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Abstract. We propose SOFIA, the �rst MQ-based signature scheme
provably secure in the quantum-accessible random oracle model (QROM).
Our construction relies on an extended version of Unruh's transform for
5-pass identi�cation schemes that we describe and prove secure both in
the ROM and QROM.
Based on a detailed security analysis, we provide concrete parameters for
SOFIA that achieve 128 bit post-quantum security. The result is SOFIA-
4-128 with parameters that are carefully optimized to minimize signature
size and maximize performance. SOFIA-4-128 comes with an implemen-
tation targeting recent Intel processors with the AVX2 vector-instruction
set; the implementation is fully protected against timing attacks.
Keywords: Post-quantum cryptography, multivariate cryptography, 5-
pass identi�cation schemes, QROM, Unruh's transform, vectorized im-
plementation.

1 Introduction

At Asiacrypt 2016, Chen, Hülsing, Rijneveld, Samardjiska, and Schwabe pre-
sented a post-quantum signature scheme calledMQDSS [CHR+16], obtained by
applying a generalized Fiat-Shamir transform to a 5-pass identi�cation schemes
(IDS) with security based on the hardness of solving a system of multivari-
ate quadratic equations (MQ problem). Unlike previous MQ-based signature
schemes, MQDSS comes with a reduction from a random instance of MQ; it
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does not need additional assumptions on the hardness of the Isomorphism-of-
Polynomials (IP) [Pat96] or related problems like MinRank [Cou01,FLP08].

Unfortunately, the security reduction of MQDSS is in the random-oracle
model and highly non-tight. The authors state that they see the proposal as
�a major step� towards a scheme with �a tight reduction to [sic] MQ in the
quantum-random-oracle model (QROM) or even better in the standard model�. In
this paper, we make another major step towards such a scheme. More speci�cally,
we propose SOFIA, a digital signature scheme that is provably EU-CMA secure
in the QROM if theMQ problem is hard and allows for a tight reduction in the
ROM (albeit not in the QROM).

To achieve this, we start from Unruh's transform [Unr15] for transforming
sigma protocols to non-interactive zero-knowledge proofs (and signatures) in the
QROM. The reason for a di�erent transform comes from the inherent problems of
the Fiat-Shamir transform (and also the generalization to 5-pass schemes) in the
QROM. Namely, the proof technique introduced by Pointcheval and Stern [PS96]
requires rewinding of the adversary and adaptively programming the random
oracle. Not only does this cause problems in the QROM, it also produces non-
tight proofs. Unruh's transform avoids these problems by adopting and tweaking
an idea from Fischlin's transform [Fis05] that solves the rewinding problem.

Instead of simply applying the transform to a 3-pass IDS, we extend it such
that it applies to any 5-pass IDS with binary second challenge (named q2-IDS
in [CHR+16]) and thus to theMQ-based IDS from [SSH11]. This is in the same
spirit as the generalization of the Fiat-Shamir transform in [CHR+16]. We prove
that the signature scheme resulting from the application of the transform is post-
quantum EU-CMA secure (PQ-EU-CMA) in the QROM. This proof follows a
two-step approach: We �rst give a (tight) proof in the ROM, and then discuss
the changes necessary to carry over to the QROM. We then instantiate the
construction with the 5-pass MQ-based IDS introduced by Sakumoto, Shirai,
and Hiwatari in [SSH11] and provide various optimizations particularly suited
for this speci�c IDS. These optimizations almost halve the size of the signature
compared to the non-optimized generic transform.

We instantiate SOFIA with carefully optimized parameters aiming at the
128-bit post-quantum security level; we refer to this instance as SOFIA-4-128. A
comparison withMQDSS-31-64 from [CHR+16], which targets the same security
level, shows that the improvements in security guarantees come at a cost: with
123KiB, SOFIA-4-128 signatures are about a factor of 3 larger than MQDSS-
31-64 signatures and our optimized SOFIA-4-128 software takes about a factor
of 3 longer for both signing and veri�cation than the optimized MQDSS-31-
64 software presented in [CHR+16]. However, like MQDSS, SOFIA features
extremely short keys; speci�cally, SOFIA-4-128 public keys have 64 bytes and
secret keys have 32 bytes.

SOFIA is not the �rst concrete signature scheme with a proof in the QROM.
Notably, TESLA-768 [ABBD15] is a lattice-based signature scheme with a re-
duction in the QROM, while Picnic-10-38 [CDG+17] is the result of construct-
ing a signature scheme from a symmetric primitive using the transform by
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Unruh [Unr15] that was mentioned above. Relying on even more conservative
assumptions, the hash-based signature scheme SPHINCS-256 [BHH+15] has a
tight proof in the standard model. Although SOFIA-4-128 remains faster than
SPHINCS-256 (which is, because of its standard model assumptions, arguably
the `scheme to beat'), we do signi�cantly exceed its 40KiB signature size. Con-
versely, but on a similar note, SOFIA-4-128 outperforms Picnic-10-38 both in
terms of signing speed and signature size. TESLA-768 remains the `odd one out'
with its small signatures but much larger keys; it strongly depends on context
whether this is an upside or a problem. See Table 3 for a numeric overview of
the comparison.

Organization of this paper. Section 2 gives the necessary background on
identi�cation schemes and signature schemes. Section 3 presents the modi�ed
Unruh transform to support q2 identi�cation schemes. Section 4 revisits the
5-pass identi�cation scheme introduced in [SSH11]. Section 5 introduces the
SOFIA signature scheme and �nally Section 6 explains our parameter choices
for SOFIA-4-128 and gives details of our optimized implementation.

Availability of software.We place all software presented in this paper into the
public domain to maximize reusability of our results. It is available for download
at https://joostrijneveld.nl/papers/sofia.

2 Preliminaries

In the following we provide basic de�nitions used throughout this work. We are
concerned with post-quantum security, i.e., a setting where honest parties use
classical computers but adversaries might have access to a quantum computer.
Therefore, we adapt some common security notions accordingly, modeling ad-
versaries as quantum algorithms.

Digital signatures. In this work we are concerned with the construction of
digital-signature schemes. These are de�ned as follows.

De�nition 2.1 (Digital signature scheme). A digital-signature scheme with
security parameter k, denoted Dss(1k) is a triplet of polynomial-time algorithms
Dss = (KGen,Sign,Vf) de�ned as follows:

� The key-generation algorithm KGen is a probabilistic algorithm that outputs
a key pair (sk, pk).

� The signing algorithm Sign is a possibly probabilistic algorithm that on input
a secret key sk and a message M outputs a signature σ.

� The veri�cation algorithm Vf is a deterministic algorithm that on input a
public key pk, a message M and a signature σ outputs a bit b, where b = 1
indicates that the signature is accepted and b = 0 indicates a reject.

We write Dss instead of Dss(1k), whenever the security parameter k is clear
from context or irrelevant. For correctness of a Dss, we require that for all

3

https://joostrijneveld.nl/papers/sofia


(sk, pk) ← KGen(), all messages M and all signatures σ ← Sign(sk,M), we
get Vf(pk,M, σ) = 1, i.e., that correctly generated signatures are accepted.

Existential Unforgeability under Adaptive Chosen Message Attacks.
The standard security notion for digital signature schemes is existential un-
forgeability under adaptive chosen message attacks (EU-CMA) [GMR88] which
is de�ned using the following experiment.

Experiment Expeu-cma

Dss(1k)(A)
(sk, pk)← KGen()
(M?, σ?)← ASign(sk,·)(pk)

Let {(Mi)}Qs

1 be the queries to Sign(sk, ·).
Return 1 i� Vf(pk,M?, σ?) = 1 and M? 6∈ {Mi}Qs

1 .

For the success probability of an adversary A in the above experiment we write

Succeu-cma

Dss(1k) (A) = Pr
[
Expeu-cma

Dss(1k)(A) = 1
]
.

A signature scheme is called EU-CMA-secure if any PPT algorithm A has only
negligible success probability. Similarly, a signature scheme is called PQ-EU-CMA-
secure if any quantum polynomial time adversary has only negligible success
probability. We only give a formal de�nition for the latter.

De�nition 2.2 (PQ-EU-CMA). Let k ∈ N and Dss(1k) a digital signature
scheme with security parameter k as de�ned above. We call Dss(1k) post-quantum
existentially unforgeable under chosen message attacks or PQ-EU-CMA-secure if
for all Qs, t = poly(k) the success probability of any quantum algorithm A (the
adversary) running in time ≤ t, making at most Qs queries to Sign in the above
experiment, is negligible in k:

Succeu-cma

Dss(1k) (A) = negl(k) .

Post-quantum security against key-only attacks (PQ-KOA) is de�ned the same
as PQ-EU-CMA but with Qs = 0, i.e., the adversary is given no access to the
signing oracle.

Identi�cation Schemes. An identi�cation scheme (IDS) is a protocol that
allows a prover P to prove its identity to a veri�er V. More formally this is
covered by the following de�nition.

De�nition 2.3 (Identi�cation scheme). An identi�cation scheme with se-
curity parameter k, denoted IDS(1k), consists of three PPT algorithms IDS =
(KGen,P,V) such that:

� the key generation algorithm KGen is a probabilistic algorithm that outputs
a key pair (sk, pk).

� P and V are interactive algorithms, executing a common protocol. The prover
P takes as input a secret key sk and the veri�er V takes as input a public key
pk. At the conclusion of the protocol, V outputs a bit b with b = 1 indicating
�accept� and b = 0 indicating �reject�.
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We write IDS instead of IDS(1k), whenever the security parameter k is clear
from context or irrelevant. For correctness of an IDS, we require that for all
(pk, sk)← KGen() we have

Pr [〈P(sk),V(pk)〉 = 1] = 1,

where 〈P(sk),V(pk)〉 refers to the common execution of the protocol between P
with input sk and V on input pk.

