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Abstract. We develop a statistical framework to analyse the Ring-LWE
processes of A Toolkit for Ring-LWE Cryptography (Eurocrypt 2013) and
similar processes. We consider the δ-subgaussian random variables used
in the Toolkit and elsewhere in the literature, and we give a simple and
complete characterisation of such random variables. We then apply our
results to the homomorphic cryptosystem provided as an example appli-
cation in the Toolkit. We show that the δ-subgaussian approach as used
in the Toolkit to argue correctness of this cryptosystem is flawed, and we
also rectify this analysis using our developed statistical framework.

Keywords. Ring Learning with Errors, Subgaussian Random Variable,
Homomorphic Encryption.

1 Introduction

The Learning with Errors or LWE problem [30, 31] has become a standard hard
problem in cryptology that is at the heart of lattice-based cryptography [24, 27].
The Ring Learning with Errors or Ring-LWE problem [20] is a generalisation of
the LWE problem from the ring of integers to certain other number field rings,
and a formal statement of the Ring-LWE problem is given in Figure 1. Both
the LWE problem and the Ring-LWE problem are related to well-studied lattice
problems which are believed to be hard [4, 20, 21, 25, 30].

Hardness of Ring-LWE. We briefly summarise hardness results pertaining to
Ring-LWE. For formal statements of theorems and reductions, we refer the reader
to [20, 21, 29]. The most relevant result for our purpose is [20, Theorem 3.6],
also stated as [21, Theorem 2.22]: if K is a cyclotomic number field with ring of
integers R, then there is a polynomial time quantum reduction from approximate
SIVP (Shortest Independent Vector Problem) on ideal lattices in K to Decision
Ring-LWE in R given a fixed number of samples, where the error distribution is
a fixed spherical Gaussian over the field tensor product KR = K ⊗Q R. A more
general result, for any number field, is given in [29].

In more detail, there is a quantum reduction from a particular hard lattice
problem to Search Ring-LWE in the ring of integers R of an arbitrary number
field K [20, Theorem 4.1]. This requires a family of distributions which are
Gaussian (spherical or elliptical) over KR. For the special case of rings of integers
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Ring-LWE. Let R be the ring of integers of a number field K. Let R∨ be the dual
fractional ideal of R. Let q be an integer modulus. Let Rq = R/qR and R∨q = R∨/qR∨.
Let KR = K ⊗Q R. Let χ be a distribution over KR. Let s ∈ R∨q be a secret. A sample
from the Ring-LWE distribution As,χ over Rq ×KR/qR

∨ is

(a, b = a · s+ e mod qR∨)

where a← Rq is chosen uniformly at random and e← χ.
• Decision Ring-LWE is the problem of deciding whether samples (ai, bi) are chosen
according to the distribution As,χ or are uniformly random.
• Search Ring-LWE is the problem of recovering s from (ai, bi) sampled according to
As,χ.

Fig. 1. The Ring-LWE problem [19, 21].

of cyclotomic fields, a reduction from Search Ring-LWE to Decision Ring-LWE
is given in [20] and generalised in [10] and [8]. When the number of samples is
bounded, we can give a reduction from Search Ring-LWE in the ring of integers
of a cyclotomic field to Decision Ring-LWE for a fixed spherical Gaussian error
distribution over KR [20, Theorem 5.2].

Spherical gaussians. In the hardness results for Ring-LWE above, the error dis-
tributions are spherical Gaussians over KR. A reasonable question is whether or
not one could use a different error distribution, or indeed modify the Ring-LWE
instance in some other way, such that there is no longer a hardness reduction.
There is some evidence to suggest that the use of a setting in which the induced
Ring-LWE problem is not provably as hard as well-studied lattice problems may
be dangerous from a security perspective. In particular, a number of works have
given attacks on Ring-LWE when the underlying number field, error distribu-
tion, or modulus is of various special forms [6–11, 28]. Due to the presence of
weaker settings vulnerable to attacks, it may make sense to consider only set-
tings with provable hardness results. Indeed in practice, almost all works basing
their hardness on Ring-LWE use cyclotomic rings, with power-of-2 cyclotomics
being especially common (due also to efficiency and ease of sampling errors).

Homomorphic encryption. A key application of lattice-based cryptography is the
ability to achieve (fully, somewhat or levelled) homomorphic encryption. Using
homomorphic encryption means that one party (the server) can operate mean-
ingfully on encrypted data belonging to a different party (the client), and the
server does not need access to the secret key in order to do this. This allows a
computationally weak client to outsource computation on their data to a pow-
erful server, without having to share their data with the server in the clear. The
server performs a homomorphic evaluation operation on input ciphertexts which
produces an output ciphertext that the client can decrypt to obtain the result
of some useful function on the data. For example, we can define a homomorphic
addition operation, which takes as input two ciphertexts c1 and c2 encrypting
m1 and m2 respectively and outputs a ciphertext encrypting m1 +m2. Similarly

2



we can also define a homomorphic multiplication operation which takes as input
c1 and c2 and outputs a ciphertext encrypting m1 ·m2. An encryption scheme,
augmented with both such a homomorphic addition and a homomorphic multi-
plication operation, would then enable arbitrary computation on encrypted data.
Constructing such a fully homomorphic encryption scheme was a longstanding
open problem until it was resolved in Gentry’s seminal work [14]. Gentry’s orig-
inal scheme begins by specifying a somewhat homomorphic encryption scheme,
in which ciphertexts have an inherent noise, which grows during homomorphic
operations. Gentry then shows how to transform a somewhat homomorphic en-
cryption scheme into a fully homomorphic encryption scheme using a technique
known as bootstrapping. A large number of somewhat homomorphic cryptosys-
tems have been proposed in the literature, for example [1–3, 5, 12, 15, 16, 18, 34].
Several of these are based on Ring-LWE, for example [2, 3, 5, 12, 15].

Noise. A common feature among all homomorphic encryption schemes is that all
ciphertexts have an inherent ‘noise’. This is typically small in a fresh ciphertext,
but the noise grows as homomorphic evaluation operations are performed. If
the noise grows too large, then decryption fails, so a good understanding of
the noise growth behaviour of a homomorphic encryption scheme is essential to
choose appropriate parameters to ensure correctness. Typically, the noise in a
ciphertext in a Ring-LWE-based homomorphic encryption scheme is related to
the error distribution used in the underlying Ring-LWE instance, but often does
not directly follow a spherical gaussian distribution.

The THRing cryptosystem. Lyubashevsky, Peikert, and Regev’s work A Toolkit
for Ring-LWE Cryptography [21], which we refer to as the Toolkit, is a paper of
particular note in Ring-LWE cryptography, and an abridged form was published
at Eurocrypt 2013 [22]. The homomorphic Ring-LWE cryptosystem, or THRing

cryptosystem, of the Toolkit Section 8.3 is given an example application of Ring-
LWE. In the THRing cryptosystem, the noise in a fresh ciphertext is obtained
from a perturbation of a spherical gaussian.

δ-subgaussian random variables. The Toolkit uses a relaxation of a subgaussian
random variable (see for example [32]), called a δ-subgaussian random variable,
to analyse the THRing cryptosystem. The use of δ-subgaussian random variables
in statistical analyses in cryptography is not limited to homomorphic encryption
applications. For example, they are used in the analysis of a signature scheme
given by Micciancio and Peikert in [23]. They are also used in the analysis of
correctness of Peikert’s key exchange protocol [26] (indeed, the analysis presented
in [26] also relies on results from the Toolkit).

A fundamental issue of the Toolkit analysis of the THRing Cryptosystem. We
refer to the random variables we must consider when analysing the noise growth
behaviour in the THRing cryptosystem as various types of Noise random vari-
ables. These Noise random variables are perturbed spherical gaussians. To de-
termine whether the decryption of a ciphertext produced as the output of a
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Fig. 2. Density function for the Laplace 2
1
2 (N(0, 1) ·N(0, 1) + N(0, 1) ·N(0, 1)) random

variable arising as a component of a Noise product (solid line) and the density function
for the corresponding standard Normal N(0, 1) random variable (dashed line).

homomorphic multiplication of two fresh ciphertexts succeeds, we must consider
a product of Noise random variables. The statistical argument of the Toolkit
about a product of such Noise random variables essentially reduces to an as-
sertion that a component of such a product of Noise random variables can be
well-approximated as a corresponding Normal random variable with the same
mean and variance. However, when considered as a real vector with respect to
an appropriate basis, a component of such a Noise product has a Laplace distri-
bution arising as the sum of two products of two independent Normal random
variables (Section 4.5). Figure 2 illustrates that a density function of a compo-
nent of such a product of Noise random variables, the Laplace random variable
2

1
2 (N(0, 1) ·N(0, 1) + N(0, 1) ·N(0, 1)), is very different to the density function of

a standard Normal N(0, 1) random variable having the same mean and variance.
Figure 3 illustrates the corresponding very different tail probabilities for these
two random variables.

1.1 Contributions of this Paper

A major contribution of this paper is to give a full and particularly simple char-
acterisation of δ-subgaussian random variables, which are used extensively by
the Toolkit and elsewhere to analyse homomorphic Ring-LWE cryptosystems
and related matters. This simple characterisation allows us to improve and ex-
tend existing results for the sum and product of δ-subgaussian random variables
used in cryptography, and also improve results existing for the variability of a
discretisation process.
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Fig. 3. Tail probability for the Laplace 2
1
2 (N(0, 1) ·N(0, 1) + N(0, 1) ·N(0, 1)) random

variable arising as a component of a Noise product (solid line) and the density function
for the corresponding standard Normal N(0, 1) random variable (dashed line).

A further contribution is the use of this δ-subgaussian characterisation to
provide evidence that δ-subgaussian approach of the Toolkit to analyse the cor-
rectness of its THRing cryptosystem is flawed. A final contribution is to provide
a rigorous statistical analysis of the THRing cryptosystem. In contrast to the
Toolkit approach, we are able to bound the probability of incorrect decryption of
ciphertexts without appealing to an argument based on the use of δ-subgaussian
random variables. The derivation of this bound rests on the Central Limit Theo-
rem applied to random variables that cannot be approximated as δ-subgaussian
random variables.

1.2 Structure of the Paper

We review the algebraic background for Ring-LWE in Section 2, and we analyse
and characterise δ-subgaussian random variables in Section 3. We analyse the
multivariate gaussian distributions used in Ring-LWE applications in Section 4,
and we consider the discretisations of such random variables in Section 5. Fi-
nally, we apply results from the previous sections to the THRing cryptosystem
in Section 6.

2 Algebraic Background for Ring-LWE

We give the algebraic background for our analysis of Ring-LWE. This background
has its origins in the Toolkit and in part follows the Toolkit. We consider the
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ring R = Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic polynomial of
degree n, and we let Ra denote R/aR for an integer a. For simplicity, we only
consider the case where m is a large prime, so n = φ(m) = m − 1, and we also
let n′ = 1

2n = 1
2 (m− 1), though our arguments apply more generally.

There are three natural algebraic settings for the discussion of Ring-LWE: the
complex space H, the n-dimensional real vector space, and the mth cyclotomic
number field. We move between these settings at different places in our discussion
of Ring-LWE.

2.1 Cyclotomic Number Fields

Let ζm denote a (primitive) mth root of unity, which has minimal polynomial
Φm(X) = 1 +X + . . .+Xn. The mth cyclotomic number field

K = Q(ζm)

is the field extension of the rational numbers Q obtained by adjoining this mth

root of unity ζm, so K has degree n.
There are n ring embeddings σ1, . . . , σn : K → C that fix every element of

Q. Such a ring embedding σk (for 1 ≤ k ≤ n) is defined by ζm 7→ ζkm, so∑n
j=1 ajζ

j
m 7→

∑n
j=1 ajζ

kj
m . It is clear that such ring embeddings occur in conju-

gate pairs. The canonical embedding σ : K → Cn is defined by

a 7→ (σ1(a), . . . , σn(a))T .

We can define a natural induced geometry on K with `2-norm ‖ · ‖2 and
`∞-norm ‖ · ‖∞ given by the element’s norm under the canonical embedding σ,
that is to say

‖a‖2 = ‖σ(a)‖2 =

n∑
j=1

|σj(a)|2 = 2

n′∑
j=1

|σj(a)|2

and ‖a‖∞ = ‖σ(a)‖∞ = max{|σ1(a)|, . . . , |σn(a)|}.

The ring of integers OK of a number field is the ring of all elements of the
number field which are roots of some monic polynomial with coefficients in Z.
The ring of integers of the mth cyclotomic number field K is

R = Z [ζm] ∼= Z [x] /(Φm).

The canonical embedding σ embeds R as a lattice σ(R). The conjugate dual
of this lattice corresponds to the embedding of the dual fractional ideal

R∨ = {a ∈ K | Tr(aR) ⊂ Z}.

If we define t such that t−1 = m−1(1 − ζm), then R∨ = 〈t−1〉. We let (R∨)k

denote the space of products of k elements of R∨, that is to say

(R∨)
k

= {s1 . . . sk | s1, . . . , sk ∈ R∨} =
{
t−kr1 . . . rk | r1, . . . , rk ∈ R

}
.
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2.2 The Powerful Basis and the Decoding Basis

The analysis of Ring-LWE given by the Toolkit is based on various Z-bases of
K, R and R∨, and we now specify these relevant Z-bases in the case when m is
prime.

Definition 1. (Toolkit Definition 4.1.) The Powerful Basis −→p of K = Q(ζm)
and R = Z [ζm] is {

ζ0m, ζ
1
m, . . . , ζ

n−1
m

}
. ut

Definition 2. (Toolkit Equation (6.3).) The Decoding Basis
−→
d of R∨ is{

1
m (ζ0m − ζnm), 1

m (ζ1m − ζnm), . . . , 1
m (ζn−1m − ζnm)

}
. ut

Definition 3. (Toolkit Section 6.2.) The Scaled Decoding Basis of (R∨)k is

m−(k−1)
−→
d =

{
1
mk

(ζ0m − ζnm), 1
mk

(ζ1m − ζnm), . . . , 1
mk

(ζn−1m − ζnm)
}
. ut

A drawback of these bases is that they are very generally defined and so not
all basis elements occur in conjugate pairs. In the case when m is prime, we can
define and use the following alternative bases where the elements do occur in
conjugate pairs.

Definition 4. The Powerful Conjugate Pair Basis −→q of K = Q(ζm) and R =
Z [ζm] is {

ζ1m, ζ
2
m, . . . , ζ

n
m

}
. ut

Definition 5. The Decoding Conjugate Pair Basis −→c of R∨ is{
1
m (1− ζ1m), 1

m (1− ζ2m), . . . , 1
m (1− ζnm)

}
. ut

Definition 6. The Scaled Decoding Conjugate Pair Basis of (R∨)k is

m−(k−1)−→c =
{

1
mk

(1− ζ1m), 1
mk

(1− ζ2m), . . . , 1
mk

(1− ζnm)
}
. ut

2.3 The Complex Space H

The ring embeddings σ1, . . . , σn defined in Section 2.1 occur in complex conju-
gate pairs with σk = σm−k, as we noted above. Accordingly, much of the analysis
of Ring-LWE takes place in a space of conjugate pairs of complex numbers. We
now specify the appropriate complex space for analysing Ring-LWE, which fol-
lowing the Toolkit we denote by H. In order to do so, we first define a complex
matrix, the conjugate pairs matrix T . As we are working in a complex space,
we use the notation † to denote the complex conjugate transpose of a matrix, so

T † = T
T

and so on.
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Definition 7. The conjugate pair matrix is the n × n complex matrix T , so
T : Cn → Cn, given by

T = 2−
1
2



1 0 . . . 0 0 . . . 0 i
0 1 . . . 0 0 . . . i 0
...

...
. . .

...
...

...
...

0 0 . . . 1 i . . . 0 0
0 0 . . . 1 −i . . . 0 0
...

...
...

...
. . .

...
...

0 1 . . . 0 0 . . . −i 0
1 0 . . . 0 0 . . . 0 −i


. ut

Lemma 1. The conjugate pair matrix T has determinant (−i)n′ of absolute
size 1 and is a unitary matrix with

T−1 = T † = 2−
1
2


1 0 . . . 0 1
0 1 . . . 1 0
...

...
. . .

...
...

0 −i . . . i 0
−i 0 . . . 0 i

 . ut

Definition 8. The complex conjugate pair space H = T (Rn), where T is the
conjugate pairs matrix. ut

Definition 9. The I-basis for H is given by the columns of the n× n identity
matrix I, that is to say by standard basis vectors. ut

Definition 10. The T-basis for H is given by the columns of the conjugate pair
matrix T . ut

The I-basis and T -basis forH give two different ways of expressing an element
of H as a vector:

H-vectors in the I-basis
{

(z1, . . . , zn′ , zn′ , . . . , z1)
T
∣∣∣ z1, . . . , zn′ ∈ C

}
,

H-vectors in the T -basis
{

(w1, . . . , wn)
T
∣∣∣w1, . . . , wn ∈ R

}
.

An element of H is expressed as a vector in the I-basis as a vector of n′ conjugate
pairs. Such an element of H can also be expressed (by construction) as a vector
in the T -basis as a real-valued vector. We also note that the vector representing
an element in the T -basis for H has the same norm as an element representing
the same element in T -basis for H, as |Tv|2 = |v|2 because T is a unitary
matrix. Expressing elements of H as vectors in the T -basis therefore gives the
isomorphism between H and Rn as an inner product space. Thus the T -basis for
H is a very natural basis to use for the analysis of Ring-LWE.

We have seen that the expression of an element of H in the I-basis gives a
vector of complex conjugate pairs. It is sometimes convenient to consider such
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a single conjugate pair in isolation, so giving rise to the H2-space and so on of
Definition 11. It is clear that the space H is isomorphic to the n′-fold product
of H2-spaces H2 × . . .×H2. We therefore refer to such 2-dimensional subspaces
of H that arise in the I-basis as the H2-components of H.

Definition 11. The single conjugate pair space H2 is given by

H2 = T (R2) = 2−
1
2

(
1 i
1 −i

) (
R2
)
. ut

We can define conjugate pair mappings σ̃i for 1 ≤ i ≤ n′ on K by

σ̃i(a) = (σi(a), σm−i(a))T

where σi are the ring embeddings defined in Section 2.1. The conjugate pair
mappings are each (by definition) an embedding σ̃i : K → H2. The canonical
embedding σ can therefore be regarded as essentially the concatenation of the n′

conjugate pair embeddings σ̃1, . . . , σ̃n′ , In particular, the canonical embedding
actually embeds K into H2×. . .×H2

∼= H ⊂ Cn, and such an embedded element
is expressed as a vector (with appropriate component re-ordering) with respect
to the I-basis for H.

