relation R and (φ,w) ∈ R and
returns a proof π.

– 0/1 ← ZVfy(crs,φ,π): the verifier algorithm is a deterministic polynomial
time algorithm which takes as input a common reference string crs, an in-
stance φ and a proof π and returns 0 (reject) or 1 (accept).

– π ← ZSimProve(crs, τ ,φ): the simulator is a PPT algorithm which takes
as input a common reference string crs, a simulation trapdoor τ and an
instance φ and returns a proof π.

Perfect Completeness: Perfect completeness says that given a true statement,
a prover with a witness can convince the verifier.

Definition 2.7. (ZSetup,ZProve,ZVfy,ZSimProve) is a perfectly complete argu-
ment system for R if for all λ ∈ N, for all R ∈ Rλ and for all (φ,w) ∈ R :

Pr
[
(crs, τ)← ZSetup(R);π ← ZProve(crs,φ,w) : ZVfy(crs,φ,π) = 1

]
= 1.

Note that the simulation trapdoor τ is kept secret and is not known to either
prover or verifier in normal use of the NIZK argument, but it enables the simu-
lation of proofs when we define zero-knowledge below.

Perfect Zero-Knowledge: An argument system has perfect zero-knowledge
if it does not leak any information besides the truth of the instance. This is
modelled a simulator that does not know the witness but has some trapdoor
information that enables it to simulate proofs.

Definition 2.8. For A = (ZSetup,ZProve,ZVfy,ZSimProve) an argument sys-
tem, define Advzk

A,A(λ) = 2 Pr[Gzk
A,A(λ)] − 1 where the game Gzk

A,A is defined as
follows

main Gzk
A,A(λ)

R← R(1λ); (crs, τ)← ZSetup(R)

b← {0, 1}; b′ ← AP bcrs,τ (crs)
return 1 if b = b′ and return 0 otherwise

P 0
crs,τ (φi,wi) 00000000000000 P 1

crs,τ (φi,wi)

assert (φi,wi) ∈ R assert (φi,wi) ∈ R
πi ← ZProve(crs,φ,w) πi ← ZSimProve(crs, τ ,φ)
return πi return πi

The argument system A is perfectly zero knowledge if for any PPT adversary A,
Advzk

A,A(λ) = 1
2 .

10

Computational Knowledge Soundness: An argument system is computa-
tionally knowledge sound if whenever somebody produces a valid argument it is
possible to extract a valid witness from their internal data.

Definition 2.9. For A = (ZSetup,ZProve,ZVfy,ZSimProve) an argument sys-
tem, define Advsound

A,A,χA
(λ) = Pr[Gsound

A,A,χA
(λ)] where the game Gsound

A,A,χA
is defined

as follows

main Gsound
A,A,χA

(λ)

R← R(1λ); (crs, τ)← ZSetup(R)
(φ,π)← A(crs)
w ← χA(transA)
assert (φ,w) 6∈ R
return ZVfy(crs,φ,π)

An argument system A is computationally knowledge sound if for any PPT ad-
versary A, there exists a PPT extractor χA such that Advsound

A,A,χA
(λ) ≈ 0.

Simulation-Extractability: Zero-knowledge and soundness are core security
properties of NIZK arguments. However, it is conceivable that an adversary that
sees a simulated proof for a false instance might modify the proof into another
proof for a false instance. This scenario is actually very common in security
proofs for cryptographic schemes, so it is often desirable to have some form of
non-malleability that prevents cheating in the presence of simulated proofs.

Traditionally, simulation-extractability is defined with respect to a decryp-
tion key associated with the common reference string that allows the extrac-
tion of a witness from a valid proof. However, in succinct NIZK arguments the
proofs are too small to encode the full witness. We will therefore instead define
simulation-extractable NIZK arguments using a non-black-box extractor that
can deduce the witness from the internal data of the adversary.

Definition 2.10. Let A = (ZSetup,ZProve,ZVfy,ZSimProve) be a NIZK argu-

ment for R. Define Advproof-ext
A,A,χA

(λ) = Pr[Gproof-ext
A,A,χA

(λ)] where the game Gproof-ext
A,A,χA

is defined as follows

main Gproof-ext
A,A,χA

(λ)

R← R(1λ); Q = ∅
(crs, τ)← ZSetup(R)
(φ,π)← AZSimProvecrs,τ (crs)
w ← χA(transA)
assert (φ,w) 6∈ R
assert (φ,π) 6∈ Q
return ZVfy(crs,φ,π)

....

ZSimProvecrs,τ (φi)

πi ← ZSimProve(crs, τ ,φi)
Q = Q ∪ {(φi,πi)}
return σi

A NIZK argument A is simulation-extractable if for any PPT adversary A, there
exists a PPT extractor χA such that Advproof-ext

A,A,χA
(λ) ≈ 0.

11

We observe that simulation-extractability implies knowledge soundness, since the
latter corresponds to a simulation-extractability adversary that is not allowed
to use the simulation oracle.

Definition 2.11. A succinct argument system is one in which the proof size
is polynomial in the security parameter and the verifier’s computation time is
polynomial in the security parameter and the instance size.

Terminology:

– A Succinct Non-interactive ARgument of Knowledge is a SNARK.
– A zk-SNARK is a zero-knowledge SNARK, or a succinct NIZK argument.
– A simulation-extractable NIZK argument is an SE-NIZK.
– A succinct SE-NIZK argument is an SE-SNARK.

Benign relation generators. Bitansky et al. [10] showed that indistinguisha-
bility obfuscation implies that there are potential auxiliary inputs to the adver-
sary that allow it to create a valid proof in an obfuscated way such that it is
impossible to extract the witness. Boyle and Pass [14] show that assuming the
stronger notion of public coin differing input obfuscation there is even auxiliary
inputs that defeat witness extraction for all candidate SNARKs. These counter
examples, however, rely on specific input distributions for the adversary. We will
therefore in the following assume the relationship generator is benign such that
the relation (and the potential auxiliary inputs included in it) are distributed in
such a way that the SNARKs we construct can be simulation extractable.

3 Signatures of Knowledge from SE-NIZKs

Signatures of knowledge and SE-NIZK arguments are closely related. We will
now show how to construct a signature of knowledge scheme for messages in
{0, 1}∗ from an SE-NIZK argument and a public coin collision-resistant hash-
function. This means that in the rest of the article we can focus our efforts on
constructing succinct SE-NIZK arguments, which is a slightly simpler notion
than signatures of knowledge since it does not involve a message.

We will be using collision-resistant hash-functions, where the key for the
hash-function can be sampled from a source of public coins.

Definition 3.1 (Public coin collision-resistant hash-function). We say
the polynomial time algorithm H : {0, 1}φ(λ) × {0, 1}∗ → {0, 1}λ, with φ being a
polynomial in λ, is collision resistant if for all PPT adversaries A, Advhash

A ≈ 0
where Advhash

A is given by

Pr[K ← {0, 1}φ(λ); (m0,m1)← A(K) : m0 6= m1 ∧ HK(m0) = HK(m1)]

Suppose R′ is a relation generator which, on input of a security parameter
λ, outputs a relation R′. We define a corresponding relation

R = {((h,φ),w) : h ∈ {0, 1}λ ∧ (φ,w) ∈ R′}.