In this work we are concerned with 5-pass IDS, i.e. IDS where a transcript
consists of �ve messages. A canonical 5-pass IDS is an IDS where the prover and
the veri�er exchange two challenges and replies. More formally:

De�nition 2.4 (Canonical 5-pass identi�cation schemes). Consider IDS =
(KGen,P,V), a 5-pass identi�cation scheme with two challenge spaces C1 and C2.
We call IDS a canonical 5-pass identi�cation scheme if the prover can be split
into three subroutines P = (P0,P1,P2) and the veri�er into three subroutines
V = (ChS1,ChS2,Vf) such that

� P0(sk) computes the initial commitment com sent as the �rst message and
a state state fed forward to P1.

� ChS1, computes the �rst challenge message ch1 ←R C1, sampling at random
from the challenge space C1.

� P1(state, ch1), computes the �rst response resp1 of the prover (and updates
the state state) given access to the state and the �rst challenge.

� ChS2, computes the second challenge message ch2 ←R C2.
� P2(state, ch2), computes the second response resp2 of the prover given access

to the state and the second challenge.
� Vf(pk, com, ch1, resp1, ch2, resp2), upon access to the public key and the whole

transcript outputs V's �nal decision.

Note that the state forwarded among the prover algorithms can contain all inputs
to previous prover algorithms if they are needed later. We also assume that the
veri�er keeps all sent and received messages to feed them to Vf. Figure 1 describes
a canonical 5-pass IDS.

We will consider a particular type of 5-pass identi�cation protocols where
the size of the two challenge spaces is restricted to q and 2.

De�nition 2.5 (q2 -Identi�cation scheme). A q2 -Identi�cation scheme IDS
is a canonical 5-pass identi�cation scheme where for the challenge spaces C1

and C2 it holds that |C1| = q and |C2| = 2. Moreover, the probability that the
commitment com takes a given value is ≤ 2−k, where the probability is taken
over the random choice of the input and the used randomness.

Our goal is to construct signature schemes from identi�cation schemes. It is
well known that for this passively secure identi�cation schemes su�ce. In this
setting, security is de�ned in terms of two properties: soundness and honest-
veri�er zero-knowledge (HVZK). To prove security of our signature scheme, we
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P V

(state, com)← P0(sk) com

ch1 ←R ChS1(1
k
)

ch1

(state, resp1)← P1(state, ch1) resp1

ch2 ←R ChS2(1
k
)

ch2

resp2 ← P2(state, ch2) resp2

b← Vf(pk, com, ch1, resp1, ch2, resp2)

Fig. 1. Canonical 5-pass IDS

will not make use of soundness but of a similar property called q2-extractor
which is a variant of special soundness. This is combined with a notion of key-one-
wayness to later be able to argue about security. The issue with soundness is that
the common proof-technique makes use of rewinding which becomes troublesome
when dealing with quantum adversaries.

De�nition 2.6 ((statistical) Honest-veri�er zero-knowledge). Let k ∈
N, IDS(1k) = (KGen,P,V) an identi�cation scheme with security parameter k.
We say that IDS is statistical honest-veri�er zero-knowledge if there exists a
probabilistic polynomial time algorithm S, called the simulator, such that the
statistical distance between the following two distribution ensembles is negligible
in k:

{(pk, sk)← KGen() : (sk, pk, trans(〈P(sk),V(pk)〉))}
{(pk, sk)← KGen() : (sk, pk,S(pk))} .

Intuitively it must be hard for any cryptographic scheme to derive a valid secret
key given a public key. To formally capture this intuition, we need to de�ne what
valid means. For this we de�ne the notion of a key relation.

De�nition 2.7. (Key relation) Let IDS be a q2-Identi�cation scheme and R
some relation. We say IDS has key relation R if

∀(pk, sk)← KGen() : (pk, sk) ∈ R

Now that we have de�ned what valid means, we can de�ne key-one-wayness.

De�nition 2.8. (PQ-KOW) Let k ∈ N be the security parameter, IDS(1k) be a
q2-Identi�cation scheme with key relation R. We call IDS post-quantum key-one-
way (PQ-KOW) (with respect to key relation R) if for all quantum polynomial
time algorithms A

Succpq−kow
IDS(1k)

(A) = Pr
[
(pk, sk)← KGen(), sk′ ← A(pk) : (pk, sk′) ∈ R

]
= negl(k)
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In [CHR+16] it was shown that in general, for q2-Identi�cation Schemes, it is
not possible to extract e�ciently a matching secret key-only from two related
transcripts (as in the case of 3-pass schemes ful�lling special soundness). In
order to capture the nature of these schemes and provide su�cient conditions
for e�cient extraction, the authors proposed the de�nition of a q2-Extractor.
In the following we give a post-quantum version of q2-Extractor that �xes two
slight technical shortcomings of the de�nition in [CHR+16]. On the one hand,
we add the algorithm that actually generates the transcripts to the de�nition,
on the other hand we use the notion of key relation to capture what kind of
secret key the extractor returns.

De�nition 2.9 (PQ-q2-Extractor). Let IDS(1k) be a q2-Identi�cation scheme
with key relation R and A a quantum polynomial time algorithm that upon in-
put of security parameter 1k and an IDS(1k) public key pk outputs, with non-
negligible probability, four valid transcripts with respect to pk:

trans(1) = (com, ch1, resp1, ch2, resp2)
trans(2) = (com, ch1, resp1, ch

′
2, resp

′
2)

trans(3) = (com, ch′1, resp
′
1, ch2, resp2)

trans(4) = (com, ch′1, resp
′
1, ch

′
2, resp

′
2)

(1)

where ch1 6= ch′1 and ch2 6= ch′2.
We say that IDS(1k) has a PQ-q2-Extractor if there exists a quantum polyno-

mial time algorithm KIDS, the extractor, that, given a public key pk and access
to A, outputs a secret key sk such that (pk, sk) ∈ R with non-negligible success
probability in k.

A classical version of this de�nition is obtained by restricting A and KIDS to
classical PPT algorithms.

3 From q2-IDS to signatures in the QROM

In [CHR+16], the authors show that the Fiat-Shamir transformation can be gen-
eralized to the case of 5-pass IDS whose ChS2 is bounded to two elements. They
show that the Pointcheval-Stern proof [PS96] can be extended to this case, and
the obtained signature scheme can be shown EU-CMA secure in the random
oracle model. This result is further extended to any 2n+ 1 round identi�cation
scheme that ful�lls a certain kind of special soundness in [DGV+16]. However,
similar to the standard Fiat-Shamir transform, their proofs rely on the fork-
ing lemma, which introduces two serious problems in the post-quantum setting:
rewinding of the adversary, and adaptively programming the random oracle.
While it is known how to deal with the latter [Unr15], the former seems to be-
come a real show stopper [ARU14]. The only known way to �x the Fiat-Shamir
transform in the QROM setting [DFG13] is using oblivious commitments, which
are a certain kind of trapdoor commitments, e�ectively avoiding rewinding at
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the cost of introducing the necessity of a trapdoor function. This makes the so-
lution not applicable in our setting as there are no trapdoor functions with a
reduction from theMQ-problem.

In [Unr15], Unruh proposes a di�erent transform, based on Fischlin's trans-
form [Fis05], that turns 3-pass zero-knowledge proofs into non-interactive ones
in the QROM. In addition, Unruh shows how to use his transform to obtain
a signature scheme. The transform essentially works by �unrolling� Fischlin's
transform and then applying a few tweaks. This works, as Fischlin's transform
already avoids rewinding. The basic idea is to let the signer generate several
transcripts for a commitment. This is iterated for several initial commitments.
Next, the signer �blinds� all responses in the transcripts by applying a length-
preserving hash. All the obtained data is hashed together with the public key
and the message to obtain a challenge vector. This challenge vector determines
one transcript per commitment that has to be unblinded, i.e., for which the
response must be included in the signature. The signature consists of all the
transcripts with �blinded� responses and the unblinded responses for the tran-
scripts identi�ed by the challenge vector. The reasoning behind the transform is
that without knowing the secret key, a forger cannot know su�ciently many valid
openings to be able to include all the challenged responses. On the other hand,
a security reduction can replace the length-preserving hash (modeled as QRO)
by an invertible function (e.g. a QPRP). That way, a reduction can �unblind�
the remaining responses in the signature by inverting the function. Now, it can
be argued that an adversary with non-negligible success probability must have
known several valid transcripts for at least one commitment. The unblinding
reveals those transcripts and they can be used to run the extractor.

Here, we show that a similar transform can be applied to 5-pass IDS with a
binary second challenge (i.e., q2-IDS). Basically, we treat the second challenge-
response round like the �rst. However, as we have a binary second challenge,
we ask that for each �rst challenge, a transcript for both values of the second
challenge is generated.

The main di�erence between the security reduction of Unruh's transform
and our extension to q2-IDS is a more involved argument to show that we get
su�ciently many valid transcripts that follow the pattern needed to extract a
valid secret key. As this argument is essentially independent of the RO, we �rst
give a proof in the classical ROM. This also allows us to show that the reduction
is tight in the ROM. Afterwards we describe how things change in the QROM
along the lines of Unruh's QROM proof. This is where the reduction becomes
loose. It remains an interesting open question if this is a fundamental issue with
QROM reductions or if the existing techniques are just not su�ciently evolved,
yet.

3.1 Extending Unruh's transform to q2-IDS

Let IDS = (KGen,P,V) be a q2-IDS, where we have P = (P0,P1,P2) and V =
(ChS1,ChS2,Vf), and let r, t ∈ N be two parameters, where 2 6 t 6 q. Moreover
let H1 : {0, 1}|resp1| → {0, 1}|resp1|, H2 : {0, 1}|resp2| → {0, 1}|resp2|, and H :
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{0, 1}∗ → {0, 1}dlog 2ter be hash functions, later modeled as random oracles. We
de�ne the following digital signature scheme (KGen,Sign,Vf). The key generation
algorithm just runs IDS.KGen(). Signature and veri�cation algorithms are given
in Figures 2 and 3.

