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ABSTRACT:

For extraction of road pixels from combined image and elevation data, Wegner et al. (2015) proposed classification of superpixels into
road and non-road, after which a refinement of the classification results using minimum cost paths and non-local optimization methods
took place. We believed that the variable set used for classification was to a certain extent suboptimal, because many variables were
redundant while several features known as useful in Photogrammetry and Remote Sensing are missed. This motivated us to implement
a variable selection approach which builds a model for classification using portions of training data and subsets of features, evaluates
this model, updates the feature set, and terminates when a stopping criterion is satisfied. The choice of classifier is flexible; however,
we tested the approach with Logistic Regression and Random Forests, and taylored the evaluation module to the chosen classifier. To
guarantee a fair comparison, we kept the segment-based approach and most of the variables from the related work, but we extended
them by additional, mostly higher-level features. Applying these superior features, removing the redundant ones, as well as using more
accurately acquired 3D data allowed to keep stable or even to reduce the misclassification error in a challenging dataset.

1. INTRODUCTION

Motivation Extracting roads from remote sensing images is im-
portant in a number of different applications, for example traffic
management, city planning, road monitoring, GPS navigation and
map updating (Wang et al., 2016). However, until now, no fully
automated road network detection method is applied in praxis,
see Rottensteiner et al. (2013). The reason lies in the difficulty
of the classification problem. There are many factors that make
road network extraction from remote sensing images challenging.
First of all, the dependence on the sensors and resolution cause
a variety of problems; moreover, even if same sensors and reso-
lutions are used, appearance of roads in remote sensing images
can vary wildly. Some reasons are weather and illumination ef-
fects and, very importantly, shadows and occlusions caused by
high buildings, tree crowns, moving or parking vehicles and tiles
of rubbish in developing countries. Because buildings and vehi-
cles are indispensable part of urban terrain, road extraction from
urban scenes is considered even more difficult than in rural areas
(Hu et al., 2014).

Previous work The challenges mentioned above demonstrate
that probably any conceivable rule for road pixel extraction from
2D or 3D information has a large number fo counterexamples,
both false positive and false negative. One could think about
thresholding relative elevations (also knows as normalized Dig-
ital Surface Model, nDSM) over the ground; Here, bridges are
examples of false negatives and farmlands represent examples of
false positives, leaving aside the fact that extraction of ground
pixels is not always trivial and widely error-free. Thus, modern
approaches use combination of rules that support each other on
their way towards a reliable road pixel extraction. Thinkable rules
are nDSM, Normal Difference Vegetation Index (NDVI), color
information from different color spaces (Wegner et al., 2015),
lines detected in images (Unsalan and Sirmacek, 2012), stripes
detected in nDSM for representing street canyons (Hinz, 2004),
surface roughness (Hu et al., 2014), spatial signature measure

employed by Jin and Davis (2005), filters, descriptors and tex-
tons employed by Montoya-Zegarra et al. (2015); Poullis and You
(2010); Wegner et al. (2015), methods based on morphological
profiles (Valero et al., 2010) up to the approaches based on Con-
volutional Neural Networks (Sherrah, 2016), where the problem
is solved by applying very large numbers of features (neurons)
and huge amounts of training data.

The variety of rules in this fragment of the seemingly nearly end-
less list of ways to extract road pixel confirm the non-triviality of
the task. However, one can identify tendencies towards a large
number of generic features without explicit semantic meaning.
Also, it can be followed that a combined evaluation of features,
in particular extracted both in two- and three-dimensional data, is
more promising than relying on just one source of information.
Accurate, high-resolution 3D information can be extracted by
means of a stereo-matching procedure, such as Lemaire (2008).

