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Abstract. Families of stable cyclic groups of nonlinear polynomial trans-
formations of affine spaces Kn over general commutative ring K of in-
creasing with n order can be used in the key exchange protocols and
related to them El Gamal multivariate cryptosystems. We suggest to
use high degree of noncommutativity of affine Cremona group and mod-
ify multivariate El Gamal algorithm via the usage of conjugations for
two polynomials of kind gk and g−1 given by key holder (Alice) or giv-
ing them as elements of different transformation groups. We present key
exchange protocols based on twisted discrete logarithms problem which
uses noncommutativity of semigroup. Recent results on the existence of
families of stable transformations of prescribed degree and density and
exponential order over finite fields can be used for the implementation of
schemes as above with feasible computational complexity. We introduce
an example of a new implemented quadratic multivariate cryptosystem
based on the above mentioned ideas.

Keywords: Multivariate Cryptography, stable transformations, shifted multi-
variate El Gamal algorithm, desyncronisation diagram

1 Introduction

Multivariate cryptography [1] is one of the directions of Post Quantum Cryp-
tography (PQC). Some examples of multivariate cryptography algorithms can
be constructed in terms of algebraic graph theory (see section 2, which is a
brief introduction to this area). Section 3 is devoted to Diffie - Hellman type
key exchange algorithm for cyclic subgroup of affine Cremona group and related
idea of a stable transformation of affine space over general commutative ring.
Basic version of multivariate El Gamal algorithm is also discussed there, some
results on constructions of examples of families of stable transformations are
observed. Notice that one can use more general families of transformations of
bounded degree and large order instead of stable transformations in mentioned
above protocol and cryptosystem. For instance, in the case of finite fields one
can use classical Singer transformations τn of vector spaces Fq

n of order qn − 1
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(see [2] or [3] and further references) and a family of stable maps gn of degree d.
Then elements of kind fn = gn

−1τngn form a family of order qn − 1 and degree
bounded by d2. Notice that inverses of fn also have degree ≤ d2. In the majority
of known cases of stable families of gn mentioned in section 3 one can easily
check that related transformations fn are nonlinear. Such elements can be used
as generators of cyclic groups used in multivariate Diffie-Hellman protocols an
multivariate El Gamal cryptosystems.

Section 4 is devoted to shifted El Gamal cryptosystem, which uses high level
of noncommutativity in affine Cremona group. We also consider more general
protocols than Diffie Hellman scheme where key holder uses conjugations in
noncommutative group. Security of such modified protocols is connected with
twisted discrete logarithm problem. The idea of desynchronisation over diagram
is used to modify El Gamal algorithm where conjugates of gk and g−1 are ele-
ments of different factor groups presented in section 5. Next section is devoted to
explicit constructions of families of stable transformations of prescribed degree.
In section 7 we consider the generalisation of twisted discrete logarithm problem
with usage of commuting subgroups A and B of a chosen semigroup. In the last
section we introduce implemented desynchronised El Gamal algorithm based on
quadratic stable transformations of large order.

2 On Post Quantum and Multivariate Cryptography

Post Quantum Cryptography serves for the research of asymmetrical crypto-
graphical algorithms which can be potentially resistant against attacks based on
the use of quantum computer.

The security of currently popular algorithms is based on the complexity of the
following three known hard problems: integer factorisation, discrete logarithm
problem, discrete logarithm for elliptic curves.

Each of these problems can be solved in polynomial time by Peter Shor’s
algorithm for theoretical quantum computer.

Despite that the known nowadays small experimental examples of quantum
computer are not able to attack currently used cryptographical algorithm, cryp-
tographers already started research on postquantum security. They also should
mind new results of general complexity theory such as complexity estimations
of isomorphism problem obtained by L. Babai [4].

The history of international conferences on Post Quantum Cryptography
(PQC) started in 2006.

We have to notice that Post Quantum Cryptography differs from Quantum
Cryptography, which is based on the idea of usage of quantum phenomena to
reach better security.

Modern PQC is divided into several directions such as Multivariate Cryptog-
raphy, Lattice base Cryptography, Hash based Cryptography, Code base Cryp-
tography, studies of isogenies for superelliptic curves.