The canonical embedding under σ of a sum in the cyclotomic number field
gives a componentwise addition in H of the vectors expressing the embedded
elements for any basis for H. Similarly, the canonical embedding under σ of a
product in the cyclotomic number field gives rise to a componentwise �-product
in H when the vectors expressing the embedded elements are in the I-basis for
H, when we have

σ(aa′) = (σ1(aa′), . . . , σn(aa′))T = (σ1(a)σ1(a′), . . . , σn(a)σn(a′))T

= (σ1(a), . . . , σn(a))T � (σ1(a′), . . . , σn(a′))T

= σ(a)� σ(a′).

The canonical embedding of a product under σ gives other forms of “product”
for the corresponding vectors expressing elements of H when other bases are
used. The appropriate notion of a product of two elements of the complex space
H when these elements are expressed as real vectors in the T -basis for H is given
by Definition 12, which specifies the ⊗-product of two real vectors.

Definition 12. The⊗-product of two real vectors u = (u11, u12, . . . , un′1, un′2)T

and v = (v11, v12, . . . , vn′1, vn′2)T of length n = 2n′ is

u⊗ v =


u11
u12

...
un′1
un′2

⊗

v11
v12
...

vn′1
vn′2

 = T † (Tu� Tv) = 2−
1
2


u11v11 − u12v12
u11v12 + u12v11

...
un′1vn′1 − un′2vn′2
un′1vn′2 + un′2vn′1

 .

The ⊗-product of two vectors in H expressed in the T -basis is the expression in
the T -basis of the componentwise product � of those two vectors when expressed
in the I-basis. ut
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H with
T -basis

∆ = Γ−1T−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−
∆−1 = T−1Γ

H with
Γ -basis

∆′ = Γ ′−1Γ−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
∆′−1 = Γ−1Γ ′

H with
Γ ′-basis

Fig. 4. Change of Basis Matrices for Bases expressing Elements of H as Real Vectors.

We now define two further bases for H, obtained by embedding certain num-
ber field bases of Section 2.2, in which elements of H are expressed as real-valued
vectors. These bases are used by the decryption process of the THRing cryptosys-
tem. We also give the eigenvalues of the Gram matrix [13] of these basis matrices
of H and discuss the change-of-basis transformations between these various bases
for H, as shown in Figure 4.

Definition 13. The embedded decoding conjugate pair basis σ(−→c ) or Γ -basis
for H is the basis given by the columns of the matrix Γ , where

Γ =
1

m


1− ζ1·1m 1− ζ1·2m 1− ζ1·3m . . . 1− ζ1·nm
1− ζ2·1m 1− ζ2·2m 1− ζ2·3m . . . 1− ζ2·nm

...
...

...
. . .

...
1− ζn·1m 1− ζn·2m 1− ζn·3m . . . 1− ζn·nm

 . ut

Lemma 2. The Gram matrix of Γ is Γ †Γ = m−1(I+J), where J = 11T is the
all 1 matrix. This Gram matrix Γ †Γ has an eigenvalue 1 with multiplicity 1 and
an eigenvalue m−1 with multiplicity n− 1. ut

Proof. We note that Γ †jk = m−1(1 − ζ−jkm ) and that
∑n
l=1 ζ

l = −1 and so on.

Thus
∑n
l=1 ζ

l(j−k) = n if k = j and −1 if k 6= j (for 1 ≤ k, j ≤ n), which yields

(
Γ †Γ

)
jk

=

n∑
l=1

Γ †jlΓlk =
1

m2

n∑
l=1

(1− ζ−jl)(1− ζlk)

=
1

m2

n∑
l=1

1− 1

m2

n∑
l=1

ζlk − 1

m2

n∑
l=1

ζ−jl +
1

m2

n∑
l=1

ζl(k−j)

=

{
2m−22(n+ 1) = 2m−1 [k = j]
m−2(n+ 1) = m−1 [k 6= j].

,

so Γ †Γ = m−1(I+J). It can then be verified by direct calculation that Γ †Γ has
an eigenvector (1, . . . , 1)T with eigenvalue 1 and an eigenspace with eigenvalue
m−1 of dimension n−1 spanned by eigenvectors ek− el, where ek and el (k 6= l)
are standard basis vectors. ut

Lemma 3. If T is the conjugate pair matrix, then ∆ = Γ−1T is a real invertible
change of basis matrix from the T -basis to the Γ -basis of H. The matrix ∆∆T =
mI − J has an eigenvalue m with multiplicity n − 1 and an eigenvalue 1 with
multiplicity 1. ut
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Proof. It is clear that ∆ = Γ−1T is invertible as both Γ−1 and T are invertible.
The matrix ∆−1 = T−1Γ = T †Γ has matrix entries

∆−1kl =

{
2−

1
2

((
1− ζklm

)
+
(
1− ζ−klm

))
= 2

1
2

(
1− Re

(
ζkl
))

[1 ≤ k ≤ n′]
2−

1
2

(
−i
(
1− ζ−klm

)
+ i
(
1− ζklm

))
= 2

1
2 Im

(
ζkl
)

[n′ < k ≤ n],

so ∆−1 and hence ∆ are real matrices. Thus we have

∆∆T = ∆∆† = (Γ−1T )(Γ−1T )† = Γ−1TT †(Γ−1)† =
(
Γ †Γ

)−1
= mI − J,

which can be verified by direct calculation as Lemma 2 shows Γ †Γ = m−1(I+J).
Furthermore, it can also be verified by direct calculation that ∆∆T = mI−J has
an eigenvector (1, . . . , 1)T with eigenvalue 1 and an eigenspace with eigenvalue
m of dimension n − 1 spanned by eigenvectors ek − el, where ek and el (k 6= l)
are standard basis vectors. Similarly, the eigenspace results can then be verified
by direct calculation. ut

Definition 14. The decoding conjugate basis σ(
−→
d ) or Γ ′-basis for H is the basis

given by the columns of the matrix Γ ′, where

Γ ′ =
1

m


ζ0·1m − ζn·1m ζ0·2m − ζn·2m . . . ζ0·nm − ζn·nm

ζ1·1m − ζn·1m ζ1·2m − ζn·2m . . . ζ1·nm − ζn·nm
...

...
. . .

...

ζ
(n−1)·1
m − ζn·1m ζ

(n−1)·2
m − ζn·2m . . . ζ

(n−1)·n
m − ζn·nm

 . ut

Lemma 4. The Gram matrix Γ ′†Γ ′ of Γ has an eigenvalue 1 with multiplicity
1 and an eigenvalue m−1 with multiplicity n− 1. ut

Proof. We first note the determinant identity det(θI−Γ ′Γ ′†) = det(θI−Γ ′†Γ ′),
so Γ ′Γ † has the same eigenvalues as the Gram matrix Γ ′†Γ ′ of Γ ′. We therefore
calculate Γ ′Γ ′†, in a similar manner to Lemma 2 to obtain(

Γ ′Γ ′†
)
jk

=

n∑
l=1

Γ ′jlΓ
′†
lk =

1

m2

n∑
l=1

(ζ(j−1)l − ζnlm )(ζ−l(k−1) − ζ−nlm )

=
1

m2

n∑
l=1

ζ(j−k)l − 1

m2

n∑
l=1

ζ−(m−j)l − 1

m2

n∑
l=1

ζ(m−k)l +
1

m2

n∑
l=1

1

=

{
2m−22(n+ 1) = 2m−1 [k = j]
m−2(n+ 1) = m−1 [k 6= j].

Thus Γ ′Γ ′† = m−1(I + J), so the eigenvalues of Γ ′Γ ′† and hence of the Gram
matrix Γ ′†Γ ′ of Γ ′ are given by Lemma 2 ut

The change of basis matrix from the Γ -basis to the Γ ′-basis for H is the
matrix

∆′ = Γ ′−1Γ =


0 0 . . . 0 1
−1 0 . . . 0 1

0 −1 . . . 0 1
...

...
. . .

...
...

0 0 . . . −1 1

 .
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Basis I-Basis T -Basis pΓ -Basis pΓ ′-Basis

Vector or
Random Variable

Z Z‡ Z∗ Z∗∗

Transformation from
the I-Basis

I T † p−1Γ−1 p−1Γ ′−1

Fig. 5. Notation for the expression of an element of H as a vector in the various
different vector space bases for H.

This change of basis is also illustrated in Figure 4. We also need to consider the
change of basis matrix ∆′′ = ∆′∆ = Γ ′−1ΓΓ−1T = Γ ′−1T from the T -basis to
the Γ ′-basis for H. The relevant properties of this change of basis matrix ∆′′ are
given in Lemma 5.

Lemma 5. Suppose ∆′′ = ∆′∆ = Γ ′−1T . If E = e1e
T
1 denotes a matrix with

a single 1, then ∆′′∆′′T = m(I + J) − (m + 1)E. Furthermore, ∆′′∆′′T has an
eigenvalue that is approximatelym2 for largem with multiplicity 1, an eigenvalue
m of multiplicity n − 2 and an eigenvalue that is approximately m−1 for large
m with multiplicity 1. ut

Proof. Lemma 3 shows that ∆∆T = mI − J , so

∆′′∆′′T = ∆′∆(∆′∆)T = ∆′∆∆T∆′T = ∆′(mI − J)∆′T = m∆′∆′T −∆′J∆′T
= m(I + J − E)− E = m(I + J)− (m+ 1)E.

The vector ( 1
2m
−1(−(m2−1)+(m4−2m2−4m+1)

1
2 ), 1, . . . , 1)T is an eigenvector

of ∆′′∆′′T with eigenvalue ν = 1
2 ((m2−1)+(m4−2m2−4m+1)

1
2 ) ≈ m2 for large

m. Similarly, the vector ( 1
2m
−1(−(m2 − 1)− (m4 − 2m2 − 4m+ 1)

1
2 ), 1, . . . , 1)T

is an eigenvector of ∆′′∆′′T with eigenvalue mν−1 ≈ m−1 for large m. The
remaining eigenvectors lie in an eigenspace with eigenvalue m. This eigenspace
is of dimension n − 2 and is spanned by eigenvectors ek − el, where ek and el
(k 6= l and k, l 6= 1) are standard basis vectors. ut

At various times in our discussion of Ring-LWE, we consider the expression
of an element of H as a vector with respect to these various different bases for
H, though it is convenient for later use in Section 6 to re-scale the Γ -basis and
Γ ′-basis. We therefore introduce the notation of Figure 5 for the purposes of
clarity when dealing with an element of H expressed with respect to the various
different bases for H. Thus if Z is a vector expressing an element of H as a vector
of conjugate pairs in the I-basis (or standard basis) for H, then we have real
vectors Z‡ = T †Z, Z∗ = p−1Γ−1Z and Z∗∗ = p−1Γ ′−1Z expressing this element
as a vector in the T -basis, the pΓ -basis and the pΓ ′-basis for H respectively.

3 Subgaussian Random Variables

A subgaussian random variable is a random variable that is bounded in some
sense by a Normal random variable. The Toolkit analysis of Ring-LWE is “based

12



on subgaussian random variables, relaxed slightly as in [23]”, and this relaxation
gives the δ-subgaussian random variable (δ ≥ 0). In this Section, we give a com-
plete and particularly simple characterisation of δ-subgaussian random variables.
We can then give a more natural mathematical framework for the analysis of
subgaussian random variables. We establish the following main results in this
Section which improve or extend existing results.

– Proposition 1 shows that the δ-subgaussian random variables (δ ≥ 0) used
by the Toolkit are simply a translation of 0-subgaussian random variables.

– Theorem 1 gives results for the sum of δ-subgaussian random variables that
are far more general than those given by the Toolkit.

More generally, our results show that a stated motivation for the use of
δ-subgaussian random variables in Ring-LWE, namely that “we need this relax-
ation when working with discrete Gaussians” [23], is of questionable relevance.
For example, we show that a discretised Gaussian random variable with mean 0,
usually the situation of interest in cryptographic applications, is a 0-subgaussian
random variable.

3.1 An Introduction to Moment Generating Functions

The Toolkit analysis of the random variables in Ring-LWE is based on a subgaus-
sian property of random variables. This subgaussian property is defined in terms
of the moment generating function [17] of a random variable, and we therefore
begin our discussion of subgaussian random variables by defining the moment
generating function of a real-valued univariate random variable.

Definition 15. The moment generating function MW of a real-valued univari-
ate random variable W is the function from a subset of R to R defined by

MW (t) = E (exp(tW )) for t ∈ R whenever this expectation exists. ut

The moment generating function is a basic tool of probability theory, and the
fundamental results underlying the utility of the moment generating function
are given in Lemma 6 [17].

Lemma 6. If MW is the moment generating function of a real-valued univari-
ate random variable W , then MW is a continuous function within its radius of

convergence and the kth moment of W is given by E(W k) = M
(k)
W (0) when the

kth derivative of the moment generating function exists at 0. In particular (i)
MW (0) = 1, (ii) E(W ) = M ′W (0) and (iii) Var(W ) = M ′′W (0) −M ′W (0)2 where
these derivatives exist. ut
More generally, the statistical properties of a random variable W can be de-
termined from its moment generating function MW , and in particular from the
behaviour of this moment generating function MW in a neighbourhood of 0 as
its Taylor series expansion (where it exists) is given by

MW (t) = 1 + M ′W (0) t + 1
2M

′′
W (0) t2 + . . . + 1

k!M
(k)
W (0) tk + . . .

= 1 + E(W ) t + 1
2E(W 2) t2 + . . . + 1

k!E(W k) tk + . . . .

13
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Fig. 6. Moment generating function MX(t) = cosh t for the random variable X taking
values ±1 with probability 1

2
(solid line) and 0-subgaussian bounding function exp( 1

2
t2)

(dashed line).

Lemma 7 now gives the standard result [17] for the moment generating function
of a Normal random variable with mean 0.

Lemma 7. If W ∼ N(0, b2) is a Normal random variable with mean 0 and
standard deviation b ≥ 0, then W has moment generating function

MW (t) = E (exp(tW )) = exp(1
2b

2t2) for all t ∈ R. ut

3.2 Univariate δ-subgaussian Random Variables

Lemma 7 gives rise to the idea of considering random variables with mean 0
whose moment generating function is dominated everywhere by the moment
generating function of an appropriate Normal random variable with mean 0. Such
random variables are simply termed “subgaussian” by [32] and 0-subgaussian by
the Toolkit and by [23]. This idea is illustrated in Figure 6, which shows the
moment generating function MX(t) = cosh t for the random variable X taking
values ±1 with probability 1

2 (so E(X) = 0 and Var(X) = 1), together with the
corresponding 0-subgaussian bounding function exp( 1

2 t
2), which is the moment

generating function of a standard Normal N(0, 1) random variable having the
same mean and variance.

We now give the two variants for the definition of a δ-subgaussian random
variable, and for completeness (following Lemma 7) we then give the subgaussian
status of a univariate Normal random variable in Lemma 8.
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Definition 16. A real-valued random variable W is δ-subgaussian (δ ≥ 0) with
standard parameter b ≥ 0 if its moment generating function MW satisfies

MW (t) = E(exp(tW )) ≤ exp(δ) exp( 1
2b

2t2) for all t ∈ R. ut

Definition 17. A real-valued random variable W is δ-subgaussian (δ ≥ 0) with
scaled parameter s ≥ 0 if its moment generating function MW satisfies

MW (2πt) = E(exp(2πtW )) ≤ exp(δ) exp(πs2t2). for all t ∈ R. ut

Lemma 8. If W ∼ N(0, b2), then W is a 0-subgaussian random variable with
standard parameter b. ut

We generally use standard parameters for δ-subgaussian random variables in
our discussion of Ring-LWE as this approach corresponds with the usual prob-
ability theory of moment generating functions [17]. However, the subgaussian
definition given in the Toolkit Section 2.3 is that of a δ-subgaussian random
variable with scaled parameter (Definition 17), and the discussion of the Toolkit
is phrased in these terms. The relationship between the standard parameter and
scaled parameter for δ-subgaussian random variables is given in Lemma 9, which
can be easily used to switch between the two parameters.

Lemma 9. A real-valued univariate random variable is δ-subgaussian with stan-
dard parameter b if and only if it is δ-subgaussian with scaled parameter (2π)

1
2 b.

3.3 Multivariate δ-subgaussian Random Variables

We extend our discussion of δ-subgaussian random variables to multivariate ran-
dom variables. We first note that the definition of a moment generating function
generalises naturally to multivariate random variables on Rl by using the in-
ner product 〈·, ·〉 on Rl [17]. We then extend such the definition of a moment
generating function to a random variable on the complex space H.

Definition 18. The moment generating function of a multivariate random vari-
able W on Rl is the function from a subset of Rl to R defined by

MW (t) = E (exp(〈t,W 〉) = E
(
exp

(
tTW

))
whenever this expectation exists. ut

Lemma 10 [17] giving the moment generating function of a spherical multivariate
Normal random variable enables us to give the natural extension of the univari-
ate definition of a δ-subgaussian random variable to the multivariate case. This
gives Definition 19 for a real-valued multivariate δ-subgaussian random variable
phrased in terms of the multivariate moment generating function being always
dominated by a multiple of the moment generating function of some spherical
multivariate normal random variable. Lemmas 11 and 12 then show that Defini-
tion 19 is equivalent to that given by the Toolkit for a δ-subgaussian multivariate
random variable.
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Lemma 10. If W ∼ N(0, b2Il) is a spherically symmetric Normal random vari-
able with mean 0 and component standard deviation b ≥ 0, then W has moment
generating function

MW (t) = E
(
exp

(
tTW

))
= exp( 1

2b
2|t|2) for all t ∈ Rl. ut

Definition 19. A multivariate random variable W on Rl is δ-subgaussian (δ ≥
0) with standard parameter b ≥ 0 if its moment generating function MW satisfies

MW (t) = E
(
exp

(
tTW

))
≤ exp(δ) exp( 1

2b
2|t|2) for all t ∈ Rl. ut

Lemma 11. The moment generating function MW of the multivariate random
variable W on Rl satisifies Mt̂TW (α) = MW

(
αt̂
)

for all unit vectors t̂ ∈ Rl and
α ∈ R (where this exists). ut

Proof. If t̂ ∈ Rl is a unit vector and α ∈ R, then the moment generating function
Mt̂TW of t̂TW satisfies

Mt̂TW (α) = E
(
exp

(
α
(
t̂TW

)))
= E

(
exp

((
αt̂
)T
W
))

= MW

(
αt̂
)
. ut

Lemma 12. The Toolkit Section 2.3 definition of a δ-subgaussian real-valued
multivariate random variable is equivalent to Definition 19. ut

Proof. Let W be a real-valued multivariate random variable on Rl that satisfies
the Toolkit Section 2.3 definition of a δ-subgaussian real-valued multivariate
random variable with standard parameter b. This Toolkit definition requires that
t̂TW is a (univariate) δ-subgaussian random variable with standard parameter b
for all unit vectors t̂ ∈ Rl. Thus the moment generating function Mt̂TW of t̂TW
satisfies

Mt̂TW (α) ≤ exp(δ) exp(1
2b

2α2) for all unit vectors t̂ ∈ Rl.