The features presented above have in common that they rely on
local properties of a structural image element (pixels, superpix-
els,...). The considered neighborhood of a pixel can be quite
large (such as receptive fields in a convolutional neuronal net-
work), but for classification tasks, it is limited. However, a par-
ticularly important property of the road network is its connected-
ness. Several excellent contributions exist which aim at extrac-
tion of (curvy)linear structures by fitting low-cost paths between
the seeds, which are pixels with locally minimum values of the
cost function, such as tubular measure (Tiretken et al., 2012).
For combined evaluation of image and elevation data, Wegner et
al. (2015) proposed a pioneering approach for extraction of road
superpixels. In the first step of this approach, over-segmentation
of the image material into homogeneous regions called superpix-
els (Veksler et al., 2010) is created. Second, features from im-
ages and elevation maps are extracted segment-wise and classi-
fied by a standard algorithm, such as random forests (Breiman,
2001). In the third step, minimum-cost paths are calculated be-
tween points with high probability of being roads. In the last
fourth step, a conditional random field is applied for smoothing,
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using the minimum cost paths as higher order cliques. The su-
perpixels along the reliable paths are thus encouraged to belong
to the road class. The latter two steps of the method can be in-
terpreted as post-processing of the classification result obtained
by random forests. Obviously, the quality of the final road net-
work extraction depends to a great part on the accuracy of this
preliminary classification.

Bottleneck: Variable selection Clearly, the main focus of the
contribution of Wegner et al. (2015) lay on minimum cost paths.
However, we feel that the step of preliminary classification did
not receive the attention and care its importance deserves. Espe-
cially, in the list of used variables, some of them were quite ob-
viously redundant and many useful variables missed. Missed are
those higher-level features that allow to combine spectral chan-
nels and elevation data and thus may perform better in shadow
regions. Redundant features are known to have only marginal
detrimental effect on random forests (Genuer et al., 2010), but a
dramatic degradation can result for other classifiers, such as lo-
gistic regression (Cox, 1958). As a consequence, any method,
including the approach of Wegner et al. (2015), could benefit
greatly - both with respect to the performance and the comput-
ing time - from a careful selection of variables (features).

Methods for automatic variable selection are being applied in ba-
sically all machine-learning areas. The dramatically increased
amount of data and features — as highlighted in our previous con-
siderations — commonly used in modern machine learning due to
the growing capabilities of sensors and computers, underlines the
importance of automatic feature selection in basically all areas
of machine-learning. Additionally, in many applications, expert
knowledge is not always available or sufficient to select variables.

Since for a set of p variables, the number of possible subsets is
2P, the problem of variable selection is known to be NP-hard.
Hence, no feature selection method that terminates in a reason-
able amount of time performs optimally in all situations (Kohavi
and John, 1997; Bol6n-Canedo et al., 2015). It is, therefore, not
surprising that an immense and ever growing number of different
heuristic strategies exist (Bolén-Canedo et al., 2015; Stafczyk
and Jain, 2015), so many in fact that it makes choosing one of
them difficult since it requires a relatively deep understanding
not only of the mechanism of available feature selection meth-
ods, but also and in particular, the functionality of the underlying
classifier.

Contribution In this work, we adopted from the superpixel-
wise classification framework and the features generated from
filter banks Wegner et al. (2015); that is, we omitted the post-
processing steps in order not to gloss over the raw classification
results. However, we extend the variable set of Wegner et al.
(2015) by our variables and performed classification with two
methods. On the one hand, we applied the random forest clas-
sifier, which is a conceptually simple, but powerful tool whose
mathematical properties are however not sufficiently explored yet.
On the other hand, we employed logistic regression. Although
its application is not recommendable if the data cannot be ap-
proximately separated into classes by hyper-planes or if variables
are strongly correlated, this is actually the reason why we are
interested to measure its performance while testing our (some-
times highly redundant) variables. Besides, logistic regression is
mathematically well understood due to its inclusion into the class
of generalized linear models for which properties asymptotic in
terms of training data can be proved (Fahrmeir and Kaufmann,
1985; Warnke, 2017).

Inspired by the work of Kohavi and John (1997), we implemented
for both classifiers a wrapper framework, which allows computa-
tion and evaluation of models with part of the training data and
feature subsets. Stepwise forward and backward selection pre-
suppose extending or reducing these subsets until some stopping
criterion is satisfied. Thus, our main contribution is made up of
a simple, yet powerful, method of feature selection with a rather
intuitive mechanisms. Furthermore, as all wrappers, it directly
links selection to prediction accuracy, a measure whose utility
is obvious and which can be tracked back to the visited feature
subsets and their evaluation result. For random forest, this is out-
of-bag misclassification rate, and for logistic regression, it is the
Wald-test. Both are built into their respective models; as a con-
sequence, most users will be familiar with them, which keeps the
selection process easily understandable.