The oldest direction is Multivariate Cryptography which uses polynomial
maps of affine space Kn defined over a finite commutative ring K into itself
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as encryption tools. It exploits the complexity of finding solution of a system
of nonlinear equations from many variables. Multivariate cryptography uses as
security tools a nonlinear polynomial transformations of kind:

x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn)

acting on the affine space Kn, where fi ∈ K[x1, x2, . . . , xn], i = 1, 2, . . . , n are
multivariate polynomials given in standard form, i. e. via a list of monomials in
chosen order. Important ideas in this direction reader can find in ([6], [7], [8]).

Current task is a search of an algorithm with resistance to cryptoanalytic
attacks based on ordinary Turing machine. Multivariate cryptography has to
demonstrate practical security algorithm which can compete with RSA, Diffie-
Hellman protocols, popular methods of elliptic curve cryptography (see [1], [9]).

This is still a young promising research area with the current lack of known
cryptosystems with the proven resistance against attacks with the use of ordinary
Turing machines. Studies of attacks based on Turing machine and Quantum
computer have to be investigated separately because of different nature of two
machines, deterministic and probabilistic respectively.

Recall that K stands for a commutative ring. Symbol S(Kn) stands for the
affine Cremona semigroup of all polynomial transformations of affine space Kn.

Multivariate cryptography started from studies of potential for the special
quadratic encryption multivariate bijective map of Kn, where K is an extension
of finite field Fq of characteristic 2. One of the first such cryptosystems was pro-
posed by Imai and Matsumoto, cryptanalysis for this system was invented by J.
Patarin. The survey on various modifications of this algorithm and correspond-
ing cryptanalysis the reader can find in [1]. Various attempts to build secure
multivariate public key were unsuccessful, but the research of the development
of new candidates for secure multivariate public keys is going on (see for instance
[10] and further references).

Applications of Algebraic Graph Theory to Multivariate Cryptography were
recently observed in [11]. This survey is devoted to algorithms based on bijective
maps of affine spaces into itself. Applications of algebraic graphs to cryptography
started from symmetric algorithms based on explicit constructions of extremal
graph theory and their directed analogue. The main idea is to convert an alge-
braic graph in a finite automaton and to use the pseudorandom walks on the
graph as encryption tools. This approach can be also used for the key exchange
protocols. Nowadays the idea of ”symbolic walks” on algebraic graphs when
a walk on a graph depends on parameters given as special multivariate poly-
nomials in variables depending of plainspace vector brings several public key
cryptosystems. Other source of graphs suitable for cryptography is connected
with finite geometries and their flag system. (see [11] and further references).
Bijective multivariate sparse encryption maps of rather high degree based on
walks in algebraic graphs were proposed in [12].

One of the first usage of non bijective map of multivariate cryptography
was in oil and vinegar cryptosystem analysed in [5]. The observation of the
further research on non bijective multivariate cryptography a reader can find
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in [19] (proceedings of the International Conference DIMA 2015 in Belarus),
where the new cryptosystems with non bijective multivariate encryption maps
on the affine space Zm

n into itself was presented together with some results
concerning construction of bijective stable transformations of large order of finite
vector spaces. The technique of [13] is based on the usage of the embeddings
of projective geometries into corresponding Lie algebra (see [25] and further
references).

3 On stable multivariate transformations for the key
exchange protocols

It is widely known that Diffie-Hellman key exchange protocol can be formally
considered for the generator g of a finite group or semigroup G. Users need
a large set {gk|k = 1, 2, . . . } to make it practical. One can see that security
of the method depends not only on abstract group or semigroup G but on the
way of its representation. If G is a multiplicative group F ∗p of finite field Fp
than we have a case of classical Diffie-Hellman algorithm. If we change Fp

∗

for isomorphic group Zp−1 then the security will be completely lost. We have
a problem of solving linear equation instead of discrete logarithm problem to
measure the security level.

Let K be a commutative ring. S(Kn) stands for the Cremona affine semi-
group of all polynomial transformation of affine space Kn. Let us consider a mul-
tivariate Diffie-Hellman key exchange algorithm for the generator g(n) semigroup
Gn of affine Cremona semigroup.

Correspondents (Alice and Bob) agree on this generator g(n) of group of kind

x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn)

acting on the affine space Kn, where fi ∈ K[x1, x2, . . . , xn], i = 1, 2, . . . , n are
multivariate polynomials. Alice chooses a positive integer kA as her private key
and computes the transformation g(n)

kA (multiple iteration of g(n) with itself).