Lemma 11 therefore shows that the moment generating function MW of W is
bounded as

MW

(
αt̂
)
≤ exp(δ) exp( 1

2b
2α2)

= exp(δ) exp
(

1
2b

2
∣∣αt̂∣∣2) for all unit vectors t̂ ∈ Rl.

By writing t = αt̂, we can therefore show that

MW (t) ≤ exp(δ) exp
(
1
2b

2|t|2
)

for all vectors t ∈ Rl.

Thus W satisfies the Definition 19 requirements for W to be a δ-subgaussian
random variable with standard parameter b. The argument is reversible, so the
Toolkit Section 2.3 definition of a δ-subgaussian with standard parameter b is
equivalent to Definition 19. ut
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Fig. 7. Moment generating function MX+1(t) = 1
2
(1+exp(2t)) for the random variable

X+1 (see Figure 6) taking values 0 and 2 with probability 1
2

and having mean 1 (solid
line), δ-subgaussian bounding function exp( 7

5
+ 1

2
t2) (dashed line), and “noncentral”

subgaussian bounding function exp(t+ 1
2
t2) (dotted line).

Definition 20. The moment generating function MZ of a random variable de-
fined on H is a function from a subset of H to R defined by

MZ(t) = E (exp(〈t, Z〉) = E
(
exp

(
t†Z
))

whenever this expectation exists. ut

Definition 21. A multivariate random variable Z on H is δ-subgaussian (δ ≥ 0)
with standard parameter b ≥ 0 if its moment generating function MZ satisfies

MZ(t) = E
(
exp

(
t†Z
))
≤ exp(δ) exp( 1

2b
2|t|2) for all t ∈ H. ut

Lemma 13. The Toolkit Section 2.3 definition of a δ-subgaussian multivariate
random variable on H is equivalent to Definition 21. ut

3.4 Characterisation of Univariate δ-subgaussian Random Variables

We are now able to give a characterisation of a univariate δ-subgaussian ran-
dom variable. We show that the “relaxation” of the 0-subgaussian condition
to give the δ-subgaussian condition for a univariate random variable does not
correspond to any relaxation in the fundamental statistical conditions on the
random variable except for the location of its mean. Lemma 14 (proved in [32])
first shows that a 0-subgaussian random variable has mean 0, as illustrated in
Figure 6, and we now give a heuristic explanation for this result. Lemma 6(i)
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shows that any moment generating function must pass through (0, 1). However,
a 0-subgaussian bounding function exp( 1

2b
2t2) has derivative 0 at 0. Thus any

moment generating function bound by exp( 1
2b

2t2) must have derivative 0 at 0.
Lemma 6(ii) then shows that such a 0-subgaussian random variable with moment
generating function bound by exp( 1

2b
2t2) must have mean 0.

Lemma 14. If W is a univariate real-valued 0-subgaussian random variable,
then E(W ) = 0. ut

We now give some results to show that the “relaxation” of the 0-subgaussian
condition to the δ-subgaussian condition (for δ ≥ 0) corresponds exactly to the
“relaxation” of the condition that the mean of the random variable is 0. These
results are illustrated in Figure 7 for a random variable with mean 1. Relaxing the
constraint that δ = 0 in the δ-subgaussian bounding function exp(δ) exp( 1

2b
2t2)

essentially shifts the bounding function “up the y-axis”, and in particular away
from the point (0, 1). However, a moment generating function must pass through
the point (0, 1). This relaxation essentially permits us to “tilt” the moment
generating function of a 0-subgaussian random variable, pivoting about the point
(0, 1), so that the moment generating function has a nonzero derivative at 0.
This allows random variables with nonzero mean potentially to be δ-subgaussian
random variables.

We now make the intuition described above and illustrated by Figure 7
more precise in a number of ways. Lemma 15 gives the basic result that any
δ-subgaussian random variable with mean 0 must be a 0-subgaussian random
variable. Lemmas 16 and 17 then give some technical results about shifts of ran-
dom variables. These results then collectively give Proposition 1, which precisely
characterise δ-subgaussian random variables as shifts of 0-subgaussian random
variables.

Lemma 15. If W is a univariate real-valued δ-subgaussian random variable
(δ ≥ 0) with mean E(W ) = 0, then W is a 0-subgaussian random variable. ut

Proof. The δ-subgaussian bounding function exp(δ) exp( 1
2b

2t2) is bounded above
and away from 1 when δ > 0. However, the moment generating function MW of
W is continuous at 0 with MW (0) = 1, so the δ-subgaussian bounding function
exp(δ) exp( 1

2b
2t2) is neccesarily always a redundant bounding function for any

moment generating function in some open neighbourhood of 0. The proof there-
fore proceeds by considering the moment generating function MW of W in two
separate regions: an open neighbourhood containing 0 and the region away from
this open neighbourhood.

We first consider a region that is some open neighbourhood of 0. Taylor’s
Theorem (about 0) shows that the moment generating function MW of W can
be expressed in this open neighbourhood of 0 as

MW (t) = E (exp(tW )) = 1 + E(W )t+ 1
2E
(
W 2
)
t2 + o(t2)

= 1 + 1
2E
(
W 2
)
t2 + o(t2)
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Similarly we can write exp( 1
2c

2t2) = 1 + 1
2c

2t2 + o(t2), so we have

MW (t)− exp( 1
2c

2t2)

t2
= 1

2

(
E
(
W 2
)
− c2

)
+
o(t2)

t2
.

Thus for values of c such that c2 > E
(
W 2
)

we have

lim
t→0

MW (t)− exp( 1
2c

2t2)

t2
= 1

2

(
E
(
W 2
)
− c2

)
< 0,

in which case there exists an open neighbourhood (−ν, ν) of 0 (ν > 0) such that

MW (t)− exp( 1
2c

2t2)

t2
< 0

in this neighbourhood, so

MW (t) ≤ exp( 1
2c

2t2) [|t| < ν].

We now consider the other region away from the open neighbourhood (−ν, ν)
of 0. If W is δ-subgaussian with standard parameter b ≥ 0, then its moment
generating function satisfies MW (t) ≤ exp(δ) exp( 1

2b
2t2) for all t ∈ R, and in

particular for |t| ≥ ν. If we let d2 = b2 + 2ν−2δ, then in this other region the
moment generating function MW of W satisfies

MW (t) ≤ exp(δ) exp( 1
2b

2t2) ≤ exp(δ) exp( 1
2d

2t2) exp(−δν−2t2)
≤ exp(δ(1− ν−2t2)) exp(1

2d
2t2) ≤ exp( 1

2d
2t2) [|t| ≥ ν].

Taking the two regions together shows that the moment generating function
MW of W satisfies

MW (t) ≤ exp( 1
2 max{c2, d2} t2 ) for all t ∈ R.

Thus W is a 0-subgaussian random variable. ut

Lemma 16. If W is a univariate real-valued δ-subgaussian random variable
(δ ≥ 0), then the centred random variable W0 = W − E(W ) is a 0-subgaussian
random variable. ut

Proof. If W is a δ-subgaussian random variable with standard parameter b, then
its moment generating function MW satisifies

MW (t) ≤ exp(δ) exp( 1
2b

2t2) for all t ∈ R.

The centred random variable W0 = W − E(W ) with mean E(W0) = 0 has
moment generating function MW0

given by

MW0
(t) = E (exp(tW0)) = E (exp(t(W −E(W ))))

= exp(−E(W )t) E (exp(tW ))
= exp(−E(W )t) MW (t).
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The required result can be obtained by noting that for c > b > 0, the inequality

(
δ +

(
1
2b

2t2 −E(W )t
))
≤
((

δ +
1

2

E(W )2

c2 − b2

)
+ 1

2c
2t2
)

holds, which can be demonstrated as((
δ +

1

2

E(W )2

c2 − b2

)
+ 1

2c
2t2
)
−
(
δ +

(
1
2b

2t2 −E(W )t
))

=
c2 − b2

2

(
t+

E(W )

c2 − b2

)2

is non-negative for c > b > 0. This inequality means that the moment generating
function MW0 of W0 satisfies

MW0
(t) = exp(−E(W )t) MW (t)
≤ exp(−E(W )t) exp(δ) exp( 1

2b
2t2)

≤ exp
(
δ + ( 1

2b
2t2 −E(W )t)

)
≤ exp

(
δ +

1

2

E(W )2

c2 − b2

)
exp( 1

2c
2t2).

Thus W0 is a
(
δ + 1

2
E(W )2

c2−b2

)
-subgaussian random variable. As W0 has mean

E(W0) = 0, Lemma 15 therefore shows that W0 = W −E(W ) is a 0-subgaussian
random variable. ut

Lemma 17. If W0 is a univariate real-valued δ0-subgaussian random variable
with mean 0, then the shifted random variable W = W0 + d is a δ-subgaussian
random variable for some δ ≥ 0. ut

Proof. If W0 is a δ0-subgaussian random variable with mean 0, then Lemma 15
shows that W0 is a 0-subgaussian random variable with some standard parameter
c ≥ 0. The moment generating function MW0

of W0 is therefore bounded as

MW0
(t) ≤ exp( 1

2c
2t2). If b > c ≥ 0 and δ ≥ d2

2(b2 − c2)
, then we note that

( 1
2b

2t2 + δ)− ( 1
2c

2t2 + dt) =
(b2 − c2)

2

(
t− d

b2 − c2

)2

+ δ − d2

2(b2 − c2)
≥ 0.

In this case, the moment generating function MW of W = W0 + d satisfies

MW (t) = exp(dt)MW0
(t) ≤ exp( 1

2c
2t2 + dt) ≤ exp(δ) exp( 1

2b
2t2).

Thus W = W0 + d is δ-subgaussian with standard parameter b. ut

Proposition 1. A real-valued univariate δ-subgaussian random variable can
essentially be described in terms of a 0-subgaussian random variable (which
must have mean 0) as:

δ-subgaussian univariate RV = 0-subgaussian univariate RV +constant. ut
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Proposition 1 characterises δ-subgaussian random variables in a simple man-
ner in terms of 0-subgaussian random variables, which must have mean 0. A
thorough discussion of the properties of 0-subgaussian random variables is given
by [32], where such a 0-subgaussian random variable is simply termed “subgaus-
sian”. We give the corresponding results for δ-subgaussian random variables in
Lemmas 18-21, and we note that Lemma 20 is proved in [33].

Lemma 18. Suppose that W is a univariate real-valued δ-subgaussian random
variable (δ ≥ 0) with standard parameter b ≥ 0. Such a random variable W
satisfies: (a) Var(W ) ≤ b2, (b) P (|W −E(W )| > α) ≤ 2 exp

(
− 1

2b
−2α2

)
and

(c) E
(
exp(a(W −E(W ))2)

)
≤ 2 for some a > 0. ut

Lemma 19. The set of δ-subgaussian random variables form a linear space. ut

Lemma 20. If W is a univariate real-valued bounded random variable with
mean E(W ) = 0 and |W | ≤ b, then W is a 0-subgaussian random variable with
standard parameter b. ut

Lemma 21. If W is a bounded univariate real-valued random variable, then W
is a δ-subgaussian random variable for some δ ≥ 0. ut

Proof. If W is a bounded random variable, then W0 = W −E(W ) is a bounded
random variable with mean 0. Lemma 20 therefore shows that W0 is a 0-
subgaussian random variable, and so Lemma 17 shows that W = W0 + E(W ) is
a δ-subgaussian random variable for some δ ≥ 0. ut

3.5 Noncentral Subgaussian Random Variables

We have established that the class of δ-subgaussian random variables are pre-
cisely those random variables that can be obtained as shifts of 0-subgaussian
random variables. This property allows us to define a δ-subgaussian random
variable in an alternative way as a noncentral subgaussian random variable with
an alternative parameterisation in Definition 22. The equivalence between these
two definitions is established in Lemma 22, and Lemma 23 then follows.

Definition 22. A random variable Z (on Rl or H) is a noncentral subgaussian
random variable with noncentrality parameter |E(Z)| ≥ 0 and deviation param-
eter d ≥ 0 if the centred random variable Z0 = Z − E(Z) is a 0-subgaussian
random variable with standard parameter d. ut

Lemma 22. A noncentral subgaussian random variable Z (on Rl or H) is a
δ-subgaussian random variable and vice versa. ut

Proof. The equivalence between noncentral subgaussian random variables and
δ-subgaussian random variables follows from Proposition 1. ut

Lemma 23. The set of noncentral subgaussian random variables (on Rl or H)
(equivalently the set of δ-subgaussian random variables) is a linear space. ut
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Figure 7 illustrates such a “noncentral” subgaussian bounding function that
arises from Definition 22. It can be seen that this noncentral subgaussian bound-
ing function is a tight bounding function to the moment generating function at
0, unlike any possible δ-subgaussian bounding function for δ > 0. Thus Defini-
tion 22 is a natural characterisation of shifted 0-subgaussian random variables,
not least because the noncentral subgaussian bounding function is actually a
moment generating function of some Normal random variable. By contrast, the
δ-subgaussian bounding function is not a moment generating function of any
random variable when δ > 0.

We now give an equivalent specification for a noncentral subgaussian random
variable in Lemma 24. The parameterisation of Lemma 24 allows us to directly
compare such a random variable with the corresponding Normal random vari-
able. It is also clear that the deviation parameter of a noncentral subgaussian
random variable is invariant under translation of the random variable, so mir-
roring this fundamental property of standard deviation. By contrast, Example 1
shows that the parameterisation of such a random variable in the manner of
Definition 16 using δ and the standard parameter does not give a standard pa-
rameter that is invariant under translation. However, Lemma 25 then gives a
partial relationship between the δ-subgaussian definition and noncentral sub-
gaussian definition for a random variable.

Lemma 24. If Z is a noncentral subgaussian random variable (on Rl or H) with
noncentrality parameter |E(Z)| and deviation parameter d, then its moment
generating function MZ is bounded as

MZ(t) ≤ exp (〈t,E(Z)〉) exp( 1
2d

2|t|2). ut

Proof. By Definition 22, Z0 = Z − E(Z) has moment generating function MZ0

bounded as MZ0
(t) = exp(−〈t,E(Z)〉)MZ(t) ≤ exp( 1

2d
2|t|2). ut

Example 1. Suppose that W ∼ N(0, σ2) is a Normal random variable with mean
0 and variance σ2, so has moment generating function MW (t) = exp( 1

2σ
2t2). In

terms of Definiton 22, it is clear that W is a noncentral subgaussian random
variable with noncentrality parameter 0 and deviation parameter σ. Similarly,
the translated random variable W + a ∼ N(a, σ2) is by definition a noncentral
random variable with noncentrality parameter |a| and deviation parameter b.

In terms of Definition 16, W is a 0-subgaussian random variable with stan-
dard parameter σ. If W + a is a δ-subgaussian random variable with the same
standard parameter σ, then MW+a(t) = exp( 1

2σt
2 + at) ≤ exp(δ + 1

2σ
2t2) so

at ≤ δ for all t, which is impossible for a 6= 0. Thus even though W + a is a
Normal random variable with standard deviation σ, it is not a δ-subgaussian
random variable with standard parameter σ when a 6= 0. ut

Lemma 25. Suppose that Z is a noncentral subgaussian random variable with
noncentrality parameter |E(Z)| and deviation parameter d. If E(Z) = 0, then Z
is a 0-subgaussian random variable with standard parameter d. If |E(Z)| > 0,
then Z is a δ-subgaussian random variable with standard parameter b whenever
(i) b > d and (ii) δ ≥ 1

2 |E(Z)|2(b2 − d2)−1. ut
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Proof. If Z is a noncentral subgaussian random variable with noncentrality pa-
rameter |E(Z)| and deviation parameter d, then the moment generating function
MZ of Z satisfiesMZ(t) ≤ exp

(
〈E(Z), t〉+ 1

2d
2t2
)
. The first case when E(Z) = 0

follows immediately. The conditions for the other case when |E(Z)| > 0 yields
the inequality(
δ + 1

2b
2|t|2

)
−
(
〈E(Z), t〉+ 1

2d
2|t|2

)
= 1

2 (b2 − d2)|t|2 − 〈E(Z), t〉+ δ

=
b2 − d2

2

∣∣∣∣t− E(Z)

(b2 − d2)

∣∣∣∣2 + δ − 1

2

|E(Z)|2

b2 − d2
≥ δ − 1

2 |E(Z)|2(b2 − d2)−1 ≥ 0.

Thus the moment generating function MZ of Z satisfies

MZ(t) ≤ exp(〈E(Z), t〉+ 1
2d

2t2) ≤ exp(δ) exp( 1
2b

2|t|2),

and so Z is a δ-subgaussian random variable with standard parameter b. ut

We have shown that the δ-subgaussian property (Definitions 16, 19 and 21)
and the noncentral subgaussian property (Definition 22) for a random variable
are equivalent. However, the δ-subgaussian definition is problematic for a number
of reasons. In addition to the invariance issue highlighted in Example 1, the mo-
ment generating function bound MW (t) ≤ exp(E(W )t+ 1

2d
2t2) of Lemma 24 for

a noncentral subgaussian random variable W actually touches the moment gen-
erating function MW at 0, as illustrated in Figure 7. The discussion of Section 3.1
shows that the behaviour of the moment generating function MW of a random
variable W in the vicinity of 0 is of fundamental importance to the properties
of the random variable W . Thus the noncentral subgaussian moment generat-
ing function bound of Lemma 24 is of immediate relevance to such properties.
By contrast, the moment generating function bound MW (t) ≤ exp(δ+ 1

2b
2t2) of

Definition 16 for a δ-subgaussian random variable W is remote from the moment
generating function MW at 0 (for δ > 0), and so is not so immediately relevant.