We applied and evaluated different variable selection methods
to road extraction from the Vaihingen dataset (Rottensteiner et
al., 2013), an often used benchmark for urban classification from
remote sensing. The learning algorithms we used are random
forests, as proposed by Wegner et al. (2015), but also logistic re-
gression.

Organization The paper is structured as follows. In Sec. 2,
we give a description of our wrapper and its application for our
classifiers. Note that we will skip the description of these classi-
fiers since these are standard, established methods; the interested
reader can find their detailed description and critical juxtaposi-
tion with respect to feature selection in Warnke (2017). Next, we
discuss in Sec. 3 the relevant features. In Sec. 4, we present our
results: Feature sets selected by each classifier and each selection
tool as well as their performance. Sec. 5 summarizes the contents
of this work and outlines several ideas of future research.

2. WRAPPER METHOD FOR VARIABLE SELECTION

There are three general classes of variable selection algorithms.
First, filter methods basically presuppose assessing each variable’s
usefulness through the training data only and discard the less rel-
evant variables. Thus, they do not depend on the underlying clas-
sifier. Second, methods embedded into the model building pro-
cess penalize the models that are too complex, thus allowing to
establish which variables best contribute to the model accuracy
and which are superfluous. The third category is referred to as
wrapper methods. These are recursive procedures which com-
prise: Model inference based on a subset of variables, evaluation
of the model using e. g. n-fold cross validation and updating the
subset according to the result of the evaluation. The procedure
terminates if no better subset was found within the last couple
of steps of the search algorithm. Because wrapper methods con-
nect variable selection to prediction accuracy of the underlying
classifier, they are particularly interesting to the authors.

To summarize, wrapper methods can normally be divided into the
following parts, covered in the rest of this section: Starting set,
search algorithm, stopping criterion, and evaluation method. In
the following, we will discuss these parts in more detail.

The starting set of a wrapper method is usually either the empty
or the full set of features. In the first case, the quintessence of the
search algorithm is to add, successively, variables (individually
or multiples at the same time) to the starting set. This category
of methods is commonly denoted as forward selection. The moti-
vation to add not single but promising combined sets of variables
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comes from the fact that in the worst case, adding single features
requires evaluating O(p?) models, where p is the number of fea-
tures, which may be very high. To avoid this, depth-first search
is simulated. In the second case, known as backward selection,
variables are gradually removed from the current set. Because
creation of the models containing fewer predictors is less compu-
tationally expensive, forward selection is often preferred in praxis
due to its greater speed. However, for backward selection, usu-
ally, less models have to be instantiated.

As for the stopping criterion, an intuitive way to do this would
be stopping as soon as adding a further feature does not improve
the accuracy of prediction. However, an extreme example, the
well-known XOR-problem, shows that this strategy is suboptimal
and that care should be taken to prevent the algorithm ending
up in a local optimum. In the XOR-problem, none of two vari-
ables improves the performance, but their combination does. The
necessary condition for selecting both relevant variables within a
stepwise forward selection algorithm is to let the search terminate
if in at least the last two steps no improvement has been achieved.
Note that this condition is not sufficient, because one of two fea-
tures must make it into model up to this point, in order to reach
the second feature in the next iteration. It is, however, unlikely if
we assume that any of two features has no merit on its own.

The remaining question of evaluation method can always be
solved using the n-fold cross-validation. It is considered a very
reliable way to estimate prediction accuracy of a model (Kohavi
and John, 1997), but it is however expensive since n models have
to be fitted. Because of this and because of a rather undesired in-
variance of this method with respect to the underlying classifier,
we are interested to design a classifier-internal evaluation strat-
egy. For classifiers selected for this work, namely logistic regres-
sion and random forests, the respecting evaluation methods will
be reviewed in both concluding paragraphs of this section.

