Privacy-Preserving Ridge Regression on Distributed Data

Irene Giacomelli, Somesh Jha, C. David Page, and Kyonghwan Yoon
University of Wisconsin-Madison, Madison, WI, US

July 18, 2017

Abstract. Linear regression is an important statistical tool that models the relationship
between some explanatory values and an outcome value using a linear function. In many
current applications (e.g. predictive modelling in personalized healthcare), these values
represent sensitive data owned by several different parties that are unwilling to share
them. In this setting, training a linear regression model becomes challenging and needs
specific cryptographic solutions. In this work, we propose a new system that can train
a linear regression model with 2-norm regularization (i.e. ridge regression) on a dataset
obtained by merging a finite number of private datasets. Our system is composed of two
phases: The first one is based on a simple homomorphic encryption scheme and takes
care of securely merging the private datasets. The second phase is a new ad-hoc two-
party protocol that computes a ridge regression model solving a linear system where all
coefficients are encrypted. The efficiency of our system is evaluated both on synthetically
generated and real-world datasets.

Keywords: linear regression, distributed data, privacy-preserving system, multiparty compu-
tation.

1 Introduction

Linear regression is an important statistical tool that models the relationship between some
explanatory values (features) and an outcome value using a linear function. More precisely,
given the data-points (z1,v1), ..., (@n, yn) where x; is a vector of d real values (features) and y;
is a real value (outcome), a linear regression method is a learning algorithm for finding a vector
w (the model) with d real components such that the value w(1)x;(1) + - - - + w(d)x;(d) is close
to y; for all i = 1,...,n. Despite its simple definition, a linear regression model is very useful.
Indeed, w can be used to quantify the relationship between the features and the outcome (e.g.
identify which features influence more directly the outcome value) and for future prediction (e.g.
if a new vector of features with no known outcome is given, w can be used to make a prediction
about it).

Motivation. In the standard statistics setting, it is assumed that the party performing the
regression has direct access to all the data points in the training set in order to compute the model
w. This common assumption becomes non-trivial in some relevant areas where linear regression
finds application (e.g. personalized medicine [CT09]) because the data-points encode sensitive
information owned by different and possibly mutually distrustful entities. Often, these entities
will not (or cannot) share their private data, making traditional linear regression algorithms
difficult (or even impossible) to apply. On the other hand, it is known that having a large
training dataset composed of a good variety of data-points (e.g. more relevant features or more
data-points) improves the ability to compute a reliable model. Consider the following example:
We would like to use a given linear regression method in order to predict the weight of a baby
at birth on the basis of some ultrasound measurements made during last month of pregnancy
(e.g. head circumference, femur length, etc). In order to avoid computing a biased model, we
would like to run the selected learning algorithm on data points collected in different hospitals in

different countries. On the other hand, each hospital legally cannot share (in the clear) patients’
sensitive data (the measurements) with other hospitals or with a third party (e.g. a cloud-
computing server). This real-life case exemplifies the challenge on which we focus in this work:
training a linear regression model on data points that must be kept confidential and are owned
by multiple parties.

This work. Our paper takes up this challenge and proposes an efficient solution in the setting
in which the training set is a combination of data input by different parties (data-owners).
Specifically, we consider the setting in which the features in the training dataset are distributed
among different parties (vertically-partitioned dataset) and the setting in which each party has
some of the data-points that form the training set (horizontally-partitioned dataset).

Our system is composed of two phases. In the first phase, a public-key encryption scheme with
limited homomorphic property is used to let the data-owners securely submit their data to a
third party. After this first step, a randomized algorithm is used to compute the desired linear
regression model from the encrypted version of the merged dataset. This algorithm is run by
the party who collected the encrypted data with the help of a crypto-service provider. Neither
one of these two parties have to handle the input data in the clear and no extra information
(beside that released by the model itself) is revealed to these two parties (assuming that they
do not collude). Moreover, notice that the data-owners are active only in the first phase of the
entire system. This makes our solution suitable for all applications in which the majority of
data-owners are willing to help in order to run collaborative analysis but don’t want to (or
cannot) spend to much resources for it.

Related work. The question of privacy-preserving machine learning was introduced in 2000 by
two pioneering works [LPO0JASQQ]. Later on, privacy-preserving linear regression was considered
in a number of different works (e.g. [KLSR04/DHC04/SKLRO4/KLSROSKLSROIHFNTTICDNNTS],
[AHPWTH]). In 2013, Nikolaenko et al. introduced in [NWIT13| the scenario considered in this
paper: the privacy-preserving linear regression protocol has two phases. In the first phase there
are possibly many data-owners that submit their private data to a third party. In the second
phase, the third party is in charge of computing the model with the help of a crypto-service
provider. Their solution considers the horizontally-partitioned setting for ridge regression and
is based on additive encryption (Paillier’s scheme) and Yao’s protocol [Yao86G/LP09]. The latter
is two-party protocol that allows the evaluation of a circuit C' on a pair of inputs (a,b) such
that one party knows only a and the other party knows only b. At the end of the protocol, the
value C(a,b) is revealed but no party learns extra information beside what is revealed by this
value. In [NWIT13|, the ridge regression model is computed using Yao’s protocol to compute
the solution of a linear system of the form Aw = b where the entries of A and b are encrypted
(and must be kept private). The circuit C' is the one that solves a linear system computing
the Cholesky decomposition of the coefficient matrix. Very recently, the system presented in
INWIT13| is extended to the vertically-partitioned setting by the paper |GSBT16]. Gascén et
al. achieves this result using MPC techniques to allow the data-owners to compute shares of the
merged dataset. Moreover, Gascon et al. also improves the running time of the second phase of
the protocol presented in [NWIT13| by designing a new conjugate gradient descent algorithm
that is used as circuit C in the place of Cholesky decomposition (both Choleshy decomposition
and conjugate gradient descent have complexity ©(d?) where d is the dimension of the square
matrix A).

Our paper follows this line of work and presents a new two-phase system. For the first phase,
we extend the approach used by Nikolaenko et al. to the vertically-partitioned setting using an
homomorphic encryption scheme that supports only depth-1 multiplications among ciphertexts.
For the second phase, we design a new two-party protocol that solves the linear system Aw = b.
The first version of this protocol has two rounds of communication and uses only a pseudorandom
generator and modular arithmetic (beside the homomorphic properties of the scheme used in

the first phase). We believe this first solution is interesting for its simplicity and efficiency. On
the other hand this first protocol leaks det(A) to the party holding the encryption of A. To
avoid this we present a second version that has an extra round of communication and invokes a
oracle-functionality to compute division. Notice that this functionality can be implemented by
any two-party protocol for secure function evaluation. In particular, using Yao’s protocol the
circuit C' that need to be considered is the one represents ©@(d) arithmetic operations among
large integers (e.g. 2048 bit-length).

Organization of the paper. In Section [2| we start our presentation recalling ridge linear regres-
sion and we provide the definitions of the cryptographic primitives involved in the design of our
system. In Section 3| we describe the general framework of our system (e.g. parties involved,
security assumptions, security definitions, etc.), and we also provide and overview of its de-
sign. In Section |4| we describes in detail the protocols that form our two-phases system (in the
horizontally-partitioned setting) and provide the formal security proof. In Section |5 we discuss
the extension of our system to the vertically-portioned setting and to the case of lasso-penalized
regression. Finally, Section [6] reports on our implementation and experiments.

Standard notations. We use bold notation for vectors and capital letter for matrices (e.g. « € R™
is a column vector, A € R"*? is matrix with n rows and d columns, both with real-value entries).
We indicate with @(i) the i-th component of a vector & and with A(%, j) the i-th component of
the j-th column of the matrix A. The p-norm of a vector is defined by |||, = /> i, |x(i)[?.

If A is a dx d matrix with entries in a ring R, then the adjugate of A is defined as adj(A4) = C'T
with C(i, j) = (—1)""7 A;; and A;; (the (i, j) minor of A) is the determinant of the (d—1)x (d—1)
matrix that results from deleting row ¢ and column j of A.