Similarly Bob chooses kB and gets g(n)
kB . Correspondents complete the

exchange: Alice sends g(n)
kA to Bob and receives g(n)

kB back from him.

Now Alice and Bob computes independently common key h as (g(n)
kB )kA

and (g(n)
kA)kB respectively.

So they can use coefficients of multivariate map h = g(n)
kBkA from Gn

written in the standard form.
There are obvious problems preventing the implementation of this general

method in practice. In case n = 1 the degree deg(fg) of composition fg of
elements f, g ∈ S(K) is simply the product of deg(f) and deg(g). Such effect
can happen in multidimensional case: (deg(g))x = deg(gx) = b. It causes the
reduction of discrete logarithm problem for multivariate polynomials to number
theoretical problem. If g is a bijection of degree d and order m then dx = b in
cyclic group Zm. Similar reduction can appear in case of other degree functions
s(x) = deg(gx). If s(x) is a linear function than multivariate discrete logarithm
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problem with base g is reducible to the solution of linear equation. The degen-
erate case deg(gx) = const is an interesting one because in such situation the
degree function does not help to investigate multivariate discrete logarithm.

We refer to the sequence of multivariate transformations f(n) ∈ S(Kn) as
stable maps of degree d if deg(f(n)) is a constant d, d > 2 and deg(f(n)k) ≤ d
for k = 1, 2, . . . (see [15]). If τn is a bijective affine transformation of Kn, i.e. a
bijective transformation of degree 1, then the sequence of stable maps f(n) can
be changed for other sequence of stable maps τf(n)τ−1 of the same degree d.

The first families of special bijective transformations of Kn of bounded degree
were generated by discrete dynamical systems defined in [14] in terms of graphs
D(n,K). In the paper [16] the fact that each transformation from these families
of maps is cubic was proven. In [15] authors notice that this family is stable,
the order of its members grow with the increase of parameter n and suggest key
exchange protocols with generators from these families. In fact graphs D(n,K)
were introduced in [17] in a connection to their cryptographical applications.
Graphs D(n, q) = D(n, Fq) appeared even earlier [18], [19] in a connection to
their applications to extremal combinatorics.

Other example of stable families of cubic transformations over general com-
mutative ring K is associated with the dynamical systems of other family of al-
gebraic graphs A(n,K) (see [20] and further references). The family of quadratic
stable transformations of Kn were introduced in [21], the order of the maps is
not yet evaluated.

Recall that the other important property for the generator g(n) in the de-
scribed above protocol is a large cardinality of {g(n)k|k = 1, 2, . . . }. Let us
assume that g(n) are bijections. We say that g(n) is a family of exponential
order if the order |g(n)| is at least aαn, where a > 1 and α > 0 are constants.
The famous family of linear bijections over Fq of exponential order is formed by
Singer cycles s(n), they have order qn − 1.

As it was mentioned in introduction we can use Singer cycles for a creation
of nonlinear families of exponential growth which can serve as bases for the de-
scribed above key exchange protocols in the following way. We say that a family
of nonlinear transformations f(n) of affine space Kn is the family of strongly
bounded degree if degrees of all functions f(n)k, k = 1, 2, . . . are bounded above
by constant d. It is easy to see that a class of such families is slightly wider than
a class of stable transformation. Let g(n) be a family of bijective stable transfor-

mations of Fq
n of degree t, then g(n)

−1
s(n)g(n) is a family of exponential order

qn − 1 and strongly bounded degree (bounded above by t2).

The above key exchange protocol can be used to design the following multi-
variate ElGamal cryptosystem (see [22]). Alice takes generator g(n) of the group
Gn together with its inverse g(n)−1. She sends the pair (g(n), g(n)−1) to Bob.
He will work with the plainspace Kn as public user.

At the beginning of each session Alice chooses her private key kA. She com-
putes f = g(n)kA and sends it to Bob.

Bob writes his text (p1, p2, . . . , pn), chooses his private key kB and creates
the ciphertext fkB ((p1, p2, . . . , pn)) = c.
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Additionally he computes the map g(n)−1
kB = h(n). He sends the pair

(c1, c2, . . . , cn), h(n) to Alice.

Alice computes h(n)
kA(c) = (p1, p2, . . . , pn).

REMARK 1. It is proven (see [22]) that the security level of above multi-
variate Diffie-Hellman and ElGamal algorithms is the same. It is based on the
multivariate discrete logarithm problem.