For logistic regression, it is possible to refer to the so called Wald-
statistics, which allows to detect which variables of the current set
are redundant; during the backward selection, it can be applied
either to the current set of features at each iteration, striving to
remove one variable, or to the whole set of features if order to
filter out the apparently less useful and redundant features. From
the asymptotic properties of logistic regression, it is known that
the sought parameter vector 3 is normally distributed

BN (B0, FB)T) M

where (o is the expectancy and F' the Fisher information de-
fined as the inverse covariance matrix of the gradient of the log-
likelihood function with respect to 3. Using the approximate
normality of (3, the Wald-test is supposed to test the hypothesis
Ho : Bg+1 = -+ = Bp = 0, for some ¢, 0 < ¢ < p, which
would mean that the variables corresponding to the last p — g en-
tries of 3, Bg+1, ..., Bp are not needed for our model. To reject
the hypothesis H, it can be followed that the Wald-statistics

W =B FB (~ Xp-q) > X3-4(0.95), 6)

where 3 = [Bat1y - BP]T, F is the lower (p—q) x (p—q) sub-
matrix of F, and x? is the well-known Chi-squared distribution.
Note that (2) holds if at least one of the entries of /3’ deviates from
zero and thus, one of the corresponding variables is needed for
our model. Of course, in praxis, the test is often used the other
way round. A set of predictors is removed from the model if their
Wald-statistic is not significant at a predefined level, opting thus

for simpler models once it could not be shown that all predictors
of a more complicated one are needed.

For random forests, instead of costly cross-validation, the easily
available out-of-bag prediction measure makes possible a much
faster estimation of the model prediction accuracy. For a random
forest 7', the rate of Out-of-Bag misclassification is defined as:

Eoos(T) = x #{(z,y) € X | Toos(z,y) #y}.  (3)

where X is the set of training samples (x, y) and x and y are the
features and the labels, respectively, while # denotes the cardi-
nality of a set. Further, Toos(z,y) denotes the Out-of-Bag pre-
diction for training sample (z,y), i.e. the class that is predicted
by the majority of trees within 7" where (z,y) was out-of-bag.
There is empirical evidence that the accuracy of the Out-of-Bag
misclassification rate is almost the same as if one would apply an
additional test-set of the same size (Breiman, 1996).

3. EXTRACTED FEATURES

Since the number of features that could possibly be extracted is
seemingly endless, this step is always a compromise. On the one
hand, we wish to incorporate all the useful information contained
in the image material, since due to our subsequent feature selec-
tion, we can accept taking in a lot of irrelevant or redundant vari-
ables in order to show the capabilities of variable selection. On
the other hand, however, too many useless features can become
prohibitively expensive for the wrapper methods with respect to
computing time. Nevertheless, we align ourselves to the choice
of Wegner et al. (2015), extend it by several new features that
are popular in photogrammetry and remote sensing, and wish to
demonstrate that even after a careful, knowledge-based extraction
of features, automatic variable selection is highly beneficial.

A common approach in computer vision is convolving the image
material with a number of different filters and taking the result-
ing filter responses as features (Cula and Dana, 2004; Varma and
Zisserman, 2005; Winn et al., 2005). The applied filters usually
detect edges or smoothen the image. For example, Wegner et al.
(2015) applied the filter bank of Winn et al. (2005) to each of the
three channels of an image, transferred into the opponent Gaus-
sian color space (OGC space) (Geusebroek et al., 2001) as well
as the relative elevation value. The mean value and standard de-
viation of all these features over all pixels of a segment were then
the output of their feature extraction procedure. Hence, in total,
there were:

{3 x 3 [Gaussians for every channel] +4 x 2 [Filter kinds for
the first channel] +1 [rel. elevation]} x 2 [mean and standard
deviation | = 36 variables. It seems that some of these predictors
are redundant and that some measures (like NDVI, Normal Veg-
etation Differential Index), commonly used in classification for
remote sensing applications, are not taken into account. For our
work, this was the main motivation.