2 Background

2.1 Linear Regression

A linear regression learning algorithm is a procedure that on input n points {(x1,y1), ..., (€n,yn)}
(where z; € R? and y; € R) outputs a vector w* € R? such that w* Tz ~ y; foralli=1,...,n.
One common way to compute such a model w* is to use the squared-loss function and the
associated empirical error function (mean squared error):

Fxy(w) = [Xw — yll3

where X € R™*? is the matrix with the vector =, as i'" row and y € R is the vector with
the value y; as i component (we always assume that X is full-rank, rk(X) = d). Specifically,
w* is computed by minimizing a linear combination of the aforementioned error function and a
regularization term,

w” € argmin,, cpa fx 4 (W) + AR(w)

where A > 0 is fixed. The regularization term is added to avoid overfitting the training dataset
and to bias toward simpler models. In practice, one of the most common regularization terms is
the 2-norm (R(w) = ||w||3), which generates a model with overall smaller components. In this
case (called ridge regression), the model w* is computed by minimizing the function Fyiqge(w) =
| Xw -y + Allw|3.
Since, VFyigge(w) = 2X T (Xw — y) + 2 \w, we have that w* is computed solving the linear
system

Aw=1» (1)

where A = X " X + M (symmetric invertible d x d matrix) and b = X "y (vector of d compo-
nents).

2.2 Cryptographic Tools

To design our new privacy-preserving system for linear regression, we employ homomorphic
encryption. An additive encryption scheme is defined by three algorithms:

1. the key-generation algorithm Gen takes as input the security parameter x and outputs the
pair of secret and public key, Gen(k) — (sk, pk).

2. the encryption algorithm Enc is a randomized algorithm that uses the public key to transform
an element from M (finite plaintext space) in a ciphertext, Encpp(x) — ¢ € C.

3. the decryption algorithm Dec is a deterministic function that takes as input a element from
the ciphertext space C and the secret key and reveal the original plaintext (i.e. Decgg(c) =

The standard security property (semantic security) says that it is infeasible for any computa-
tionally bounded algorithm to gain extra information about a plaintext when given only its
ciphertext and the public key pk. Moreover, we have the additive property: we assume that
(M, +) is an additive group and that there exists an operation @ on the ciphertext space C
such that for any a-uple of ciphertexts Encpr(z1) — c1,...,Encpp(x,) — ¢, (a integer), it
holds that Decgg(ci @ -+ @ ¢o) = @1 + -+ - + ®,. This implies that, if a is a positive integer,
Decsk (mult(a, €)) = ax, where mult(a,c¢) =c®--- D ec.

—_———

a times

Ezample 1. (Paillier’s scheme [Pai99].) Let N = pg (product of two prime of x bits) and g <
Zp>, we have pk = (N,g) and M = Zy. To encrypt M € Zy, sample r < Z% and compute
¢ = ¢Mr™Y mod N2. In this case, @ is the standard product in Zy2, indeed: ¢; @ c2 = cica
mod N2 = (g™l mod N?)(gM2rd mod N?) = gM1+M2(r119)N mod N? and mult(a,c;) =
(c1)® mod N2 = (¢Mir) mod N2)* = g*Mip¢N mod N2.

3 Overview

We consider the setting where the training dataset is not available in the clear to the entity that
wants to train the ridge regression model. Instead, the latter can access encrypted copies of the
data and, for this reason, needs the help of the party handling the cryptographic keys in order
to learn the desired model. More precisely, protocols in this paper are designed for the following
parties (see Figure [1)):

— The Data-Owners: there are m data-owners DOq, ..., DO,,; each data-owner DO; has a
private dataset D; and is willing to share it only if encrypted.

— The Machine-Learning Engine (MLE): this is the party that wants to run a linear regression
algorithm on the dataset D obtained by merging the local datasets Dq,...,D,,, but has
access only to the encrypted copies of them. For this reason, the MLE needs the help of the
Crypto Service Provider;

— The Crypto Service Provider (CSP) takes care of initializing the encryption scheme used in
the system and interacts with the MLE to help it in achieving its task (computing the linear
regression model). The CSP manages the cryptographic keys and is the only entity capable
of decrypting.

We assume that the MLE and the CSP do not collude and that all the parties involved are
honest-but-curious. That is, they always follow the instruction of the protocol but try to learn
extra information on the dataset from the messages received during the execution of the protocol
(i.e. passive security). Moreover, we assume that for each pair of parties involved in the protocol
there exists a private and authenticated peer-to-peer channel. In particular, communications
between any two players cannot be eavesdroppe

! Using proxy encryption [AFGHO6], it is possible to decrease to number of messages sent using private
channels. We leave this for future work

The goal is to ensure that the MLE obtains the regression model (the vector obtained by
running the regression algorithm on D in the clear) while both the MLE and the CSP do not
learn any other information about the private datasets D; beyond what is revealed by the model
itself.

In order to achieve this goal we design a new system that can be seen as multi-party protocol
run by the m + 2 parties mentioned before and specified by a list of public parameters and a
sequence of steps. The system described in this paper (Section [4]) has the following two-phase
architecture (see Figure [1)):

— Phase 1 (merging the local datasets): the CSP generates key pair (sk, pk), stores sk and
makes pk public; each DO; sends to the MLE specific ciphertexts computed using pk and
the values in D;. The MLE uses the ciphertexts received and the homomorphic property of
the underling encryption scheme in order to obtain encryptions of A and b.

— Phase 2 (computing the model): the MLE uses the ciphertexts Encpr(A) and Encpi(b) and
private random values in order to obtain encryptions of new values that we call “masked
data”; these encryptions are sent to the CSP; the latter decrypts and runs a given algorithm
on the masked data. The output of this computation (“masked model”) is a vector w that
is sent back from the CSP to the MLE. The latter computes the output w* from w.

Informally, we say that the system is correct if the model computed by the MLE is an ap-
proximation of the model computed by the learning algorithm in the clear. And we say that
the system is private if the distribution of the masked data sent by the MLE to the CSP is
independent from the distribution of the local inputs.

As we will see in Section[dand [B] the specific design of the protocol realising Phase 1 depends
on the distributed setting: horizontally- or vertically-partitioned dataset. However, in both cases,
the encryptions of A and b are computes by the MLE simply using the homomorphic properties
of the encryption scheme used by the DOs to encrypt. The protocol realising Phase 2 is presented
in two versions, both of which return the solution of the system Aw = b following this “masking
trick”:

- Given a matrix R and a vector r, the MLE uses the homomorphic property of the underlying
encryption scheme to compute C’ = Encpr(AR) (from Encpr(A)) and d' = Encpr (b + Ar)
(from Encpr(b). The values C = AR and d = b+ Ar are the “masked data”.

- The CSP decrypts C’ and d’ and computes @ = C~'d. The vector @ is the “masked model”
sent back to the MLE.

- The MLE computes the desired model as w* = Rw — r. Indeed, it is easy to verify that
Rw —7r = R(AR)"'(b+ Ar) —r = A7 'b.

Informally, the security of the encryption scheme assures privacy against an honest-but-curious
MLE. On the other hand, if R and 7 are sampled uniformly at random, then the distribution
of the masked data is independent from A and b. This guarantees privacy against an honest-
but-curious CSP. In [BB89], similar masking tricks are used to design a secret-shared based
MPC protocol for the evaluation of general functions. In this work, we tailor the masking trick
for the goal of solving the linear system Aw = b gaining in efficiency. The details of the two
versions of the protocol realizing Phase 2 are given in the next section. In particular, the usage
of cryptographic tools implies restrictions on the values representation and on the arithmetic
used (modular arithmetic). The first version allows for a small leakage (det(A) is leaked to the
MLE) in order to deal with such constrains. The second version avoid the leakage using a simple
trusted functionality to implement integer division.

4 Protocols Description

In this section, we describe our two-phases system for training a ridge regression model in the
setting described in Section |3} Specifically, we describe how to implement Phase 1 (merging the
datasets) and Phase 2 (computing the model) in Section and respectively.

Phase 1

Phase 2
DO; DO; e DO,
private dataset private dataset private dataset MLE CSP
Dy Do D

encryption of
masked data

e

encrypted data

solve the
masked system

MLE)5 masked model w
get Encpr(A) generate crypto keys: model w*
and Encpk(b) publish pk, keep secret sk

Fig. 1. System overview.

Data representation We assume that the entries of X are real numbers from the interval [—z,]
and the entries of y are real number from the interval [—y,y]. In both cases, we consider each
value with at most ¢ fractional digits. In other words, there exist the matrix X € Z"*¢ and the
vector y € Z" such that
1 4 1
X=—X and =—7y
107 Y= 107

With this assumption, we have that the ridge regression model can be computed as w* =
argmin,,cpa | Xw — g3 + AMJw|[3, with A = 102\ In particular, from now on we consider
A= XTX + M (symmetric invertible matrix in Z?*¢) and b= X "y (vector in Z%).