12

In the following, we let R be the relation generator that runs R′ ← R′(1λ)
and returns R as defined above. Let H be a public coin collision-resistant hash
function and (ZSetup,ZProve,ZVfy,ZSimProve) be a SE-NIZK argument for R.
Then Fig. 1 describes a signature of knowledge for R′.

SSetup(R′)

K ← {0, 1}φ(λ)
(crs, τ)← ZSetup(R)
return (K, crs)

SSign((K, crs),φ,w,m)

π ← ZProve(crs, (HK(m),φ),w)
return π

SVfy((K, crs),φ,m,σ)

return ZVfy(crs, (HK(m),φ),σ)

SSimSetup(R′)

K ← {0, 1}φ(λ)
(crs, τ)← ZSetup(R)
return ((K, crs), τ)

SSimSign((K, crs), τ ,φ,m)

π ← ZSimProve(crs, τ , (HK(m),φ))
return π

Fig. 1: SoK scheme based on collision-resistant hash-function and SE-NIZK argument.

Proposition 3.1. If H is a public coin collision-resistant hash-function and
A = (ZSetup,ZProve,ZVfy,ZSimProve) is an SE-NIZK argument for R, then
the scheme (SSetup,SSign,SVfy) given in Fig. 1 is a signature of knowledge for
R′ with respect to the message space M = {0, 1}λ.

Proof. We shall show that the signature of knowledge is perfectly correct, per-
fectly simulatable and that it is simulation extractable.

Perfect Correctness:
Suppose that λ ∈ N, R′ ∈ R′λ, (φ,w) ∈ R′ and m ∈ {0, 1}∗. Running pp ←
SSetup(R′), σ ← SSign(pp,φ,w,m) and checking that SVfy(pp,φ,m,σ) out-
puts 1 corresponds to running K ← {0, 1}φ(λ), (crs, τ) ← ZSetup(R), π ←
ZProve(crs, (HK(m),φ),w) and checking that ZVfy(crs, (HK(m),φ),π) out-
puts 1. As the NIZK argument is perfectly complete this check will always pass.

Perfect Simulatability: We show that for any PPT adversary A there exists a

PPT adversary B such that Advsimul
SoK,A(λ) ≤ Advzk

A,B(1λ) for all λ ∈ N. Since an

SE-NIZK is perfectly zero-knowledge, this implies that Advsimul
SoK,A is negligible

in λ i.e. if A breaks simulatability for SoK then B breaks the zero-knowledge for
A.

Let A be a PPT adversary against Gsimul
SoK,A. Define the PPT adversary B that

uses the output of A to attack the zero-knowledge of A and behaves as follows:

13

BP
b
crs,τ (crs) 000000000000000 P ′b(K,crs),τ (φi,wi,mi)

K ← {0, 1}φ(λ); assert mi ∈Mλ

b′ ← AP ′b(K,crs),τ ((K, crs)) return P bcrs,τ ((HK(mi),φi),wi)
return b′

We argue that if P bcrs,τ is defined to be the oracles in Gzk
A,B then P ′b(K,crs),τ

behaves exactly as the oracles in Gsimul
SoK,A. To see this first note that if (φi,wi) 6∈ R

then P ′b returns ⊥. If (φi,wi) ∈ R then the following holds.

– when b = 0, P bcrs,τ returns πi ← ZProve(crs, (HK(mi),φ),wi). This corre-
sponds exactly to sampling σi ← SSign((K, crs),φ,mi,wi).

– when b = 1, P bcrs,τ returns πi ← ZSimProve(crs, τ , (HK(mi),φ)). This cor-
responds exactly to sampling σi ← SSimSign((K, crs), τ ,φi,mi).

Hence whenever A succeeds at Gsimul
SoK,A, B succeeds at Gzk

A,B and the result holds.

Simulation-Extractability: We show that for all PPT adversaries A, there exists
a PPT adversary B such that for all PPT extractors χB, there exists a PPT
extractor χA such that Advsig−extSoK,A,χA

(λ) ≤ Advproof-ext
A,B,χB

+Advhash
B for all λ ∈ N.

By simulation-extractability of the SE-NIZK, we have that for any choice of B,
there exists a PPT χB such that the above is negligible in λ, meaning that
there exists a χA such that Advsig−extSoK,A,χA

(λ) is negligible in λ. In other words,
we construct an adversary B such that if A breaks simulation-extractability for
SoK then B breaks simulation extractability for A.

Let A be a PPT adversary that on input of some public parameters outputs
an instance, a message and a signature. Define the PPT adversary B that uses
A to attack simulation-extractability of A and behaves as follows.

BZSimProvecrs,τ (crs) 00000000000000000000 SSimSign(K,crs),τ (φi,mi)

K ← {0, 1}φ(λ);Q′ = ∅; hi ← HK(mi);

(φ,m,σ)← ASSimSign(K,crs),τ ((K, crs)); π ← ZSimProvecrs,τ ((hi,φi));
h← HK(m); Q′ = Q′ ∪ {(φi,mi,πi)};
return ((h,φ),σ) return πi

Where A is given K as well as all of B’s oracle responses, transB contains
no information that cannot be calculated in polynomial time from transA. We
need to design an extractor χA that uses χB ’s output to break simulation-
extractability for A. Let T be such that transB = T (transA). Let χB be a PPT
extractor that on input of transB outputs some w. Define χA as follows.

χA(transA)

transB ← T (transA);
return χB(transB)

For all PPT A, if B is defined as above, then for all PPT χB, if χA is defined as
above, then B succeeds at Gprove-ext

A,B,χB
whenever A succeeds at Gsig-ext

SoK,A,χA
. To see

this observe that

14

1. If ((φ, h),σ) ∈ Q then either (φ,m,σ) ∈ Q′ or A outputs some m such that
HK(m) = HK(mi) (for mi one of the queried messages) but m 6= mi. The
latter happens with negligible probability when HK is collision resistant.

2. (φ,w) ∈ R′ ⇐⇒ ((h,φ),w) ∈ R.
3. SVfy((K, crs),φ,m,σ) = ZVfy(crs, (HK(m),φ),π).

This completes the proof. ut

In the other direction, it is easy to see that an SoK scheme can be used to
construct an SE-NIZK argument by using the default message m = 0.

Proposition 3.2. If an SoK scheme is simulation-extractably secure for a re-
lation generator R then the NIZK for the relation generator R described in
Figure 2 has perfect completeness, perfect zero-knowledge and is simulation-
extractable.

Proof. This holds directly from the perfect correctness, perfect simulatability
and simulation-extractability of the SoK scheme.

ZSetup(R)

(pp, τ)← SSimSetup(R)
return (pp, τ)

ZProve(pp,φ,w)

σ ← SSign(pp,φ, 0,w)
return σ

ZSimProve(pp, τ ,φ)

σ ← SSimSign(pp, τ ,φ, 0)
return σ

ZVfy(pp,φ,π)

return SVfy(crs,φ, 0,π)

Fig. 2: SE-NIZK construction from an SoK.