We used the MRS filter bank of Varma and Zisserman (2005)
instead of the filter bank of Winn et al., since it led to a higher ac-
curacy. The main reason for this is that it incorporates more edge
and ridge detection, which is essential for texture analysis. Also,
it is invariant with respect to the image rotations. Besides, in
segment-wise classification, applying Gaussians and Laplacians
with different parameters does not usually provide more infor-
mation since the subsequent averaging over the superpixel results
in basically identical features. Last but not least, Burghouts and
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Geusebroek (2009) claim that the filters of Varma and Zisserman
(2005) are better suited for application to images in the OGC
space while the filter set of Winn et al. (2005) is designed for
the Lab color space.

Moreover, we collected unfiltered channels of the orthophoto and
nDSM in order to take into account different filter sizes from the
Winn bank of filters, preferred by Wegner et al. (2015). We refer
to the total of 56 variables:

{8 [filters in MR8 filter bank] x 3 [channels] 43 [unfiltered chan-
nels] +1 [rel. elevation]} x 2 = 56 as Wegner-like. Addition-
ally, we have 22 more variables. The first 16 of them arise from
the fact that we also subject the nDSM to the MR8-based filter-
ing (note that as always we store average and standard deviation
of every segment), and only image channels. The DSMs stem
from a very accurate multi-baseline approach. As a consequence,
also the features derived from the DSM (planarity, scattering etc.)
are highly discriminative and almost comparable with those ex-
tractable from laser point clouds.

The remaining six features use combinations of channels. First,
the well-known NDVI (also here, average and standard deviation
were taken). Second, stripes computed in the nDSM and in the
orthophoto were calculated. These stripes are formed from pairs
of nearly parallel straight lines detected in the image. For appli-
cation of stripes for detecting man-made structures, we refer to
Soergel et al. (2006), from where we also took the technical de-
tails for the computation of stripes. Stripes are detected in the
nDSM and in the intensity image of the orthophoto, thus yielding
four more variables. In the following, we summarize the differ-
ences between our variables and those of Wegner et al. (2015).

1. Unfiltered channels,

2. Filter bank: MRS instead of Winn-filters — Wegner-like
features,

3. Application of MR8 filter bank to nDSM,
4. NDVI- and stripes-based features.

Classification For training with a certain training set using a
specific feature set, the output model is the set of decision trees
in case of random forests classifier and the parameter vector B
for logistic regression. For logistic regression, the probability P
of a superpixel to belong to the road class is given by the logistic
function

__exp(fTr)

= — 4
1+ exp(fTx)

where x is the feature vector. For random forests, P is the per-
centage of trees which output it as road class (we utilized 200
trees in our experiments). The local classification result is ob-
tained by assigning the superpixels the road class if P > 0.5
and non-road otherwise. Wegner et al. (2015) used P for their
non-local optimization post-processing step.

For convenience, we summarize below our three-step algorithm:

1. Perform variable selection on a part of the training data which
yields a feature subset

2. Induce a model using these features and the complete train-
ing data

3. Output the probability of the test data.

4. RESULTS

The considered dataset is the publicly available ISPRS bench-
mark Vaihingen (a town in Southern Germany) for urban area
object classification, see Rottensteiner et al. (2013), provided by
the German Society for Photogrammetry, Remote Sensing and
Geoinformation (DGPF), Cramer (2010). In total, there are 16
patches containing the images at a resolution ~ 0.1 m, the cor-
responding DSMs, created by the method of Lemaire (2008), as
well as the labeled ground truth, created by SIRADEL corpo-
ration (www.siradel.com). In the images, the near infrared is
present instead of the blue channel. For a better overview, we
want to outline in Sec. 4.1 important remarks on data prepara-
tion as well as the evaluation criteria while in Sec. 4.2, evaluation
results will be presented.