Solve the equation gx = d, where g and d are elements of special cyclic
subgroup Gn of affine Cremona group.

REMARK 2. It is clear, that the algorithm above can be formally considered
for the general pair of bijective nonlinear polynomial transformations g(n) and
g(n)−1 of of free module Kn. But for computational feasibility we will require
that g(n) has to be a family of strongly bounded degree. Obviously parameter
|Gn| has to grow with the increase of n.

4 On the shifted multivariate ElGamal cryptosystems

ALGORITHM 1.
We say that family of elements h(n) ∈ C(Kn) of affine Cremona group is of

symmetrical bounded degree if sequences degh(n) and degh−1(n) are bounded
by some independent constant.

We refer to a family g(n) ∈ C(Kn) as a family of strictly bounded degree if
integers deg(gk(n)) are bounded by independent from n and k constants.

We suggested at CECC 2016 the following modification of the algorithm
described in previous section. Assume that Alice takes the family of generators
g(n) of cyclic groups Gn of large order with its inverse g(n)−1 and it is a family
of strictly bounded degree. Two other families h1(n) and h2(n) are families of
symmetrically bounded degree and the sequences of h1

−1(n) and h2
−1(n) are

computable for Alice.
1) Alice chooses large positive integer kA as her private key.
2) After that she computes R(n) = g(n)kA ∈ C(Kn) and its conjugation

Q(n) = h1(n)R(n)h1
−1.

3)Alice computes the transformation H(n) = h2(n)g(n)
−1
h2(n)

−1
.

She sends G(n) and H(n) to Bob.
Bob chooses his private key kB , writes his plaintext p = (p1, p2, . . . , pn),

computes HkB (n) and the ciphertext c = QkB (n)(p) via multiple application
(kB times))of Q(n) to the tuple from Kn.

Bob sends vector c to Alice together with H ′ = HkB

Alice decrypts via the following steps:

1. She computes g−kB as h2
−1(n)H ′(n)h2(n). Really h2

−1H ′h2 =
= h2

−1(h2g
−kBh2

−1)h2.
2. Alice creates H1 = h1g

−kBh1
−1.

3. She applies kA times H1 to ciphertext and computes the plaintext. In fact
HkA

1 (c) = p.
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The shifted algorithm may have better protection against attacks by ad-
versary. One can choose h2(n) to make the discrete logarithm problem in affine

Cremona group with the new base H(n) harder than one in a case of base g(n)
−1

.
Additionally the adversary has to compute the inverse of Q(n). The choice of
h2 can change the complexity of this problem without change of the discrete
logarithm complexity.

REMARK 1. Alice can work with a stable map g(n) of a large order.

ALTERNATIVE ALGORITHM 2 with active participation of Bob follows.

Let us consider the following scheme.

Alice take maps f and f−1 from affine Cremona group. She chooses kA and
sends fkA and f−1 to Bob.

Bob takes kB and h from C(Kn). He takes plaintext p in Kn and applies
h−1fkAh multiply (kB times) to form ciphertext c. He computes g = h−1f−kBh
and sends it to Alice.

Alice decrypts via application kA times transformation g to the ciphertext.

REMARK. Here the shifted discrete logarithm problem appears: Solve for x
the equation h−1f−1xh = g with unknown h. Notice that adversary may have
a look at pair f−1 and fkA which are elements of the same cyclic group. So he
has to solve f−1

x
= b and find kA via computation of the order of cyclic group.

Adversary takes gkA and decrypts. So for breaking the algorithm one has to
solve standard multivariate discrete logarithm problem and compute the order
of cyclic group with generator f−1.

THE MODIFICATION OF ALGORITHM 2.

Let us assume thatG is a subgroup of S(Kn) and Alice have a homomorphism
µ from semigroup S′ into G. We assume that S′ is a subsemigroup of S(Rm),
where R is a finite commutative ring R.

Alice takes elements f an f ′ such that µ(ff ′) = e, where e is an identity
map from G. She takes kA and forms gA = µ(fkA) for Bob. We assume that
the subsemigroup S′ and group G are unknown for Bob, but the information on
the µ is given partially: Bob has pairs (gi, g̃i = µ((gi))), for invertible elements
gi ∈ S, i = 1, 2, . . . , t. He also receives f ′ ∈ S.