4.1 Phase 1: merging the dataset

Assume that the dataset represented by the matrix X and the vector y is horizontally-portioned
in m datasets. This means that each DO; holds some rows of the matrix X. We assume that the
correspondence between rows and parties is publicly known and has this form: the data-owner
DO; holds D; and

D, = {(xni,—l"rl? yni71+1)7 BRER) (wni7yn'i,)}

fori =1,...,m (no = 1,n,,, = n). In this case, as already noticed in [NWIT13], we have the
following: define A; = 10*x;x and b; = 102y;x; for i = 1,...n, then

A:zn:Ai—k;\I and bzibi.
i=1 i=1

Each A; and b; can be computed locally by the party DO;; then, if additively homomorphic
encryptions of such values are sent to the MLE, the latter can easily compute encryptions of A
and b. This is depicted in protocol Hﬁor (Figure .

See Section[5.1]for the implementation of Phase 1 in the vertically-partitioned dataset setting.

Protocol IT},,
- Parties: CSP and MLE with no input, DO; with input D; for alli=1,...,m.
- Output: MLE gets A’ and b’ encryptions of A and b, respectively.

- Public parameters: number of features d, total numbers of data points n, parameter \.

Assume that (Gen, Enc, Dec) is an additive encryption scheme with plaintext space M = Zn (e.g.
Paillier’s scheme) and security parameter x.

Step 1: (key-generation) the CSP runs Gen(k) — (sk, pk) and makes pk public, while it keeps sk
secret.

Step 2: (local computation) for all k = 1,...,m, DOy does the following: Compute Ar =
10% 3,] and by = 10 Y, yi@; with i = ng_1 + 1,...,ny; encrypt

A;c(lvj) = Encpk(Ak(i>j))
br. (i) = Encpr (b (i));

for all i,j =1,...,d and j > 4; finally, send all A}, and b}, to the MLE.

Step 8: (datasets merge) the MLE does the following
P A (i, 5) ® Encpi(10%X) if i =j

@ AL (i, 9) otherwise

foralli,j=1,...,d and j > 1;

Fig. 2. The protocol ITj,, implements Phase 1 in the horizontally-distributed setting.

4.2 Phase 2: computing the model

Recall that we want to compute w* such that Aw* = b where A is an invertible matrix in Z4*¢
and b is a vector in Z?. First of all, notice that

* 1 /
YT Qet(a)” @)

where w’ = det(A)A~'b = adj(A)b € Z<. Therefore, to compute w* it is enough to compute
w’ and then rescale its entries by det(A). Since w’ and det(A) are integer values, if N is a
positive large integer, we can compute them in Zy (modulo N). In order to do this in a privacy-
preserving manner, protocol Hfidge V.1 (Version 1) described in Figure|3|implements the masking
trick described in Section [3] The MLE samples R and r uniformly at random with entries in Zy
and uses the encryption of A and b (from Phase 1) to compute encryptions of C = AR mod N
and d = b+ Ar mod N (data masking). These ciphertexts are sent to the CSP. The latter
decrypts and computes w and det(C) (masked model computation). This values are sent back
to the MLE who first computes w’ mod N and then divides it by det(A) (integer division) to
compute w* (model reconstruction).

Protocol II}igz. V.1

The protocol IT},, has been previously run.

- Parties: CSP knows sk, the MLE knows A’ = Encpr(A) and b' = Encpi(b).
- Output: MLE gets w* and det(A).
- Public parameters: number of features d, total numbers of data points n, M = Zy.

Step 1: (data masking) the MLE does the following:
- sample R «+ Z‘]i\,Xd (invertible) and r « Z%;
- compute the values

d
C'(i,§) = @D mult(R(k, j), A' (i, k))

d
d@)=b0)® (@ mult(r (k) A’ (i, k)))

foralli,j7=1,...,d and j <1;
- send the matrix C’ and the vector d’ to the CSP.

Step 2: (masked model computation) the CSP does the following:
- decrypt

C(i,j) = Decsi(C' (i, 4))
d(i) = Decar(d/ (i)

foralli,j=1,...,d;
- compute

w=C""d mod N
c¢=det(C) mod N

- send the vector w and the value ¢ to the MLE.

Step 3: (model reconstruction) the MLE does the following:
- compute

§=cdet(R)™" mod N % § = det(A)
w' = §(Rw —r) mod N

_ L,
’LU—(S’UJ

- output the vector w*

Fig. 3. Version 1 (V.1) of the protocol Hrzidge implements Phase 2: the system Aw = b is solved and
the MLE gets to know det(A). No other information about A and b is revealed.

Informally, protocol Hfidge V.1 is secure against a honest-but-curious CSP because the values

seen by it (the masked data AR mod N and b + Ar mod N) have a distribution that is
unrelated with the input datasets. More precisely we have the following lemma. Let (Z%Xd)* be
the set of all invertible matrices with coefficients in Zy.

Lemma 1. Assume that R is sampled uniformly at random from (Z?VX”[)* and that r is sampled
uniformly at random from Z%. Then, the distribution of (AR mod N,b+ Ar mod N) is the

uniform one over (Z?VXd)* x Z%.

Proof. Given (M,v) € (Z&?)" x 24, let Marp = {(R,7) € (Z5?)" x 2% | AR = M and b +
Ar = v}. It is enough to notice that the map (R,r) — (RM ', A='v —7) is a bijection between
M and My o.

Moreover, protocol Hfidge V.1 is secure against a honest-but-curious MLE because of the
security of the underlying encryption scheme. Indeed, the MLE sees only an encrypted version
of A and b. However, notice that in step 3 of Hfidge V.1 the MLE receive the value det(A), which
is used for the computation of the output w*. This value can leak information about the matrix
A. In order to avoid this and keep det(A) private, we present Hﬁdge V.2 (Version 2) in Figure
The latter has same blueprint as the first version, but it has an extra round of communication
and assumes that the MLE and the CSP has access to an oracle that computes the function

fan : 25 x 24 — R? defined by

(v—3s)(v—3s) mod N
(v—35) mod N

fdyN((S,S),(’U,U)) = (3)
The extra round of communication is used to provide the two parties, the MLE and the CSP,
with additive shares of the values w’ and det(A) in the ring Zy. Then, in the last step each
party inputs the known shares into the oracle implementing f4 n. The latter simply reconstructs
the vector w’ and the value det(A) (adding the relative shares) and then computes w* using
the same formula as before, w* = mw' .

Discussion (info leaked by det(A)) Assume that it is known that |A(Z, j)| < p for some prime p.
Then, given a non-zero integer d (with ged(p, d) = 1), we have that #{A € Z3*¢| det(A) = 6} =

p(g) (p — 1)4=1[d]! where [d] = 1117”:. Therefore, even when det(A) is know, A remains hidden in

a set of cardinality poly(d).

4.3 Security proofs

To formally prove security, we use the standard simulation-based definition [Gol04]. Consider a
public function ¢ : ({0,1}%)* — {0,1}¢ and let P,..., P, be n players modelled as PPT ma-
chines. Each player P; holds the value a; € {0, 1}* and wants to compute the value ¢(ay, ..., ay)
while keeping his input private. The players can communicate among them using point-to-point
secure channels in the synchronous model. If necessary, we also allow the players to use a broad-
cast channel. To achieve their goal, the players jointly run a n-party MPC protocol II. The
latter is a protocol for n players that is specified via the next-message functions: there are
several rounds of communication and in each round the player P; sends to other players a mes-
sage that is computed as a deterministic function of the internal state of P; (his initial input
a; and his random tape k;) and the messages that P; has received in the previous rounds of
communications. The view of the player P;, denoted by Viewp, (ai,...,ay), is defined as the
concatenation of the private input a;, the random tape k; and all the messages received by P;
during the execution of II. Finally, the output of II for the player P; can be computed from the
view Viewp,. In order to be private, the protocol II needs to be designed in such a way that a
curious player P; cannot infer information about a; with j # ¢ from his view Viewp, (a1,. .., ay).
More precisely, we have the following definition.