4.1 General remarks on preparation of the data

nDSM extraction and superpixel generation Firstly, since the
relative elevatation is clearly a more suitable variable for a learn-
ing algorithm than the absolute height, we obtained for every
patch the nDSM, . This is done by calculating the ground sur-
face using the procedure of Bulatov et al. (2014) and subtract-
ing it from the DSM. Secondly, segmentation into superpixels is
carried out by means of the compact superpixels algorithm (Vek-
sler et al., 2010). This algorithm uses for each superpixel a data
term, which prevents it from growing outside of a predefined box,
and a smoothness term penalizing the weighted number of pix-
els shared by two adjacent superpixels. Since this smoothness
penalty is submodular, the alpha-expansion method (run over all
superpixels and several iterations) with maximum flow (Boykov
et al., 2001) as the core methods allows to obtain a strong local
minimum of the resulting function. Next, we proposed a filtering
procedure, since some segments are too small and do not contain
enough information. They are fused with neighbors. In the seg-
mentation we used throughout this work, the average number of
pixels in a segment as about 440 and the number of segments thus
was around 10 to 12 thousands which makes the test tractable (not
more than several seconds).

Features computation Similarly to Wegner et al. (2015), we
extracted the mean and the standard deviation for all features
over segments. However, since the near-infrared replaces the blue
channel, the transformation into OGC-space, originally designed
for true RGB images, is, strictly speaking, invalid. Nevertheless,
Wegner et al. (2015) converted the image material, treating them
just as though they were RGB images without even a side note.
Even though this seems questionable, our experience showed that
calculating features from the transformed images achieved better
accuracy than those extracted directly from the infrared, red and
green values. Because of this, because of a consistent compari-
son, and because we are planning to evaluate our features rather
than fine-tune them, we decided to retain this strategy.

Evaluation strategy The models we compare in this work use
feature sets resulting from:

1. The standard forward selection,

2. the standard backward selection,
3. all variables discussed in Sec. 3,
4. all Wegner-like variables,

and both aforementioned classifiers. Furthermore, the questions
we wish to find answer for are:
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1. How many variables each of our classifiers considers as nec-
essary,

2. how the reduction of variables changes the prediction accu-
racy, in particular, with respect to the full set of variables
and to the results of related work,

3. overall performance evaluation

4. finally, which are the trend in variables preferred by logistic
regression and random forests.

To answer the first question, we successively used each of the seg-
mented patches as test data while the remaining patches served as
training data. This means that after variable selection, every of 78
features of Sec. 3 can at most be called 16 times. Thus, we can
derive the average size of the feature sets produced by the feature
selection methods. Analogously, we can store for all variables
the number of patches it was needed in, to give answer to the
last question. For the second question, we specified, according to
Heipke et al. (1997), the standard measures of classification, such
as completeness, correctness and quality. To compute these mea-
sures, we assessed, which segments lie in ground truth to more
than or less than 50% in the street class to obtain true and false
segments, respectively. From this as well as the positives and neg-
atives of our classification result, the measures of Heipke et al.
(1997) are derived using the well-known terms. For more thor-
ough performance evaluation, for example, ROC curves, we refer
to Warnke (2017), since otherwise we would explode the scope
of this work. Thus, a brief reference to two classification exam-
ples will be provided to respond to the third question and a few
concluding recommendations on the selection of features for both
classifiers are given to provide an answer of the fourth question.

4.2 Evaluation

Reducing feature set We start analyzing the overall perfor-
mance of the variable selection methods with respect to their abil-
ity of variable reduction. In Fig. 1 we see the number of variables
remaining after running forward and backward selection for both
logistic regression and random forests. It is evident that our goal
was successfully achieved since feature sets are always reduced
to some extent and significantly in three of the four methods. Es-
pecially, forward selection brought a considerable improvement:
The average number of remaining variables was below 32 for lo-
gistic regression and even below 17 for random forests. How-
ever, results tend to lie close to the starting point of the search,
i. e. the empty set for forward selection and the full set of predic-
tors for backward elimination. It may seem worrying: Since for-
ward and backward methods are supposedly optimizing the same
target function and only differ in the way they search through the
space of candidate subsets, one should expect more similar re-
sults. It seems that the search gets stuck in a local minimum after
a relatively short time and that this tendency will aggravate with
a higher number of features. It is worth mentioning that with re-
spect to the backward selection, the situation is considerably bet-
ter for logistic regression: Since logistic regression is more sensi-
tive towards redundant variables, discarding them usually causes
a noticeable improvement. In the case of random forests, redun-
dant variables do not have such a negative impact on a models ac-
curacy. Although this is a treasured property of random forests,
for a wrapper-type feature selection, however, it becomes cum-
bersome, since it leads to premature termination of the search.
The mentioned differences between forward and backward selec-
tion should be kept in mind when choosing a feature selection
method. As a rule of thumb, forward selection methods are suit-
able for a drastic reduction of the variable set whereas backward
methods focus on prediction accuracy.
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Figure 1: Cardinalities of the produced feature sets for different
patches, indicated by black circles; the average cardinalities are
depicted in red.