Sign(sk,M)

For j ∈ {1, . . . , r} do

(state(j), com(j))← P0(sk)

For i ∈ {1, . . . , t} do

ch
(i,j)
1 ←R ChS1 \ {ch(1,j)1 , . . . , ch

(i−1,j)
1 }

(state(i,j), resp
(i,j)
1 )← P1(state

(j), ch
(i,j)
1 )

cr
(i,j)
1 ← H1(resp

(i,j)
1 )

resp
(i,j,0)
2 ← P2(state

(i,j), ch2 = 0), resp
(i,j,1)
2 ← P2(state

(i,j), ch2 = 1)

cr
(i,j,0)
2 ← H2(resp

(i,j,0)
2 ), cr

(i,j,1)
2 ← H2(resp

(i,j,1)
2 )

transfull(j) := com(j),
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr

(i,j,0)
2 , cr

(i,j,1)
2 )

}t

i=1

md← H
(
pk,M, {transfull(j)}rj=1

)
Read md as vector ((I1, B1), . . . , (Ir, Br))

transred(j) := com(j),
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr

(i,j,0)
2 , cr

(i,j,1)
2 )

}t

i6=Ij ,i=1

σ :=

(
md,

{
transred(j), ch

(Ij ,j)

1 , resp
(Ij ,j)

1 , resp
(Ij ,j,Bj)

2 , cr
(Ij ,j,¬Bj)

2

}r

j=1

)

Fig. 2. Signature generation

For ease of exposition, we will use the notation T (j, i, b) for a string that
has the format of a transcript of the IDS (not necessarily a valid transcript),
corresponding to the j-th round of the non-interactive protocol, with i and b
being the indices of the corresponding challenges ch1 and ch2, i.e.

T (j, i, b) := (com(j), ch
(i,j)
1 , resp

(i,j)
1 , ch2 = b, resp

(i,j,b)
2 ),

where j ∈ {1, . . . , r}, i ∈ {1, . . . , t}, b ∈ {0, 1}.

3.2 PQ-EU-CMA-Security in the ROM

In the following, we �rst establish post-quantum security under key-only attacks
(PQ-KOA). More speci�cally, we will show that a successful KOA-forger A can
be used to extract a valid secret key for the underlying IDS. Afterwards, we will
extend the result to existential unforgeability under chosen message attacks.
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Vf(pk, σ,M)

Read md as vector ((I1, B1), . . . , (Ir, Br))

For j ∈ {1, . . . , r} do

cr
(Ij ,j)

1 ← H1(resp
(Ij ,j)

1 )

cr
(Ij ,j,Bj)

2 ← H2(resp
(Ij ,j,Bj)

2 )

md′ ← H
(
pk,M, {transfull(j)}rj=1

)
Check that md′

?
= md

For j ∈ {1, . . . , r} do

Check that ch(1,j)1 , . . . ch
(t,j)
1 are all distinct

Check 1
?
= b← Vf(pk, com(j), ch

(Ij ,j)

1 , resp
(Ij ,j)

1 , Bj , resp
(Ij ,j,Bj)

2 )

If all checks succeed, output success.

Fig. 3. Veri�cation

PQ-KOW ⇒ PQ-KOA. The following lemma gives an exact relation between
the key-one-wayness of the identi�cation scheme and the security of the proposed
signature scheme under key-only attacks.

Lemma 3.1. Let k, t, r ∈ N be the parameters of the signature scheme from Fig-
ures 2 and 3 above, using a q2-IDS that has a key relation R, a PQ-q2-extractor,
and is PQ-KOW secure. Let A be a quantum algorithm that implements a KOA
forger which given only the public key pk outputs a valid message-signature pair
(M,σ) with probability ε. Then, in the random oracle model there exists an al-
gorithm MA that given oracle access to any such A breaks the KOW security
of IDS in essentially the same running time as the given A and with success
probability

ε′ ≥ ε− (qH + 1)2−r log
2t

t+1 . (2)

Proof. We now show how to construct such an algorithm MA. On input of an
IDS public key pk,MA �rst runs A(pk). Let EA be the event that A outputs a
valid message-signature pair (M,σ) with

σ =

(
md,

{
transred(j), ch

(Ij ,j)
1 , resp

(Ij ,j)
1 , resp

(Ij ,j,Bj)
2 , cr

(Ij ,j,¬Bj)
2

}r
j=1

)
.

Then EA implies that for every j ∈ {1, . . . , r}, T (j, Ij , Jj) is a valid transcript
of IDS and the Veri�er Vf accepts. Now, our goal is to use the q2-extractor to ex-
tract. This means, we need to obtain four valid transcripts T (j, i1, 0), T (j, i1, 1),
T (j, i2, 0), T (j, i2, 1) for some j ∈ {1, . . . , r}. To this end,MA simulates the ran-
dom oracles H1 and H2 for A in the common way. The important point is that
this wayMA learns all of A's queries together with the given responses. Hence,
when given A's forgery,MA can open all blinded responses in the signature.
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Now, MA will only fail to extract if among all the 2tr opened transcripts
of the signature, there are no four valid transcripts with the above pattern.
Consider the event E¬ext which describes this case.
E¬ext: For every j ∈ {1, . . . , r}, and for every i1, i2 ∈ {1, . . . , t}, i1 6= i2, at

least one of T (j, i1, 0), T (j, i1, 1), T (j, i2, 0), T (j, i2, 1) is not a valid transcript
of the IDS.

We will now upper bound Pr[(EA ∩ E¬ext)] and thereby lower bound MA's
success probability.

Let (M,σ) be A's output under the event (EA∩E¬ext). First, (M,σ) must be

valid because of EA. Now, consider the set S¬ext of tuples
(
pk,M, {transfull(j)}rj=1

)
,

such that for every j ∈ {1, . . . , r} there is at most one I∗j with T (j, I∗j , 0) and
T (j, I∗j , 1) being valid transcripts of IDS. It is clear that A's output under the
event EA ∩ E¬ext must come from S¬ext. Indeed, if a tuple does not satisfy the
given condition, then there exist at least two indices I∗j , I

∗∗
j such that T (j, I∗j , 0),

T (j, I∗j , 1), T (j, I
∗∗
j , 0), T (j, I∗∗j , 1) are valid transcripts of IDS, which is in con-

tradiction to the event E¬ext.
Let

(
pk,M, {transfull(j)}rj=1

)
be such a tuple. Then the indexes that de�ne

the required openings in σ are obtained as the output of the random oracle H
on input of the tuple, i.e.

((I1, B1), . . . , (Ir, Br))← H
(
pk,M, {transfull(j)}rj=1

)
In order for the signature to pass veri�cation, for each j ∈ {1, . . . , r}, the
transcript T (j, Ij , Bj) must be valid. Given the conditions of E¬ext, for each
j ∈ {1, . . . , r}, there are at most t + 1 valid transcripts per j. Hence for the
entire ((I1, B1), . . . , (Ir, Br)) at most (t + 1)r possible values. Thus, the prob-
ability for the adversary to produce a valid signature from such a tuple is
(t+1)r

(2t)r = 2−r log
2t

t+1 .

Now let qH be the number of queries of the adversary to the oracle H. We
have that

Pr(EA ∩ E¬ext) ≤ (qH + 1)2−r log
2t

t+1 ,

as A can try at most qH tuples to obtain a valid signature and output a signature
based on a new tuple otherwise. Towards obtaining a bound on MA's success
probability, note that MA succeeds in the event (EA ∩ ¬E¬ext). For this event
we get

Pr(EA ∩ ¬E¬ext) = Pr(EA)− Pr(EA ∩ E¬ext) ≥ ε− (qH + 1)2−r log
2t

t+1 .

This proves the claimed bound. ut

PQ-KOA ⇒ PQ-EU-CMA. Given the above lemma, it su�ces to reduce
PQ-KOA to PQ-EU-CMA security to eventually prove PQ-EU-CMA security of
the proposed scheme, i.e. we have to show that we can answer an adversary's
signature queries without knowledge of a secret key. This is done in the following
lemma. Afterwards we can derive the main theorem of the section.
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Lemma 3.2. Let k, t, r ∈ N be the parameters of the signature scheme from
Figures 2 and 3 above, using a q2-IDS that is honest-veri�er zero-knowledge.
Let A be a quantum algorithm that breaks the PQ-EU-CMA security of the sig-
nature scheme with probability ε. Then, in the random oracle model there exists
an algorithm MA that breaks the PQ-KOA security of the signature scheme in
essentially the same running time as A and with success probability

ε′ ≥ ε(1− qSignqH2−rk). (3)

Proof. We show how to construct MA that on input a public key pk of the
signature scheme (which is also a public key for IDS), access to a HVZK-simulator
SIDS for IDS and the random oracles H1,H2,H, breaks the KOA security of
the signature scheme. The running time and success probability of MA are
essentially the same as that of A up to a negligible di�erence.

Upon receiving the public key pk,MA runs A(pk), simulating all signature
and random oracle queries for A. Whenever A queries H1 or H2, MA simply
forwards the query to his respective RO. For H, MA keeps a local list LH.
Whenever A queries H, MA �rst checks LH and returns the stored answer if
one exists. Otherwise, MA forwards the query to his oracle H and stores the
query together with the result in LH before returning the response.