4 Bilinear groups and Assumptions

Definition 4.1. A bilinear group generator BG takes as input a security param-
eter in unary and returns a bilinear group gk = (p,G1,G2,GT , e) consisting of
cyclic groups G1, G2, GT of prime order p and a bilinear map e : G1×G2 → GT
such that

– there are efficient algorithms for computing group operations, evaluating the
bilinear map, deciding membership of the groups, and sampling generators
of the groups;

– the map is bilinear, i.e., for all G ∈ G1 and H ∈ G2 and for all a, b ∈ Z we
have e(Ga, Hb) = e(G,H)ab;

– and the map is non-degenerate, i.e., if e(G,H) = 1 then G = 1 or H = 1.

15

Usually bilinear groups are constructed from elliptic curves equipped with
a pairing, which can be tweaked to yield a non-degenerate bilinear map. There
are many ways to set up bilinear groups both as symmetric bilinear groups
where G1 = G2 and as asymmetric bilinear groups where G1 6= G2. We will be
working in the asymmetric setting, in what Galbraith, Paterson and Smart [28]
call the Type III setting where there is no efficiently computable non-trivial
homomorphism in either direction between G1 and G2. Type III bilinear groups
are the most efficient type of bilinear groups and hence the most relevant for
practical applications.

4.1 Intractability Assumptions

We will now specify the intractability assumptions used to prove our pairing
based SE-SNARK secure.

The eXtended Power Knowledge of Exponent Assumption
Our strongest assumption is the extended power knowledge of exponent (XPKE)
assumption, which is a knowledge extractor assumption. We consider an adver-
sary that gets access to source group elements that have discrete logarithms that
are polynomials evaluated on secret random variables. The assumption then says
that the only way the adversary can produce group elements in the two source
groups with matching discrete logarithms, i.e., Ga ∈ G1 and Hb ∈ G2 with
a = b, is if it knows that b is the evaluation of a known linear combination of
the polynomials.

Assumption 4.1 Let A be an adversary and let χA be an extractor. Define
AdvXPKE

BG,d(λ),q(λ),A,χA(λ) = Pr[GXPKE
BG,d(λ),q(λ),A,χA

(λ)] where GXPKE
BG,d(λ),q(λ),A,χA

is
defined by

main GXPKE
BG,d(λ),q(λ),A,χA

(λ)

gk = (p,G1,G2,GT , e)← BG(1λ);
G← G∗1;H ← G∗2; z ← (Z∗p)q;Q = ∅
(Ga, Hb)← AO1

G,z, O2
H,z (gk)

η ∈ (Zp)|Q| ← χA(transA);
return 1 if a = b and b 6=

∑
hj∈Q ηjhj(z)

else return 0

O1
G,z(gi) 00000000000000000000000 O2

H,z(hj)

assert gi ∈ Zp[Z1, . . . Zq] assert hj ∈ Zp[Z1, . . . Zq]
assert deg(gi) ≤ d assert deg(hj) ≤ d
return Ggi(z) Q = Q ∪ {hj};

return Hhj(z)

The (d(λ), q(λ))-XPKE assumption holds relative to BG if for all PPT adver-
saries A, there exists a PPT algorithm χA such that AdvXPKE

BG,d(λ),q(λ),A,χA(λ) is
negligible in λ.

16

The Computational Polynomial Assumption
The computational polynomial (Poly) assumption is related to the d-linear as-
sumption of Escala, Herold, Kiltz, Ràfols and Villar [23]. In the univariate case,
the Poly assumption says that for any G ∈ G∗1, given Gg1(z), . . . , GgI(z), an ad-
versary cannot compute Gg(z) for a polynomial g that is linearly independent
from g1, . . . , gI - even if it knows Hg(z) for H ∈ G∗2.

Assumption 4.2 Let A be a PPT algorithm and define AdvPoly
BG,d(λ),q(λ),A(λ) =

Pr[GPoly
BG,d(λ),q(λ),A(λ)] where GPoly

BG,d(λ),q(λ),A is defined by

main GPoly
BG,d(λ),q(λ),A(λ)

gk = (p,G1,G2,GT , e, auxBG)← BG(1λ);
G← G∗1;H ← G∗2; z ← (Z∗p)q;Q = ∅
(Ga, g(Z1, . . . , Zq))← AO1

G,z, O2
H,z (gk)

return 1 if a = g(z) and g /∈ span{Q}
else return 0

O1
G,z(gi) 00000000000000000000000 O2

H,z(hj)

assert gi ∈ Zp[Z1, . . . Zq] assert hj ∈ Zp[Z1, . . . Zq]
assert deg(gi) ≤ d assert deg(hj) ≤ d
Q = Q ∪ {gi}; return Hhj(z)

return Ggi(z)

The (d(λ), q(λ))-Poly assumption holds relative to BG if for all PPT adversaries
A we have AdvXPKE

Poly,d(λ),q(λ),A(λ) is negligible in λ.

Plausibility of the assumptions
To be plausible an assumption should not be trivial to break using generic group
operations. There are various ways to formalize generic group models that re-
strict the adversary to such operations [50, 45, 42]. Using the framework from [13]
it is easy to show the following proposition.

Proposition 4.1. The (d(λ), q(λ))-XPKE and (d(λ), q(λ))-Poly assumptions both
hold in the generic group model.

We will in the following construct a pairing based SE-SNARK. The sim-
ulation extractability of the SE-SNARK will rely on the XPKE and Poly as-
sumptions. It is instructive to consider also the assumption requirements for the
weaker notion of knowledge soundness of the SNARK. To prove our SNARK
has standard knowledge soundness, it suffices to consider the XPKE and Poly
assumptions where the adversary has non-adaptive oracle access. We can refor-
mulate this as the adversary specifies all the polynomials it wants to query, and
then submits all queries at once and gets the matching oracle responses. The
non-adaptive Poly assumption is a computational target assumption [33] and is
implied by the q−BGDHE2 assumption for sufficiently large q, which says given
G,Gx, . . . , Gx

2q ∈ G1 and H,Hx, . . . ,Hxq−1

, Hxq+1

, . . . ,Hx2q∈G2 it is hard to

17

compute Hxq . The non-adaptive XPKE assumption bears resemblance to the
power knowledge of exponent (PKE) assumption from [19]. It is also worth not-
ing that we only want to ensure the if the response Ga and Hb has a = b then
it is beceause b is some known linear combination of the queried polynomials,
whereas in the only previous 3 element zk-SNARK [36] it is necessary in the
proof of knowledge soundness to also consider elements where the exponent has
a quadratic relationship to the queried polynomials.

To get simulation-extractability, we strengthened both the XPKE and Poly
assumptions to make them interactive. We conjecture this is unavoidable, simu-
lation extractability is interactive in nature and we do not see how to base it on
non-interactive assumptions.

5 SE-SNARK

We will now construct an SE-SNARK for square arithmetic program (SAP)
generators, which we define below. Any arithmetic circuit over a finite field can
be efficiently converted into an SAP over the same field, see Appendix B, so this
gives us SE-SNARKs for arithmetic circuit satisfiability.

Before giving our SE-SNARK, let us first provide some intuition as to why
pairing based zk-SNARKs are, typically speaking, not simulation extractable.
The problem is that an adversary that sees a proof is often able to modify it into
a different proof for the same instance. Suppose that (A,B,C) are three of the
group elements in the proof (there might be more) that satisfy the verification
equations of some SNARK scheme. At least two of the proof elements must
satisfy some quadratic constraint of the form

e(A,B) = T.