In summary, the noncentral subgaussian definition is more mathematically
and statistically natural for shifts of 0-subgaussian random variables than the
δ-subgaussian definition and is therefore to be preferred. The fundamental issue
with the δ-subgaussian definition is that its bounding function exp(δ+ 1

2b
2t2) is

not actually a moment generating function of any random variable when δ > 0.

3.6 Sums of Univariate δi-subgaussian Random Variables

The analysis of Ring-LWE given by the Toolkit relies heavily on the proper-
ties of sums of univariate δ-subgaussian or equivalently noncentral subgaussian
random variables. However, the results given by the Toolkit for such sums of δ-
subgaussian random variables are either for independent random variables (such
as Toolkit Claim 8.6) or are based on the highly restrictive “martingale-like”
setting of Toolkit Claim 2.1. The Toolkit results for the sums of δ-subgaussian
random variables are therefore narrowly defined and do not describe all situa-
tions of interest in Ring-LWE.
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Theorem 1 gives a result for sums of noncentral subgaussian random vari-
ables, and gives the result of Lemma 26 about the sum of δi-subgaussian ran-
dom variables. Thus Theorem 1 extends results for the sum of δi-subgaussian
(or equivalently noncentral subgaussian) random variables from the very narrow
conditions of the Toolkit (see for example the preamble to Toolkit Claim 2.1) to
the general setting.

Theorem 1. Suppose that W1, . . . ,Wl are noncentral subgaussian random vari-
ables where Wj has deviation parameter dj ≥ 0 for j = 1, . . . , l.

– The sum
∑l
j=1Wj is a noncentral subgaussian random variable with non-

centrality parameter
∣∣∣∑l

j=1 E(Wj)
∣∣∣ and deviation parameter

∑l
j=1 dj .

– If W1, . . . ,Wl are independent, then the deviation parameter of the sum∑l
j=1Wj can be improved to

(∑l
j=1 d

2
j

) 1
2

. ut

Proof. If Wj is a noncentral subgaussian random variable with deviation pa-
rameter dj ≥ 0, then W ′j = Wj − E(Wj) is a 0-subgaussian random vari-
able with standard parameter dj . Theorem 2.7 of [32] therefore shows that∑l
j=1W

′
j =

∑l
j=1Wj −

∑l
j=1 E(Wj) is a 0-subgaussian random variable with

standard parameter
∑l
j=1 dj . Thus

∑l
j=1Wj is a noncentral subgaussian random

variable with noncentrality parameter
∣∣∣∑l

j=1 E(Wj)
∣∣∣ and deviation parameter∑l

j=1 dj . The second (independence) result similarly follows from the indepen-
dence result of Theorem 2.7 of [32]. ut

Lemma 26. Suppose that Wj is a δj-subgaussian random variable for some

δj ≥ 0 where j = 1, . . . , l, then their sum
∑l
j=1Wj is a δ-subgaussian random

variable for some δ ≥ 0. ut

Proof. Lemma 22 shows that W1, . . . ,Wl are noncentral subgaussian random
variables. Thus Theorem 1 shows that

∑l
j=1Wj is a noncentral subgaussian

random variable, and Lemma 22 then shows that
∑l
j=1Wj is a δ-subgaussian

random variable for some δ ≥ 0. ut

3.7 The �-product of δ-subgaussian Random Variables

We conclude this Section with a cautionary example about properties of products
of δ-subgaussian random variables. The final part of Example 2 considers two
random variables on H whose expression as vectors Z1 and Z2 in the I-basis
for H are δ-subgaussian random variables. This example shows that even when
Z1 � Z2 is δ-subgaussian, the (standard) parameter of Z1 � Z2 can essentially
be entirely unrelated to the δ-subgaussian standard parameters of Z1 and Z2.

Example 2. Suppose that the independent real random variables W1 and W2

defined for some a > 1 by Wj = a− 1 with probability 1
2 and Wj = a+ 1 with
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probability 1
2 (j = 1, 2). These random variables have mean E(Wj) = a, with

E(W 2
j ) = a2 + 1 and so Var(Wj) = 1. The proof of Lemma 17 and the bound

cosh z ≤ exp( 1
2z

2) (given for example in [32]) show that we can express and
bound the moment generating function MWj

of Wj as

MWj
(t) = E(exp(tWj)) = 1

2 exp((a− 1)t) + 1
2 exp((a+ 1)t) = exp(at) cosh(t)

≤ exp(at+ 1
2 t

2) ≤ exp(δ + 1
2b

2t2),

whenever b2 > 1 and δ ≥ 1
2a

2(b2 − 1)−1. Thus for any b > 1, where W1 and
W2 have standard deviation 1, we can find δ > 0 such that W1 and W2 are
independent δ-subgaussian random variables with standard parameter b.

The product random variable W1W2, which takes the values (a − 1)2 and
(a + 1)2 with probability 1

4 and (a − 1)(a + 1) with probability 1
2 . Thus W1W2

has mean E(W1W2) = a2 and variance Var(W1W2) = 2a2 + 1. The random
variable W1W2 − a2 is therefore a bounded variable with mean 0 and variance
2a2+1. Thus Lemmas 20 and 21 show that W1W2−a2 is a 0-subgaussian random
variable, and Lemma 18 shows that the standard parameter of W1W2 − a2 is
bounded below by the standard deviation. Thus W1W2 − a2 is 0-subgaussian
with standard parameter at least (2a2 + 1)

1
2 > 2

1
2 a. Lemma 17 therefore shows

that W1W2 is a δ′-subgaussian random variable for some δ′ > 0 with standard
parameter exceeding 2

1
2 a.

We now suppose that W11, . . . ,W1n′ ,W21, . . . ,W2n′ are independent real ran-
dom variables taking the value a−1 with probability 1

2 and a+1 with probability
1
2 (where a > 1). We can define the random variables Z1 and Z2 on H expressed
as vectors in the I-basis as

Z1 = 2−
1
2


W11

W11

...
W1n′

W1n′

 = T


W11

0
...

W1n′

0

 and Z2 = 2−
1
2


W21

W21

...
W2n′

W2n′

 = T


W21

0
...

W2n′

0

 .

The above analysis shows that Z1 and Z2 are δ-subgaussian random variables
with standard parameter 1 + ε for any ε > 0 and consequent δ > 0. The �-
product of the random variables Z1 and Z2 in H is then expressed as a vector
in the I-basis for H as

Z1 � Z2 =
1

2


W11W12

W11W12

...
W1n′W2n′

W1n′W2n′

 .

Applying the above analysis, we can see that Z1�Z2 is a δ′-subgaussian random
variable for some δ′ > 0 with standard parameter at least a.

In summary, we have constructed independent random variables Z1 and Z2

on H that (expressed in the I-basis) are δ-subgaussian with standard parameter

25



arbitrarily close to 1. Their product in H (expressed in the I-basis) is a δ-
subgaussian random variable with a standard parameter bounded below by the
arbitrary value a > 1. Thus the standard parameter of the product Z1 �Z2 can
be arbitrarily large depending on the value of a chosen, whatever the value of n
and n′ (including n′ = 1). ut

4 Spherical H-Normal Random Variables

The Ring-LWE error distributions are formally defined over the field tensor
product KR = K ⊗Q R (see also for example Figures 1 and 8). In particular, we
saw that the distributions of most relevance are spherical Gaussians over KR.
However, KR is isomorphic to H [20], so we can equivalently consider spherical
Gaussian distributions over H, which we term a Spherical H-Normal distribu-
tion. Such a distribution can be described in terms of its H2-component distri-
butions. Our approach is initially to consider such random variables on H or
H2 as real-valued multivariate vectors expressed in the T -basis, and then use
the conjugate pair matrix T to derive the equivalent results in the I-basis for H
or H2. This allows us to derive distributional results for both the Spherical H-
Normal random variables and the componentwise product of two independent
such Spherical H-Normal random variables. In particular, we give the follow-
ing main result in this Section relating to the Toolkit analysis of homomorphic
Ring-LWE.

– Theorem 2 shows that the componentwise product of two independent Spher-
ical H-Normal random variables is not a δ-subgaussian random variable.

4.1 Spherical H-Normal Random Variables

The Spherical H-Normal distribution of Definition 23 is the natural definition
for the (conjugate pair) random vector expressing a random variable on H in
the I-basis for H to be considered Gaussian as it mirrors the definition of H.

Definition 23. The random variable Z has a Spherical H-Normal distribution
on H with component variance b2 if T †Z ∼ N(0; b2In) has a spherical Normal
distribution on Rn with component variance b2, where T is the conjugate pair
matrix (Definition 7). Such a random variable is denoted Z ∼ NH(b2). ut

We begin this discussion of Spherical H-Normal random variables with two
technical Lemmas. Lemmas 27 and 28 shows that an appropriate random variable
can essentially have the same moment generating function or density function
whether expressed in the I-basis or the T -basis for H. These results allow us to
give the basic properties of such a Spherical H-Normal distribution in Lemma 29.

Lemma 27. Suppose W is a random variable on H with moment generating
function MW (t) that is defined on a subset S ⊂ H and is a function of |t| alone,
say MW (t) = Φmgf(|t|) for an appropriate function Φmgf. The random variable

TW on H then has moment generating function MTW (t) = Φmgf(|t|) defined

on a subset T (S) ⊂ H. The converse result is also true. ut
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Proof. We note that T and hence T † is a unitary matrix, so

MTW (t) = E
(
exp

(
t†TW

))
= E

(
exp

(
(T †t)†W

))
= MW (T †t) = Φmgf(|T

†t|) = Φmgf(|t|),

whenever T †t ∈ S, that is to say t ∈ T (S). The converse proof is similar. ut

Lemma 28. Suppose W is a random variable on H with density function fW (z)
that is a function of |z| alone, say fW (z) = Φdf(|z|) for an appropriate func-
tion Φdf. The random variable TW on H then has density function fTW (z) =
Φdf(|z|). The converse result is also true. ut

Proof. The transformation from W to TW has Jacobian |det(T )| = 1, so TW
has density function fTW (z) = fW (T †z) = Φdf(|T

†z|) = Φdf(|z|), as T † is a
unitary matrix. The converse proof is similar. ut

Lemma 29. If Z ∼ NH(b2) has a Spherical H-Normal distribution, then Z has
density function fZ(z) = (2πb2)−n

′
exp

(
− 1

2b
−2|z|2

)
on H and moment gener-

ating function MZ(t) = exp( 1
2b

2|t|2) for all v ∈ H. Thus Z is a 0-subgaussian
random variable on H with standard parameter b. ut

Proof. If Z ∼ NH(b2), then T †Z has density function fT †Z given for w ∈
Rn by fT †Z(w) = (2πb2)−

1
2n exp(− 1

2b
−2|w|2). Lemma 28 then gives the den-

sity function fZ of Z as fZ(z) = (2πb2)−
1
2n exp(− 1

2b
−2|z|2) for z ∈ H. Simi-

larly, we note that Lemma 10 shows that T †Z has moment generating function
MT †Z(t) = exp( 1

2b
2|t|2), so Lemma 27 shows that Z has moment generating

function MZ(t) = exp( 1
2b

2|t|2) for all t in H. The subgaussian result then fol-
lows immediately. ut

4.2 Spherical H-Normal Distributions in Various Bases for H

We extend this discussion of Spherical H-Normal random variables by consider-
ing the distribution of the real vectors expressing such a random variable in the
various bases for H given in Section 2.3. Thus Lemmas 30, 31 and 32 give such
distributional results when such a Spherical H-Normal conjugate pair random
vector in the I-basis for H is expressed as a real vector in the T -basis, the pΓ -
basis and the pΓ ′-basis respectively. We use the notation of Section 2.3, which
is summarised in Figure 5. For later convenience in Section 6, we express the
component variance as p2ρ2 in these results.

Lemma 30. Suppose that Z ∼ NH(p2ρ2) is a Spherical H-Normal random
variable expressed as a vector in the I-basis for H, and that Z‡ = T †Z expresses
this random variable as a vector in the T -basis for H.
(i) The real vector Z‡ ∼ N(0; p2ρ2In).
(ii) Z‡ is a 0-subgaussian random variable with standard parameter pρ.

(iii) A component Z‡j of Z‡ is distributed as Z‡ ∼ N(0, p2ρ2) for j = 1, . . . , n.

(iv) Z‡j is a 0-subgaussian random variable with standard parameter pρ. ut
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Proof. If Z ∼ NH(p2ρ2), then Z‡ = T †Z ∼ N(0; p2ρ2) (by Definition 23). This
gives part (i), and parts (ii)-(iv) then follow automatically. ut

Lemma 31. Suppose that Z ∼ NH(p2ρ2) is a Spherical H-Normal random
variable expressed as a vector in the I-basis for H, and that Z∗ = p−1Γ−1Z
expresses this random variable as a vector in the pΓ -basis for H.
(i) The real vector Z∗ ∼ N(0; ρ2(mI − J)), where J = 11T is the all 1 matrix.

(ii) Z∗ is a 0-subgaussian random variable with standard parameter m
1
2 ρ.

(iii) A component Z∗j of Z∗ is distributed as Z∗j ∼ N(0, nρ2) for j = 1, . . . n.

(iv) Z∗j is a 0-subgaussian random variable with standard parameter n
1
2 ρ. ut

Proof. The change of basis matrix from the T -basis to the pΓ -basis for H is given
by p−1∆ = p−1Γ−1T (Figure 4). Thus Z∗ = p−1Γ−1Z = p−1∆Z‡ has mean 0.
Furthermore, Lemma 3 shows that the covariance matrix of Z∗ is Cov(Z∗) =
p−2∆Cov(Z‡)∆T = ρ2∆∆T = ρ2(mI − J), so giving part (i). Lemma 3 also
immediately gives that maximal eigenvalue of Cov(Z∗) is mρ2, so giving part (ii).
We note that Var(Z∗j ) = Cov(Z∗)jj = ρ2(m−1) = nρ2 for j = 1, . . . , n, so giving
parts (iii) and (iv). ut

Lemma 32. Suppose that Z ∼ NH(p2ρ2) is a Spherical H-Normal random
variable expressed as a vector in the I-basis for H, and that Z∗∗ = p−1Γ ′−1Z
expresses this random variable as a vector in the pΓ ′-basis for H.
(i) The real vector Z∗∗ ∼ N(0; ρ2(m(I + J)− (m+ 1)E)), where J = 11T is the
all 1 matrix and E = e1e

T
1 is the matrix with a single 1.

(ii) Z∗∗ is a 0-subgaussian random variable with standard parameter approxi-
mately mρ for large m.
(iii) The component Z∗∗1 of Z∗∗ is distributed as Z∗∗ ∼ N(0, nρ2). The other com-
ponents Z∗∗2 , . . . , Z∗∗n of Z∗∗ are distributed as Z∗∗j ∼ N(0, 2mρ2) for j = 2, . . . n.

(iv) Z∗∗1 is a 0-subgaussian random variable with standard parameter n
1
2 ρ,

and Z∗∗2 , . . . Z∗∗n are 0-subgaussian random variables with standard parameter

2
1
2m

1
2 ρ. ut

Proof. The change of basis matrix from the T -basis to the pΓ ′-basis for H is
given by p−1∆′′ = p−1∆′∆ = p−1Γ ′−1T (Figure 4). Thus Z∗∗ = p−1Γ ′−1Z =
p−1∆′′Z‡ has mean 0. Furthermore, Lemma 5 shows that its covariance ma-
trix of Z∗ is Cov(Z∗∗) = p−2∆′′Cov(Z‡)∆′′T = ρ2∆′′∆′′T = ρ2(m(I + J) −
(m + 1)E), so giving part (i). Lemma 5 also shows that maximal eigenvalue of
Cov(Z∗∗) is approximately m2ρ2, so giving part (ii). We note that Var(Z∗∗1 ) =
Cov(Z∗)11 = nρ2 and that Var(Z∗∗j ) = Cov(Z∗)jj = 2mρ2 for j = 2, . . . , n, so
giving parts (iii) and (iv). ut

4.3 The Covariance Matrix of the ⊗-product of Random Vectors

We begin our discussion of the ⊗-product of vectors expressing random variables
in the T -basis for H by specifying the technical Lemmas 33 and 34, which give
the mean vector and the covariance matrix for the ⊗-product of general real
random vectors.
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Lemma 33. Suppose that U and V are real-valued n = 2n′-dimensional inde-
pendent random variables with mean vectors E(U) = E(V ) = 0 and respective
diagonal covariance matrices β2

UIn and β2
V In, then their ⊗-product U ⊗ V has

mean vector E(U ⊗ V ) = 0 and covariance matrix Cov(U ⊗ V ) = β2
Uβ

2
V In.

Proof. As the ⊗-product is defined in terms of H2-components, it suffices to
demonstrate the results for n′ = 1, so n = 2. Accordingly, we consider the
2-dimensional real-valued random variable

W =

(
W1

W2

)
= U ⊗ V =

(
U1

U2

)
⊗
(
V1
V2

)
= 2−

1
2

(
U1V1 − U2V2
U1V2 + U2V1

)
,

where U = (U1, U2)T and V = (V1, V2)T are independent 2-dimensional real-
valued random variables with E(U) = E(V ) = 0 and respective covariance
matrices β2

UI2 and β2
V I2. We first note that E(W ) = 0 as

E(W1) = 2−
1
2 E(U1V1 − U2V2) = 2−

1
2 E(U1)E(V1)− 2−

1
2 E(U2)E(V2) = 0

and similarly E(W2) = 0. Thus the variance of a component W1 of W is given
by

Var(W1) = E(W 2
1 ) = 1

2E((U1V1 − U2V2)2)
= 1

2E(U2
1V

2
1 ) + 1

2E(U2
2V

2
2 )−E(U1U2V1V2)

= 1
2E(U2

1 )E(V 2
1 ) + 1

2E(U2
2 )E(V 2

2 )−E(U1U2)E(V1V2)
= 1

2β
2
Uβ

2
V + 1

2β
2
Uβ

2
V = β2

Uβ
2
V ,

as U1 and U2 are uncorrelated, so E(U1U2) = 0, and so on. We similarly have
Var(W2) = β2

Uβ
2
V . The covariance of W1 and W2 is given by

Cov(W1,W2) = E(W1W2) = 1
2E ((U1V1 − U2V2)(U1V2 + U2V1))

= 1
2E(U1U2)E(V 2

1 − V 2
2 ) + 1

2E(V1V2)E(U2
1 − U2

2 ) = 0,

again as U1 and U2 are uncorrelated and so on. Thus W = U ⊗ V has mean
vector E(U ⊗ V ) = 0 and covariance matrix Cov(U ⊗ V ) = β2

Uβ
2
V I2. ut

Lemma 34. Suppose that U1, . . . , Uk are real-valued n = 2n′-dimensional inde-
pendent random variables with mean vectors E(Uj) = 0 and diagonal covariance
matrices β2

j In (j = 1, . . . k), then their ⊗-product U1⊗ . . .⊗Uk has mean vector

E(U1⊗ . . .⊗Uk) = 0 and covariance matrix Cov(U1⊗ . . .⊗Uk) = β2
1 . . . β

2
kIn. ut

Proof. The result follows inductively from Lemma 33. ut

4.4 The ⊗-Product of Bivariate Normal Random Variables

The analysis of the ⊗-product of bivariate spherical random variables requires
us to consider the (central) Laplace distribution of Definition 24. Such a Laplace
distribution can thought of as two Exponential distributions sitting back-to-back,
and its moment generating function is given in Lemma 35. Thus a Laplace ran-
dom variable is not a δ-subgaussian random variable. However, Lemmas 36 - 38
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give a series of results about the ⊗-product of bivariate spherical random vari-
ables, including establishing that any projection of this product has a Laplace
distribution. Figure 2 illustrates the density function of such a Laplace random
variable and also gives the density function of a standard Normal N(0, 1) ran-
dom variable for comparison. This latter Normal distribution is a heavy-tailed
subgaussian distribution with the same mean and variance as the Laplace dis-
tribution. The corresponding tail probabilities for these two distributions are
then given in Figure 3. These figures illustrate that such a Laplace distribu-
tion obtained as an ⊗-product of bivariate spherical Normal random variable is
fundamentally very different to the corresponding subgaussian distribution.