Whenever A makes a signature query on a message M ,MA does the follow-
ing:

1. Samples m̃d ←R {0, 1}dlog 2ter and interprets it as challenge string, i.e.,
((I1, B1), . . . , (Ir, Br)) := m̃d.

2. Runs the HVZK-simulator SIDS r times to obtain r valid transcripts of IDS:{
(com(j), ch

(Ij ,j)
1 , resp

(Ij ,j)
1 , ch

(j)
2 , resp

(Ij ,j,Bj)
2 )

}r
j=1

,

and uses them as the challenged transcripts T (j, Ij , Bj) for j ∈ {1, . . . , r}.
3. Blinds the responses resp

(Ij ,j)
1 and resp

(Ij ,j,Bj)
2 for every j ∈ {1, . . . , r}:

cr
(Ij ,j)
1 ← H1(resp

(Ij ,j)
1 ), cr

(Ij ,j,Bj)
2 ← H2(resp

(Ij ,j,Bj)
2 )

4. For all j ∈ {1, . . . , r}, and all (i, b) ∈ {1, . . . , t}×{0, 1}\{(Ij , Bj)}rj=1 samples
a �rst challenge

ch
(i,j)
1 ←R ChS1 \ {ch

(Ij ,j)
1 , ch

(1,j)
1 , . . . , ch

(i−1,j)
1 },

samples fake responses

resp
(i,j)
1 ←R RespS1, resp

(i,j,b)
2 ←R RespS2,

blinds the fake responses

cr
(i,j)
1 ← H1(resp

(i,j)
1 ), cr

(i,j,b)
2 ← H2(resp

(i,j,b)
2 ),

and sets

transfull(j) := com(j),
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr

(i,j,0)
2 , cr

(i,j,1)
2 )

}t
i=1

.
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5. Checks if there is already an entry for
(
pk,M, {transfull(j)}rj=1

)
in LH. If so,

MA aborts. Otherwise,MA stores
((

pk,M, {transfull(j)}rj=1

)
, m̃d

)
in LH.

6. Outputs the signature

σ =

(
md,

{
transred(j), ch

(Ij ,j)
1 , resp

(Ij ,j)
1 , resp

(Ij ,j,Bj)
2 , cr

(Ij ,j,¬Bj)
2

}r
j=1

)
,

where transred(j) := com(j),
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr

(i,j,0)
2 , cr

(i,j,1)
2 )

}t
i 6=Ij ,i=1

Finally,MA outputs whatever A outputs.
Now, MA succeeds exactly with A's success probability as long as it does

not abort. All RO queries follow the correct distribution and so do the sig-
natures. An abort only occurs if A queried H before on the value for which

MA wants to program. The value has the form
(
pk,M, {transfull(j)}rj=1

)
with

transfull(j) := com(j),
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr

(i,j,0)
2 , cr

(i,j,1)
2 )

}t
i=1

. The {transfull(j)}rj=1

term has at least rk bits of entropy as the commitments have at least k bits
of entropy according to the de�nition of q2-IDS and there is one commitment
for each of the r rounds. This is merely a very loose (but more than su�cient)
lower bound on the entropy as the blinded responses also add additional en-
tropy. Hence, if A makes a total of qH queries for H and qSign signature queries,
an abort occurs with probability

Pr[abort] ≤ qSignqH2−rk.

Hence,MA succeeds with probability

ε′ ≥ ε(1− qSignqH2−rk).

ut

PQ-KOW ⇒ PQ-EU-CMA. Combining the two previous lemmas we obtain
the following theorem.

Theorem 3.3. Let k, t, r ∈ N be the parameters of the signature scheme from
Figures 2 and 3 above using a q2-IDS IDS that is statistical honest-veri�er zero-
knowledge and has a PQ-q2-extractor. Let A be a PQ-EU-CMA forger that suc-
ceeds with probability ε. Then, there exists an algorithmMA, that in the random
oracle model breaks the PQ-KOW security of IDS in essentially the same running
time as A and with success probability

ε′ ≥ ε− εqSignqH2−rk − (qH + 1)2−r log
2t

t+1 ,

Proof. Suppose there exists a PQ-EU-CMA forger A that succeeds with non-
negligible probability ε. We construct a PQ-KOW adversary C for the q2-IDS as
follows.
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C runs A(pk), to construct a key-only forgerMA as in Lemma 3.2, that suc-
ceeds with probability (3). Now as in Lemma 3.1, C can extract a valid secret key
sk, in approximately the same time, and with only negligibly smaller probability
(see (2)). In total the success probability of C is

ε′ ≥ ε− εqSignqH2−rk − (qH + 1)2−r log
2t

t+1 ,

and the running time of C is essentially the same as that of A. ut

3.3 PQ-EU-CMA security in the QROM

We now show that with only slight changes, the two lemmas above also hold
in the QROM. We do this in reverse order, starting with the PQ-KOA to PQ-
EU-CMA reduction as it is the easier case. As already the QROM proofs in
Unruh's work which we build on are non-tight, we only give our arguments in
the asymptotic regime.

PQ-KOA ⇒ PQ-EU-CMA.We will �rst revisit the reduction from PQ-KOA
to PQ-EU-CMA. We show the following lemma:

Lemma 3.4. Let k, t, r ∈ N be the parameters of the signature scheme from
Figures 2 and 3 above, using a q2-IDS that is honest-veri�er zero-knowledge. Let
A be a quantum algorithm that breaks the PQ-EU-CMA security of the signature
scheme with probability ε. Then, in the quantum-accessible random oracle model
there exists a quantum algorithm MA that breaks the PQ-KOA security of the
signature scheme in essentially the same running time as A and with success
probability

ε′ ≥ ε(1− negl(k)). (4)

Proof (Sketch). The proof in the ROM above also applies in the QROM with
essentially a single change. The queries to H1 and H2 are still just forwarded by
MA without interaction. This works without any issues in the QROM given that
MA is now a quantum algorithm (which is unavoidable in the QROM). The only
issue is the wayMA handles H. It is not possible anymore forMA to learn A's
queries toH and thereby not possible to abort. However, we only added the abort
condition above for clarity: in the classical case MA could also simply always
program H. Then A's success probability might change ifMA programmed on
an input previously queried by A. However, we still obtain the same bound on
the probability. In the QROM, Unruh showed in [Unr15, Corollary 11] that this
adaptive programming only negligibly changes A's success probability (the exact
argument for our speci�c case is exactly the one made in the �rst game hop of
the proof of Theorem 15 in [Unr15]). From this it follows that MA's success
probability still only negligibly deviates from that of A. ut

PQ-KOW ⇒ PQ-KOA. Now we revisit the reduction from PQ-KOW to PQ-
KOA in the quantum-accessible ROM. While we still do this in the asymptotic
regime, we make the parts of the reduction loss explicit which depend on the
parameters r, t of the scheme. This is to support parameter selection in later
sections.
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Lemma 3.5. Let k, t, r ∈ N be the parameters of the signature scheme from Fig-
ures 2 and 3 above, using a q2-IDS that has a key relation R, a PQ-q2-extractor,
and is PQ-KOW secure. Let A be a quantum algorithm that implements a KOA
forger which given only the public key pk outputs a valid message-signature pair
(M,σ) with probability ε. Then, in the quantum-accessible random oracle model
there exists a quantum algorithm MA that given oracle access to any such A
breaks the KOW security of IDS in essentially the same running time as the
given A and with success probability

ε′ ≥ ε− 2(qH + 1)2−(r log
2t

t+1 )/2. (5)

Proof (Sketch). A QROM version of our proof is obtained by essentially following
the proof of Lemma 17 in [Unr15]. The changes in the proof above are as follows.
First, MA cannot learn A's RO queries to H1 and H2 by simulating these the
classical way, anymore. Instead,MA simulates these oracles using one quantum
PRP (QPRP) per oracle with a random secret key per QPRP. QPRPs exist as
shown in [Zha16] and they are quantum indistinguishable from random functions.
Now, MA can open the blinded responses in the signature by inverting the
QPRP using the secret key. Second, the analysis of Pr(EA ∩ E¬ext) changes.
As we have shown, the probability of a tuple from E¬ext to lead to a valid

signature is 2−r log
2t

t+1 . We can now follow the analysis in [Unr15] that reduces
distinguishing the constant zero function from a Bernoulli distributed boolean
function to �nding a tuple in E¬ext that leads to a valid signature. Thereby we
get the claimed bound:

Pr(EA ∩ E¬ext) ≤ 2(qH + 1)2−(r log
2t

t+1 )/2.

ut

PQ-KOW ⇒ PQ-EU-CMA. Putting the above two lemmas together allows
us to state the following theorem.

Theorem 3.6. Let k, t, r ∈ N be the parameters of the signature scheme above
using a q2-IDS IDS that is statistical honest-veri�er zero-knowledge and has a
PQ-q2-extractor. Let A be a PQ-EU-CMA forger that succeeds with probability
ε. Then, there exists a quantum algorithm MA, that in the quantum-accessible
random oracle model breaks the PQ-KOW security of IDS in essentially the same
running time as A and with success probability

ε′ ≥ (ε− 2(qH + 1)2−(r log
2t

t+1 )/2)(1− negl(k)).

4 The Sakumoto-Shirai-Hiwatari 5-pass IDS scheme

In [SSH11], Sakumoto, Shirai, and Hiwatari proposed two new identi�cation
schemes, a 3-pass and a 5-pass IDS, based on the intractability of theMQ prob-
lem. Unlike previous public key schemes, their solution provably relies only on
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theMQ problem (and the security of the commitment scheme), and not on other
related problems in multivariate cryptography such as the Isomorphism of Poly-
nomials (IP) problem [Pat96], the related Extended IP [DHYC06] and IP with
partial knowledge [Tho13] problems or the MinRank problem [Cou01,FLP08].
Let us quickly recall theMQ problem.

De�nition 4.1 (MQ problem (search version)). Let m,n, q ∈ N, x =
(x1, . . . , xn) and let MQ(n,m,Fq) denote the family of vectorial functions F :
Fnq → Fmq of degree 2 over Fq:

MQ(n,m,Fq) = {F(x) = (f1(x), . . . , fm(x))|

fs(x) =
∑
i,j

a
(s)
i,j xixj +

∑
i

b
(s)
i xi, s ∈ {1, . . . ,m}}.

An instanceMQ(F,v) of theMQ (search) problem is de�ned as:
Given F ∈MQ(n,m,Fq),v ∈ Fmq �nd, if any, s ∈ Fnq such that F(s) = v.

The decisional version of the MQ problem is NP -complete [GJ79]. It is
widely believed that theMQ problem is intractable even for quantum computers
in the average case, i.e., that there exists no polynomial time quantum algorithm
that given F←RMQ(n,m,Fq) and v = F(s) (for random s←R Fnq ) outputs a
solution s′ to theMQ(F,v) problem with non-negligible probability.