In the first generic attack, the adversary takes A′ = Ar and B′ = B
1
r for any

value r. These new components will also satisfy the quadratic constraint. Hence,
an SE-SNARK must have an additional constraint on the pairs of components
that satisfy a quadratic constraint, since otherwise it is possible to forge a new
proof for a previously proved statement. This is at the heart of why an SE-
SNARK must have at least two verification equations. The second generic attack
involves any constraint of the form

e(A,B) = e(C,Hδ),

where H is a generator of G2 given in the common reference string. This con-
straint can also be satisfied by A′ = A, B′ = BHrδ, C ′ = ArC.

To build an SE-SNARK we need to neutralize both of these generic attacks.
In our scheme, we include a constraint of the form

e(A,B) = e(C,H)

as well as a linear constraint to ensure logGA = logH B. The CRS will be de-
signed to contain H, Gγ and Hγ but not G. That way, if the adversary sets

18

B′ = BHr, then the only possible value for A′ is AGr - which means that r
must depend on γ. This in turn forces the adversary to include a factor of γ2 in
C ′. By limiting the information we give the adversary about γ2, we ensure that
the adversary cannot calculate the required value of C ′. The full SE-SNARK
verifications then also include parts to ensure the instance is correctly incorpo-
rated.

5.1 Square Arithmetic Programs

Formally, we will be working with square arithmetic programs R that have the
following description

R = (Zp, gk, `, {ui(X), wi(X)}mi=0, t(X)) ,

where the bilinear group gk = (p,G1,G2,GT , e) is included as auxiliary infor-
mation, 1 ≤ ` ≤ m, ui(X), wi(X), t(X) ∈ Zp[X] and ui(X), wi(X) have strictly
lower degree than n, the degree of t(X). Furthermore, suppose that the set
S = {ui(X) : 0 ≤ i ≤ `} is linearly independent and that any ui ∈ S is also
linearly independent from the set {uj(X) : ` < j ≤ m}. A square arithmetic
program with such a description defines the following binary relation, where we
define s0 = 1,

R =

(φ,w)

∣∣∣∣∣∣∣∣∣∣

φ = (s1, . . . , s`) ∈ Z`p
w = (s`+1, . . . , sm) ∈ Zm−`p

∃h(X) ∈ Zp[X],deg(h) ≤ n− 2 :

(
∑m
i=0 siui(X))

2
=
∑m
i=0 siwi(X) + h(X)t(X)


We say R is a square arithmetic program generator if it generates relations of
the form given above with p > 2λ−1.

5.2 The Construction

(crs, τ)← ZSetup(R):
Pick α, β, γ, x← Z∗p; G← G∗1; H ← G∗2 such that t(x) 6= 0 and set

τ = (R,G,H, α, β, γ, x)

crs =


R,Gα, Gβ , Gγt(x), Gγt(x)

2

, G(α+β)γt(x), H,Hβ , Hγt(x),{
Gγx

i

, Hγxi , Gγ
2t(x)xi

}n−1
i=0

,{
Gγwi(x)+(α+β)ui(x))

}`
i=0

,
{
Gγ

2wi(x)+(α+β)γui(x))
}m
i=`+1


π ← ZProve(crs,φ,w) :
Pick r ← Zp and compute π = (A,B,C) such that

A = Gγ(
∑m

i=0
siui(x)+r·t(x)), B = Hγ(

∑m

i=0
siui(x)+r·t(x))

19

C = Gf(w)+r2γ2(t(x))2+r(α+β)γt(x)+γ2t(x)[h(x)+2r
∑m

i=0
siui(x)]

where f(w) =
∑m
i=l+1 si(γ

2wi(x) + (α+ β)γui(x)).

0/1← ZVfy(crs,φ,π) :
Check that

e(AGα, BHβ) = e(Gα, Hβ)e(Gϕ(φ), Hγ)e(C,H) (1)

e(A,Hγ) = e(Gγ , B) (2)

where ϕ(φ) =
∑`
i=0 si(γwi(x) + (α+ β)ui(x)). Accept the proof if and only

if both the tests pass.

π ← ZSimProve(τ ,φ) :
Pick µ← Zp and compute π = (A,B,C) such that

A = Gµ, B = Hµ, C = Gµ
2+(α+β)µ−γϕ(φ).

5.3 Efficiency

The proof size is 2 elements in G1 and 1 element in G2. The common reference
string contains a description of R (which includes the bilinear group), m+2n+5
elements in G1 and n+ 3 elements in G2.

Although the verifier is modelled as knowing the whole common reference
string, actually it only needs to know

crsV =(
p,G1,G2,GT , e,H,Gα, Hβ , Gγ , Hγ , {Gγwi(x)+(α+β)ui(x)}`i=0, e(G

α, Hβ)
)
.

Thus the verifier’s common reference string only contains a description of the
bilinear group G, ` + 3 elements from G1, 3 elements from G2, and 1 element
from GT .

The verification consists of checking that the proof contains 3 appropriate
group elements and checking 2 pairing product equations. The verifier computes
` exponentiations in G1 (noting that s0 = 1), 4 group multiplications and 5
pairings (assuming e(Gα, Hβ) is precomputed in the verifier’s common reference
string).

The prover has to compute the polynomial h(X). It depends on the relation
how long time this computation takes; if it arises from an arithmetic circuit
where each multiplication gate connects to a constant number of wires, the
relation will be sparse and the computation will be linear in n. The prover also
computes the coefficients of

∑m
i=0 siui(X). Having all the coefficients, the prover

does m+ 2n− ` exponentiations in G1 and n exponentiations in G2.

20

5.4 Security Proof

Theorem 5.1. The protocol given above is a non-interactive zero knowledge
argument of knowledge with perfect completeness, perfect zero knowledge and it
has simulation-extractability (implying it also has knowledge soundness) provided
that the (d(λ), q(λ))-XPKE and (d(λ), q(λ))-Poly assumptions hold.

Proof. —

Perfect Completeness Perfect completeness holds by direct verification. Given
the number of variables and the length of the equations in the exponent, we
have included this verification in Appendix A for completeness.

Zero-Knowledge
To see that this scheme has perfect zero knowledge, suppose that π = (A,B,C)
is a valid proof for the instance (s1, . . . s`). If A was constructed by the prover
then it is uniformly random as it depends on the random element r. The element
B is then completely determined by A due to the second verification equation
and C is completely determined by A and B due to the first verification equa-
tion. Similarly, when A is constructed by the simulator, A is random because
it depends on the random exponent µ. The element B is then completely de-
termined by A since it can be seen to satisfy the second verification equation
and C is completely determined by A and B since it can be seen to satisfy the
first verification equation. Thus, real proofs and simulated proofs have identical
probability distributions.