Definition 1 (Definition 7.5.1 in [Gol04]). We say that the protocol I realizes ¢ with cor-
rectness if for any input (a1,...,ay), it holdﬂ that Pro(aq,...,a,) # output of II for P, =0

2 The probability is over the choice of the random tapes k.

Protocol II}iaz. V.2

The protocol IT},, has been previously run.

- Parties: CSP knows sk, the MLE knows A’ and b’
- Output: MLE gets w*
- Public parameters: number of features d, total numbers of data points n, M = Zy.

Step 1: (data masking) same as in Hfidge V.1

Step 2: (masked model computation) the CSP does the following;:
- decrypt

C(Z,]) = DeCskz(Cl(ivj))
d(i) = Decar(d' ()

foralli,j=1,...,d;
- compute
w=C"'d mod N
W' = Encpk ()
¢ = Encpr(det(C))
- send the vector w’ and the value ¢’ to the MLE.

Step 3: the MLE does the following:
- sample s < Z% and s < Zn;
- compute

v = mult(det(R) ™", ¢) ® Encpi(s)
% v’ is an encryption of det(A) +s mod N
d
(i) = <@ mU|t(R(i7j)7@'(j))> @ (—r(i) ©s(i)
j=1
% v’ is an encryption of Rw —r +s mod N

foralli=1,...,d;
- send the vector v’ and the value v’ to the CSP.

Step 4: the CSP compute

v = Decsg (V)
v = Decsp(v') mod N

Step 5: (model reconstruction) the MLE and the CSP use an oracle to implement the function fq n
. The MLE inputs s, s, the CSP inputs v, v. In this way, the MLE obtains all coefficients
of the vector w*.

Fig. 4. Version 2 (V.2) of the protocol Hﬁdge implements Phase 2 of our system: the system Aw = b is

solved without any party gaining extra information about A and b.

for alli € [n]. Let A a subset of at most n — 1 players, the protocol Ily realizes ¢ with privacy

10

against A if it is correct and there exists a PPT algorithm Sim such that (Viewp, (a1, ...,a,))p,ca
and Sim((a;)p,ea, d(a1,...,ay)) are computationally indistinguishable for all inputs.

We are ready to state our first theorem:

Theorem 1. Let IT V.1 be the protocol described in Figure[5 and ¢ be the function computing the
linear regression model from the data in the clear (w* = A71b) augmented with the computation
of det(A). Let D C {1,...,m}. Then, II realizes ¢ with correctness and privacy against the
adversaries Ay = {MLE} U {DO; |i € D} and A2 = {CSP} U{DO;|i € D}.

Proof. Correctness: Using the homomorphic properties of the underlying encryption scheme, it
easy to verify that at the end of Phase 1 of IT, the MLE knows A’ and b such that Decgz(A’) = A
and Decgy(b') = b. It is also easy to verify that after Step 3 in I72, . V.1 we have § = det(A),

ridge
therefore g
det(A)(Rw —7) mod N w mod N w —wt
det(A) mod N ~ det(4) mod N det(A)

Privacy: To prove privacy we construct two simulators Sim; and Simg which simulate the
view of the parties in A; and As, respectively.
Siml({'Di}iep, w*, det(A)):

1. Run Gen(k) — (pk, sk);

2. For all k =1,...,m, if k € D compute A} and b; as in Step 2 of II} . Otherwise compute
Al and b as component-wise encryption of the identity d x d matrix and the zero vector (d
components) (i =ng—1 +1,...,n);

3. Sample R and r as in the protocol;

4. Compute w = R~ (w* +7) mod N and ¢ = det(A) det(R) mod N;

5. Output ({D;}iep, Pk, enc, w, c, w*) where enc contains the encryptions of step (2).

It follows from the semantic security of the encryption scheme that the simulation output has
the same distribution of the views of the corrupted parties in A; in the protocol IT V.1.

Sima({Di}iep, w*):

1. Run Gen(k) — (pk, sk);

2. Sample R and r as in the protocol;

3. Compute Encpr(R) and Encpg(r);

4. Output ({D;}iep, pk, Encpr(R), Encpr(r), w*)

It follows from Lemma [I] that the simulation output has the same distribution of the views of
the corrupted parties in Az in the protocol 1T V.1.

An oracle-aided protocol is an MPC protocol augmented by an oracle-functionality for com-
puting a give function f. If a set of parties send inputs to the oracle, the latter computes f on
such inputs and send back to the parties (or possible a subset of them) the result (see Defini-
tion 7.5.5 in [Gol04]). In this setting, it is possible to state a Composition Theorem (Theorem
7.5.7 in [Gol04]. Informally, this theorem says that if an n-party MPC oracle-aided protocol is
proved secure, than it remains secure when the oracle-functionality is realized with privacy and
correctness by another m-party MPC protocol.

In the following theorem we prove that version 2 of our system (protocol I1}}, . + protocollTZ .
V.2) is secure when it uses an oracle-functionality for the function fq n defined in . Therefore,
because of the aforementioned composition theorem, our system stays secure when the oracle is
replaced by any two-party secure MPC protocol for secure evaluation of fq n run by the MLE
and the CSP.

Theorem 2. Let IT V.2 be the protocol described in Figure[J and ¢ be the function computing
the linear regression model from the data in the clear (w* = A='b). Let D C {1,...,m}. Then,
IT realizes ¢ with correctness and privacy against the adversaries Ay = {MLE} U {DO;|i € D}
and Ay = {CSP} U{DO; |i € D}.

11

Protocol I V.1

- Parties: CSP and MLE with no input, DO; with input D; for i = 1,...,m.
- Output: each party gets w™, the MLE gets also det(A).
- Public parameters: N,d,n, \.

Phase 1: MLE, CSP and DOy, ...,DO,, jointly run IT},,;

Phase 2: - MLE and CSP jointly run Hﬁdgc V.1

- MLE sends to the other parties w”*.

Protocol 1T V.2

- Parties: CSP and MLE with no input, DO; with input D; for i = 1,...,m.
- Output: each party gets w™
- Public parameters: N,d,n, \.

Phase 1: MLE, CSP and DOy, ...,DO,, jointly run IT},,;

Phase 2: - MLE and CSP jointly run Hidge V.2;

- MLE sends to the other parties w*.

Fig. 5. The protocol II implements our system.

Proof. Correctness: Using the homomorphic properties of the underlying encryption scheme, it
easy to verify that at the end of Phase 1 of IT, the MLE knows A’ and b’ such that Decgp(A') = A
and Decgy(b') = b. It is also easy to verify that after Step 4 in Hfidge V.2 wehavev = Rw—r+s
mod N and v = det(A4) + s mod N. Therefore the function f; v computes:

*

(v—38)(v—23) modN:det(A)(Rﬁ)—r) mod N w’ Cw

(v—s) mod N det(A) mod N ~ det(A)

Privacy: To prove privacy we construct two simulators Sim; and Sims which simulate the
view of the parties in A; and As, respectively.
Sim1 ({Di}ieDa ’LU*)I

1. Run Gen(k) — (pk, sk);

2. Forall k =1,...,m, if k € D compute A} and b, as in Step 2 of II} . Otherwise compute
Al and b as component-wise encryption of the identity d x d matrix and the zero vector (d
components) (i =ng_1 +1,...,n);

Compute the encryption of the zero vector (d components) and the encryption of 0.

4. Output ({D;}iep, Pk, enc, w*) where enc contains the ciphertexts computed in step (2) and

(3)-

It follows from the semantic security of the encryption scheme that the simulation output has
the same distribution of the views of the corrupted parties in A; in the protocol IT.
Simg({Di}iGD, w*):

1. Run Gen(k) — (pk, sk);
2. Sample R and r as in the protocol;
3. Compute Encpr(R) and Encpr(r);

w

12

4. Sample s and s as in the protocol;
5. Compute Encpg(s) and Encpp(s);
6. Output
({D;}icp, Pk, Encpr(R), Encpr(r), Encpr(s), Encpr(s), w™)

It follows from Lemma [2 that the simulation output has the same distribution of the views of
the corrupted parties in A5 in the protocol II.

Lemma 2. Assume that R is sampled uniformly at random from (Z%Xd)*, r,8 are sampled
independently and uniformly at random from 74, and s is sample uniformly at random from Zy .
Then, the distribution of (AR mod N,b+ Ar mod N,A"'b+s mod N,det(A)+s mod N)

. . *
is the uniform one over (Z‘fvx‘i) X Zﬁl\, X Zﬁl\, X .