We will later also need theMQ relation RMQ which is the relation ofMQ
instances and solutions:

De�nition 4.2 (MQ relation). TheMQ relation is a binary relation RMQ(m,n,q) :
(MQ(n,m,Fq)× Fmq )× Fnq with

((F,v), s) ∈ RMQ(m,n,q), i� F(s) = v.

We will omit m,n, q whenever they are clear from the context.
In [SSH11], Sakumoto, Shirai, and Hiwatari propose a clever splitting tech-

nique, using the so-called polar form of the function F which is the function
G(x,y) = F(x + y) − F(x) − F(y). Using the polar form and its bilinearity, it
becomes possible to split a secret into two shares, such that none of the shares
on its own leaks anything about the secret.

Using this result, they showed how to construct zero knowledge arguments of
knowledge for theMQ problem, using a statistically hiding and computationally
binding commitment scheme. They present a 3- and a 5-pass protocol with dif-
fering performance properties. Later, in [CHR+16] the security properties of the
5-pass scheme were reexamined to provide the minimal requirements for Fiat-
Shamir type signatures from 5-pass IDS. For completeness and better readability
we provide the description of the 5-pass IDS, together with the properties that
we will use.

Let (pk, sk) = ((F,v), s) ∈ RMQ be the public and private keys of the Prover
(i.e., key generation just samples from the MQ relation). Without loss of gen-
erality, let the elements from Fq be α1, . . . , αq. The 5-pass IDS from [SSH11] is
given in Figure 4.
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P(pk, sk) V(pk)

//setup

r0, t0 ←R Fn
q , e0 ←R Fm

q

r1 ← s− r0

//commit

c0 ← Com(r0, t0, e0)

c1 ← Com(r1,G(t0, r1) + e0) com = (c0, c1) //challenge 1
I ←R {1, . . . , q}

//first response ch1 = I

t1 ← αIr0 − t0

e1 ← αIF(r0)− e0 resp1 = (t1, e1) //challenge 2

ch2 ←R {0, 1}
//second response ch2

If ch2 = 0, resp2 ← r0

Else resp2 ← r1
resp2 //verify

If ch2 = 0, parse resp2 = r0, check

c0
?
= Com(r0, αIr0 − t1, αIF(r0)− e1)

Else, parse resp2 = r1, check

c1
?
= Com(r1, αI(v− F(r1))−G(t1, r1)− e1)

Fig. 4. The 5-pass IDS by Sakumoto, Shirai, and Hiwatari

The following theorem summarizes the security properties of the 5-pass iden-
ti�cation scheme from [SSH11] that we need.

Theorem 4.3. The 5-pass identi�cation scheme from [SSH11] (see Fig. 4)

1. is statistically honest veri�er zero-knowledge when the commitment scheme
Com is statistically hiding,

2. has key relation RMQ(m,n,q),
3. is post-quantum key-one-way if theMQ search problem is hard on average,

and
4. has a PQ-q2-Extractor when the commitment scheme Com is computation-

ally binding against quantum polynomial time algorithms.

The �rst statement was shown in [SSH11]. The second statement holds by con-
struction. The third statement follows from the second. The PQ-q2-Extractor
essentially follows from a proof in [CHR+16]. In [CHR+16] the existence of a
(non-quantum) q2-Extractor was proven under the condition that the commit-
ment scheme is computationally binding. The proof shows that there exists a
PPT algorithm that given four valid transcripts of the IDS with the correct pat-
tern always either extracts a secret key or outputs two valid openings for the
commitment. Hence, as long as the used commitment scheme achieves the tra-
ditional de�nition of computationally binding also against quantum polynomial
time algorithms, the 5-pass identi�cation scheme from [SSH11] has a PQ-q2-
Extractor (as the probability to output two valid openings must be negligible).
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5 Instantiation from the Sakumoto-Shirai-Hiwatari

5-pass IDS

In the previous sections, we have de�ned a signature scheme as the result of
a transformed q2-IDS scheme. Here, we de�ne it instantiated with the 5-pass
identi�cation scheme proposed in [SSH11].

5.1 SOFIA

We de�ne the signature scheme in generic terms by describing the required pa-
rameters and the functions KGen, Sign and Vf, and defer giving concrete param-
eters m,n, r, t and Fq for a speci�c security parameter k to the next section. For
now, we only need to �x 2 6 t 6 q elements of the �eld Fq. Without loss of
generality, we denote them by α1, . . . , αt.

Key generation. The SOFIA key generation algorithm formally just samples
aMQ relation. Practically, the algorithm is realized as shown in Figure 5.

KGen()

sk←R {0, 1}k

SF, s, Srte ← PRGsk(sk)

F← XOFF(SF)

v← F(s)

pk := (SF,v)

Return (pk, sk)

Fig. 5. SOFIA key generation

The secret key is used as a seed to derive the following values:

� SF, a seed from which the system parameter F is expanded;

� s, the secret input to theMQ function;

� Srte, a seed that is used to sample all vectors r
(i)
0 , t

(i)
0 and e

(i)
0 . Note that this

seed is not yet needed during key generation, but is required during signing.

Signature generation. For the signing procedure, we assume as input a mes-
sageM ∈ {0, 1}∗ and a secret key sk. The signing procedure is given in Figure 6.
Note that the scheme de�nition includes several optimizations to reduce the
signature size. We discuss these later in this section.
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Sign(sk,M)

SF, s, Srte ← PRGsk(sk)

F← XOFF(SF)

pk := (SF,F(s))

r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0 ← PRGrte(Srte,M)

For j ∈ {1, . . . , r} do

r
(j)
1 ← s

(j) − r
(j)
0

c
(j)
0 ← Com(r

(j)
0 , t

(j)
0 , e

(j)
0 )

c
(j)
1 ← Com(r

(j)
1 ,G(t

(j)
0 , r

(j)
1 ) + e

(j)
0 )

com(j) := (c
(j)
0 , c

(j)
1 )

For i ∈ {1, . . . , t} do

t
(i,j)
1 ← αir

(j)
0 − t

(j)
0 , e

(i,j)
1 ← αiF(r

(j)
0 )− e

(j)
0

resp
(i,j)
1 := (t

(i,j)
1 , e

(i,j)
1 )

cr
(i,j)
1 ← H1(resp

(i,j)
1 )

resp
(j,0)
2 := r

(j)
0 , resp

(j,1)
2 := r

(j)
1

cr
(j,0)
2 ← H2(resp

(j,0)
2 ), cr

(j,1)
2 ← H2(resp

(j,1)
2 )

transfull(j) := (com(j),
{
cr

(i,j)
1

}t

i=1
, cr

(j,0)
2 , cr

(j,1)
2 )

md← H
(
pk,M, {transfull(j)}rj=1

)
((I1, B1), . . . , (Ir, Br))← XOFtrans(md)

transred(j) := (c
(j)
¬Bj

,
{
cr

(i,j)
1

}t

i6=Ij ,i=1
, cr

(j,¬Bj)

2 )

Return

(
md,

{
transred(j), αIj , resp

(Ij ,j)

1 , resp
(j,Bj)

2

}r

j=1

)

Fig. 6. SOFIA signature generation

The signer begins by e�ectively performing KGen() to obtain pk and F, and
then iterates through r rounds of the transformed identi�cation scheme to obtain
the transcript. He then uses this as input for XOFtrans to derive a sequence
of indices ((I1, B1), . . . , (Ir, Br)), which e�ectively dictate the responses that
should be included unblinded in the signature.

Veri�cation. Upon receiving a messageM , a signature σ, and a public key pk =
(SF,v), the veri�er begins by obtaining the system parameter F and parsing
the signature σ as de�ned by its construction in Sign(), above. The veri�cation
routine that follows is listed in Figure 7.
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Vf(pk, σ,M)

F← XOFF(SF)

((I1, B1), . . . , (Ir, Br))← XOFtrans(md)

For j ∈ {1, . . . , r} do

cr
(Ij ,j)

1 ← H1(resp
(Ij ,j)

1 )

cr
(Ij ,Bj)

2 ← H2(resp
(Ij ,Bj)

2 )

For j ∈ {1, . . . , r} do
If Bj = 0 then

r
(j)
0 := resp

(Ij ,Bj)

2

c
(j)
0 ← Com(r

(j)
0 , αIjr

(j)
0 − t

(Ij ,j)

1 , αIjF(r
(j)
0 )− e

(Ij ,j)

1 )

Else

r
(j)
1 := resp

(Ij ,Bj)

2

c
(j)
1 ← Com(r

(j)
1 , αIj (v− F(r

(j)
1 ))−G(t

(Ij ,j)

1 , r
(j)
1 )− e

(Ij ,j)

1 )

md′ ← H
(
pk,M, {transfull(j)}rj=1

)
Return md′ = md

Fig. 7. SOFIA signature veri�cation

Optimizations. There are several optimizations that can be applied to signa-
tures resulting from a transformed q2-IDS. Some of them are speci�c for SOFIA
and some are more general; similar and related optimizations were suggested
in [Unr15], [CHR+16] and [CDG+17].

Excluding unnecessary blindings. The signature contains blindings of all com-

puted responses, as well as a selection of opened responses resp
(Ij ,j)
1 and resp

(j,Bj)
2 .

It is redundant to include the values cr
(Ij ,j)
1 and cr

(j,Bj)
2 , as these can be recom-

puted based on the opened responses. This optimization was actually proposed
in the generic Unruh transform [Unr15], and applies to any construction similar
to Unruh's and ours. However, for the veri�er to know which responses were ac-
tually opened, they must be able to reproduce the indices ((I1, B1), . . . , (Ir, Br)),
which are derived from the transcript, and without the blinded responses, this
transcript is incomplete. To solve this circular dependency, we could include the
selected indices in the signature. However, for typical parameters5, we can do this
more e�ciently by breaking XOFtrans into two parts, composing it of a hash func-
tion over the transcript H and a extendable output function XOFIB to derive

the indices from the hash output. We then include H
(
pk,M, {transfull(j)}rj=1

)
as part of the signature, so that the veri�er can reconstruct the indices, blind

5 See Section 6.1
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the corresponding responses, construct transfull, and recompute the same hash
for comparison.