Performance of reduced sets Another good news is that, dis-
carding even a significant amount of variables through variable
selection does not affect the performance negatively. On con-
trary, as shown in Fig. 2, it becomes clear that the reduced set
of features can improve the performance for Logistic Regression,
while for Random Forests, it remains approximately equal (for
the different sensitivity towards redundant variables as explain-
ed above). An important point to note is that the addition of
features to the Wegner-like features, increased performance no-
ticeably. To provide a direct comparison of our method with the
actual results of Wegner et al. (2015), it must be kept in mind
that the elevation information was computed by a state-of-the-art
method and is of a superior quality to that used in their paper.
Moreover, the measures of completeness, correctness, and qual-
ity of Heipke et al. (1997) depend highly on the discrimination
threshold, which was not provided. Nevertheless, we found dis-
crimination thresholds for both of our classification methods (0.5
for random forests and 0.65 for logistic regression) that result in
improvements in all three of those values at the same time (see Ta-
ble 1). Thus, the usefulness of our modifications to the method of
Wegner et al. (2015), even after application of the post-processing
steps, is shown.

From Table 1, we also gather that random forests outperformed
logistic regression. Another point that speaks for the choice of
random forests as a learning algorithm over logistic regression
within the procedure of Wegner et al. (2015) is the nature of the
produced a-posteriori probabilities: Logistic regression tends to
output probabilities close to either zero or one, whereas random
forests convey uncertainty better, thus making post-processing
steps like the proposed minimum-cost paths more promising.

Method Quality | Comp-ness | Corr-ness
Wegner’s RFs 0.65 0.77 0.81
Wegner’s paths 0.68 0.81 0.81
Our LR 0.692 0.817 0.819
Our RF 0.722 0.846 0.831

Table 1: Comparison of the pixel-wise classification obtained
with the results of Wegner et al. (2015, Table 1).

Overall performance evaluation The measures of pixel-wise
classification in Table 1 and in Fig. 2 are suitable to assess the

This contribution has been peer-reviewed.

doi:10.5194/isprs-archives-XLII-1-W1-297-2017

301

Backward



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1/W1, 2017
ISPRS Hannover Workshop: HRIGI 17 — CMRT 17 — ISA 17 — EuroCOW 17, 6-9 June 2017, Hannover, Germany

Logistic Regression Random Forests

6017 2 .
—: [—— t

Wegner-like All Backward ~ Wegner-like All Forward Bacl:ward
Figure 2: Resulting (superpixel-wise) average class error of the
models trained on the feature sets produced by each variable se-
lection method for each learning algorithm. Colored points de-
note the performance (percentages of falsely classified superpix-
els) of the relevant algorithm for the 16 patches. The colored lines

and stars stand for average and median values, respectively.

Forward

performance of the method quantitatively. However, in Fig. 2, we
noticed that the quality of our classification results varies greatly
from patch to patch. Hence, our next goal is a qualitative assess-
ment of the classification results, for which we refer to Fig. 4, p. 8.
It is well-known that road extraction from remote sensing is diffi-
cult because of shadows (see Sec. 1), which are the most common
reason for misclassification occurence in our results as well. The
presence of dark shadows in an urban scene depends on the size
of the constructions and trees. Beside, some parts of Vaihingen
have many narrow alleys while others are dominated by broad
streets. Here is also where the problem of under-segmentation
comes into play. Finally, a huge problem for classification are
rare types of ground cover. For instance, patch number 26 of the
Vaihingen data set is the only one where a river appears. Since
its appearance in color, texture, and height resembles impervious
surface, it gets misclassified almost completely since the learning
algorithms did not see water surface in the training data.

o
o
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o
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2<0.005

Change in Average Error
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8

Logistic regression forward Random forests forward

Figure 3: Resulting change in average class error if the models are
trained on the variable sets produced for specifically for the other
learning algorithm by forward selection. Colored points denote
the performance (percentages of falsely classified superpixels) of
the relevant algorithm for any of 16 single images. The colored
lines and stars represent average and median values, respectively.