So Bob takes parameter kB and chooses i1, i2, . . . , il and positive numbers
α1, α2, . . . , αl to form word h = gα1

i1
gα2
i2
. . . gαl

il
, is ∈ {1, 2, . . . , t}, s = 1, 2, . . . , l

and compute δ = µ(h) as an element of G and its inverse µ(h−1).

So he computes ∆ = δgAδ
−1, writes plaintext p ∈ Kn and creates the ci-

phertext c via application of ∆ exactly kB times to p.

Additionally Bob takes gB = hf ′
kBh−1 of Cremona semigroup S(Rn) written

in a standard form and sends it to Alice.

Alice computes group element H1 = µ(gB), F = H1
KA and the plaintext as

F (c).

REMARK ON MULTIVARIATE IMPLEMENTATION.

Alice can take multivariate bijective maps π1 ∈ C(Kn) and π2 ∈ C(Rm)
and work with group G′ = π1Gπ1

−1 and S′′ = π2S
′π2. Knowledge of π1 and π2

allows her to work with η′ : S′′ → G′ which is a composition of isomorphism of
S′′ onto S′, induced by the conjugation with π2

−1, homomorphism η : S′ → G
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and isomorphism of G and G’ (induced by the conjugation with π2
−1. She gives

to Bob the following data.

g = π1(gA)π1
−1, g′ = π2(f ′)π2

−1, si = π1(µ(gi)), i = 1, 2, . . . , t and ri =
π2(gi).

Adversary has to work with homomorphism between semigroup S2 generated
by ri and group G1 generated by si. He has to take < S2, g

′ > and < S1, g >
and search for appropriate expanded homomorphism η between this objects for
which η(g′)x = g−1 for some parameter x. Notice that g and g′ can be outside
of S1 and S2. This ”twisted discrete logarithm problem” can be a difficult task.
The problem to compute the value of η in point π2gBπ2 could be a very difficult
task because the decomposition of gB into ri and g′ is unknown for him.

MODIFIED DIFFIE HELLMAN KEY EXCHANGE.

Finally we look at the case of symmetric use of conjugation by Alice and
Bob. We start with the modification of key exchange algorithm.

Let us assume that Alice and Bob have group G together with choosen rep-
resentatives g ∈ G and h ∈ G. Alice takes two parameters kA and ra as her
private keys, forms element gA = hrAgkAh−rA and sends it to Bob. In his turn
Bob forms private key as (kB , rB), computes gB = rBg

kBh−rB and passes it to
Alice. Secondly correspondents Alice and Bob compute the collision element as
hrAgB

kAh−rA and

hrBgA
kBh−rB which is simply hrA+rBgkAkBh−rA−rB .

The adversary can look at the equation hygxh−y = gA. We refer to this
algorithm as twisted Diffie - Hellman key exchange protocol.

ALGORITHM 3.

Now we introduce symmetric twisted El Gamal multivariate algorithm.

We will use the idea of written above key exchange protocol in the case
when G is an affine Cremona group C(Kn) where K is a finite commutative
ring. So Alice sends g−1, h ∈ S(Kn) to together with gA as above.Bob selects
kB , conjugates gA with hrB and applies this map kB times to his plaintext
p = (p1, p2, . . . , pn). He sends the ciphertext together with his element gB =
hrBg−1kBh−rB to Alice.

Alice computes hrAgB
kAhrA , applies this transformation to the ciphertext

and gets the plaintext.

ALGORITHM 4.

Let us assume that the homomorphism µ from subsemigroup S of S(Rn) into
subgroup G of C(Kn) is given.

Alice will take two noncommutative pairs of elements (g, g′) and (h, h′) such
that µ(gg′) = e, µ(h, h′) = e and group elements µ(g) and µ(h) have large
order. She is keeping semigroup S and G in secret. Notice that she can always
change S and G for theirs conjugations with invertible elements π1 ∈ C(Rn) and
π2 ∈ C(Km).

Alice chooses integers kA and α and computes gA = µ(hα)µ(g)kAµ(h−α). She
sends this element to Bob together with g′, h, h′ and µ(h). Bob writes plaintext
p = (p1, p2, . . . , pn) and chooses parameter kB and β. He uses group element ∆ =
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µ(hβgA
kBh−β) and computes ∆(p) = c, which is the ciphertext. Additionally he

forms δ = hβg′
kBh′

−β
and sends it to Alice.