Definition 24. A random variable W has a (central) Laplace distribution with
scale parameter β > 0 if its density function fW (w) = (2β)−1 exp(−β−1|w|).
Such a random variable is denoted by W ∼ Lap(β). ut

Lemma 35. If W ∼ Lap(β), then E(W ) = 0 and Var(W ) = 2β2. The moment
generating function MU of U is given by MW (t) = (1−β2t2)−1 for |t| < β−1. ut

Proof. The mean and variance of W can be verified by direct calculation to be

E(W ) =

∫ ∞
−∞

wfW (u) du = 0 and Var(W ) =

∫ ∞
−∞

w2fU (w) dw = 2β2. The

moment generating function MW of W is given for |t| < β−1 by

MW (t) = E(exp(tW )) =

∫ ∞
−∞

exp(tw)fW (w) dw

=
1

2β

∫ ∞
−∞

exp(tw − β−1|w|) dw

=
1

2β

∫ 0

−∞
exp((t+ β−1)w) dw +

1

2β

∫ ∞
0

exp((t− β−1)w) dw

=
1

2β

∫ ∞
0

exp(−(β−1 + t)w) + exp(−(β−1 − t)w) dw

=
1

2β(β−1 + t)
+

1

2β(β−1 − t)
=

1

1− β2t2
. ut

Lemma 36. Suppose that U ∼ N(0, b2I2) is a bivariate spherical Normal ran-
dom variable with component variance b2 and that α ∈ R2 is a constant, then
the ⊗-product α ⊗ U ∼ N(0; 1

2b
2|α|2I2) is a bivariate spherical Normal random

variable with component variance 1
2b

2|α|2. ut

Proof. The ⊗-product α ⊗ U = MαU , where Mα = 2−
1
2

(
α1 −α2

α2 α1

)
. However,

MαM
T
α = 1

2 |α|
2I2, so we have α⊗ U = MαU ∼ N(0; 1

2b
2|α|2I2). ut

Lemma 37. Suppose that U ∼ N(0; b2UI2) and V ∼ N(0; b2V I2) are independent
spherical bivariate Normal random variables, then U⊗V has moment generating
function MU⊗V (t0) = (1− 1

2b
2
Ub

2
V |t0|2)−1 for |t0|2 < 2(bUbV )−2. Thus U ⊗ V is

not a δ-subgaussian random variable for any δ ≥ 0. ut
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Proof. We assume without loss of generality that bU = bV = 1. In this case,
Lemma 36 shows that (U⊗V |V = v) ∼ N(0; 1

2 |v|
2I2), so this conditional random

variable has moment generating function

E
(

exp
(
tT0 (U ⊗ V )

)∣∣V = v
)

= exp
(
1
2
1
2 |t0|

2|v|2
)
,

which means that the corresponding conditional expectation random variable is
given by

E
(

exp
(
tT (U ⊗ V )

)∣∣V ) = exp
(
1
2
1
2 |t0|

2|V |2
)
.

The Law of Total Expectation [17] therefore gives the moment generating func-
tion MU⊗V of U ⊗ V as

MU⊗V (t0) = E(exp(tT0 (U ⊗ V )) = E
(
E
(

exp
(
tT0 (U ⊗ V )

)∣∣V ))
= E

(
exp( 1

4 |t0|
2|V |2)

)
= M|V |2( 1

4 |t0|
2),

where M|V |2 is the moment generating function of |V |2. However, |V |2 ∼ χ2
2 has

a χ2 distribution with 2 degrees of freedom as |V |2 = V 2
1 + V 2

2 is the sum of
the squares of two independent standard Normal N(0, 1) random variables. Thus
|V |2 has moment generating function M|V |2(s) = (1 − 2s)−1 for s < 1

2 , so the
moment generating function MU⊗V of U ⊗ V is given by

MU⊗V (t0) = (1− 1
2 |t0|

2)−1
[
|t0|2 < 1

2

]
.

A simple rescaling then gives the required result for the moment generating
function MU⊗V of U ⊗ V . The subgaussian result then follows as this moment
generating function is not defined everywhere. ut

Lemma 38. Suppose that U ∼ N(0; b2UI2) and V ∼ N(0; b2V I2) are independent
spherical bivariate Normal random variables. Any projection of their ⊗-product
U ⊗ V has a Laplace distribution with scale parameter 2−

1
2 bUbV . In particular,

(U ⊗V )1, (U ⊗V )2 ∼ Lap(2−
1
2 bUbV ) are uncorrelated Laplace random variables

with scale parameter 2−
1
2 bUbV ut

Proof. We can express the ⊗-product of U and V as

W =

(
W1

W2

)
= U ⊗ V =

(
U1

U2

)
⊗
(
V1
V2

)
= 2−

1
2

(
U1V1 − U2V2
U1V2 + U2V1

)
.

Lemma 37 shows that the projection W (θ) = W1 cos θ+W2 sin θ of W in the “θ-
direction” is a real-valued univariate random variable with moment generating
function MW (θ) given by

MW (θ)(s) = E
(
exp(tW (θ))

)
= E (exp(s cos θ W1 + s sin θ W2))

= MW ((s cos θ, s sin θ)) = (1− 1
2b

2
Ub

2
V |s|2)−1

for real-valued s with s2 < 2(bUbV )−2 This moment generating function MW (θ)

is well-defined in an open neighbourhood of 0 and Lemma 35 shows that it is the
moment generating function of a Laplace random variable with scale parameter
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2−
1
2 bUbV . Thus the projection W (θ) ∼ Lap(2−

1
2 bUbV ) of W in the θ-direction

has a Laplace distribution with scale parameter 2−
1
2 bUbV . Thus in particular the

two components (projections along the co-ordinate axes) (U ⊗ V )1, (U ⊗ V )2 ∼
Lap(2−

1
2 bUbV ) have a Laplace distribution. Lemma 33 shows that these two

components are uncorrelated. ut

4.5 The ⊗-Product of Spherical Normal Random Variables

We are now in a position to give results for the ⊗-product of two independent
n-dimensional spherical Normal random variables by extending the bivariate
results of Section 4.4. We begin in Lemma 39 by giving the moment generating
function of such an ⊗-product.

Lemma 39. Suppose that U ∼ N(0; b2UIn) and V ∼ N(0; b2V In) are independent

spherical n-dimensional Normal random variables. If t = (t1, . . . , tn′)
T ∈ R2n′

expresses t in terms of its n′ R2-components t1, . . . , tn′ , then the ⊗-product

U ⊗V has moment generating function MU⊗V (t) =
∏n′

j=1(1− 1
2b

2
Ub

2
V |tj |2)−1 for

|t1|, . . . , |tn′ | < 2
1
2 (bUbV )−1. ut

Proof. This result follows directly from Lemma 37 as the 2-dimensional compo-
nents (corresponding to the H2-components) of ⊗-product are independent. ut

Lemma 39 shows that the moment generating function of the ⊗-product of
two spherical Normal random variables is not spherically symmetric. In partic-
ular, the form of this moment generating function shows that a 1-dimensional
projection of such an ⊗-product does not in general have a Laplace distribu-
tion. However, Lemma 40 gives a partial analogue to Lemma 38 by recovering a
Laplace distribution for projections along the co-ordinates axes.

Lemma 40. Suppose that U ∼ N(0; b2UIn) and V ∼ N(0; b2V In) are indepen-
dent spherical n-dimensional Normal random variables. The components (U ⊗
V )1, . . . , (U ⊗ V )n ∼ Lap(2−

1
2 bUbV ) of the ⊗-product U ⊗ V are uncorrelated

Laplace random variables with scale parameter 2−
1
2 bUbV , so these components

are not δ-subgaussian. ut

Proof. The moment generating function (1− 1
2b

2
Ub

2
V |tj |2)−1 of an R2-component

of U ⊗ V is of the form considered in Lemma 38. ut

Lemma 40 shows that a component of the ⊗-product of two spherical Nor-
mal random variables has a Laplace distribution, so such a component is not
δ-subgaussian and in fact has an exponential tail. Thus such a product distribu-
tion has a far heavier tail than such an approximating subgaussian distribution,
as illustrated a particular projection in Figure 3. However, it is essentially the
approach of the Toolkit to approximate such a component with a Laplace dis-
tribution by a heavy-tailed subgaussian random variable, such as the Normal
distribution, with the same mean and variance.
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4.6 The �-Product of Spherical H-Normal Random Variables

We can now extend the results of Sections 4.4 and 4.5 directly to (conjugate
pair) vectors expressing products in the complex space H in the I-basis. Thus
we consider the �-product of two independent Spherical H-Normal random vari-
ables, and we give the moment generating function for such an �-product in
Lemma 41. This allows us to show in Theorem 2 that the �-product of two in-
dependent Spherical H-Normal random variables is not a δ-subgaussian random
variable.

Lemma 41. Suppose that Z1 ∼ NH(b21) and Z1 ∼ NH(b22) are independent
Spherical H-Normal random variables (in the I-basis for H). The �-product

Z1 � Z2 has moment generating function MZ1�Z2
(t) =

∏n′

j=1(1 − 1
2b

2
1b

2
2|tj |2)−1

for |t1|, . . . , |tn′ | < 2
1
2 (b1b2)−1, where v = (t1, . . . , tn′)

T ∈ H expresses t in terms
of its H2-components t1, . . . , tn′ . ut

Proof. If Zj ∼ NH(b2j ), then T †Zj ∼ N(0; b2jIn) for j = 1, 2. The moment

generating function for T †Z1 ⊗ T †Z2 is given in Lemma 39 and for each of
the n′ independent R2-components of T †Z1 ⊗ T †Z2 in Lemma 37. The in-
dependence of Z1 and Z2 and the application of Lemma 27 to the identity
Z1 � Z2 = T (T †Z1 ⊗ T †Z2) then gives the required result. ut

Theorem 2. The �-product of two independent Spherical H-Normal random
variables (in the I-basis for H) is not a δ-subgaussian random variable. ut

Proof. This result immediately follows from Lemma 41, which shows that the
moment generating function of such an �-product is not defined everywhere. ut

5 Discretisation

Discretisation is a fundamental part of Ring-LWE. It is a process where a point
is “rounded” to a nearby point in a lattice coset. In fact, such a discretisation
process usually involves randomisation, so discretisation typically gives rise to
a random variable on the elements of the coset. We consider the coordinate-
wise randomised rounding method of discretisation, which is described in the
first bullet point of Toolkit Section 2.4.2, as an illustration of a discretisation
process, though most of our comments apply more generally. We establish the
following two main results in this Section.

– Theorem 3 improves the Toolkit results for the variability of the coordinate-
wise randomised rounding discretisation process used in Ring-LWE.

– Theorem 4 shows that the componentwise product of the coordinatewise
randomised rounding discretisation of two independent Spherical H-Normal
random variables is not a δ-subgaussian random variable.
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5.1 Coordinate-wise Randomised Rounding Discretisation

The details of the coordinate-wise randomised rounding method of discretisation
depend on the lattice basis used. One particular property of interest is the elon-
gation of a lattice basis matrix of Definition 25, and we give the elongation of
the basis matrices for H discussed in Section 2.3 in Lemma 42.

Definition 25. Suppose that the lattice Λ has (column) basis matrix B. The

Gram matrix of the basis matrix B is B†B, where B† = B
T

is the complex
conjugate of B. The elongation λ(B) > 0 of the basis matrix B is the square
root of largest eigenvalue of the Gram matrix B†B. ut

Lemma 42. The lattice basis matrices T , Γ and Γ ′ of the T -basis, the Γ -basis
and the Γ ′-basis for H have elongation λ(T ) = λ(Γ ) = λ(Γ ′) = 1. ut

Proof. The results immediately follow from Lemmas 1, 2 and 4. ut

We now give a formal description of the coordinate-wise randomised round-
ing discretisation method. This description is based on the univariate Reduction
random variable of Definition 26. Such a Reduction random variable is a transla-
tion of the basic “coin-flip” Bernoulli random variable [17], and so we can give its
immediate basic properties in Lemma 43. For the purposes of discussing discreti-
sation, it is convenient to consider the multivariate generalisation of a Reduction
random variable given by Definition 27. Lemma 44 then gives a technical result
about such a multivariate Reduction random variable that we use later.

Definition 26. If Bern denotes the Bernoulli distribution, then the univariate
Reduction distribution Red(a) = Bern(dae − a)− (dae − a) is the discrete prob-
ability distribution defined for parameter a ∈ R as taking the values

(i) 1 + a− dae with probability dae − a
and (ii) a− dae with probability 1− (dae − a). ut

Lemma 43. If R0 ∼ Red(a) is a (univariate) Reduction random variable for
parameter a ∈ R, then R0 satisifies (i) |R0| ≤ 1, (ii) E(R0) = 0, (iii) Var(R0) ≤ 1

4
and (iv) a−R0 ∈ {bac, dae} ⊂ Z. ut

Definition 27. A random variable R = (R1, . . . , Rl)
T has a multivariate Re-

duction distribution R ∼ Red(a) on Rl for parameter a = (a1, . . . , al)
T ∈ Rl if

its components Rj ∼ Red(aj) for j = 1, . . . , l are independent univariate Reduc-
tion random variables. ut

Lemma 44. Suppose that the lattice Λ has (column) basis matrix B with elon-
gation λ(B) and thatR is a Reduction random variable of appropriate dimension,
then |BR|2 ≤ nλ(B)2 and E(|BR|2) ≤ 1

4nλ(B)2. ut

Proof. We note that |R|2 ≤ n, so

|BR|2 = (BR)†BR = RT (B†B)R ≤ λ(B)2|R|2 ≤ nλ(B)2.

Furthermore, E(|BR|2) ≤ λ(B)2E(|R|2) = nλ(B)2E(R2
j ) = 1

4nλ(B)2. ut
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We are now able to specify the coordinate-wise randomised rounding dis-
cretisation method in a vector form in Definition 28. Lemma 45 then shows that
coordinate-wise randomised rounding is well-defined, and Lemma 46 gives some
basic properties of this method of discretisation.

Definition 28. Suppose B is a (column) basis matrix for the l-dimensional
lattice Λ. The coordinate-wise randomised rounding discretisation bxeBΛ+c of the
point x to the lattice coset Λ+ c with respect to the basis B can then be defined
in terms of the multivariate Reduction random variable Qx,c by the random
variable

bxeBΛ+c = x+BQx,c, where Qx,c ∼ Red
(
B−1(c− x)

)
. ut

Lemma 45. The coordinate-wise randomised rounding discretisation bxeBΛ+c is
a random variable on the lattice coset Λ + c and is valid (does not depend on
the chosen coset representative c). ut

Proof. We can express the Reduction random variable Qx,c ∼ Red
(
B−1(c− x)

)
as Qx,c = Px,c+dB−1(c−x)e−B−1(c−x), where Px,c is a vector of independent
Bernoulli random variables. We note that Px,c+dB−1(c−x)e is an integer vector,
so the coordinate-wise randomised rounding discretisation bxeBΛ+c is therefore a
random variable on the lattice coset Λ+ c as

bxeBΛ+c = x+BQx,c = x+BPx,c +BdB−1(c− x)e − (c− x)
= c+B

(
Px,c + dB−1(c− x)e

)
∈ Λ+ c.

Furthermore, if c′ ∈ Λ + c, so c − c′ ∈ Λ, then there exists an integer vector
z such that c′ − c = Bz, so B−1(x − c) − B−1(x − c′) = z, that is to say
B−1(x− c) and B−1(x− c′) differ by an integer vector. Thus Red

(
B−1(c− x)

)
and Red

(
B−1(c− x)

)
are identical distributions. The distribution of bxeBΛ+c on

the lattice coset Λ + c does not therefore depend on the chosen coset represen-
tative c and so the discretisation is valid. ut

Lemma 46. Suppose that the lattice Λ has (column) basis matrix B with elon-
gation λ(B), then the coordinate-wise randomised rounding bxeBΛ+c of the point

x satisfies E
(
bxeBΛ+c

)
= x and E

(∣∣bxeBΛ+c − x∣∣2) ≤ nλ(B)2. ut

Proof. Lemma 43 shows that E
(
bxeBΛ+c

)
= x+ E(BRx,c) = x+BE(Qx,c) = x.