Fixed challenge space de�nition. Following the generic description of the signa-
ture, the selected α(i,j) are included in the signature. Depending on the speci�c
choice of t and q, it may be more e�cient to include the challenges α(i,j) that
were not selected. However, there is no reason not to take this a step further and
simply �x a challenge space ChS1 of t elements. That way, all the α's from ChS1
will be selected and there is no need to include them in the signature. This not
only reduces the signature size, but also simpli�es the implementation.

Excluding unnecessary second responses. The underlying IDS from [SSH11] has
a speci�c property, namely that the second responses do not depend on the
previous state (that is, on the �rst challenge and response). Therefore, regardless
of the value of α, the second responses are always the same. For this reason, they
need to be included only once per commitment (rather than repeating the same
value t times). Combined with the previous optimization, this implies that one
of the second responses will be opened, and the other will be included blinded.

Omitting commitments. The check that the veri�er performs for each round

consists of recomputing c
(j)
Bj
, and comparing it to one of the commits supplied

by the signer. Similar to the above, and as already suggested in [SSH11], the
signer can omit the commits that the veri�er will recompute. A hash over all
commits could be included instead, which the veri�er can reconstruct using the

commits c
(j)
Bj

he recomputes and the commits c
(j)
¬Bj

the signer includes. However,
it turns out that this hash is not necessary either: as these commitments are
part of the transcript and the veri�er is already checking the correctness of
the transcript as per the �rst optimization, the correctness of the recomputed
commitments is implicitly checked in the process.

While constructing this scheme, we attempted several other variations. No-
tably, we explored opening for multiple α-challenges, but that led to no im-
provement in the number of rounds, and, in some cases, to a contradiction of the
zero-knowledge property. Variants that employ a form of internal parallelization
by committing to multiple values for t0 do reduce the number of rounds, but
increase the size of the transcript disproportionately.

Altogether, the above optimizations are crucial: they add up to almost 110KiB,
nearly halving the signature size of the scheme that results from the transform.

5.2 Security of SOFIA

In Section 3 we described an extension of Unruh's transform to q2-IDS and have
proven that it provides PQ-EU-CMA security in the QROM for any underlying
q2-IDS with a PQ-q2-extractor, the HVZK property, and PQ-key-one-wayness.
This, of course, implies that this transform can immediately be applied to the
5-passMQ IDS from [SSH11], to give anMQ signature provably secure in the
QROM.
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As discussed in the previous subsection, some optimizations can signi�cantly
improve the performance of the scheme. They deviate from the generic construc-
tion, however, causing a need for some changes in the security proof. Fortunately,
only minor changes are required. We specify the following theorem.

Theorem 5.1. Let k ∈ N be the security parameter. The signature scheme
SOFIA is post-quantum existentially unforgeable under adaptive chosen message
attacks in the quantum-accessible random oracle model if the following conditions
are satis�ed:

� The search version of theMQ problem is intractable in the average case,
� the hash functions H, H1, and H2 are modeled as quantum-accessible random

oracles,
� the commitment function Com is computationally binding against quantum

adversaries, statistically hiding, and has O(k) bits of output entropy,
� the pseudorandom generators, PRGrte, PRGsk have outputs computationally

indistinguishable from random for any polynomial-time quantum adversary.

Proof. First let's consider a signature scheme obtained by applying the optimiza-
tions from the previous section on the signature scheme from Figures 2 and 3. We
will refer to it as the optimized scheme throughout this proof. We will show that
this optimized scheme is PQ-EU-CMA secure, if the underlying q2-IDS satis�es
the conditions from Theorem 4.3. We will assume some additional properties of
the IDS, that represent a special case of q2-IDS schemes. The optimized scheme
is characterized by the following optimizations.

� We �x the challenge space ChS1 to t elements. Note that this change does
not in�uence the security arguments at all.

� We assume that the underlying IDS of the optimized scheme is such that
the second response does not depend on the �rst challenge and response, but
only on the second challenge and the initial output by the prover P0. In this
case, in the signature generation, instead of calculating the second response

as resp
(i,j,ch2)
2 ← P2(state

(i,j), ch2) for every i ∈ {1, . . . , t}, we calculate it

once per round as resp
(j,ch2)
2 ← P2(state

(j), ch2). The full transcript is now

{transfull(j)}rj=1, with transfull(j) = com(j),
{
ch

(i,j)
1 , cr

(i,j)
1

}t
i=1

, (cr
(j,0)
2 , cr

(j,1)
2 ).

The reduced transcript transred(j) that is included in the signature is in�u-
enced similarly.

� Assuming that the underlying IDS is such that com = (c0, c1), we omit from
the signature the commitment cch2 that the veri�er recomputes, depend-
ing on the challenge ch2. This alters the content of transred(j) but not of
transfull(j).

6

It is straight forward to verify that Lemma 3.1 (and in the QROM, Lemma 3.5)
still hold for the optimized scheme. We only removed duplicate information from

6 If we would have used the optimization from [SSH11] directly, this would have in-
�uenced the full transcript as well.
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the signature, not a�ecting the reductions ability to extract. The exact proba-
bility of abort in Lemma 3.2 might change as we remove some values from
{transfull(j)}rj=1, maybe reducing its entropy. However, the given bound only de-
pends on the amount of entropy coming from the commitments which remains
unchanged for the optimized scheme. Therefore, the claims of Lemma 3.2 remain
valid.

Next, recall (cf. Theorem 4.3) that, under the assumption of intractability of
the MQ problem on average, and assuming computationally binding and sta-
tistically hiding properties of Com, the 5-pass IDS from [SSH11] is PQ-KOW,
is HVZK, and has a PQ-q2-Extractor. Furthermore, it satis�es the particular
properties that the optimized scheme above requires. Thus applying the opti-
mized transform on the Sakumoto-Shirai-Hiwatari 5-pass IDS scheme, we obtain
a PQ-EU-CMA secure signature (cf. Theorems 3.3 and 3.6)

To complete the proof, we note that using a standard game hopping argu-
ment, it is straightforward to show that the success probability of a PQ-EU-
CMA adversary against SOFIA is negligibly close to the success probability of
a PQ-EU-CMA adversary against the optimized scheme from the Sakumoto-
Shirai-Hiwatari 5-pass IDS scheme when the outputs of PRGrte and PRGsk are
post-quantum computationally indistinguishable from random. ut

6 SOFIA-4-128

Having described the scheme in general terms, we now provide concrete pa-
rameters that allow us to specify a speci�c instance, which we will refer to as
SOFIA-4-128. We present an optimized software implementation and list the re-
sults, in particular in comparison to MQDSS-31-64. All benchmarks mentioned
below were obtained on a single core of an Intel Core i7-4770K (Haswell) CPU,
following the standard practice of disabling TurboBoost and hyper-threading.
We compiled the code using gcc 4.9.2-10, with -O3 and -march=native.

6.1 Parameters

The previous section assumed a number of parameters and functions. Notably,
we must de�ne Fq, the �eld in which we perform the arithmetic, and n and m,
the number of variables and equations de�ning theMQ problem. The number

of rounds r is determined by t (i.e. the number of responses resp
(i,j)
1 , bounded

by q in SOFIA) and the targeted security level, using Theorem 3.6.
ForMQDSS-31-64, the choice of F31 was motivated by the fact that it brings

the soundness error close to 1
2 while providing convenient characteristics for fast

implementation [CHR+16]. For SOFIA-4-128, our primary focus is on optimiz-
ing for signature size while still maintaining e�ciency. To do so, we compute
signature sizes for a wide range of candidate systems7, and investigate several in
more detail by implementing and measuring the resultingMQ evaluation func-
tions. Notably, we look at the results ofMQ(128, 128,F4),MQ(96, 96,F7) and

7 A calculation script is included in the software package.
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MQ(72, 72, F16), and compare to MQ(64, 64, F31) from [CHR+16]. Of these,
MQ(128, 128, F4) is the decisive winner, resulting in the smallest8 signatures
while still providing decent performance. See Table 2 on page 28 for benchmarks
of single evaluation functions and the related signature sizes. Note that, as the
number of rounds r does not depend on the choice of Fq but merely on t, the
signing time scales proportionally9.

Parameters for MQ(m,n, Fq). A straightforward method for solving sys-
tems of m quadratic equations in n variables over Fq is by performing exhaustive
search on all possible qn values for the variables, and testing whether they satisfy
the system. Currently, [BCC+10] provide the fastest enumeration algorithm for
systems over F2, needing 4 log n · 2n operations10.

In addition, there exist algebraic techniques that analyze the properties of the
ideal generated by the given polynomials. The most important are the algorithms
from the F4/F5 family [Fau99,Fau02,BFS15,BFP12], and the variants of the XL
algorithm [CKPS00,Die04,YC05,YC04]. Although di�erent in description, the
two families bear many similarities, which results in similar complexity [YCY13].

In the Boolean case, today's state of the art algorithms from the aforemen-
tioned families, BooleanSolve [BFSS13] and FXL [YC04], provide improvement
over exhaustive search. In particular, the improvement is visible for polynomials
with more than 200 variables (respectively, Θ(20.792n) and Θ(20.875n) complex-
ity when m = n). A very recent algorithm, the Crossbred algorithm [JV17] over
F2, is likely to further improve the asymptotic complexity, as the authors report
that it passes the exhaustive search barrier already for 37 Boolean variables.
Unfortunately, at the time of writing, the preprint does not include a detailed
complexity analysis that we can use11.