Alice computes ∆−1 as µ(hαδkAh′
−α

) and decrypt.
GENERALISATION of algorithm 4.
Alice uses S, G, g and g′ as above assume that hi, h

′
i, i = 1, 2, . . . , t are

elements of S such that µ(hih
′
i) = e. Additionally Alice takes pair d ∈ G, d−1

such that [dµ(hi)] = e for i = 1, 2, . . . , t. Alice choses integer kA and sends
gA = dµ(gkA)d−1 to Bob together with elements g′, hi, h

′
i and µ(hi).

Bob chooses kB , writes his plaintext p and forms the pair of elements of kind
h = ha1i1 h

a2
i2
. . . hatit , h′ = h′i1

a1h′i2
a2 . . . h′it

at computes element gB = hg′
kBh′ and

ciphertext c = µ(h)gA
kBµ(h)

−1
(p) and sends it to Alice.

Alice decrypts via the application of dµ(gB)
kAd−1 to ciphertext.

5 On desynchronised El Gamal algorithm over diagram

Let us consider the diagram G1 ← G → G2, where G, G1 and G2 are semi-
groups, G1 is a semigroup with unity Assume that arrow with nodes G1 and G
corresponds to homomorphism η1 from G into G1, arrow between G and G2 cor-
responds to injective homomorphism η2 from G to G2. Let is denote η1(G) and
η2(G) as H and L. One can work with the extended diagram G1 ← H ← G →
L → G2. Assume that the pair of elements g and g′ of elements of G such that
η1(gg′) = e is given together with automorphisms α and β of G. Additionally we
assume that G1 and G2 are affine Cremona semigroups of affine spaces Kn and
Rm over finite commutative rings K and R. Let us assume that automorphisms
φ1, φ2 and φ3 of groups G1 , G2 and H are given.

We refer to the given above information as El Gamal commutative diagram
data. Public key owner Alice has this information. The transformation semi-
groups G1 and G2 are known publicly. The rest of data Alice has to keep in
secrecy.

In further examples we assume that φ1 and φ2 are internal automorphisms of
conjugation with an invertible polynomial given in standard form together with
its inverse.

Additionally Alice chooses her private key as positive integer kA, kA > 1. She
computes gkA , α(gkA) and β(g′)). Alice forms η2(β(g′)) and writes φ2(η2(β(g′)))
as multivariate transformation G2 on Rm:

x1 → g1(x1, x2, . . . , xn),
x2 → g2(x1, x2, . . . , xn),
. . .
xm → gm(x1, x2, . . . , xm).
Alice computes φ3η1(α(gkA)) ∈ H and GA = φ1(φ3(η1(α(gkA)))). She has to

write GA as multivariate map on Kn written in a standard form.
Alice sends G and GA to public user Bob.
THE ENCRYPTION PROCESS: Bob writes his plaintext as element p =

(p1, p2, . . . , pn) ∈ Kn of affine spaceKn. He chooses parameterKB and computes
the ciphertext c = GA

kB (p). He forms GkB and sends it to Alice.
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DECRYPTION: Alice computes F1 = φ2
−1(GkB ) ∈ L, calculates F2 =

η2
−1(F1) ∈ G and gets F3 = β−1(F2). Secondly she computes F4 = F3

kA ,
F5 = α(F4) and F6 = η2(F5), F7 = φ3(F6) and F8 = φ1(F7). Alice gets plaintext
p as F8(c).

EXAMPLE 1. Let us take the general linear semigroup M(n + k, Fq) of all
linear transformations of vector space V = Fq

n. Let e1, e2, . . . , en, en+1, en+2,
. . . , en+t be a standard basis of V . We take subspace W =< e1, e2, . . . , en >
spanned by listed basic vectors. Let G be a semigroup of all linear transforma-
tions τ of V for which W is an invariant subspace and the restriction of τ on W
is a bijective map. Let g ∈ G and g′ be an

elements which restrictions on W are Singer cycles C and C ′. The restriction
of an element from G onto W defines homomorphism µ1 onto GL(n, Fq). Let µ2

be the natural embedding of GL(n, Fq) into GL(n, Fqm) = G1, m ≥ 1. Assume
that η1 is the composition of µ1 and µ2. We need also the natural embedding of
M(n+ k, Fq) into M(n+ k, Fqt). Its restriction on G will be denoted as η2.