Proof. Similar to proof of Lemma

Discussion (active security) The protocol II guarantees privacy when all the parties follow the
instructions given in the protocol (passive security). Here we briefly discuss the security of IT
in the case when the CSP or the MLE are corrupted and arbitrarily deviate from the protocol.
We still assume that they do not collude.

If the CSP is corrupted, during Phase 2 it can send to the MLE a faulty w causing the
computation of a wrong model w™. In this case, if we are in the horizontally-partitioned setting,
each data-owner DO; can verify on their local data the received model w* and catch the cheating
CSP. That is, DO; checks that (w*)Tx; —y; € [~u,u] for a small u chosen by the parties. If all
data-owners do not complain, the received model is valid. If we are in the vertically-partitioned
setting, then the data-owners can jointly run an m-party MPC protocol to securely compute
the sum of m inputs and again check that (w*)"x; —y; € [~u,u] for all i.

If the MLE is corrupted, then it can decide to ignore o replace some of the ciphertexts
received during Phase 1. This may be reveal extra information about some of the private datasets
D1,...,Dy,. A solution to avoid this threat in the horizontally-partitioned setting is proposed
in [NWIT13|. They use one-time MACs, Pedersen commitments and standard zero-knowledge
proofs. Extending this solution to the vertically-partitioned using multiplicatively homomorphic
commitments is left for future work.

Discussion. Notice that, as the protocol II works with arithmetic on a finite ring, it computes
an approximation of the original linear regression functionality (the one computing a linear
regression model directly from real-valued data). In [FIM™T06], Feigenbaum et al. show that
the output of an approximation may reveal more information than the output of the original
function. For this reason, they define the notion of security approximation and give a protocol to
make an approximation satisfy such definition. A detailed study of our system in the framework
proposed by Feigenbaum et al. is left for future work.

5 Extensions and Future Work

5.1 Vertically-Partitioned Setting

Assume that the dataset represented by the matrix X and the vector vy is vertically-portioned
in m datasets. In other words, we assume that each DO; holds some columns of X and y.
We assume the correspondence between columns and parties is publicly known and can be
represented in the following way. For i = 1,...,m — 1 (ng = 1,ny,,—1 = d), define

z1(ni—1+1) ... z1(ny)
X = : and X, =y

Tn(nic1+1 ... xp(ng)

13

and let D; = {X;}. The data-owner DO; holds D;. In this case, we have that

XX, X[Xo ... X[X,
A=10* : : : + A (4)
X)X X)X X X
and
X! X0
b =10% : (5)
X1 Xm

If all values in X are encrypted, computing an encryption of XiT X requires multiplications of
pairs of ciphertexts. An additive encryption scheme (e.g. Paillier’s scheme) cannot handle such
operation. On the other hand, an encryption of A and b can be computed from encryptions of
the local datasets, if the underling scheme is one-time multiplicative. We say that an encryption
scheme is one-time multiplicative if it is an additive encryption scheme that also support one
multiplication among ciphertext. That is, we assume that in (M, +,-) is a ring and that there
is a product operation ® defined on the ciphertext space C such that for any pair of ciphertexts
Encpr(z1) — ¢1 and Encpr(x2) — 2, it holds that Decgg(c1 ® €2) = @1 - ©2. An example of
one-time multiplicative scheme can be found in [GHVlOJﬂ

Ezample 2. (GHV scheme [GHV10].) Let x,a be integers and p, ¢ primes (a,q = poly(x)). We
have M = Z3** and

1. Gen(k): run the trapdoor function in [AP09] and obtain a matrix A € Z7*" and an invertible
matrix T € Z*** such that TA =0 mod q. Define pk = A and sk =T,

2. Encpr(M): sample S, X and compute C = AS +pX + M mod ¢;

3. Decsk(C): let E=TCT" mod q and output T *E(TT)~! mod p.

o (Figure @ describes how to compute encryptions of A and b using
a one-time multiplicative scheme such as the GHV scheme.
The implementations of Phase 2 in the vertically-partitioned setting remains basically un-

changed. Hfidge (V.1 or V.2) can be used if we updated it in order to take in to account the

Given this, protocol IT}

change of the plaintext space from Zy to Z,** and of the block-wise structure of A and ¥b'.

5.2 Lasso Regression

Beside 2-norm, which grantees a model with overall smaller components, another commonly used
regularization term is 1-norm (R(w) = ||w||1). The latter provides a sparse model (i.e. a model
with only few non-zero components). Note that, 1-norm regularization is often preferred since in
practice it performs feature selection. In this case (known in the literature as lasso regression),
the model w* is computed by minimizing the function Flasso(w) = || Xw — y||3 + A||w]|;. Unlike
ridge regression, lasso-penalized linear regression does not have a closed form solution, if A > 0.
Moreover, Flasso is not differentiable everywhere, and finding its minimum point cannot even be
accomplished by gradient descent. Nevertheless, it is possible to efficiently find an approximation
of it. Indeed, it is known that finding the minimum point of Fi,s, is equivalent to solving the
following convex minimization problem [FT07]:

argminweRdHX'w - y”% (6)
subject to ||w|; < s

3 Similar to the Boneh-Goh-Nassim cryptosystem [BGNO5|, but with a more efficient encryption and
decryption algorithms.

14

Protocol II..,

- Parties: CSP and MLE with no input, DO; with input D; for alli=1,...,m.
- Output: MLE gets A’ and b’ encryptions of A and b, respectively.
- Public parameters: d,n, A, £.

Assume that (Gen, Enc, Dec) is a one-time multiplicative encryption scheme with plaintext space
M = Z5** and security parameter k. Assume a > (n;41 — n;) for all ¢ and let b = [n/a].

Step 1: (key-generation) the CSP runs Gen(k) — (sk, pk) and makes pk public, while it keeps sk
secret.

Step 2: (local computation) for all i = 1,...,m, DO; does the following
- split X; in b matrices with a rows
M
X, = :
M;
(eventually padding with zeros to have M;; € Z¢*®) and compute M;; = Encpi(10° M),
M}; = Encpr(10°M,}) for all j =1,...,b;

- send all M/,

i3

M} to the MLE.

Step 3: (datasets merge) the MLE computes the encryption of X' X; = 3, M, M;x with j > i

and i,j =1,...m as @,_, M/} ® Mj;. The MLE uses these values to forms encryptions
of A and b according to and .

Fig. 6. The protocol IIL,, implements Phase 1 in the vertically-distributed setting.

where s € R is ﬁxecﬁ An approximation of the solutiorﬂ of @ can be found using the conditional
gradient descent method. This method, also known as the Frank-Wolfe (FW) algorithm (see
Chapter 3 in [Bublf)), is an iterative algorithm that works in the following way: given an initial
point w; in R? with |Jw;||; < s, then for any j = 1,2,... compute

v; € argmin |, <. {(Aw; — b) v}
wjt1 = (1= 7j)w; —7;v;

where A= XTX,b=X"yand v; = J%
We could try to extend the “masking trick” to this setting in the following way. Consider
the following problem:

argmin | X R — (y + X7 3
subject to ||Rw —r||; < s

where R is any d x d matrix and r is a vector of d components. Let w be solution of (5.2)). If R
is invertible and w* = Rw — 7, then w™ is solution of @ If the FW algorithm is used in order

4 If we allow s = +00, then standard linear regression is also represented by @
° If rk(X) = d, then @ has a unique solution.

15

to compute an approximation of @, then *" iterative step has the form
argmingcpa [ARW;—1 — (b+ Ar)]Tv)
subject to ||v|1 < s

Therefore, it would seem that our system can be extended to compute lasso regression models:
the CSP knows (AR, b+ Ar) and computes the masked model that them is used by the MLE to
reconstruct the desired model. Unfortunately, this is not true: the question is that the masking
trick (A, b) — (AR, b+ Ar) is secure only if done over a finite ring (e.g. the CSP sees (AR, b+ Ar)
mod N), while the problem has not a clear equivalent in such a ring. So, our system does
not extend trivially to the computation of lasso regression models and moreover we are are not
aware of any system that can efficiently train a lasso regression model on private datasets. Given
the large number of current applications of lasso regression in the bio-medical field, we believe
that filling this gap is an interesting direction for future work.

6 Implementation

In this section we describe our implementation case study of the system described in Section [to
train a ridge regression model on encrypted and distributed datasets. We evaluate the system’s
accuracy and efficiency testing our implementation on different datasets.