Interestingly, the current best known algorithms, BooleanSolve [BFSS13],
FXL [YC04,YC05], the Crossbred algorithm [JV17] and the Hybrid approach
[BFP12] all combine algebraic techniques with exhaustive search. This immedi-
ately allows for improvement in their quantum version using Grover's quantum
search algorithm [Gro96], provided the cost of implementing them on a quantum
computer does not diminish the gain from Grover. Unfortunately, the current
literature lacks analysis of the quantum version of these algorithms. To the best
of our knowledge, a detailed analysis has only been done for pure enumeration
using Grover's search [WS16], showing that a system of n equations in n variables
can be solved using Θ(n · 2n/2) operations.

8 This is also the minimum amongst all candidate systems we looked at � it is not
merely beating F7 and F16, but also less common options such as F5 and F8.

9 This disregards the overhead for the various hash computations, which can be con-
sidered to scale similarly.

10 The techniques from [BCC+10] can be extended to other �elds Fq with the same
expected complexity of Θ(logq n · qn).

11 The authors of [JV17] con�rmed that the complexity analysis is an ongoing work,
and will soon be made public.
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In what follows we will analyze the complexity of the quantum versions of
the Hybrid approach and BooleanSolve, and use the results as a reference point
in choosing parameters for MQ(m,n,Fq) that provide 128 bit post-quantum
security12.

First of all, we note that m = n is the best choice in terms of hardness
of the MQ problem. Indeed, if there are more equations than variables, they
provide more information about the solution, so �nding one becomes easier. On
the other hand, if there are more variables than equations, we can simply �x
n−m variables and reduce the problem to a smaller one, with m variables.

Let F = (f1, . . . , fm), fi ∈ Fq[x1, . . . , xn]. Without loss of generality, the
equation system that we want to solve is F(x) = 0.

The main complexity in both the Hybrid approach and BooleanSolve comes
from performing linear algebra on a Macalay matrix MacD(F) of degree D
(with rows formed by the coe�cients of the monomials of ufi of maximal degree
D). The degree D should be big enough so that a Gröbner basis of the ideal
generated by the polynomials can be obtained by performing linear algebra on
the Macaulay matrix. The smallest suchD is called the degree of regularityDreg,
and for semi-regular systems (which is a very plausible assumption for randomly
generated polynomials) it is given by Dreg(n,m) = 1 + deg(HSq(t)), where

HSq(t) =

[
(1− t2)m

(1− t)n

]
+

, for q > 2, and HS2(t) =

[
(1 + t)n

(1 + t2)m

]
+

,

and the + subscript denotes that the series has been truncated before the �rst
non-positive coe�cient.

Since Dreg determines the size of the matrix, and thus the complexity of
the linear algebra performed on it, both algorithms �rst �x k among the n
variables in order to reduce the complexity of the costliest computational step.
Now the linear algebra step is instead performed on MacDreg

(F̃), where F̃ =

(f̃1, . . . , f̃m) and f̃i(x1, . . . , xn−k) = fi(x1, . . . , xn−k, an−k+1, . . . , an), for some
(an−k+1, . . . , an) ∈ Fk2 .

Given the linear algebra constant 2 6 ω 6 3, the complexity of the Hybrid
approach for solving systems of n equations in n variables over Fq is

CHyb(n, k) = Guess(q, k) · CF5(n− k, n). (6)

where

CF5(n,m) = Θ

((
m

(
n+Dreg(n,m)− 1

Dreg(n,m)

))ω)
,

is the complexity of computing a Gröbner basis of a system of m equations in n
variables, m > n, using the F5 algorithm [Fau02], Guess(q, k) = logq(k)q

k in the

classical case and Guess(q, k) = logq(k)q
k/2 in the quantum case using Grover's

algorithm13. Also, k is an optimization parameter chosen such that the overall
complexity is minimized.

12 A similar analysis can be made using the algorithms from the XL family.
13 We assume that in the quantum case the factor logq(k) is the same as in the classical

case, as opposed to the factor k from [WS16].
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In the case of F2, the BooleanSolve algorithm performs better than the Hy-
brid approach. It reduces the problem to testing the consistency of a related
linear system

u ·MacDreg (F̃) = (0, . . . , 0, 1) (7)

If the system is consistent, then the original system does not have a solution.
This allows for pruning of all the inconsistent branches corresponding to some
a ∈ Fk2 . A simple exhaustive search is then performed on the remaining branches.
It can be shown that the running time of the algorithm is dominated by the �rst
part of the algorithm in both the classical and the quantum version, although
in the quantum case the di�erence is not as big as a consequence of the reduced
complexity of the �rst part. Therefore, for simplicity, we omit the exhaustive
search on the remaining branches from our analysis.

The complexity of the BooleanSolve algorithm is given by

CBool(n, k) = Guess(2, k) · Ccons(MacDreg
(F̃)). (8)

where Guess(2, k) is de�ned the same as in the Hybrid approach, and

Ccons(MacDreg (F̃)) = Θ(N2 log2N log logN), N =

Dreg(n−k,n)∑
i=0

(
n

i

)

is the complexity of testing consistency of the matrix (7), using the sparse linear
algebra algorithm from [GLS98].

Table 1 below provides estimates of the minimum requirements for 128 bit
post-quantum security ofMQ(n, n,Fq) with regard to BooleanSolve and Hybrid
Approach using Grover's search, as well as plain use of Grover's search. In the
estimates we used ω = 2.3, which is smaller than the best known value ω =
2.3728639 [Gal14]. We provide the optimal number of �xed variables in brackets,
where actually this number does not equal the number of variables in the initial
system. When this is the case, the optimal strategy is to simply use Grover (�x
all variables), which we denote with G. Note that since any system of n variables
over F2s can be e�ciently transformed into a system of sn variables over F2, we
have scaled the results for BooleanSolve for larger F2s accordingly.

As mentioned earlier, a new algebraic method for equations over F2, the
Crossbred algorithm, was proposed very recently [JV17]. The main idea of this
approach is to �rst perform some operations on the Macalay matrix of degree
Dreg(n−k, n) of the given system, and only afterwards �x variables. In particu-
lar, the algorithm �rst tries to �nd enough linearly independent elements in the
kernel of a submatrix ofMacDreg(n−k,n), corresponding to monomials of special-
ized degree in the variables that will later remain in the system (i.e. will not be
�xed). These can then be used to form new polynomials in the n− k remaining
variables of total small degree d, which added to Macd(F̃) will result in work-
ing with a much smaller Macalay matrix. The advantage here comes from using
sparse linear algebra algorithms on MacDreg(n−k,n) for the �rst part and dense
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F2 F3 F4 F5 F7 F8

BooleanSolve 221 (200) / 111 / / 56

Hybrid G G G G G 84 (57)

Grover 251 158 126 108 90 84

F11 F13 F16 F17 F31 F32

BooleanSolve / / 28 / / 14

Hybrid 77 (51) 73 (43) 69 (40) 69 (40) 61 (30) 60 (21)

Grover 73 68 63 62 51 51

Table 1. Lower bound on number of variables n for 128 bit post quan-
tum security against the quantum versions of Hybrid approach [BFP12]
and BooleanSolve [BFSS13]. In brackets is the number of �xed variables. G
denotes that the best strategy is to �x all variables, i.e. plain Grover search.

linear algebra only on the smaller Macalay matrix in the second part14. Since
[JV17] does not contain a complexity analysis, we refrain from claiming exact
security requirements based on the quantum version of the algorithm. Neverthe-
less, following the description of the algorithm we have estimated that a system
of 256 variables over F2 (which applies toMQ(128, 128,F4) orMQ(64, 64,F16))
provides 128-bit security against the quantum version of Crossbred algorithm.
We will include a more detailed analysis for the quantum version once a classical
complexity analysis is available.

Number of rounds r and blinded responses per round t. The choice
of t provides a trade-o� between size and speed; a larger t implies a smaller
error, resulting in less rounds, but more included blinded responses per round
(the additional computational cost of which is insigni�cant). Interestingly, t =
3 provides the minimal size, followed by t = 4, and, only then, t = 2. The
decrease in rounds quickly diminishes, however, making t = 3 and t = 4 the
most attractive choices15.

Given the above considerations (and with a prospect of some convenience of
implementation), we select the parameters n = m = 128, q = 4 and t = 3. For
a security level of 128 bits post-quantum security, it follows from Theorem 3.6

that we must select r such that 2−(r log
2t

t+1 )/2 < 2−128. This implies r = 438.

14 An external specialization of variables is also possible, but this does not bring any
improvement classically, and we have veri�ed for some parameters that this is the
case also quantumly.

15 Note that t is naturally bounded by q, making these the only options for F4.
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cyclesb
size

t = 3, r = 438
size

t = 4, r = 378

MQ(128, 128,F4) 21 412 123.22 KiB 129.97 KiB

MQ(96, 96,F7) 36 501 129.00 KiBa 136.20 KiBa

MQ(72, 72,F16) 25 014 136.91 KiB 144.73 KiB

MQ(64, 64,F31) 6 616c 149.34 KiBa 158.15 KiBa

a This assumes optimally packing the elements of Fq, which may not
be practical.

b This is the cost of a single evaluation. In practice, batching provides
a speedup. See Section 6.2.

c As reported in [CHR+16].

Table 2. Benchmarks for varying parameter sets

Required functions. Before being able to implement the scheme, we must
still de�ne several of the functions we have assumed to exist. In particular, we
need: a string commitment function Com; pseudo-random generators PRGsk and
PRGrte; extendable output functions XOFF and XOFIB ; permutation functions
H1 and H2; and a cryptographic hash function H.

We instantiate the extendable output functions, the string commitment func-
tions, the permutations and the hash function with SHAKE-128 [BDPV11]. This
applies trivially, except for XOFIB , of which the output domain is a series of
ternary and binary indices (as t = 3). We resolve this by applying rejection sam-
pling to the output of SHAKE-128 to derive the ternary challenges. For XOFF,
we achieve a signi�cant speedup by dividing its output in four separate pieces,
generating each of them with a domain-separated call to cSHAKE-128 [BDPV11].
For the application of H to the public key, the message and the transcript, we
note that collision resilience is achieved when the message is absorbed into the
SHAKE-128 state after the transcript, as absorbing the transcript randomizes
the state su�ciently to prevent internal collisions.