Simulation Extractability
To show simulation extractability, we shall show that any adversary that breaks
simulation extractability for our scheme can also either break the (d(λ), q(λ))-
XPKE assumption or break the (d(λ), q(λ))-Poly assumption. To put this for-
mally in terms of the games Gprove-ext, GXPKE and GPoly, we observe that the
relation generator R corresponds to a bilinear group generator where the values
`, {ui(X), wi(X)}mi=0, t(X) are auxiliary information. Formally, we will show
that for all PPT adversaries A, there exists PPT algorithms B, C such that for
all PPT extractors χB, there exists a PPT extractor χA such that for all λ ∈ N

Advprove-ext
Arg,A,χA

(λ) ≤ AdvXPKE
R,d(λ),q(λ),B,χB (λ) + AdvPoly

R,d(λ),q(λ),C(λ) + ε (3)

where ε is some negligible function in λ. By the (d(λ), q(λ))−XPKE and the
(d(λ), q(λ))−Poly assumption we then have that for any choice of B, C there
exists χB such that the RHS of 3 is negligible in λ. Thus there exists χA such
that Advprove-ext

Arg,A,χA
is negligible in λ.

Choosing the algorithms B and C:
To begin, we choose two PPT algorithms B and C such that whenever A outputs
a verifying (φ, Ga, Hb, Gc), B outputs elements (Ga, Hb) such that a = b and
C outputs Gc. Both of these algorithms will run the algorithm D below as a

21

sub-protocol. The PPT adversary D takes a bilinear group gk as input, is given
access to the oracles described in GXPKE (or GPoly), and is defined as follows.

DO1
G,z,O

2
H,z (gk)

crsG1 = Gα, Gβ , . . .← O1
G,z

(
Xα;Xβ ;Xγ t(Xx);X2

γ t(Xx)2;

(Xα +Xβ)Xγ t(Xx);
{XγX

i
x, X

2
γ t(Xx) Xi

x}n−1i=0 ;
{Xγ wi(Xx) + (Xα +Xβ) ui(Xx)}`i=0;
{X2

γ wi(Xx) + (Xα +Xβ)Xγ ui(Xx)}mi=`+1

)
crsG2

= H1, Hβ , . . .← O2
H,z

(
1;Xβ ;Xγ t(Xx); {XγX

i
x}n−1i=0

)
crs = (crsG1 , crsG2); Q′ = ∅;
(φ, (Ga, Hb, Gc))← AZSimProvecrs,τ (crs)
return (Ga, Hb, Gc)

ZSimProvecrs,τ (φj)

Gµj , Gµ
2
j+(α+β)µj−γϕ(φj) ← O1

G,z(Xµj ;X
2
µj + (Xα +Xβ)Xµj);

Hµj ← O2
H,z(Xµj);

Q′ = Q′ ∪ {Gµj , Hµj , Gµ
2
j+(α+β)µj−γϕ(φj)}

return (Gµj , Hµj , Gµ
2
j+(α+β)µj−γϕ(φj)).

Then the adversaries B and C are given by

BO1
G,z,O

2
H,z (gk) CO1

G,z,O
2
H,z (gk)

(Ga, Hb, Gc)← DO1
G,z,O

2
H,z (gk) (Ga, Hb, Gc)← DO1

G,z,O
2
H,z (gk)

return (Ga, Hb) g(X)← χC(transC)
return (Gc, g(X))

O1
G,z(gi) O2

H,z(hj)

return O1
G,z(gi) return O2

H,z(hj)

O1
G,z(gi) O2

H,z(hj)

return O1
G,z(gi) return O2

H,z(hj)

where the algorithm χC outputs g(X) specified in (4).

Choosing the algorithm χC:
Define χC such that if it receives transC as input and then it outputs

g(X) = cα ·Xα+cβ ·Xβ+cγt ·Xγt(Xx)+

n−1∑
i=0

(
cx,i ·Xi

xXγ + ct,i ·Xi
xX

2
γt(Xx)

)
+
∑̀
i=0

ci · (Xα +Xβ)ui(Xx) +

m∑
i=`+1

ci(X
2
γwi(Xx) + (Xα +Xβ)Xγui(Xx))

+

|Q′|∑
j=1

(
cAj ·Xµj + cCj · (X2

µj + (Xα +Xβ)Xµj −Xγϕ(φj))
)
. (4)

22

Possible χB such that A’s output verifies and B fails at GXPKE :
Let χB be a PPT extractor for B. If A were to output (φ, Ga, Hb, Gc) such that
ZVfy(crs, Ga, Hb, Gc) = 1, then a must equal b due to the second verification
equation. Thus either B succeeds at GXPKE

R,d(λ),q(λ),B,χB
or χB(transB) outputs

η =
(
b0, bβ , bγ,t, {bx,i}n−1i=0 , {bj}

|Q′|
j=1

)
∈ Z3+n+|Q′|

such that

b = b0 · 1 + bβ · β + bγ,t · γt(x) +

n−1∑
i=0

bx,i · xiγ +

|Q′|∑
j=1

bj · µj .

Choosing the extractor χA:
Since A receives all of C’s oracle responses and C does not use any random
coins to calculate anything else, there is no information in transC that cannot be
calculated from transA. Let T be such that T (transA) = transC . Define the PPT
extractor χA as follows

χA(transA)

transC ← T (transA)
g ∈ Zp[X]← χC
return c`+1, . . . , cm

1

Contrapositive - if B and C fail then A fails:
Suppose that A outputs (φ, Ga, Hb, Gc) with ZVfy(crs,φ, Ga, Hb, Gc) = 1, and

both B and C output 0 for GXPKE
R,d(λ),q(λ),B,χB

and GPoly
R,d(λ),q(λ),C respectively. We

shall show that either

1. (φ, Ga, Hb, Gc) ∈ Q′;
2. the extractor χA outputs a valid witness for φ.

Consequently, A fails at the Gprove−etrArg,A,χA
game. This suffices to show that (3) holds.

We consider two cases: the case where the vector extracted by χB, η, is such
that bk 6= 0 for some 1 ≤ k ≤ |Q′|; and the case where η is such that bj = 0 for
all 1 ≤ j ≤ |Q′|. In the first case we shall show that (φ, Ga, Hb, Gc) ∈ Q′ and in
the second case we shall show that χA outputs a valid witness for φ.

Relating χB’s and χC’s outputs when B and C fail:
If A outputs (φ, Ga, Hb, Gc) such that ZVfy(crs,φ, Ga, Hb, Gc) = 1, and if both

B and C fail at GXPKE
R,d(λ),q(λ),B,χB

and GPoly
R,d(λ),q(λ),C respectively, then χB and χC

output η and g(X) as above such that, with b = η · (crsG1
,µ),

g(z) = b2 + (α+ β)b− γϕ(φ). (5)

1 where ci are as in (4)

23

If χB outputs η with bk 6= 0 then A outputs (φ, Ga, Gb, Gc) ∈ Q′:
Suppose that χB outputs η is such that bk 6= 0 for some integer 1 ≤ k ≤ |Q′|.

Table 3 gives lists the coefficients of the terms that must cancel out if (5)
holds. The coefficients in b relating to the all but the kth simulated proofs must
cancel because else b2 would contain a term µjµk and C does not query XµjXµk

for j 6= k. Thus g(z) cannot contain any CAj , CCj terms for j 6= k. Similarly,

b cannot contain any bβ , bγt, {bx,i}n−1i=0 terms because C does not query X2
β or

XµkXγ . We also have that b0 is cancelled because C does not query O1
G,z on 1.