6.1 Setup

We implement our system using Paillier’s scheme as underlying additive encryption scheme
(N = pq and p, ¢ primes of bit-length x = 1024). We wrote our software in Python3 5.2 using
the phel.3 libraryﬁ to implement Paillier encryption/decryption and operations on ciphertexts.
We use the gmpy?2 libraryﬂ to implement arithmetic operations with large integers. To compute
the determinant function and to solve linear systems, we use the Gaussian elimination (adapted
to work on the ring Zy). To multiply to square matrices we use the Strassen algorithm.

In each experiment, we split the n data-points evenly among the m data-owners. It is known
that the predictive accuracy of the ridge model obtained depends on A. In machine learning,
different techniques are used to tune the regularization parameter and obtain more accurate
models (e.g. cross-validation); many of these techniques split the input dataset in subsets and
repeat the following procedure: train on some of the subsets and test on the other ones. This
kind of parameter tuning algorithms can be included in our system if minor modifications are
made. Since this is beyond the scope of this implementation case study, in the following we fix
the regularization parameter \ to 0.1. All experiments were run on on a machine with a 2.6GHz
single CPU under Ubuntu Linux 16.04.

6.2 Experiments results

Synthetic data To evaluate the effect of the public parameters (number of data points n,
number of features d, number of fractional digits ¢, number of parties m) on our system perfor-
mance we run experiments on synthetically generated datasets. For any pair of n and d, each
@; is sampled uniformly at random from [—1,1]" (i = 1,...,n). The coefficients of the vec-
tor w* are sampled independently and uniformly at random from the real interval [0, 1]. Finally
Yi = w;r w* +¢;, where ¢; is sampled from a Gaussian distribution with zero mean and variance 1.

5 http://python-paillier.readthedocs.io
" https:/ /pypi.python.org/pypi/gmpy2

16

To evaluate accuracy of our system we compare the output of IT (the vector w™) with the
model w* learned from the data X and y in the clear when the same regularization parameter \
is used. Note that, to run IT we truncate the values in X and y after the ¢ digit in the fractional
part, while the model w* (in the clear) is computed using floating point representation for X
and y. The error is measured using the 2-norm (Euclidean distance of the vector @™ from the
vector w*, optimal solution)

Ey = [lw" — w*[|
Moreover, we measure the error rate of the system computing

Fridge(ﬁ]*) - Fridge ('w*)
Fridge('lU*)

We measure E; and Es for different values of the parameters n and d (with m = 10, A\ = 0.1
constant). A summary of the results of this experiment for version 1 (protocol IT V.1) can be
read in Figure 7] and Table (1} Both the error measures are of the order of 1075 (or below) when
{ is at least 5. Notice the running-time of our protocol II V.1 does not vary significantly by
increasing the number ¢ of digits used for the fractional part of the data (while increasing ¢
significantly decreases the error).

B =

n d | ¢ E, E; Phase 1 (II),,) | Phase 2 (IT544 V.1)
1 | 1.17E-01 | 1.05E-02 1.033 13.831
o | 3| 122B-03 | 6.99E-05 1.082 14.000
5 | 1.I7TE-05 | 6.66E-07 1.126 13.600
L0? 7 | 1.21E-07 | 6.32E-09 1.174 13.266
1 | 1.22E-01 | 8.47E-03 3.203 87.407
00 | 3 1.28E-03 | 7.99E-05 3.173 87.327
5 | 1.18E-05 | 7.05E-07 3.213 87.414
7 | 1.20E-07 | 6.05E-09 3.277 87.441
1 | 6.39E-02 | 1.52E-03 1.041 13.226
o | 3| 6:22B-04 | T.44E-06 1.122 13.218
5 | 6.23E-06 | 7.53E-08 1.113 13.239
L0 7 | 6.22B-08 | T7.46E-10 1.058 13.217
1 | 1.49E-01 | 7.37E-03 3.416 87.763
o0 | 3 1.44E-03 | 9.78E-06 3.476 87.395
5 | 1.44E-05 | 1.01E-07 3.436 87.361
7 | 1.44E-07 | 1.00E-09 3.401 87.360

Table 1. Errors and running times of system IT (version 1) run on synthetically generated data for
different values of digits in the fractional part (average on 10 repetitions). All the timings are reported
in seconds. System parameters: A = 0.1, m = 10, x = 1024.

To evaluate efficiency of our system, we report the running time of Phase 1 (protocol I},)

and Phase 2 (protocol Hfidge V.1 and V.2) for different combinations of parameters.

In Phase 1, Step 2 is the most expensive one (see Table . Here, each data-owner computes
the encryptions of the entries of the locally computed d x d matrices A;. In our setting (n data-
n d(d+1) d(d+1)

2 2

points evenly split among all DOys), this costs -

standard multiplications and

17

Fig. 7. Relation among the average of error E1 (E2 resp.) and the number of fractional digits ¢ for
different parameters choice in the protocol IT V.1. (a) n = 10%,d = 10, (b) n = 10*,d = 20, (c)
n=10%d =20, (d) n=10°d =20

encryptions for one data-owner. If > is small, the costs of the encryptions is dominamﬂ In
this case, the efficiency of this step can be improved using batching techniques to pack multiple
plaintext values in one ciphertext. However, in order to do this, a careful implementation of
the operation done over the chipertext in Step 1 in Hfidge (especially for the operation mult)
becomes necessary. We leave this optimization for future work. As expected, the running time of
protocol IT} is sensitive to the parameters n,d and m, while the efficiency of Phase 2 (protocol
IT34,.) depends mainly on the number of features d.

In Phase 2 (version 1), Step 1 is the most expensive (see Table [3]). Here the MLE needs to
compute O(d?8074) operationﬂ on ciphertexts (multiplications of a ciphertext by a plaintext
and addition of ciphertexts). The use of more performing libraries (or programming languages)
for implementing Paillier’s scheme will directly improve the efficiency of this step.

For version 2 of protocol Hfidge, we report running times for the first 4 steps in Table Step
5 (the oracle) can be implemented by different 2-party protocols. In Appendix we report on
the implementation of Step 5 based on Yao’s two-party protocol and using the Obliv-C librarym

to generate the relative code.

Real Datasets Finally, we run our system on 9 different real-world datasets downloaded from
the UCI repositoryE References about each one of the datasets are given in Table @ The results
of experiments running protocol IT V.1 are reported in Table o} For each dataset, we removed
the data points with missing values and we use 1-of-k encoding to convert nominal features to
numerical ones. Moreover, we split the dataset in 11 subsets: 10 of them were used to train the
model with our system (m = 10), the last subset we used to compute the error rate F;. In Table
n indicates the number of data-points used for training.

Discussion (parameters restriction) In order to get the correct output w* using the protocol

I1} 4,0, we need that both det(A) and w’ are integers in the interval [— 254, £1]. This implies

8 In our code we have that the average running time for 1 multiplication is 3.972530e-06 seconds,
while the average time for 1 encryption is 0.0136508. Thus if = < 3436.3, the encoding time is the
predominant one for Step 2 in IT{,.

9 The asymptotic complexity of the Strassen algorithm to multiply two d x d matrices is O(d*¥0™).
Notice that in our case the use of the Strassen algorithm in the place of standard matrix multipli-
cation significantly reduces the running time. Indeed the Strassen algorithm reduces the number of
multiplications replacing them with additions and subtractions and in the library we use (phel.3),
an encrypted multiplication is about 100 times expensive than an encrypted addition/subtraction.

0 https://oblive.org

' https://archive.ics.uci.edu/ml/datasets.html

18

n d Phase 1 (ITL.,)
Stepl Step2 Step3
10° 10 0.096 0.856 0.005
20 0.308 3.163 0.022
10t 10 0.157 0.910 0.006
20 0.166 3.239 0.022
me5 10° 10 0.178 0.999 0.005
20 0.185 3.568 0.022
10° 10 0.197 2.038 0.005
20 0.120 7.183 0.020
107 10 0.135 12.281 0.006
20 0.089 43.035 0.020
10° 10 0.188 0.888 0.012
20 0.160 3.180 0.047
1ot 10 0.091 0.901 0.013
20 0.144 3.084 0.042
m—10 10° 10 0.149 0.905 0.011
20 0.222 3.196 0.044
10° 10 0.234 1.392 0.012
20 0.281 4.892 0.044
107 10 0.109 6.251 0.011
20 0.086 21.898 0.044
10° 10 0.089 0.856 0.023
20 0.168 3.088 0.101
10t 10 0.199 0.882 0.025
20 0.399 3.118 0.094
m— 20 10° 10 0.192 0.905 0.024
20 0.175 3.215 0.092
106 10 0.464 1.185 0.024
20 0.165 4.133 0.099
107 10 0.202 3.758 0.026
20 0.287 13.166 0.097

Table 2. Running times of protocol IT{,, (Phase 1) run on synthetically generated data. All timing are
reported in seconds (average on 3 repetitions). The n data-points are evenly split among m data-owners.
The columns “Step 2” report the average running time for one data-owner. System parameters: { = 5,
A=1,m=10,k = 1024.