For PRGrte and PRGsk, we also instantiate with SHAKE-128. We note that
di�erent systems can make di�erent choices here without breaking compatibility
� this is a local decision for the signer. In fact, for the optimized Haswell im-
plementation discussed in the next section, we instantiate PRGrte with AES in
counter mode, using the AES-NI instruction set.

6.2 Implementation

As part of this work, we provide a C reference implementation and an imple-
mentation optimized for AVX2. The focus of this section is the evaluation of the
MQ function, given the abovementioned parameter setMQ(128, 128,F4). The
rest of the scheme depends on fairly straight-forward operations (such as multi-
plying vectors of F4 elements by a constant scalar) and applications of existing
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public domain implementations of AES-CTR and SHAKE-128 (although we do
brie�y discuss parallel evaluation of the latter).

Before discussing the computation, we note that the chosen parameters lend
themselves to a very natural data representation. Throughout the entire scheme,
we interpret 256 bit vectors as vectors of 128 bitsliced F4 elements: the low
128 bits make up the lower bits of the two-bit elements, and the high 128 bits
make up the higher bits of each element. This makes operations such as scalar
multiplication in C code very convenient, as this can be easily expressed as logical
operations on bit sequences, but provides an even more important bene�t for
AVX2 assembly code. Notably, one vector of F4 elements now �ts exactly into
one 256 bit vector register, with the lower bits �tting into the low lane and
the higher bits into the high lane. Whereas other parameter sets could result in
having to consider crossing the lanes, in this case the separation is very natural.

When it comes to sampling elements in F4 from the output of SHAKE-128 or
AES-CTR, we can freely interpret the random data to be in bitsliced representa-
tion. Similarly, we simply write the elements to the signature in this representa-
tion, as signature veri�cation enjoys precisely the same bene�ts. All in all, there
is no point throughout the entire scheme at which we need to actually perform
a bitslicing operation.

Evaluating MQ. For a given input x, we split the evaluation into two phases:
computing all quadratic monomial terms xixj , and composing them together to
evaluate the quadratic polynomials.

Computing the quadratic terms. To perform the �rst step, we use a similar ap-
proach as was used in [CHR+16]. It can be viewed as a combination of their
approach for F2 and for F31, as we now operate on a single register that con-
tains all input elements, but e�ectively view each lane as 16 separate single-byte
registers. Using vpshufb instructions, it is very cheap to arrange the elements
in such a way that all multiplications can be performed using only a minimal
number of rotations. We used the script from [CHR+16] as a starting point to
generate the arrangement.

A bitsliced multiplication in F4 can be e�ciently performed using only a few
logical operations. The inputs to these multiplications are a register containing
x and a register containing some rotated arrangement of x. However, some of
these operations require the low and high lanes of the vector registers to interact,
which is typically costly. As x is constant, we can speed up these multiplications
by rewriting them as shown below, and presetting two registers that contain
[xhigh|xhigh] and [xhigh ⊕ xlow|xlow], respectively. Note that all of these opera-
tions are not performed on single bits, but rather on 128 bit vector lanes. The
multiplication of 128 elements then requires only two vpand instructions, one
vperm instruction, and a vpxor to combine the results.

chigh = (ahigh ∧ (blow ⊕ bhigh))⊕ (alow ∧ bhigh)
clow = (alow ∧ blow)⊕ (ahigh ∧ bhigh)
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Multiplying, and accumulating results. We focus on two approaches to perform
the second and most costly part of the evaluation, in which all of the above
monomials need to be multiplied with coe�cients from F and summed into the
output vector. They are best described as iterating either `horizontally' or `verti-
cally' through the required multiplications. For the vertical approach, we iterate
over all16 registers of monomials, broadcasting each of the monomials to each of
the 128 possible positions by shu�ing bytewise and applying eight bit-rotations
before multiplying with a sequence of coe�cients from F and adding into an
accumulator. Alternatively, we iterate over the output elements in the outer-
most loop. For each output element, we iterate over all registers of monomials,
perform the multiplications and horizontally sum the results by making use of
the popcnt instruction.

Intuitively, the latter approach may seem like more work (notably because it
requires more loads from memory), but in practice it turns out to be faster for our
parameters. The main reason for this is that by maintaining multiple separate
accumulators, loaded monomials can be re-used while still maintaining chains of
logic operations that operate on independent results (as the accumulators are
only joined together later), which leads to highly e�cient scheduling.

For both cases, a lot of computational e�ort can be saved by delaying part of
the multiplication in F4. This is done by computing both [x̂high∧fhigh|x̂low∧flow]
and [x̂low∧fhigh|x̂high∧flow], with f from F and x̂ a sequence of quadratic mono-
mials, and accumulating these results separately. After accumulating, these val-
ues can be used as inputs to �nish all multiplications and reductions at once,
eliminating the majority of the logic operations that would otherwise be per-
formed for each of the 65 multiplications.

Evaluating MQ instances in parallel. While repeatedly iterating over the
monomials can be done quickly (especially since they easily �t in L1 data cache),
each of the coe�cients in F is used only once, making loading these a considerable
burden. As F is constant for each evaluation, however, a signi�cant speedup can
be achieved by processing multiple instances of theMQ function in parallel. In
particular the vertical approach lends itself nicely for this, as its critical section
leaves some registers unused. For the horizontal approach, it becomes a trade-o�
with registers that are used for parallel accumulators, but, as loading of F is an
important bottleneck, there is still signi�cant gain from parallelizing multiple
instances.

For SOFIA-4-128, the signer evaluates r = 438 instances of F and its polar
form G on completely independent inputs, which can be trivially batched. The
veri�er performs 438 evaluations of F, and on average half as many evaluations
of G, which can also be batched together.

16 There are n·(n+1)
2

= 8256 such monomials, which results in 64 1
2
256-bit sequences.

We round up to 65 by zeroing out half of the high and half of the low lane. To still
get results that are compatible with implementations on other platforms, we create
similar gaps in the stream of random values used to construct F, ensuring that the
same random elements are still used for the same coe�cients.
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Parallel SHAKE-128 and cSHAKE-128. As will be apparent in the next sec-
tion, many cycles are spent computing the Keccak permutation (as part of either
SHAKE-128 or cSHAKE-128). Some of the main culprits17 are the commitments,
the blinding of responses and the expansion of F. While the Keccak permuta-
tion does not lend itself nicely to internal parallelization, it is trivially possible
to compute four instances in parallel in a 256 bit vector register. This allows us
to seriously speed up the computations of the many commits and blindings, as
these are all fully independent and can be grouped together across rounds. De-
riving F can be parallelized by splitting it in four domain-separated cSHAKE-128
calls operating on the same seed, as was alluded to in Section 6.1.

Benchmarks. All things considered, evaluating theMQ function horizontally
in batches of three turns out to give the fastest results, measuring in at 17 558
cycles per evaluation. Evaluating vertically is slightly more expensive, at 18 598
cycles per evaluation. The cost for evaluating the polar form is not signi�cantly
di�erent, di�ering by approximately a hundred cycles from regular MQ. Gen-
erating the monomial terms xiyj + xjyi is somewhat more costly, but this is
countered by the fact that the linear terms cancel out.

To generate a signature, we spend 21 305 472 cycles. Of this, 15 420 520 cycles
can be attributed to evaluatingMQ, and 43 954 to AES-CTR. The remainder is
almost entirely accounted for by the various calls to SHAKE-128 and cSHAKE-

128 for the commitments, blindings and randomness expansion. In particular,
expanding F costs 1 120 782 cycles. Note, however, that if many signatures are
to be generated, this expansion only needs to be done once and F can be kept
in memory across subsequent signatures.

Veri�cation costs 15 492 686 cycles, and key generation costs 1 157 112. Re-
mark that key generation is dominated by expansion of F. Systems that require
often re-keying may opt to reconsider the diversi�cation of F, and instead re-use
the same random system in a similar way as batch signature generation can.
This would asymptotically reduce the average cost of key generation all the way
down to essentially a singleMQ evaluation, which costs only 21 412 cycles.

The keys of SOFIA-4-128 are very small by nature, with the secret key
consisting of only a single 32 byte seed, and the 64 byte public key being made
up of a seed and a singleMQ output.

The natural candidate for comparison is MQDSS-31-64 [CHR+16], the de
facto predecessor of this work. WhileMQDSS has a proof in the ROM, we focus
further comparison on post-quantum schemes that have proofs in the QROM or
standard model. See Table 3, below; as mentioned in the introduction, we include
SPHINCS-256 [BHH+15] (standard model), Picnic-10-38 [CDG+17] (QROM)
and TESLA-768 [ABBD15] (QROM).

17 Hashing the transcript in parallel is a bit more involved. While it could be done using
constructions like ParallelHash [BDPV11], we omit this for the sake of simplicity.
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|σ|
(bytes)

|pk|, |sk|
(bytes)

keygen
(cycles)

signing
(cycles)

veri�cation
(cycles)

SOFIA-4-128 a 126 176 64 32 1 157 112 21 305 472 15 492 686

MQDSS-31-64a 40 952 72 64 1 826 612 8 510 616 5 752 612

SPHINCS-256b 41 000 1056 1088 3 237 260 51 636 372 1 451 004

Picnic-10-38c,d 195 458 64 32 ≈36 000 ≈112 716k ≈58 680 000
TESLA-768a 2 336 4128k 3216k ≈172 800me 2 232 906 863 790

a Benchmarked on an Intel Core-i7-4770K (Haswell).
b Benchmarked on an Intel Xeon E3-1275 (Haswell).
c Benchmarked on an Intel Core-i7-4790 (Haswell).
d Converted from milliseconds at 3.6GHz.
e Using a measurement from [CDG+17], as [ABBD15] does not report key
generation.

Table 3. Benchmark overview
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