Lemma 44 shows that E
(∣∣bxeBΛ+c − x∣∣2) = E(|BQx,c|2) ≤ nλ(B)2. ut

We now consider the coordinate-wise randomised rounding discretisation of
a random variable to a lattice in H, when the natural extension of Definition 28
gives Definition 29. Lemma 47 then shows that the mean of a random variable
is invariant under such a discretisation. We conclude with Lemma 52 which
gives the covariance matrix of a real vector expressing such a discretisation of a
random variable expressed in the T -basis for H.
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Definition 29. Suppose B is a (column) basis matrix for the n-dimensional
lattice Λ in H. The coordinate-wise randomised rounding discretisation bXeBΛ+c
of the random variable X to the lattice coset Λ + c with respect to the basis
matrix B is then defined by the conditional random variable(
bXeBΛ+c

∣∣X = x
)

= bxeBΛ+c = x+BQx,c, where Qx,c ∼ Red
(
B−1(c− x)

)
. ut

Lemma 47. Suppose B is a (column) basis matrix for the n-dimensional lattice
Λ in H. The coordinate-wise randomised rounding discretisation bXeBΛ+c of the
random variable X to the lattice coset Λ+ c with respect to the basis matrix B
has mean vector E

(
bXeBΛ+c

)
= E(X). ut

Proof. Lemma 43 shows that the mean of the multivariate Reduction random
variable Qx,c ∼ Red(B−1(c− x)) is given by E(Qx,c) = 0. Thus we have

E
(
bXeBΛ+c

∣∣X = x
)

= x+ E(BQx,c) = x+BE(Qx,c) = x,

so we obtain the conditional expectation random variable E
(
bXeBΛ+c

∣∣X) = X.
The Law of Total Expectation [17] then gives the required result as

E
(
bXeBΛ+c

)
= E

(
E
(
bXeBΛ+c

∣∣X)) = E(X). ut

5.2 Subgaussian Properties of Discretisation Random Variables

We next consider the subgaussian properties of the random variable given by this
discretisation process. We give two preliminary results in Lemmas 48 and 49,
which lead to Theorem 3. These results allow us to bound the deviation pa-
rameter of a random variable obtained by such a discretisation of a point. Lem-
mas 50 and 51 then extend these results to allow us to bound the deviation pa-
rameter of a random variable obtained by such a discretisation of a 0-subgaussian
random variable, which is a perturbation of this 0-subgaussian random variable.
In particular, Lemma 51 is a multivariate version of the final part of Theorem 1.

The results of this Section typically use a factor of 1
2 with the standard pa-

rameter or deviation parameter of a random variable obtained by discretisation.
By contrast, any comparable result of the Toolkit uses a factor of 1 (see for exam-
ple the first bullet point of Toolkit Section 2.4.2). Thus the results of this Section
improve and extend any comparable result of the Toolkit about coordinate-wise
randomised rounding discretisation.

Lemma 48. A multivariate Reduction random variable (Definition 27) is a 0-
subgaussian random variable with standard parameter 1

2 . ut

Proof. We first consider the univariate Reduction random variable Rj ∼ Red(p)
(Definition 26) for 0 ≤ p ≤ 1 (without loss of generality), so Rj takes the value
p with probability 1 − p and the value p − 1 with probability p. Thus Rj has
moment generating function

MRj (t) = E(exp(tRj)) = (1− p) exp(pt) + p exp((p− 1)t) = exp(pt)h(t),
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where h(t) = (1 − p) + p exp(−t). We consider the logarithm of the moment
generating function given by the function

g(t) = logMRj (t) = pt+ log h(t).

The first three derivatives of g are given by

g′(t) =
p(1− p)(1− exp(−t))

h(t)
, g′′(t) =

p(1− p) exp(−t)
h(t)2

and g′′′(t) =
−p(1− p) exp(−t) ((1− p)− p exp(−t))

h(t)3
.

We see that g′′(t) ≥ 0 and that solving g′′′(t) = 0 shows that the maximum of g′′

occurs at t0 = log
(

p
1−p

)
with a maximum value of g′′(t0) = 1

4 , so 0 ≤ g′′(t) ≤ 1
4

for all t ∈ R, and we also note that g(0) = g′(0) = 0. The Lagrange remainder
form of Taylor’s Theorem shows that there exists ξ between 0 and t such that
g(t) = 1

2g
′′(ξ)t2, so 0 ≤ g(t) ≤ 1

8 t
2. Thus MRj (t) = exp(f(t)) ≤ exp( 1

2 ( 1
2 )2t2),

so Rj is a 0-subgaussian random variable with standard parameter 1
2 .

We now consider the moment generating function MR of the multivariate
Reduction random variable R = (R1, . . . , Rl)

T , which is given by

MR(t) = E(exp(tTR)) = E
(

exp
(∑l

j=1tjRj

))
= E

(∏l
j=1 exp(tjRj)

)
=

l∏
j=1

E(exp(tjRj)) =

l∏
j=1

MRj (tj)

≤
l∏

j=1

exp( 1
2 ( 1

2 )2t2j ) = exp
(

1
2 ( 1

2 )2
∑l
j=1t

2
j

)
= exp( 1

2 ( 1
2 )2|t|2).

Thus R is a 0-subgaussian random variable with standard parameter 1
2 . ut

Lemma 49. Suppose that B is a (column) basis matrix for a lattice in H with
elongation λ(B) and that R is a multivariate Reduction random variable (Defi-
nition 27) of appropriate dimension. The random variable BR is a 0-subgaussian
random variable with standard parameter 1

2λ(B). ut

Proof. As we noted in the proof of Lemma 44, both BB† and the Gram ma-
trix B†B are positive definite Hermitian matrices sharing the same eigenvalues.
Lemma 48 therefore shows that the moment generating function MBR of BR
satisfies

MBR(v) = E(exp(v†BT )) = E
(

exp
((
B†v

)†
R
))

= MR

(
B†v

)
≤ exp

(
1
2 ( 1

2 )2|B†v|2
)

= exp
(
1
2 ( 1

2 )2
(
v†BB†v

))
≤ exp

(
1
2 ( 1

2 )2λ(B)2|v|2
)
,

as λ(B)2 > 0 is the largest eigenvalue of the Gram matrix BB†. Thus BR is a
0-subgaussian random variable with standard parameter 1

2λ(B). ut
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Theorem 3. Suppose that B is a (column) basis matrix for a lattice in H
with elongation λ(B). The coordinate-wise randomised rounding discretisation
of z to bzeBΓ+c is a noncentral subgaussian random variable with noncentrality

parameter |z| and deviation parameter 1
2λ(B). ut

Proof. The discretisation bzeBΓ+c = z+BQz,c of z has moment generating func-
tion

MbzeBΓ+c
(v) = Mz+BQz,c(v) = Mz(v)MBQz,c(v)

≤ exp (〈v, z〉) exp
(
1
2 ( 1

2 )2λ(B)2|v|2
)
,

so bzeBΓ+c is a noncentral subgaussian random variable with noncentrality pa-

rameter |z| and standard parameter 1
2λ(B). ut

Lemma 50. Suppose that B is a (column) basis matrix for a lattice in H with
elongation λ(B) and that Z is an independent noncentral subgaussian random
variable with deviation parameter dZ . The coordinate-wise randomised rounding
discretisation of Z to bZeBΓ+c is a noncentral subgaussian random variable with

noncentrality parameter |E(Z)| and deviation parameter (d2Z+( 1
2 )2λ(B)2)

1
2 . ut

Proof. Theorem 3 gives a conditional expectation bound of

E
(

exp
(
v†bZeBΓ+c

)∣∣Z = z
)
≤ exp (〈v, z〉) exp

(
1
2 ( 1

2 )2λ(B)2|v|2
)
,

so the corresponding conditional expectation random variable is bounded as

E
(

exp
(
v†bZeBΓ+c

)∣∣Z) ≤ exp (〈v, Z〉) exp
(
1
2 ( 1

2 )2λ(B)2|v|2
)
.

The Law of Total Expectation [17] then allows us to bound the moment gener-
ating function MbZeBΓ+c

of the discretisation bZeBΓ+c as

MbZeBΓ+c
(v) = E

(
exp

(
v†bZeBΓ+c

))
= E

(
E
(

exp
(
v†bZeBΓ+c

)∣∣Z))
≤ E (exp (〈v, Z〉)) exp

(
1
2 ( 1

2 )2λ(B)2|v|2
)

= MZ(v) exp
(
1
2 ( 1

2 )2λ(B)2|v|2
)

= exp (〈v,E(Z)〉) exp
(
1
2 (d2Z + ( 1

2 )2λ(B)2)|v|2
)
.

Thus bZeBΓ+c is a noncentral subgaussian random variable with noncentrality

parameter |E(Z)| and deviation parameter (d2Z + ( 1
2 )2λ(B)2)

1
2 . ut

Lemma 51. Suppose that B is a (column) basis matrix for a lattice in H with
elongation λ(B) and that Z is an independent 0-subgaussian random variable
with standard parameter bZ . The coordinate-wise randomised rounding discreti-
sation bZeBΓ+c of this random variable Z is a 0-subgaussian random variable

with standard parameter (b2Z + ( 1
2 )2λ(B)2)

1
2 , ut

Proof. If Z is a 0-subgaussian random variable with standard parameter bZ ,
then Z has mean E(Z) = 0 and so is a (noncentral) subgaussian random variable
with noncentrality parameter 0 and deviation parameter bZ . Lemma 50 therefore
shows that coordinate-wise randomised rounding discretisation of Z to bZeBΓ+c

is a (noncentral) subgaussian random variable with noncentrality parameter 0

and deviation parameter (b2Z + ( 1
2 )2λ(B)2)

1
2 . Thus bZeBΓ+c is a 0-subgaussian

random variable with standard parameter (b2Z + ( 1
2 )2λ(B)2)

1
2 . ut
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5.3 Discretised Spherical H-Normal Distributions in Various Bases

We now extend the results of Section 4.2 by considering the distributional prop-
erties of a random variable with a discretised Spherical H-Normal distribution
for a lattice on H as vectors with a general basis matix B. We again use the no-
tation of Section 2.3, which is summarised in Figure 5. We begin with Lemma 52
which gives the covariance matrix of such a discretisation when expressed in the
T -basis for H.

Lemma 52. Suppose B is a (column) basis matrix for the n-dimensional lattice
Λ in H. The coordinate-wise randomised rounding discretisation bXeBΛ+c of the
random variable X on H to the lattice coset Λ+c with respect to the basis B with
elongation λ(B) when expressed in the T -basis for H as (bXeBΛ+c)‡ = T †bXeBΛ+c
has covariance matrix

Cov
(
(bXeBΛ+c)‡

)
= Cov

(
X‡
)

+ B̂B̂T ,

where Cov
(
X‡
)

is the covariance matrix of the real random variable X‡ = T †X

and B̂ is a real matrix with elongation λ(B̂) bounded as λ(B̂) ≤ 1
2λ(B). ut

Proof. We suppose without loss of generality that E(bXeBΛ+c) = 0. In this case,

the covariance matrix of (bXeBΛ+c)‡ = T †bXeBΛ+c is given by

Cov
(
bXeBΛ+c)‡

)
= Cov

(
T †bXeBΛ+c

)
= E

((
T †bXeBΛ+c

) (
T †bXeBΛ+c

)T)
.

We first consider the covariance matrix of the conditional random variable(
T †bXeBΛ+c

∣∣X = x
)
, which is given by

Cov
(
T †bXeBΛ+c

∣∣X = x
)

= E
((
T †bXeBΛ+c

) (
T †bXeBΛ+c

)T ∣∣∣X = x
)

= E
((
T †x+ T †BQx,c

) (
T †x+ T †BQx,c

)T)
=
(
T †x

) (
T †x

)T
+
(
T †B

)
E(Qx,cQ

T
x,c)

(
T †B

)T
=
(
T †x

) (
T †x

)T
+
(
T †B

)
Cov(Qx,c)

(
T †B

)T
as the multivariate Reduction random variable Qx,c has mean E(Qx,c) = 0 and
E
(
Qx,cQ

T
x,c

)
= Cov(Qx,c) is the diagonal covariance matrix of Qx,c. However,

Lemma 43 and Definition 27 show that the components of Qx,c are indepen-
dent with maximum variance 1

4 , so its covariance matrix can be written as
Cov (Qx,c) = D2

x,c, where Dx,c is a diagonal matrix with non-negative diago-

nal entries at most 1
2 . If we therefore write B̂x,c =

(
T †B

)
Dx,c, then B̂x,c is a

real matrix with elongation λ(B̂x,c) bounded as λ(B̂x,c) ≤ 1
2λ(T †B) = 1

2λ(B)
for all x and c as T † is a unitary matrix. Thus the conditional covariance matrix
is given by

Cov
(
T †bXeBΛ+c

∣∣X = x
)

=
(
T †x

) (
T †x

)T
+ B̂x,cB̂

T
x,c.
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We can obtain an unconditional covariance matrix for T †bXeBΛ+c. We can
first obtain the conditional expectation random variable

Cov
(
T †bXeBΛ+c

∣∣X) =
(
T †X

) (
T †X

)T
+ B̂X,cB̂

T
X,c,

where B̂X,c is a random matrix with elongation λ(B̂X,c) ≤ 1
2λ(B). The Law

of Total Expectation [17] then gives the unconditional covariance matrix for
T †bXeBΛ+c as

Cov
(
(bXeBΛ+c)‡

)
= Cov

(
T †bXeBΛ+c

)
= E

(
Cov

(
T †bXeBΛ+c

∣∣X))
= E

((
T †X

) (
T †X

)T)
+ E

(
B̂X,cB̂

T
X,c

)
= Cov

(
X‡
)

+ B̂B̂T ,

where B̂ is a matrix satisfying B̂B̂T = E
(
B̂X,cB̂

T
X,c

)
and has elongation λ(B̂)

bounded as λ(B̂) ≤ 1
2λ(B). ut

Lemma 53 now gives a more detailed result for the distributional proper-
ties of a random variable with a discretised Spherical H-Normal distribution
bNH(p2ρ2)eBΛ+c for a lattice on H as vectors with basis matrix B, where as
before we express the component variance as p2ρ2.

Lemma 53. Suppose that Z ∼ NH(p2ρ2) is a Spherical H-Normal random
variable expressed as a vector in the I-basis for H, and that bZeBΛ+c is the
discretisation of Z to a lattice coset Λ + c of the lattice Λ with respect to

the basis B. Suppose also that
(
bZeBΛ+c

)‡
= T †bZeBΛ+c expresses this random

variable as a real vector in the T -basis for H, and that B̂ is the real matrix
defined in Lemma 52 with elongation λ(B̂) ≤ 1

2λ(B).

(i)
(
bZeBΛ+c

)‡
has mean E

((
bZeBΛ+c

)‡)
= 0.

(ii)
(
bZeBΛ+c

)‡
has covariance matrix Cov

((
bZeBΛ+c

)‡)
= p2ρ2

(
I +

B̂B̂T

(pρ)2

)
.

(iii)
(
bZeBΛ+c

)‡
is 0-subgaussian with standard parameter pρ

(
1 +

(
λ(B)
2pρ

)2) 1
2

.

ut

Proof. Lemma 47 gives part (i), and Lemma 52 gives part (ii). Lemma 51 shows

that bZeBΛ+c, and hence
(
bZeBΛ+c

)‡
= T †bZeBΛ+c as T † unitary, is 0-subgaussian

with standard parameter (p2ρ2 + ( 1
2 )2λ(B)2)

1
2 . Part (iii) then follows. ut

We finish this discussion of discretisations with Lemmas 54 and 55, which
specify a good asymptotic approximation as a Normal distribution for the vectors(
bZepΓΛ+c

)∗
and

(
bZepΓ

′

Λ+c

)∗∗
expressing such discretisations in the pΓ -basis and

pΓ ′-basis for H, that is to say in the “decoding bases” for H. We note that
these results depend only on Central Limit arguments and so only depend on
the moments of bNH(p2ρ2)eBΛ+c and not on the fully specified distribution of
bNH(p2ρ2)eBΛ+c.
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Lemma 54. Suppose that Z ∼ NH(p2ρ2) is a Spherical H-Normal random

variable expressed as a vector in the I-basis for H, and that bZepΓΛ+c is the dis-
cretisation of Z to a lattice coset Λ + c for the lattice Λ = σ(pR∨) in H with

respect to the pΓ -basis. Suppose also that
(
bZepΓΛ+c

)∗
= p−1Γ−1bZepΓΛ+c ex-

presses this random variable as a real vector in the pΓ -basis for H.

(i)
(
bZepΓΛ+c

)∗
is well-approximated as a N(0; ρ2(mI − J)) multivariate Normal

random variable for large m and large ρ.

(ii)
(
bZepΓΛ+c

)∗
is well-approximated by some 0-subgaussian random variable

with standard parameter m
1
2 ρ for large m and large ρ.

(iii) A component
(
bZepΓΛ+c

)∗
j

of
(
bZepΓΛ+c

)∗
can be well-approximated as a

N(0;nρ2) random variable for large n = m− 1 and large ρ.

(iv) A component
(
bZepΓΛ+c

)∗
j

of
(
bZepΓΛ+c

)∗
can be well-approximated by some

0-subgaussian random variable with standard parameter n
1
2 ρ for large n = m−1

and large ρ. ut

Proof. We use the results of Lemma 53 with the basis matrix B = pΓ for

the pΓ -basis for H. This shows that the real random variable
(
bZepΓΛ+c

)‡
has

mean vector 0 and covariance matrix Cov

((
bZepΓΛ+c

)‡)
= p2ρ2

(
I + ρ−2Γ̂ Γ̂T

)
.

Lemmas 42 and 52 show that Γ̂ has elongation bounded as λ(Γ̂ ) ≤ 1
2λ(Γ ) = 1

2 ,

so the components of bZepΓΛ+c are weakly correlated for large ρ.