19

N d o o Phase 1 (IT},,) Phase 2 (IT7ag. V.1)
Step 1 Step 2 Step 3 Step 1 Step 2 Step 3
10 7.44E-06 5.13E-07 0.094 0.870 0.012 12.912 0.424 0.001
10° 15 1.33E-05 1.69E-06 0.104 1.768 0.025 34.187 0.934 0.001
20 1.27E-05 1.14E-06 0.144 3.027 0.044 85.648 1.657 0.002
25 1.36E-05 1.08E-06 0.169 4.586 0.070 197.747 2.617 0.003
10 8.17E-06 1.04E-10 0.116 0.913 0.011 12.817 0.433 0.001
10° 15 1.38E-05 1.26E-07 0.137 1.882 0.024 34.462 0.937 0.001
20 1.14E-05 5.36E-08 0.151 3.223 0.044 85.662 1.649 0.002
25 1.90E-05 3.11E-07 0.132 4.870 0.068 197.766 2.567 0.003
10 | 8.85E-06 | 9.06E-10 0.132 6.417 0.012 12.837 0.426 0.001
107 15 1.12E-05 1.04E-08 0.171 12.914 0.025 34.542 0.936 0.001
20 1.24E-05 2.18E-09 0.141 22.236 0.044 85.628 1.673 0.002
25 1.71E-05 1.57E-08 0.086 33.568 0.067 199.723 2.583 0.003

Table 3. Errors and running times of system II (version 1) run on synthetically generated data. All
the timings are reported in seconds (average on 3 repetitions). System parameters: £ = 5, A = 0.1,m =
10, k = 1024.

. J E B Phase 2 (I3 4z V-2)
Step 1 Step 2 Step 3 Step 4
10 | 7.10E-06 | 6.55E-07 12.867 0.571 1.335 0.042
10% 15 | 1.05E-05 | 5.16E-07 33.999 1.141 2.970 0.060
20 1.58E-05 6.74E-07 85.700 1.928 5.266 0.079
25 | 1.58E-05 | 2.34E-06 | 196.783 2.973 8.265 0.098
10 | 8.73E-06 | 9.77E-08 13.201 0.568 1.329 0.041
10° 15 1.27E-05 5.19E-08 34.379 1.142 2.965 0.060
20 | 1.42E-05 | 3.33E-07 86.276 1.930 5.274 0.079
25 | 1.37E-05 | 1.03E-07 | 196.673 3.013 8.507 0.100
10 | 1.05E-05 | 1.32E-08 13.630 0.587 1.398 0.047
107 15 1.13E-05 1.71E-08 36.253 1.293 3.216 0.067
20 | 1.31E-05 | 9.14E-09 85.951 1.927 5.263 0.079
25 | 1.61E-05 | 1.15E-08 | 199.360 3.342 8.692 0.098

Table 4. Running times of protocol Hﬁdge V.2 run on synthetically generated data. All the timings
are reported in seconds (average on 3 repetitions). Error values reported here assumes that Step 5 is
implemented by an ideal oracle. System parameters: £ = 5, A\ = 0.1, k = 1024.

restrictions on the dataset that our system can handle. Assume that for all ¢ and j, z;(j) € [—=, z]
and y; € [—y,y] for some positive z,y € R. Then, for all i and j we have, (X " X)(i, j)| < na?
and |(X "y)(i)| < nzy. Using the Hadamard’s inequality to bound the absolute value of det(A)

and of the entries of adj(A), we obtain that protocol Hfidge produces the correct result when

@zl 10%“nay(na? +)\)d_l} < N2_ !

max {102&1(%%‘2 +)\)dd%,d(d —-1)

For example, if x = 1, y = d, n = 10% and N integer of 2048 bits, the above is guaranteed to be
true if 4 log;o(d) + (20 + a)d < 615.

20

Dataset . J B B Phase 1 (IT},,) Phase 2 (IT7q,. V.1)
Step1 Step2 Step3 | Stepl Step2 Step 3
forest 470 12 | 6.32E-07 | 2.95E-08 | 0.169 1.248 0.006 20.410 0.649 0.001
boston 460 13 | 1.12E-04 | 1.10E-06 | 0.153 1.441 0.007 | 31.329 0.760 0.001
facebook 454 17 | 9.40E-10 | 1.03E-12 | 0.201 2.376 0.013 67.742 1.255 0.002
air 6314 13 | 1.41E-10 | 2.15E-13 | 0.193 1.443 0.012 31.179 0.736 0.001
beijing 37960 | 14 | 1.13E-06 | 4.26E-10 | 0.161 1.590 0.010 31.725 0.819 0.001
wine 4452 11 | 3.05E-05 | 2.04E-07 | 0.222 1.054 0.006 17.871 0.519 0.001
bike 15799 | 14 | 1.38E-10 | 6.47E-15 | 0.199 1.575 0.009 31.659 0.827 0.001
energy 17940 | 25 | 2.64E-05 | 4.76E-08 | 0.146 4.624 0.026 | 196.829 2.591 0.003
student 359 30 | 9.84E-13 | 1.89E-14 | 0.229 6.622 0.033 | 232.898 3.958 0.005

Table 5. Errors and running times of system II (version 1) run on real-world datasets from the UCI
repository. All the timings are reported in seconds (10-cross validation). System parameters: £ = 5, A =
0.1, m =10,k = 1024.

Dataset Reference

forest https://archive.ics.uci.edu/ml/datasets/Forest+Fires

boston https://archive.ics.uci.edu/ml/datasets/housing

facebook https://archive.ics.uci.edu/ml/datasets/Facebook+metrics

air https://archive.ics.uci.edu/ml/datasets/Air+Quality

energy https://archive.ics.uci.edu/ml/datasets/ Appliances-+energy+prediction
beijing https://archive.ics.uci.edu/ml/datasets/Beijing-+PM2.5+Data,
wine https://archive.ics.uci.edu/ml/datasets/ Wine+Quality

bike https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
student http://archive.ics.uci.edu/ml/datasets/student+performance

Table 6. References for the UCI datasets.

7 Conclusions

In this paper we described a new system to train a ridge regression model on the merge of
encrypted datasets held by different (possibly mutually distrustful) parties. We design a first
protocol that is based on simple cryptographic primitives (i.e. Paillier’s encryption scheme and
pseudorandom generators) and a second one that improves the security of the first protocol
assuming the existence of a trusted implementation of a simple functionality (division). We
present a case study implementation and discuss parameter restrictions. We show that for real-
world dataset, our system is fast (e.g. version 1 can train a model on a dataset of almost 18
thousands instances with 25 features split evenly in 10 datasets in less than 4 minutes) and
accurate (the distance from the produced model and the optimal one is always the order of at
most 10~% in all experiments).

References

AFGHO06. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-
encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur., 9(1):1-30, 2006.

21

https://archive.ics.uci.edu/ml/datasets/Forest+Fires
https://archive.ics.uci.edu/ml/datasets/housing
https://archive.ics.uci.edu/ml/datasets/Facebook+metrics
https://archive.ics.uci.edu/ml/datasets/Air+Quality
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
http://archive.ics.uci.edu/ml/datasets/student+performance

AHPWI15.

APO09.

AS00.

BB&89.

BGNOS5.

Bub15.
Ct09.

CDNN15.

DHCo4.

FIM*06.

FTO7.

GHV10.

Gol04.

GSBT16.

HFN11.

KLSRO04.

KLSRO05.

KLSRO09.

LPO0O0.

Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and Lihua Wang. Fast and secure linear
regression and biometric authentication with security update. Cryptology ePrint Archive,
Report 2015/692, 2015.