We can now use that the remaining terms in the RHS of (5) contain either
a factor of γ2, αγ, βγ, γµk, or µ2

k; and that none of them contain a factor of
xn. The terms involving cα, cβ and {ci}`i=0, {cx,i}n−1i=0 , cAk do not involve X2

γ ,
Xαγ , Xβγ , Xγµk , or X2

µk
terms, and so must cancel. The terms involving cγt,

{ct,i}n−1i=0 include the polynomial t(Xx), which is a degree n polynomial, so they
must cancel too. Denote the instance φ output by A as (s1, . . . , s`) and the

Coefficients Explanation

{bj}j 6=k, , bβ , bγt, {bx,i}n−1
i=0 ,

b0

b cannot contain factors of {µjµk}j 6=k, β2, µkγ, 1.

{cAj , cCj}j 6=k All terms in b involving {µj}j 6=k have been cancelled.

cα, cβ , {ci}`i=0, {cx,i}n−1
i=0 ,

cAk

Terms in g(X) must contain X2
γ , Xαγ , Xβγ , Xγµk , or

X2
µk factors.

cγt, ct,i for 0 ≤ i ≤ n− 1 g(X) cannot contain factor of Xn
x .

Table 3: Table of coefficients of terms that cancel.

instances that A queries the ZSimProvecrs,τ oracle on as φj = (sj1, . . . , sj`).
The remaining terms in (5) are,

b2kX
2
µk

+ bk(Xα +Xβ)Xµk −
∑̀
i=0

si(X
2
γwi(Xx) + (Xα +Xβ)Xγui(Xx))

=

m∑
i=`+1

ci(X
2
γwi(Xx) + (Xα +Xβ)Xγui(Xx))

+cCk

(
X2
µk

+ (Xα +Xβ)Xµk −
∑̀
i=0

ski(X
2
γwi(Xx) + (Xα +Xβ)Xγui(Xx))

)
.

(6)

Looking separately at the terms involving X2
µk

, XαXµk , and XαXγ yields the
three simultaneous equations

1. b2k = cCk ;

24

2. bk = cCk ;

3.
∑`
i=0(si − cCkski)ui(Xx)−

∑m
i=`+1 ciui(Xx) = 0.

Since bk 6= 0, the first two equations mean that bk = cCk = 1. Also, where the
polynomials {ui(X)}`i=0 are independent from each other as well as independent
from the polynomials {ui(X)}mi=`+1, the third equation gives us that si = ski for
0 ≤ i ≤ ` and

∑m
i=`+1 Ciui(x) = 0.

This is precisely the situation where φ = φk and a = µk, b = µk, c =
µ2
k + (α+ β)µk − γϕ(φk). Hence (φ, Ga, Gb, Gc) ∈ Q′.

If χB outputs η with all bk = 0 then χA outputs valid w:
Suppose that χB outputs η is such that bk = 0 for all 1 ≤ j ≤ |Q′|.

Table 4 gives lists the coefficients of the terms that must cancel out if (5)

holds. We have that g(X) cannot contain any {CAj , CCj}
|Q′|
i=1 as b contains no

terms involving {µj}|Q
′|

j=1. Also, b cannot contain any bβ , b0 terms because C does

not query X2
β or 1.

We can now use that the remaining terms in the RHS of (5) contain either a
factor of γ. The terms involving cα, cβ and {ci}`i=0 do not involve Xγ so must
cancel. This means that we from the remaining coefficients in (5), dividing both

Coefficients Explanation

bβ , b0 b cannot contains factor of β2, 1.

{cAj , cCj}
|Q′|
j=1 g(X) cannot contain factors of {Xµj}

|Q′|
j=1 .

cα, cβ , ci for all 0 ≤ i ≤ ` Terms in g(X) must contain a factor of Xγ .
Table 4: Table of coefficients of terms that cancel.

sides by Xγ yields

Xγ

(
bγtt(Xx) +

∑n−1
i=0 bx,iX

i
x

)2
+(Xα +Xβ)(bγtt(Xx) +

∑n−1
i=0 bx,iX

i
x)

−
∑`
i=0 si(Xγwi(Xx) + (Xα +Xβ)ui(Xx))

000000= cγtt(Xx)+
∑n−1
i=0

(
cx,iX

i
x + ct,iX

i
xXγt(Xx)

)
+
∑m
i=`+1 ci(Xγwi(Xx) +(Xα +Xβ)ui(Xx)).

Looking separately at the terms involving Xγ and Xα provides the two si-
multaneous equations

1.

(∑n−1
i=0 bx,iX

i
x + bγtt(Xx)

)2
=
∑n−1
i=0 ct,iX

i
xt(Xx) +

∑`
i=0 siwi(Xx)

+
∑m
i=`+1 ciwi(Xx);

2.
∑n−1
i=0 bx,iX

i
x + bγtt(Xx) =

∑`
i=0 siui(Xx) +

∑m
i=`+1 ciui(Xx).

25

The first equation means that bγt = 0 because the term b2γtt
2(Xx) is a degree

2n polynomial in Xx, whereas all other polynomials in Xx in that equation have
maximum degree 2n − 1. Set h(Xx) =

∑n−1
i=0 ct,iX

i
x. Then these two equations

ensure that the witness w = (c`+1, . . . , cm) is a valid witness for φ. ut

6 Lower Bounds

Our pairing based simulation-extractable SNARK construction in Section 5 is
optimal in the number of group elements and verification equations. In the full
paper, we prove that in the generic group model it is impossible to have a pairing
based SE-NIZK with just one verification equation or have proofs with just 2
group elements. Consequently, it is impossible to have a pairing based SoK with
one verification equation or with 2 group elements. This stands in contrast to
standard knowledge sound NIZK arguments, for which there are constructions
consisting of just one verification equation [36].

Theorem 6.1. If R is a relation generator with hard decision problems and
(ZSetup,ZProve,ZVfy,ZSimProve) is a pairing based (as defined by Groth [36])
SE-NIZK for R then ZVfy must consist of at least 2 verification equations and
the proofs must consist of at least 3 group elements.

We refer to the full paper for the proof.

A Completeness of the SE-SNARK in Section 5

Here we show perfect completeness of the SE-SNARK presented in Section 5.
Suppose that

A = Gγ(
∑m

i=0
siui(x)+r·t(x)), B = Hγ(

∑m

i=0
siui(x)+r·t(x))

C = Gf(w)+r2γ2(t(x))2+r(α+β)γt(x)+γ2t(x)[h(x)+2r
∑m

i=0
siui(x)]

where f(w) =
∑m
i=l+1 si(γ

2wi(x) + (α+ β)γui(x)).
It is easy to see the second verification equation e(A,Hγ) = e(Gγ , B) holds.

Here we show that so does the first verification equation

e(AGα, BHβ) = e(Gα, Hβ)e(Gϕ(φ), Hγ)e(C,H),

where ϕ(φ) =
∑`
i=0 si(γwi(x) + (α+ β)ui(x)). Taking discrete logarithms, this

is equivalent to showing that(
γ

(
m∑
i=0

siui(x) + r · t(x)

)
+ α

)
·

(
γ

(
m∑
i=0

siui(x) + r · t(x)

)
+ β

)

= αβ + γ
∑̀
i=0

si (γwi(x) + (α+ β)ui(x)) +

m∑
i=l+1

si(γ
2wi(x) + (α+ β)γui(x))

+ r2γ2(t(x))2 + r(α+ β)γt(x) + γ2t(x)

[
h(x) + 2r

m∑
i=0

siui(x)

]
. (7)

26

Combining the sums, the right hand side of (7) can be rewritten as

αβ + γ(α+ β)

(
m∑
i=0

si (ui(x)) + r · t(x)

)

+ γ2

(
m∑
i=0

si (wi(x) + 2r · t(x)ui(x)) + r2(t(x))2 + t(x)h(x)

)
. (8)

Expanding the left hand side of (7) yields

αβ + γ (α+ β)

(
m∑
i=0

siui(x) + r · t(x)

)
+ γ2

(
m∑
i=0

siui(x) + r · t(x)

)2

.