Trends of selected features As for variables chosen by both
classifiers, Random Forests preferred the (segment-wise) aver-
ages to the standard deviations and filtered to the non-filtered
features. In forward selection, actually almost all standard de-
viations were considered irrelevant, with exception of relative el-
evation and filter 1. From the average values, features based on
the relative elevation were usually called slightly more often than
those based on the three channels of the images. Logistic re-
gression almost equally relies on averages values and standard
deviations. It takes more variables resulting from the filter bank,
especially the 7-th and 8-th filters. Features based on stripes and
average of NDVI were selected very often both for logistic re-

50095 f 9 ??5 MS
. 1]

gression and for random forests. This supports our expectations
about the importance of skillfully combining different channels
and developing higher-level features that go beyond the borders
of the segments and incorporate context information. For more
details, we refer to Warnke (2017).

The feature sets produced by our wrapper-type feature selection
methods are specific to the machine learning method for which
they were conducted. It can be observed on the right part of Fig. 3
that on average, the set of variables recommended by the forward
selection method of logistic regression results in a slightly worse
classification accuracy by means of random forests than the fea-
ture set customized for this classifiers. On contrary, if we use the
set of variables recommended by Random Forests for Logistic
Regression as a classifier, the accuracy sinks considerably. The
fact that the relevance of different features depends on the ma-
chine learning algorithm may appear surprising at the first glance.
However, since the mechanisms of these algorithm differ substan-
tially, these are also different (aspects of) variables that come into
play. This demonstrates, on the one hand, the theoretical strength
of wrappers, since they choose variables that are useful for a par-
ticular learning algorithm. On the other hands, it helps to em-
phasize the importance of easy-to-use variable selection methods
that allow every user selecting those variables that are specifically
useful for his/her application and classification method.

5. CONCLUSIONS AND OUTLOOK

We investigated the merit of two simple wrapper approaches for
variable selection and tested them extensively with two classi-
fiers, several dozens of features and an extensive amount of train-
ing and test data. From our experiments, we saw that there is a lot
of potential for optimizing the classification quality by choosing
appropriate variables and performing variable selection both with
respect to accuracy and costs. The features we added to those
mentioned in Wegner et al. (2015), such as DSM filters, vegeta-
tion index and presence of stripes, allowed to achieve a higher
accuracy. However, this improved accuracy does not necessarily
come at the cost of a bigger feature space. As we have seen, it is
possible to reduce the extended feature space, even below the size
it had before our features were added, while keeping the accuracy
stable or even improving it.

We could see that the relevance of different features depends on
the machine learning algorithm. Thus, we demonstrate the the-
oretical strength of wrappers, since they choose features that are
useful for a particular machine learning algorithm, contrary to
filtering methods, which assess suitability of every feature. How-
ever, the fundamental differences between the variable sets pro-
duced by forward and backward selection should be noted. Con-
cerning the choice of classifier, random forests are preferable over
logistic regression because they produce a higher classification
accuracy. Moreover, as our first experiments showed, they are
more suitable for the minimum cost paths employed by Wegner
et al. (2015), since they better convey uncertainty which simpli-
fies post-processing the results. However, it remains to inspect
whether other classifiers like neural networks or support vector
machines might lead to even better classification results.
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Figure 4: Results of classification: average patch, Random Forests classifier (below), challenging patch, Logistic Regression (above).
On the left, the orthophoto and on the right, the classification result (white and black: true positives and negatives, dark-green and red:
false positives and negatives, respectively).
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