Joél Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In 26th In-
ternational Symposium on Theoretical Aspects of Computer Science, STACS 2009, February
26-28, 2009, Freiburg, Germany, Proceedings, pages 75-86, 2009.

Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18,
2000, Dallas, Texas, USA., pages 439450, 2000.

Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In Proceedings of the Fighth Annual ACM Symposium
on Principles of Distributed Computing, Edmonton, Alberta, Canada, August 14-16, 1989,
pages 201-209, 1989.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
Theory of Cryptography, Second Theory of Cryptography Conference, TCC 2005, Cambridge,
MA, USA, February 10-12, 2005, Proceedings, pages 325-341, 2005.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and
Trends in Machine Learning, 8(3-4):231-357, 2015.

International Warfarin Pharmacogenetics Consortium et al. Estimation of the warfarin dose
with clinical and pharmacogenetic data. N Engl J Med, 2009(360):753-764, 20009.

Martine De Cock, Rafael Dowsley, Anderson C. A. Nascimento, and Stacey C. Newman.
Fast, privacy preserving linear regression over distributed datasets based on pre-distributed
data. In Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, AISec
2015, Denver, Colorado, USA, October 16, 2015, pages 3-14, 2015.

Wenliang Du, Yunghsiang S. Han, and Shigang Chen. Privacy-preserving multivariate sta-
tistical analysis: Linear regression and classification. In Proceedings of the Fourth SIAM
International Conference on Data Mining, Lake Buena Vista, Florida, USA, April 22-24,
2004, pages 222233, 2004.

Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J. Strauss, and Re-
becca N. Wright. Secure multiparty computation of approximations. ACM Trans. Algo-
rithms, 2(3):435-472, 2006.

Michael P. Friedlander and Paul Tseng. Exact regularization of convex programs. SIAM
Journal on Optimization, 18(4):1326-1350, 2007.

Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple BGN-type cryptosystem
from LWE. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera,
May 30 - June 8, 2010. Proceedings, pages 506522, 2010.

Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cam-
bridge University Press, 2004.

Adria Gascon, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner, Samee
Zahur, and David Evans. Privacy-preserving distributed linear regression on high-
dimensional data. Cryptology ePrint Archive, Report 2016/892, 2016.

Rob Hall, Stephen E Fienberg, and Yuval Nardi. Secure multiple linear regression based on
homomorphic encryption. Journal of Official Statistics, 27(4):669, 2011.

Alan F. Karr, Xiaodong Lin, Ashish P. Sanil, and Jerome P. Reiter. Regression on distributed
databases via secure multi-party computation. In Proceedings of the 2004 Annual National
Conference on Digital Government Research, pages 108:1-108:2. Digital Government Society
of North America, 2004.

Alan F Karr, Xiaodong Lin, Ashish P Sanil, and Jerome P Reiter. Secure regression on
distributed databases. Journal of Computational and Graphical Statistics, 14(2):263-279,
2005.

Alan F Karr, Xiaodong Lin, Ashish P Sanil, and Jerome P Reiter. Privacy-preserving
analysis of vertically partitioned data using secure matrix products. Journal of Official
Statistics, 25(1):125, 2009.

Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Advances in Cryp-
tology - CRYPTO 2000, 20th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 2000, Proceedings, pages 36—54, 2000.

22

LP09.

NWIt13.

Pai99.

SKLRO4.

Yao86.

ZE15.

Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. J. Cryptology, 22(2):161-188, 2009.

Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and Nina
Taft. Privacy-preserving ridge regression on hundreds of millions of records. In 2013 IEEFE
Symposium on Security and Privacy, SP 2018, Berkeley, CA, USA, May 19-22, 2013, pages
334-348, 2013.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT, pages 223-238, 1999.

Ashish P. Sanil, Alan F. Karr, Xiaodong Lin, and Jerome P. Reiter. Privacy preserving re-
gression modelling via distributed computation. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’04, pages 677—
682. ACM, 2004.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October
1986, pages 162-167, 1986.

Samee Zahur and David Evans. Obliv-c: A language for extensible data-oblivious computa-
tion. TACR Cryptology ePrint Archive, 2015:1153, 2015.

23

A Appendix

A.1 Further experimental results

Dataset . iy B B Phase 1 (IT},,) Phase 2 (IT7a4. V.1)
Step1 Step2 Step3 | Stepl Step2 Step 3
1| 3.34E-02 | 6.25E-05 | 0.194 1.589 0.009 | 31.380 0.816 0.001
beijing | 37960 | 14 | 3 | 9.88E-05 | 2.16E-08 | 0.157 1.587 0.009 | 31.416 0.821 0.001
5| 1.13E-06 | 4.26E-10 | 0.161 1.590 0.010 | 31.725 0.819 0.001
1| 1.25E 00 | 2.66E-02 | 0.148 1.010 0.005 | 17.363 0.513 0.001
wine 4452 | 11 | 3 | 5.27E-03 | 2.48E-04 | 0.200 1.031 0.005 | 17.367 0.514 0.001
5 | 3.05E-05 | 2.04E-07 | 0.222 1.054 0.006 | 17.871 0.519 0.001

Table 7. Running time for system I (version 1) run on real-world datasets from the UCI repository. All
the timings are reported in seconds (10-cross validation). System parameters: A = 0.1, m = 10, k = 1024.

A.2 Yao’s protocol for Step 5 in Hfidge

V.2

In this section we present a case study implementation of the oracle functionality used in Step
5 of protocol Hrzidgc V.2. In particular, we assume that the MLE and the CSP use Yao’s 2-party
protocol [Yao86/LP09] in order to securely compute the function fy n (defined in Section
on input s,s from the MLE, and v,v from the CSP. We generate the code for this protocol
using the Obliv-C libraryﬁ Notice that s,v € Zﬁi\, and N = pq (p,q 1024 bits primes). Thus,
all components of s,s,v,v need to be represented as 2048-bits integers. On the other hand,
in the Obliv-C library the largest C++ type for integer is “long long” which has 64 bits. For
this reason, in the following we need to consider integers represented in blocks (block-int). More
precisely, in order to allow for overflow during arithmetic operation, we use 32-bits signed integer
(int32) in each block. This implies that each component of s, s,v,v, and N is represented by
(%W = 67 blocks. For the addition/subtraction and the multiplication of block-int we use
standard arithmetic algorithms. To compute the modulo reduction we use the algorithm in
Figure [8] We tested the code on synthetically generated data. Results of this experiment are
reported in Table [8]

If high dimension datasets are dealt with, an overall runtime might be too long. However,
the computation of function fi x could be easily parallelized on multi-processors, because each
coefficient of the output (the model w*) is computed independently.

12 Obliv-C [ZEL5] is a C++ library that includes an efficient implementation of Yao’s protocol (based
on Yao’s garbling scheme).

24

Input: A = Zfio a;M*® and B = Z?GO b M* with A, B = 2048 bits signed integers, a;, b; = 32 bits

signed integers and M = 23! (becau;e of 1 signed bit).
Output: Let A = QB + R, the output is R.

/*preprocess™/
A" = |A]
B'=|B|

x = max(i), where aj # 0
y = max(i), where b} # 0
z=x—y

B' =B« M*

/*compute remainder*/
while
if (A" > B')

if (575 > 1) then A'= A"~ || B else A’ = A"~ B/
Yy

b7 +1
else

if(2z>0) thenz=2z-1, B’:%’ else break

/*adjust a sign of remainder®/
if (Ax B>0) thenreturn A’ elsereturn — A’

Fig. 8. Algorithm to compute the remainder in a division among two block-integers.

Phase 1 (IT},,)

Phase 2 (1174, V.2)

n | d E, £y
Step1 Step2 Step3 | Stepl Step2 Step3 Step4d Step b
5 | 7.81E-06 | 1.32E-06 | 0.097 0.263 0.003 | 1.969 0.193 0.343 0.023 195.025
10° | 10 | 8.30E-06 | 6.35E-07 | 0.143 0.858 0.012 | 12.984 0.594 1.405 0.044 516.760
15 | 1.04E-05 | 8.81E-07 | 0.243 1.791 0.026 | 34.151 1.178 3.152 0.064 964.283

25

Table 8. Errors and running times for our system II (version 2) run on synthetically generated data.
Step 5 is implemented using Yao’s scheme. All the timings are reported in seconds (average on 3
repetitions). System parameters: £ = 5, A = 0.1, m = 10,k = 1024.

	Privacy-Preserving Linear Regression on Distributed Data