Since (s0, . . . , sm) is a valid witness for R, we have that (
∑m
i=0 siui(X))

2
=∑m

i=0 siwi(X) + h(X)t(X) for all X ∈ Zp. In particular this means that the left
hand side of (7) is equal to

αβ + γ (α+ β)

(
m∑
i=0

siui(x) + r · t(x)

)

+ γ2

(
m∑
i=0

si (wi(x) + 2r · t(x)ui(x)) + r2(t(x))2 + h(x)t(x)

)
.

This is identical to the expression in (8), which gives us that the left hand side
and the right hand side of (7) are equal.

B Square Arithmetic Programs

We defined Square Arithmetic Program (SAP) relations in Section 5. We will
now show how any arithmetic circuit with fan-in 2 gates over a finite field Zp
can be expressed as a SAP over the same finite field. The conversion is largely
the same as the conversions described in [30] and [19], however we also discuss
how to instantiate the trick of replacing multiplications with squarings that was
mentioned in [36].

Gennaro, Gentry, Parno and Raykova [30] introduced quadratic span pro-
grams (QSPs) and quadratic arithmetic programs (QAPs). These define NP-
complete languages specified by a quadratic equation over polynomials. QSPs
characterise boolean circuits and QAPs characterise arithmetic circuits in a nat-
ural way. Danezis, Fournet, Groth and Kohlweiss [19] noticed that by replacing
each of the constraints in QSPs with 2 other constaints, it is possible to design a
square span program (SSP), which is a QSP in which the two sets of polynomials
involved in the quadratic term are identical. Using this technique they were able
to reduce the number of proof elements and verification equations (at the cost of
a circuit with twice as many gates) by having the quadratic proof components

27

on each side of the pairing be replicas. We use SAPs in a similar way to make
the group elements A and B in our proof symmetric.

An arithmetic circuit can be described as a set of equations over the wires
s1, . . . , sm. We fix the constant s0 = 1, use s1, . . . , s` ∈ Zp to describe the
instance, and the rest of the wires s`+1, . . . , sm can be viewed as the (extended)
witness. Generalising from the simple equations that arise in arithmetic circuit,
we can consider a set of equations of the form

m∑
i=0

siui,q ·
m∑
i=0

sivi,q =

m∑
i=0

siwi,q,

where ui,q, vi,q, wi,q are constants in Zp specifying the qth equation.
Our SAP is based on a simplification of systems of arithmetic constraints,

where all multiplications are replaced with squarings. As suggested by [36],

we can write a product ab = (a+b)2−(a−b)2
4 . A system with n multiplication

constraints can therefore be rewritten as a system with at most 2n squar-
ing constraints. To be precise, for each multiplication constraint

∑m
i=0 siui,q ·∑m

i=0 sivi,q =
∑m
i=0 siwi,q we introduce a new variable sm+q and replace it with

two squaring constraints

1. (
∑m
i=0 si(ui,q + vi,q))

2
= 4

∑m
i=0 siwi,q + sm+q;

2. (
∑m
i=0 si(ui,q − vi,q))

2
= sm+q.

Given n squaring constraints
{

(
∑m
i=0 siui,q)

2
=
∑m
i=0 siwi,q

}n
q=1

we can now

pick arbitrary distinct r1, . . . , rn ∈ Zp and define t(x) =
∏n
q=1(x− rq). Further-

more, let ui(x), wi(x) be degree n− 1 polynomials such that

ui(rq) = ui,q and wi(rq) = wi,q for i = 0, . . . ,m, q = 1, . . . , n.

We now have that s0 = 1 and the variables s1, . . . , sm ∈ F satisfy the n equations
if and only if in each point r1, . . . , rq(

m∑
i=0

siui(rq)

)2

=

m∑
i=0

siwi(rq).

Since t(X) is the lowest degree monomial with t(rq) = 0 in each point, we can
reformulate this condition as(

m∑
i=0

siui(X)

)2

≡
m∑
i=0

siwi(X) mod t(X).

This gives rise to a SAP as defined in Section 5.
Formally, we work with square arithmetic programs R that have the following

description
R = (Zp, aux, `, {ui(X), wi(X)}mi=0, t(X)) ,

28

where p is a prime, aux is some auxiliary information, 1 ≤ ` ≤ m,
ui(X), wi(X), t(X) ∈ Zp[X] and ui(X), wi(X) have strictly lower degree than n,
the degree of t(X). A square arithmetic program with such a description defines
the following binary relation, where we define s0 = 1,

R =

(φ,w)

∣∣∣∣∣∣∣∣
φ = (s1, . . . , s`) ∈ Z`p
w = (s`+1, . . . , sm) ∈ Zm−`p

(
∑m
i=0 siui(X))

2 ≡
∑m
i=0 siwi(X) mod t(X)

 .

We say R is a square arithmetic program generator if it generates relations of
the form given above with p > 2λ−1.

Relations can arise in many different ways in practice. It may be that the
relationship generator is deterministic or it may be that it is randomized. It
may be that first the prime p is generated and then the rest of the relation is
built on top of the Zp. Or it may be that the polynomials are specified first and
then a random field Zp is chosen. To get maximal flexibility we have chosen our
definitions to be agnostic with respect to the exact way the field and the relation
is generated, the different options can all be modelled by appropriate choices of
relation generators.

In our pairing-based NIZK arguments the auxiliary information aux specifies
a bilinear group. It may seem a bit surprising to make the choice of bilinear group
part of the relation generator but this provides a better model of settings where
the relation is built on top of an already existing bilinear group. Again, there is
no loss of generality in this choice, one can think of a traditional setting where
the relation is chosen first and then the bilinear group is chosen at random as the
special case where the relation generator works in two steps, first choosing the
relation and then picking a random bilinear group. Of course letting the relation
generator pick the bilinear group is another good reason that we need to assume
it is benign; an appropriate choice of bilinear group is essential for security.

We use in the security proofs that the polynomials u0(X), . . . , u`(X) are lin-
early independent from each other and linearly independent from u`+1(X), . . . , um(X).
When constructing the square arithmetic program from squaring constraints, we
can achieve this by introducing the constraint si · 1 = si for any ui(X) that is
not already linearly independent. This makes ui(X) linearly independent from
all the other uj(X) since ui(rm+i) = 1, while uj(rm+i) = 0 for all j 6= i.

Finally, we note that given the square arithmetic program defining R′, we
can formulate the square arithmetic program defining

R = {((h,φ),w) : h ∈ {0, 1}λ ∧ (φ,w) ∈ R′}

by introducing another new variable h and adding the constraint that h · 1 = h.
This means that from a simulation-extractable NIZK for relation R, we can build
a simulation extractable signature of knowledge as in Section 3.