The random variable
(
bZepΓΛ+c

)∗
= p−1∆

(
bZepΓΛ+c

)‡
is a linear transforma-

tion of
(
bZepΓΛ+c

)∗
(see for example Figure 4). Thus

(
bZepΓΛ+c

)∗
has mean vector

0 and covariance matrix

Cov
((
bZepΓΛ+c

)∗)
= p−2∆ Cov

((
bZepΓΛ+c

)∗)
∆T = ρ2∆

(
I + ρ−2Γ̂ Γ̂T

)
∆T

= ρ2
(
∆∆T + ρ−2(∆Γ̂ )(∆Γ̂ )T

)
= ρ2

(
(mI − J) + ρ−2(∆Γ̂ )(∆Γ̂ )T

)
= ρ2(mI − J)

(
I +m−1ρ−2(I + J)(∆Γ̂ )(∆Γ̂ )T

)
≈ ρ2(mI − J).

for large m and large ρ. We can the use an appropriate form of the Central Limit
Theorem for weakly correlated random variables with similar variances [17] to

give a Central Limit argument that
(
bZepΓΛ+c

)∗
= p−1∆

(
bZepΓΛ+c

)‡
is very well-

approximated by a multivariate N
(
E
((
bZepΓΛ+c

)∗)
; Cov

((
bZepΓΛ+c

)∗))
multi-

variate Normal random variable. Thus we have shown that
(
bZepΓΛ+c

)∗
is very

well-approximated as a multivariate N(0; ρ2(mI − J) Normal random variable
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for large ρ and large m, so giving part (i). Lemma 3 then gives part (ii). Con-
sideration of a component of the N(0;mρ2(I−m−1J) distribution with variance
(m− 1)ρ2 then gives parts (iii) and (iv). ut

Lemma 55. Suppose that Z ∼ NH(p2ρ2) is a Spherical H-Normal random

variable expressed as a vector in the I-basis for H, and that bZepΓ
′

Λ+c is the dis-
cretisation of Z to a lattice coset Λ + c for the lattice Λ = σ(pR∨) in H with

respect to the pΓ ′-basis. Suppose also that
(
bZepΓ

′

Λ+c

)∗∗
= p−1Γ ′−1bZepΓ

′

Λ+c ex-

presses this random variable as a real vector in the pΓ -basis for H.

(i)
(
bZepΓΛ+c

)∗∗
is well-approximated as a N(0;mρ2(I + J − (1−m−1)E)) mul-

tivariate Normal random variable for large m and large ρ, where J = 11T and
E = e1e

T
1 .

(ii)
(
bZepΓΛ+c

)∗∗
is well-approximated by some 0-subgaussian random variable

with standard parameter mρ for large m and large ρ.

(iii) A component
(
bZepΓΛ+c

)∗∗
j

of
(
bZepΓΛ+c

)∗∗
can be well-approximated as a

N(0; (m+ 1)ρ2) random variable (when j = 1) or as a N(0; 2mρ2) random vari-
able (when j = 2, . . . , n) for large m and large ρ.

(iv) A component
(
bZepΓΛ+c

)∗∗
j

of
(
bZepΓΛ+c

)∗∗
can be well-approximated by some

0-subgaussian random variable with standard parameter (m+1)
1
2 ρ (when j = 1)

or 2
1
2m

1
2 ρ (when j = 2, . . . , n) for large m and large ρ. ut

Proof. The random variable
(
bZepΓΛ+c

)∗∗
= p−1∆′′

(
bZepΓΛ+c

)‡
is a linear trans-

formation of
(
bZepΓΛ+c

)∗
(see for example Figure 4). We can then use Lemma 5

and the same Central Limit argument of the proof of Lemma 54 to obtain these
results. ut

5.4 The �-product of Discretisations in the I-basis for H

We conclude this Section by considering the �-product of vectors expressing the
discretisations of Spherical H-Normal random variables in the I-basis for H.
We show in Theorem 4 by generalising Theorem 2 that such an �-product of
discretisations in the I-basis is not a δ-dubgaussian random variable.

Theorem 4. Suppose Z1 and Z2 are independent Spherical H-Normal ran-
dom variables (in the I-basis for H) and that bZ1eBΓ+c1

and bZ2eBΓ+c2
are their

coordinate-wise randomised rounding discretisations, then their componentwise
product bZ1eBΓ+c1

� bZ2eBΓ+c2
is not a δ-subgaussian random variable. ut

Proof. Without loss of generality, we suppose that Z1, Z2 ∼ NH(1) both have
component variance 1. Their coordinate-wise randomised rounding discretisa-
tions bZ1eBΓ+c1

and bZ2eBΓ+c2
of Z1 and Z2 to cosets of the lattice with (column)

basis matrix B are given by

bZ1eBΓ+c1 = Z1 +BQZ1,c1 and bZ2eBΓ+c2 = Z2 +BQZ2,c2 ,

42



where QZ1,c1 is defined by the conditional multivariate Reduction (Definition 27)
random variable (QZ1,c1 |Z1 = z1) = Qz1,c1 ∼ Red(B−1(c1− z1)) and so on. The
componentwise product of these discretisations is therefore given by

bZ1eBΓ+c1 � bZ2eBΓ+c2 = (Z1 +BQZ1,c1)� (Z2 +BQZ2,c2),

which can be expanded to give

bZ1eBΓ+c1�bZ2eBΓ+c2 = Z1�Z2+Z1�BQZ2,c2+Z2�BQZ1,c1+BQZ1,c1�BQZ2,c2 .

We consider the term Z1 � BQZ2,c2 = T (T †Z1 ⊗ T †BQZ2,c2) in the above

sum. Lemma 44 shows that |BQZ2,c2 | ≤ n
1
2λ(B), where λ(B) is the elongation of

B (Definition 25). Thus |T †BQZ2,c2 | ≤ n
1
2λ(B) is a bounded random variable as

T † is unitary. The natural generalisation of Lemma 36 shows that the conditional
random variable

(T †Z1 ⊗ T †BQZ2,c2 |T †BQZ2,c2 = α) = α⊗ T †Z1

is a 0-subgaussian random variable with standard parameter α bounded by
|α| ≤ n

1
2λ(B), as T †Z1 ∼ N(0, b21In). Thus the unconditional random variable

Z1 � BQZ2,c2 , and similarly Z2 � BQZ1,c1 is a 0-subgaussian random variable.
Furthermore, the componentwise product BQZ1,c1 � BQZ2,c2 of the bounded
random variables BQZ1,c1 and BQZ2,c2 is bounded, and so Lemma 21 can be
used to show that BQZ1,c1 �BQZ2,c2 is also a 0-subgaussian random variable.

We can now consider the random variable bZ1eBΓ+c1
� bZ2eBΓ+c2

and note
that we can express the componentwise product of Spherical H-Normal random
variables as

Z1�Z2 = bZ1eBΓ+c1�bZ2eBΓ+c2−Z1�BQZ2,c2−Z2�BQZ1,c1−BQZ1,c1�BQZ2,c2 .

If we suppose (for a contradiction) that bZ1eBΓ+c1
�bZ2eBΓ+c2

is a δ-subgaussian
random variable, then Z1�Z2 would be the sum of δ-subgaussian random vari-
ables and so Lemma 23 shows that Z1 � Z2 would be a δ-subgaussian random
variable itself. However, Theorem 2 shows that Z1 � Z2 is not a δ-subgaussian
random variable, which gives a contradiction. Thus the componentwise product
bZ1eBΓ+c1

� bZ2eBΓ+c2
of discretisations cannot be a δ-subgaussian random vari-

able. ut

5.5 The �-product of Discretisations in a Decoding Basis for H

Theorem 4 shows that �-product of vectors expressing the discretisations of
Spherical H-Normal random variables in the I-basis for H is not a δ-dubgaussian
random variable. Indeed, as these discretisations of Spherical H-Normal random
variables are in general small perturbations of Spherical H-Normal random vari-
ables, the discussion of Section 4.5 and Figures 2 and 3 show that the distribution
of such an �-product in the I-basis is very different to a δ-subgaussian or Spher-
ical H-Normal random variable. However, Lemma 56 shows that we can recover

43



a good Normal approximation for a scaled decoding m−1pΓ -basis for H, and we
could give a similar result for the m−1pΓ ′-basis.

We note that Lemma 56 is fundamentally given by a Central Limit argument
applied to the “highly non-Normal” distribution of an �-product of vectors
expressing discretised Spherical H-Normal random variables in the I-basis for
H. Thus only the mean vector and covariance matrix of the �-product in the
I-basis are essentially relevant to the Normal approximation. Other matters,
such as the δ-subgaussian properties of this �-product in the I-basis (or its two
factors) are not relevant to this Normal approximation.

Lemma 56. Suppose that Z1 ∼ NH(p2ρ21) and Z2 ∼ NH(p2ρ22) are indepen-
dent Spherical H-Normal random variables expressed as vectors in the I-basis
for H. The vector expressing the product of their discretisations bZ1epΓΛ+c1 and

bZ2epΓΛ+c2 in the scaled decoding m−1pΓ -basis for H is well-approximated as a

real multivariate N(0;m2p2ρ21ρ
2
2(mI−J)) has mean vector 0 and covariance ma-

trix m2p2ρ21ρ
2
2(mI − J). ut

Proof. Lemma 53 shows that that the real vector (bZjepΓΛ+cj )
‡ expressing the

the discretisation of Zj to the lattice coset Λ + cj with respect to the pΓ -basis
in the T -basis, that is to say the real vector expressing the Embedded Noise

in the T -basis, has mean vector E
(

(bZjepΓΛ+cj )
‡
)

= 0 and covariance matrix

well-approximated as

Cov
(

(bZjepΓΛ+cj )
‡
)

= p2ρ2j

(
I + ρ−2j Γ̂ Γ̂T

)
≈ p2ρ2jI

for large ρj (where j = 1, 2). Thus Lemma 33 shows that the ⊗-product of these
two real random vectors expressing the Embedded Noise in the T -basis has mean
vector

E
(

(bZ1epΓΛ+cj )
‡ ⊗ (bZ2epΓΛ+cj )

‡
)

= 0

and covariance matrix well-approximated for large ρ1 and ρ2 by

Cov
(

(bZ1epΓΛ+cj )
‡ ⊗ (bZ2epΓΛ+cj )

‡
)
≈ p4ρ21ρ22I.

We now consider the real vector expressing this product in the m−1pΓ -basis
for H. Accordingly, we use the change of basis matrix mp−1∆ to move from the
T -basis for H to the m−1pΓ -basis for H. Thus we see that

E
(
mp−1∆

(
(bZ1epΓΛ+cj )

‡ ⊗ (bZ2epΓΛ+cj )
‡
))

= 0,

and the covariance matrix for the vector expressing the product in the m−1pΓ -
basis is well-approximated as

Cov
(
mp−1∆

(
(bZ1epΓΛ+cj )

‡ ⊗ (bZ2epΓΛ+cj )
‡
))
≈ m2p−2∆

(
p4ρ21ρ

2
2I
)
∆T

= m2p2ρ21ρ
2
2∆∆

T

= m2p2ρ21ρ
2
2(mI − J).
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for large ρ1 and ρ2. We can the use an appropriate form of the Central Limit
Theorem for weakly correlated random variables with similar variances [17] to
give a Central Limit argument in the manner of the proof of Lemma 54 to

show that this product mp−1∆
(

(bZ1epΓΛ+cj )
‡ ⊗ (bZ2epΓΛ+cj )

‡
)

has a multivariate

Normal distribution with mean 0 and the above covariance matrix. ut

6 The THRing Cryptosystem

We now apply the ideas developed in this paper to analyse the Symmetric-Key
Homomorphic Cryptosystem of Toolkit Section 8.3. We refer to this homomor-
phic Ring-LWE cryptosystem as the THRing cryptosystem and a specification
is given in Figure 8. Our analysis of the THRing cryptosystem begins with a
full description of the THRing cryptosystem in our notation. We then give a full
statistical description of the various types of “Noise” used by the THRing cryp-
tosystem. This allows us to apply our results to the Toolkit discussion of the
THRing cryptosystem, and in particular we obtain the following result.

– Proposition 2 shows that the assertion of Toolkit Lemma 8.7 about the dis-
tribution of the product of δ-subgaussian random variables is not correct.
The Toolkit uses this assertion to attempt to justify the correctness of the
THRing cryptosystem.

We then use our ideas to develop a method that gives a rigorous analysis of the
THRing cryptosystem and allows us to derive the following results.

– Theorem 5 gives a bound for the probability of incorrect decryption of a
degree-1 ciphertext in the THRing cryptosystem.

– Theorem 6 gives a bound for the probability of incorrect decryption of a
degree-2 ciphertext in the THRing cryptosystem.

6.1 The Encryption Process in the THRing Cryptosystem

We now give a description of the relevant parts of the encryption process of the
THRing cryptosystem. The secret key for the THRing cryptosystem is an element
s ∈ R. The plaintext space in the THRing cryptosystem is Rp, and a plaintext µ ∈
Rp is encrypted to give a linear polynomial over R∨q . The encryption process for
the THRing cryptosystem for a plaintext µ requires us to generate a Noise random
variable that is the result of a discretisation process involving the plaintext µ and
some random input. The main notation and terminology we use in discussing
this encryption process is summarised in Figure 9.

The first step of the encryption process is to generate a random input for the
discretisation process involving the plaintext µ. Accordingly, we let

Y ∼ NH(p2ρ2)
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The THRing cryptosystem. Let ψ be a continuous LWE error distribution over KR,
and let b·e denote any valid discretisation to cosets of some scaling of R∨ (e.g. using

the decoding basis
−→
d of R∨). The cryptosystem is defined formally as follows.

– Gen: choose s′ ← bψeR∨ , and output s = t · s′ ∈ R as the secret key.
– Encs(µ ∈ Rp): choose e← bpψet−1µ+pR∨ . Let c0 = −c1 · s+ e ∈ R∨q for uniformly

random c1 ← R∨q , and output the ciphertext c(S) = c0 + c1S. The “noise” in c(S)
is defined to be e.

– Decs(c(S)) for c of degree k: compute c(s) ∈ (R∨)kq , and decode it to e = Jc(s)K ∈
(R∨)k. Output µ = tk · e mod pR.

For ciphertexts c, c′ of arbitrary degrees k, k′, their homomorphic product is the degree-
(k + k′) ciphertext c(S) � c′(S) = c(S) · c′(S) (that is to say standard polynomial
multiplication). The noise in the result is defined to be the product of the noise terms
of c, c′. Similarly, for ciphertexts c, c′ of equal degree k, their homomorphic sum is
c(S) � c′(S) = c(S) + c′(S), and the noise in the resulting ciphertext is the sum of
those of c, c′. (Observe that any degree-k ciphertext resulting from these operations has
coefficients in (R∨)kq , as required). To homomorphically add two ciphertexts of different
degrees, we must first homomorphically multiply the one having smaller degree by a
fixed public encryption of 1 ∈ Rp enough times to match the larger degree.

Fig. 8. The THRing Cryptosystem as stated in Toolkit Section 8.3.

be a Spherical H-Normal random variable with component variance p2ρ2 for an
appropriately chosen ρ. We term Y the Underlying Noise, and Y is a random
vector expressed in the I-basis for H. We can therefore essentially regard Y as
having a pΨ distribution, where Ψ is a continuous LWE Gaussian error distribu-
tion over KR having component variance ρ2. In order to encrypt the plaintext
µ ∈ Rp, we have to discretise Y to the coset σ(pR∨) + σ(t−1µ) of the lattice
σ(pR∨) obtained by the canonical embedding of the scaled dual fractional ideal
pR∨. We consider such a discretisation with respect to the Decoding Conjugate
Pair Basis with basis matrix pΓ (Definition 5), so we can define the discretisation
of Y to a coset of σ(pR∨) determined by the plaintext µ by

Y ′(µ) = b Y epΓσ(pR∨)+σ(t−1µ) .

The Noise random variable Y ′′(µ) in the encryption of the plaintext µ is
then defined by the Toolkit to be

Y ′′(µ) = σ−1(Y ′(µ)),

an element of a coset of pR∨ + t−1µ containing information about the plaintext
µ. For obvious reasons, we refer to Y ′(µ) = σ(Y ′′(µ)) as the Embedded Noise,
and we note that Y ′(µ) is a vector with respect to the I-basis of H.

We can form a linear polynomial C(θ, µ) over R∨q from the Noise Y ′′(µ) that
depends on the secret key s in the following way. We choose A uniformly in R∨q ,
so A ∼ Uni(R∨q ), and we let A′(µ) = −As+Y ′′(µ) ∈ R∨q . The linear polynomial
C(θ;µ) over R∨q is then defined as

C(θ;µ) = A′(µ) +Aθ.
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Description Random Variable Range of Random Variable

Underlying Noise Y Complex Space H

Embedded Noise Y ′(µ) Lattice Coset σ(pR∨) + σ(t−1µ)

Noise Y ′′(µ) Number Field Coset pR∨ + t−1µ

Fig. 9. Notation for the Noise-related quantities used in the THRing encryption of the
plaintext µ.

We note that this linear polynomial over R∨q can be expressed directly in terms
of the Noise Y ′′(µ) and the secret key s as

C(θ;µ) = A(θ − s) + Y ′′(µ).

The encryption process of the THRing cryptosystem then defines this linear poly-
nomial to be the degree-1 ciphertext corresponding to the plaintext µ, that is to
say

Encs(µ) = C(θ;µ).

6.2 Homomorphic Multiplication in the THRing Cryptosystem

The homomorphic product of two degree-1 ciphertext polynomials is obtained
simply by multiplying these polynomials together. Thus we can obtain the
degree-2 ciphertext polynomial over R∨q corresponding to the product µ1µ2 of
plaintexts µ1 and µ2 as

C(θ;µ1, µ2) = C(θ;µ1) � C(θ;µ2),

where C(θ;µ1) = A′1(µ1) + A1θ and C(θ;µ2) = A′2(µ2) + A2θ. This degree-2
ciphertext polynomial can be expressed directly as

C(θ;µ1, µ2) = A′1(µ1)A′2(µ2) + (A2A
′
1(µ1) +A1A

′
2(µ2)) θ +A1A2θ

2,

and in terms of the secret key s and its constituent Noises Y ′′1 (µ) and Y ′′2 (µ) as

C(θ;µ1, µ2) = A1A2(θ− s)2 + (A2Y
′′
1 (µ1) +A1Y

′′
2 (µ2)) (θ− s) + Y ′′1 (µ1)Y ′′2 (µ2).

The Noise in this degree-2 ciphertext polynomial C(θ;µ1, µ2) is defined to be
the product Y ′′1 (µ1)Y ′′2 (µ2) of the Noises Y ′′1 (µ1) and Y ′′2 (µ2) of the constituent
degree-1 ciphertexts, that is to say the constant term in the above formulation
of C(θ;µ1, µ2). This process extends in the obvious way to give ciphertexts of
higher degree.

6.3 The Decryption Process in the THRing Cryptosystem

The Toolkit uses a scaled embedded decoding basis, that is to say a pΓ ′-basis
(Definition 14), to specify a decryption process for the THRing cryptosystem,
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Lemma 8.5. Suppose the noise e in a degree-k ciphertext c is δ-subgaussian with
parameter r for some δ = O(1), and q ≥ r ·m̂k−1√n ·ω(

√
logn). Then Decs(c) recovers

e with probability 1−negl(n). Alternatively, if q > 2‖e‖2m̂k−1√n, then Decs(c) recovers
e with certainty.