Acknowledgments

We thank Vasilios Mavroudis and Markulf Kohlweiss for helpful discussions.

29

References

1. M. Abe and S. Fehr. Perfect nizk with adaptive soundness. In Theory of Cryptog-
raphy Conference, pages 118–136. Springer, 2007.

2. M. B. BDMP, A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-
knowledge proof systems. SIAM Journal on Computing, 20(6):1084–1118, 1991.

3. M. Bellare and G. Fuchsbauer. Policy-based signatures. In International Workshop
on Public Key Cryptography, pages 520–537. Springer, 2014.

4. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via
cycles of elliptic curves. In International Cryptology Conference, pages 276–294.
Springer, 2014.

5. F. Benhamouda, J. Camenisch, S. Krenn, V. Lyubashevsky, and G. Neven. Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 551–572. Springer, 2014.

6. D. Bernhard, G. Fuchsbauer, and E. Ghadafi. Efficient signatures of knowledge and
daa in the standard model. In International Conference on Applied Cryptography
and Network Security, pages 518–533. Springer, 2013.

7. D. Bernhard, G. Fuchsbauer, E. Ghadafi, N. P. Smart, and B. Warinschi. Anony-
mous attestation with user-controlled linkability. International Journal of Infor-
mation Security, 12(3):219–249, 2013.

8. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 111–120. ACM, 2013.

9. N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. Indistinguishability obfuscation
vs. auxiliary-input extractable functions: One must fall. IACR Cryptology ePrint
Archive, 2013:641, 2013.

10. N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. On the existence of extractable
one-way functions. SIAM Journal on Computing, 45(5):1910–1952, 2016.

11. N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky. Succinct non-
interactive arguments via linear interactive proofs. In Theory of Cryptography,
pages 315–333. Springer, 2013.

12. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its ap-
plications. In Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 103–112. ACM, 1988.

13. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 440–456. Springer, 2005.

14. E. Boyle and R. Pass. Limits of extractability assumptions with distributional
auxiliary input. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 236–261. Springer, 2014.

15. E. Brickell, L. Chen, and J. Li. A new direct anonymous attestation scheme from
bilinear maps. In International Conference on Trusted Computing, pages 166–178.
Springer, 2008.

16. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In CRYPTO, volume 1294 of Lecture Notes in Computer Science, pages 410–424,
1997.

17. M. Chase and A. Lysyanskaya. On signatures of knowledge. In Advances in Cryp-
tology - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2006, Proceedings, pages 78–96, 2006.

30

18. I. Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect zero-
knowledge with preprocessing. In Workshop on the Theory and Application of of
Cryptographic Techniques, pages 341–355. Springer, 1992.

19. G. Danezis, C. Fournet, J. Groth, and M. Kohlweiss. Square span programs with
applications to succinct nizk arguments. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 532–550. Springer,
2014.

20. A. De Santis, G. Di Crescenzo, and G. Persiano. Necessary and sufficient assump-
tions for non-interactive zero-knowledge proofs of knowledge for all np relations.
In International Colloquium on Automata, Languages, and Programming, pages
451–462. Springer, 2000.

21. A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without in-
teraction. In Foundations of Computer Science, 1992. Proceedings., 33rd Annual
Symposium on, pages 427–436. IEEE, 1992.

22. D. Derler and D. Slamanig. Fully-anonymous short dynamic group signatures
without encryption. IACR Cryptology ePrint Archive, 2016:154, 2016.

23. A. Escala, G. Herold, E. Kiltz, C. Rafols, and J. Villar. An algebraic framework
for diffie–hellman assumptions. Journal of Cryptology, 30(1):242–288, 2017.

24. S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-malleability
of the fiat-shamir transform. In International Conference on Cryptology in India,
pages 60–79. Springer, 2012.

25. U. Feige, D. Lapidot, and A. Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

26. D.-G. Feng, J. Xu, and X.-F. Chen. An efficient direct anonymous attestation
scheme with forward security. WSEAS TRANSACTIONS on COMMUNICA-
TIONS, 8(10):1076–1085, 2009.

27. M. Fischlin and C. Onete. Relaxed security notions for signatures of knowledge. In
Applied Cryptography and Network Security - 9th International Conference, ACNS
2011, Nerja, Spain, June 7-10, 2011. Proceedings, pages 309–326, 2011.

28. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113–3121, 2008.

29. H. Ge and S. R. Tate. A direct anonymous attestation scheme for embedded
devices. In International Workshop on Public Key Cryptography, pages 16–30.
Springer, 2007.

30. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct nizks without pcps. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 626–645. Springer, 2013.

31. C. Gentry, J. Groth, Y. Ishai, C. Peikert, A. Sahai, and A. D. Smith. Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs.
J. Cryptology, 28(4):820–843, 2015.

32. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 99–108. ACM, 2011.

33. E. Ghadafi and J. Groth. Towards a classification of non-interactive computational
assumptions in cyclic groups. Cryptology ePrint Archive, Report 2017/343, 2017.

34. J. Groth. Simulation-sound nizk proofs for a practical language and constant size
group signatures. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 444–459. Springer, 2006.

35. J. Groth. Short non-interactive zero-knowledge proofs. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 341–
358. Springer, 2010.

31

36. J. Groth. On the size of pairing-based non-interactive arguments. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
pages 305–326. Springer, 2016.

37. J. Groth and R. Ostrovsky. Cryptography in the multi-string model. Journal of
Cryptology, 27(3):506–543, 2014.

38. J. Groth, R. Ostrovsky, and A. Sahai. New techniques for noninteractive zero-
knowledge. Journal of the ACM (JACM), 59(3):11, 2012.

39. J. Groth and A. Sahai. Efficient noninteractive proof systems for bilinear groups.
SIAM Journal on Computing, 41(5):1193–1232, 2012.

40. J. Kilian. Improved efficient arguments. In Annual International Cryptology Con-
ference, pages 311–324. Springer, 1995.

41. J. Kilian and E. Petrank. An efficient noninteractive zero-knowledge proof system
for np with general assumptions. Journal of Cryptology, 11(1):1–27, 1998.

42. U. Maurer and S. Wolf. Lower bounds on generic algorithms in groups. In Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
pages 72–84. Springer, 1998.

43. S. Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

44. I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed
e-cash from bitcoin. In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 397–411. IEEE, 2013.

45. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2):165–172, 1994.

46. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and
composable oblivious transfer. In Annual International Cryptology Conference,
pages 554–571. Springer, 2008.

47. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In Foundations of Computer Science, 1999. 40th Annual Sym-
posium on, pages 543–553. IEEE, 1999.

48. E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In Security and Pri-
vacy (SP), 2014 IEEE Symposium on, pages 459–474. IEEE, 2014.

49. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
4(3):161–174, 1991.

50. V. Shoup. Lower bounds for discrete logarithms and related problems. In Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
pages 256–266. Springer, 1997.

51. P. Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Theory of Cryptography Conference, pages 1–18. Springer,
2008.

52. B. Yang, K. Yang, Y. Qin, Z. Zhang, and D. Feng. Daa-tz: an efficient daa scheme
for mobile devices using arm trustzone. In International Conference on Trust and
Trustworthy Computing, pages 209–227. Springer, 2015.

32