Fig. 10. Toolkit Lemma 8.5 (as stated).

though any appropriate basis can be used. We therefore describe for simplicity
an alternative decryption process for our case when m is prime in which we
simply replace the pΓ ′-basis with a scaled embedded decoding conjugate pair
basis or pΓ -basis (Definition 13) in an otherwise identical process.

In our discussion of the THRing cryptosystem, it is necessary to consider
the expression of an element of H as a vector with respect to various different
bases for H. We therefore recall the notation of of Section 2.3 and illustrated in
Figure 5. If Z is a vector expressing an element of H as a vector of conjugate pairs
in the I-basis (or standard basis) for H, then we have real vectors Z‡ = T †Z,
Z∗ = p−1Γ−1Z and Z∗∗ = Γ ′−1Z expressing this element as a vector in the
T -basis, the pΓ -basis and the pΓ ′-basis for H respectively. The change of basis
transformations between these latter three bases are also summarised in Figure 4

Decryption of the degree-1 ciphertext polynomial C(θ, µ) is performed by
evaluating this polynomial at the secret s to obtain information about the Noise
as

C(s;µ) = Y ′′(µ) mod R∨q .

We let JrKq = r−q[q−1r] for r ∈ Z to denote the coset representative of (r mod q)
nearest to 0, and we can use the same notation for a coset of Zq. We can also
extend this idea componentwise to vectors, and we write J·KBq to indicate such
an extension with respect to the basis B. If we embed C(s, µ) in H under σ and
perform such a reduction modulo q with respect to to this pΓ -basis, then we
obtain an integer vector Jσ(C(s, µ))KpΓq with entries in [− 1

2q,
1
2q).

The Embedded Noise Y ′(µ) is expressed in the I-basis for H, so Y ′(µ) is
expressed with respect to the T -basis of H as the real vector Y ′(µ)‡ = T †Y (µ).
However, the change of basis from this T -basis to the pΓ -basis of H is given by
p−1∆ = p−1Γ−1T , so there is a real transformation Y ′(µ)∗ = p−1∆Y (µ)‡ that
gives a real vector Y ′(µ)∗ specifying the Embedded Noise expressed with respect
to the pΓ -basis for H. This allows us to write

Y ′(µ)∗ = Jσ(C(s, µ))KpΓq if the Embedded Noise is small enough.

In this case, we can recover the real vector Y ′(µ)∗ and hence the real Embedded
Noise vector Y ′(µ)‡ with respect to the T -Basis. This allows us to determine the
coset representative σ(t−1µ) for the coset of the lattice σ(pR∨) corresponding
to the plaintext µ ∈ Rp. Thus if the Embedded Noise is small enough with high
probability, then we can recover the plaintext µ with high probability. In this
case, we can express the decryption process as Decs(C(θ;µ)) = µ.

This decryption process generalises to degree-2 and higher degree ciphertexts
by using a scaled decoding conjugate pair basis (Definition 6) and so on. Thus
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Lemma 6.5. Let I = (R∨)k for some k ≥ 1, let a ∈ I and write a = 〈m̂1−k−→d ,a〉
for some integral coefficient vector a, and let q ≥ 1 be an integer. If every co-
efficient aj ∈ [−q/2, q/2), then Ja mod qIK = a. In particular, if every aj is
δ-subgaussian with parameter s, then Ja mod qIK = a except with probability at most
2n exp(δ − πq2/(2s)2).

Fig. 11. Toolkit Lemma 6.5 (as stated).

if C(θ;µ1) and C(θ;µ2) are two degree-1 ciphertexts with respective Embedded
Noise Y ′1(µ1) and Y ′2(µ2), then we clearly have

C(s;µ1, µ2) = Y ′′(µ1)Y ′′(µ2) = C(s;µ1)C(s;µ2) mod (R∨)2q.

With the obvious extension of notation to the appropriate scaled conjugate de-
coding basis (Definition 6), we have

(Y ′1(µ1)� Y ′2(µ2))
∗

= Jσ(C(s;µ1, µ2))Km
−1pΓ

q for small Embedded Noise.

If the Embedded Noise is small enough with high probability, then we can recover
the plaintext product µ1µ2 ∈ Rp with high probability. The generalisation of the
decryption process to decrypt higher degree ciphertexts is also clear.

6.4 Issues in the Toolkit Analysis of the THRing Cryptosystem

We begin our discussion of the Toolkit analysis of the THRing cryptosystem
by considering the decryption of degree-1 ciphertext. Toolkit Lemma 8.5 (see
Figure 10) states a result for the probability of correct decryption for degree-1
(and higher degree) THRing ciphertexts, where the result is justified as following
directly from Toolkit Lemma 6.5 (see Figure 11).

Some care is needed with this Toolkit approach to degree-1 ciphertexts as
the subgaussian standard parameter for vector random variable expressing the
Embedded Noise varies greatly depending on the basis used. It seems that Toolkit
Lemmas 8.5-8.7 of Section 8.3 use a subgaussian standard (or scaled) parameter
of random vectors expressed in the I-basis (or equivalently the T -basis) for H,
but Toolkit Lemma 6.5 uses a subgaussian standard (or scaled) parameter for
random vectors expressed in a decoding basis, such as the pΓ -basis or the pΓ ′-
basis. However, Lemmas 53 - 55 show how the subgaussian standard parameter
changes considerably when moving between these bases.

We now consider the decryption of higher degree ciphertexts in the THRing

cryptosystem, focussing (without loss of generality) on degree-2 ciphertexts. The
Toolkit analysis of such a degree-2 ciphertext is based on Toolkit Lemma 8.7 (see
Figure 12). We note that σ(Y ′′1 (µ1)Y ′′2 (µ2)) = Y ′1(µ1)�Y ′2(µ2), so we can restate
Toolkit Lemma 8.7 using our terminology in terms of the Embedded Noise in
the following way.
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Lemma 8.7. Let e, e′ be the noise terms in ciphertexts c, c′, respectively. Then the
noise e · e′ in the ciphertext c � c′ satisfies ‖e · e′‖ ≤ ‖e‖ · ‖e′‖∞, where ‖ · ‖ denotes
either the `2 or `∞ norm. Moreover, if e is δ-subgaussian with [scaled] parameter r,
then the noise e ·e′ is δ-subgaussian with [scaled] parameter r ·‖e′‖∞. In particular, if e′

is δ-subgaussian with [scaled] parameter r′ and is independent of e. then e · e′ is within

negl(n) statistical distance of a δ-subgaussian with [scaled] parameter r ·r′ ω((logn)
1
2 ).

Fig. 12. Toolkit Lemma 8.7 (as stated).

Restated Toolkit Lemma 8.7 for Two Degree-1 Ciphertexts.
Let Y ′1(µ1) = σ(Y ′′1 (µ1)) and Y ′2(µ2) = σ(Y ′′2 (µ2)) be the Embedded Noise terms
(in the I-basis) of two degree-1 ciphertexts C(θ;µ1) and C(θ;µ2) given by the
encryption of the plaintexts µ1 and µ2 respectively.
(i) The Embedded Noise Y ′1(µ1) � Y ′2(µ2) in the ciphertext C(θ;µ1) � C(θ;µ2)
satisfies ‖Y ′1(µ1) � Y ′2(µ2)‖ ≤ ‖Y ′1(µ1)‖ · ‖Y ′2(µ2)‖∞, where ‖ · ‖ denotes either
the `2 or `∞ norm.
(ii) If the Embedded Noise Y ′1(µ1) is a δ-subgaussian random variable with
standard parameter b1, then the Embedded Noise product Y ′1(µ1) � Y ′2(µ2) of
C(θ;µ1)�C(θ;µ2) is a δ-subgaussian random variable with standard parameter
b1‖Y ′2(µ)‖∞.
(iii) If the Embedded Noise Y ′2(µ2) is a δ-subgaussian random variable with stan-
dard parameter b2 and the Embedded Noises Y ′2(µ2) and Y ′1(µ1) are independent,
then the Embedded Noise Y ′1(µ1)�Y ′2(µ2) is within negl(n) statistical distance

of a δ-subgaussian random variable with standard parameter b1b2 ω((log n)
1
2 ).
ut

Toolkit Lemma 8.7 is highly problematic, as the following three remarks
demonstrate. Firstly, Theorem 4 shows that a product Y ′1(µ1) � Y ′2(µ2) of Em-
bedded Noise is not a δ-subgaussian random variable (or even close to one). Sec-
ondly, the claim of part (ii) that the Embedded Noise product Y ′1(µ1)� Y ′2(µ2)
is a δ-subgaussian random variable with standard parameter b1‖Y ′2(µ2)‖∞ is not
correct as b1‖Y ′2(µ2)‖∞ is itself a random variable. Thirdly, Example 2 shows
that the �-product of two independent δ-subgaussian random variables on H
each with a fixed standard parameter can have an arbitrarily large standard
parameter even for small n, contrary to the claim of part (iii).

More generally, the application of Toolkit Lemma 8.7 to the analysis of the
THRing cryptosystem is justified in the preamble by the assertion that this
Lemma provides “... (nearly) tight bounds on the subgaussian parameter of the
noise under [componentwise multiplication]”. However, Theorem 4 shows that
degree-2 Noise is not a δ-subgaussian random variable, that is to say that stan-
dard parameter of degree-2 Noise must formally be regarded as infinite in any
statement about such a standard parameter. Thus it is simply not possible to
construct a “(nearly) tight bound” for the standard parameter of the Noise of a
higher degree THRing ciphertext, contrary to this assertion of the Toolkit. These
observations give Proposition 2.
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Proposition 2. The proof of Toolkit Lemma 8.7(ii) and (iii) is not correct. The
use of Toolkit Lemma 8.7 to provide justification that degree-2 Noise in THRing

can be regarded as approximately δ-subgaussian and to provide an approximate
standard parameter is not sustainable. ut

6.5 Decryption of Degree-1 Ciphertexts in the THRing Cryptosystem

We now give a rigorous approach to analysing the decryption of a degree-1 ci-
phertext in the THRing cryptosystem. The THRing decryption process for the
degree-1 ciphertext C(θ;µ) using the pΓ -basis for H (for example) processes
this ciphertext as Jσ(C(s;µ))KpΓq . The processing of a degree-1 ciphertext in this
way therefore fundamentally involves a change of basis transformation between
bases for H ultimately to the pΓ -basis. Analysing this change of basis transfor-
mation yields Theorem 5, which gives a bound for the probability of the incorrect
decryption of a THRing degree-1 ciphertext when using the pΓ -basis for H.

Theorem 5. The probability of the incorrect decryption of a THRing degree-1
ciphertext using the pΓ -basis for H is bounded for moderate or large 1

2 (n
1
2 ρ)−1q

by

P(Incorrect decryption of degree-1 ciphertext) ≤ 4n
3
2 ρ

(2π)
1
2 q

exp

(
− q2

8nρ2

)
. ut

Proof. Lemma 54 shows that the vector
(
bZepΓΛc

)∗
expressing the Embedded

Noise in the pΓ -basis for H is very well-approximated by a multivariate Normal
random variable U ∼ N(0; ρ2(mI−J)), with components U1, . . . , Un ∼ N(0, nρ2).
Thus these components have upper tail probability given for α > 0 by

P(Uj > α) = P
(

(n
1
2 ρ)−1Uj > (n

1
2 ρ)−1α

)
= Q

(
(n

1
2 ρ)−1α

)
,

where Q is the “Q-function” giving the upper tail probability for a standard
Normal N(0, 1) distribution. This tail probability Q(x) is bounded by its asymp-

totic expansion as Q(x) ≤ (2πx2)−
1
2 exp(− 1

2x
2), and we note that this bound is

extremely tight for even moderate values of x > 0. We can now obtain a bound
for the tail probability for the maximum of U1, . . . , Un for moderate (n

1
2 ρ)−1α

by using the union bound [17] (also used in a similar way in Toolkit Lemma 6.5)
to obtain

P (max{U1, . . . , Un} > α) ≤ nP(Uj > α) = nQ
(

(n
1
2 ρ)−1α

)
≤ n

3
2 ρ

(2π)
1
2α

exp

(
− α2

2nρ2

)
.

Thus we obtain a bound for the tail probability for the maximum absolute size
of a component of

P (max{|U1|, . . . , |Un|} > α) ≤ 2n
3
2 ρ

(2π)
1
2α

exp

(
− α2

2nρ2

)
.
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We can now give a bound for the probability of decryption failure for a degree-
1 ciphertext using the Γ -basis. In this case, decryption fails if the absolute size
of any component of exceeds 1

2q, so taking α = 1
2q for moderate and large

1
2 (n

1
2 ρ)−1q gives

P(Incorrect decryption of degree-1 ciphertext) ≤ 4n
3
2 ρ

(2π)
1
2 q

exp

(
− q2

8nρ2

)
. ut

We note that using the subgaussian tail bound of Lemma 18 in the manner of
Toolkit Lemma 6.5 for the pΓ -basis gives an equivalent bound for the probability
of incorrect decryption of 2n exp(− 1

8 (nρ2)−1q2), but this bound is less tight than
Theorem 5. For a THRing degree-1 ciphertext, applying the Theorem 5 bound
gives P(Incorrect decryption) → 0 as q → ∞ if n is fixed. If q and n are both
allowed to become large together, the situation is more complicated. For example,
if we set q = Aρn

1
2 (log n)

1
2 in the spirit of Toolkit Lemma 8.5 for some constant

A > 0, then this bound for the probability of incorrect decryption becomes

P(Incorrect decryption of degree-1 ciphertext) ≤ 4n1−
1
8A

2

(2π)
1
2A(log n)

1
2

→ 0

as n→∞ for A2 ≥ 8. This bounding function is a “negligible” function of n for
large enough A. We also note that using Lemma 55 gives related bounds for the
probability of incorrect decryption of a THRing degree-1 ciphertext when using
the pΓ ′-basis for H.

6.6 Decryption of Degree-2 Ciphertexts in the THRing Cryptosystem

We now give a rigorous approach to the analysis of the THRing decryption pro-
cess for a degree-2 ciphertext, though we note these ideas can easily be extended
to higher degree ciphertexts by using Lemma 34 and so on. We have seen that
the distribution of the Embedded Noise expressed in the I-basis or the T -basis
for H for such a degree-2 ciphertext has component distributions cannot there-
fore be approximated in any meaningful way as δ-subgaussian random variables.
As noted above, the Toolkit approach based on such an approximation cannot
be regarded as sustainable. However, we have also seen that it is possible to
recover a multivariate Normal approximation for the distribution of the Embed-
ded Noise when expressed as a vector in a scaled Γ -basis or Γ ′-basis for H by
using a Central Limit approach.

In more detail, the decryption of a THRing degree-2 ciphertext C(θ;µ1, µ2)

involves processing this ciphertext as Jσ(C(s;µ1, µ2))Km
−1pΓ

q , that is to say by
regarding this Embedded Noise expressed as a vector with respect to the rescaled
decoding conjugate pair m−1pΓ -basis. Thus the processing of a degree-2 cipher-
text fundamentally involves change of basis transformations for bases for H ul-
timately to the m−1pΓ -basis. Lemma 56 demonstrates that the embedded Noise
of a degree-2 ciphertext expressed as a vector is well-approximated as a mul-
tivariate Normal random distribution by invoking (as before) a Central Limit
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argument. This approach allows us to give a bound for incorrect decryption of
a degree-2 ciphertext in Theorem 6.

Theorem 6. The probability of the incorrect decryption of a THRing degree-
2 ciphertext using the m−1pΓ -basis for H is bounded for moderate or large
1
2 (n

1
2mpρ1ρ2)−1q by

P(Degree-2 Incorrect decryption) ≤ 4n
3
2mpρ1ρ2

(2π)
1
2 q

exp

(
− q2

8nm2p2ρ21ρ
2
2

)
. ut

Proof. We can adapt the argument of the proof of Theorem 5 simply by using
Lemma 56 to give the appropriate moments and so replacing ρ with mpρ1ρ2. ut

For a THRing degree-2 ciphertext, as for a degree-1 ciphertext, the Theo-
rem 6 bound gives P(Incorrect decryption) → 0 as q →∞ if m and n = m− 1
are fixed. However, as before, if q and n are both allowed to become large to-
gether, the situation is more complicated. For example, if in the spirit of Toolkit
Lemma 8.5, we set q = Aρ1ρ2n

1
2 (log n)

1
2 for some constant A > 0, then this

incorrect decryption bound becomes

P(Incorrect decryption of degree-2 ciphertext) ≤ 4mp n
1− 1

8mp2
A2

(2π)
1
2A(log n)

1
2

.

It is clear that this bounding function for the probability for the incorrect de-
cryption of a THRing degree-2 ciphertext when using the m−1pΓ -basis for H
becomes arbitrarily large as m → ∞ (and hence n = m − 1 → ∞), so cannot
meaningfully be used to bound a probability. Similarly, the equivalent bounding
function for the probability for the incorrect decryption of a degree-2 ciphertext
when using the m−1pΓ ′-basis for H cannot meaningfully be used to bound a
probability as m → ∞. Thus it is not possible to use this Toolkit approach
to obtain a meaningful bound for the probability of incorrect decryption of a
degree-2 ciphertext in the q = Aρ1ρ2n

1
2 (log n)

1
2 situation of Toolkit Lemma 8.5.

6.7 Summary of the Issues in the Analysis of THRing cryptosystem

Our analysis of the THRing cryptosystem shows that the approximate normality
of Embedded Noise is fundamentally a Central Limit phenomenon arising from
the sum of many random variables. As such, the essential issue is the first two
moments of the summand random variables, namely the mean vector and the
covariance matrix. A full rigorous statistical analysis of the THRing cryptosystem
can be made using this standard statistical approach.

By contrast, the Toolkit δ-subgaussian approach to the analysis of THRing
cryptosystem does not really address the fundamental statistical in the decryp-
tion process for the following two reasons.

– The Toolkit asserts incorrectly (for degree-2 and higher degree ciphertexts)
that the summand random variables in this Central Limit sum are or can be
well-approximated as δ-subgaussian random variables.
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– It is not relevant to the approximation and bounding process required to
justify the correctness of the THRing cryptosystem that the summand ran-
dom variables are or can be well-approximated as δ-subgaussian random
variables.

The δ-subgaussian approach of the Toolkit to the analysis of the THRing cryp-
tosystem is therefore in general neither accurate nor relevant.
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