We take for α and β as in written above algorithm internal automorphism
x→ g1xg1

−1 and x→ g2xg2
−1, where g1 and g2 are certain invertible elements of

G. Alice will apply automorphism φ3 of H = GL(n, Fq), which is a composition
of contragradient automorphism x→(xT )−1, where xT is a transposed matrix
for x with some internal automorphism of H. We choose map φ1 as an internal
automorphism of Affine Cremona Semiroup S(Fqm

n) of kind x→ hxh−1, where
h is some deformation of invertible stable transformation of degree d1 given in a
standard form. Similarly φ2 is an internal automorphism x→ jxj−1 for certain
deformation j of invertible stable transformation of degree d2 from C(Fqt

k+n).
REMARK 1. In the case of stable h and j Alice can change them for elements

of kind h′ = hk1 and j′ = jk2 or there deformations of kind A1h
′B1 and A2j

′B2,
where A1 and B1 are bijective affine transformations of vector space Fqm

n and

A2 and B2 are bijective affine transformations of vector space Fqt
n+k.

REMARK 2. Assume that Alice choose kA such that (kA, q
n − 1) = 1. Then

Bob receives two multivariate maps. One of them is the bijective transformation
of degree ≤ d1

2 of vector apace Fqm
n and other is a map of degree ≤ d2

2 of

Fqt
k+n, which generates semigroup with at least qn − 1 elements.
REMARK 3. Graphs based constructions of quadratic and cubic stable trans-

formations of affine space Kn over general commutative degree are observed in
section 3. Methods of construction of stable transformation of Kn of fixed pre-
scribed degree based on graphs D(n,K) are presented in [24].

6 On explicit constructions of stable quadratic maps of
large order

We define Double Schubert Graph DS(k,K) over commutative ring K as inci-
dence structure defined as disjoint union of points from

PS = {(x) = (x1, x2, . . . , xk, x1,1, x1,2, . . . xk,k)| ∈ (x) ∈ K(k+1)k} and lines
from LS = {[y] = [y1, y2, . . . , yk, y1,1, y1,2, . . . yk,k]| ∈ (y) ∈ K(k+1)k} where (x)
is incident to [y] if and only if xi,j−yi,j = xiyj for i = 1, 2, . . . , k, j = 1, 2, . . . , k.
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It is convenient to assume that indexes of kind i, j are placed in lexicographical
order.

REMARK. The term Double Schubert Graphs is chosen because points and
lines of DS(k, Fq) can be treated as subspaces of Fq

2k+1 of dimensions k + 1
and k which form two largest Schubert cells. Recall that the largest Schubert cell
is the largest orbit of group of unitriangular matrices acting on the variety of
subsets of given dimensions. (see [25] and further references).

We define the colour of point (x) = (x1, x2, . . . , xk, x1,1, x1,2, . . . xk,k) from
PS as tuple (x1, x2, . . . , xk) and the colour of line

[y] = [y1, y2, . . . , yk, y1,1, y1,2, . . . yk,k] as tuple (y1, y2, . . . , yk). For each ver-
tex v of DS(k,K) there is a unique neighbour Nα(v) of given colour α =
(a1, a2, . . . , ak), ai ∈ K, i = 1, 2, . . . , k.

The symbolic colour g fromK[z1, z2, . . . , zk]k of kind f1(z1, z2, , . . . , zk), f2(z1, z2, . . . , zk),
. . . , fk(z1, z2, . . . , zk), where fi are polynomials from K[z1, z2, . . . , zk] defines the
neighbouring line of point (x) with colour

(f1(x1, x2, , . . . , xk), f2(x1, x2, . . . , xk), . . . , fk(x1, x2, . . . , xk).

Let us consider a tuple of symbolic colours (g1, g2, . . . , g2t) ∈ K[z1, z2, . . . , zk]k

and the map F of PS to itself which sends the point (x) to the end v2t of
the chain v0, v1, . . . , v2t, where (x) = v0, viIvi+1, i = 0, 1, . . . , 2t − 1 and
ρ(vj) = gj(x1, x2, . . . , xk), j = 1, 2, . . . , 2t. We refer to F as closed point to point
computation with the symbolic key (g1, g2, . . . , g2t). As it follows from defini-
tions F = Fg1,g2,...,g2t is a multivariate map of Kk(k+1) to itself. When symbolic
key is given F can be computed in a standard form via elementary operations of
addition and multiplication of the ring K[x1, x2, . . . , xk, x11, x12, . . . , xkk]. Recall
that (x1, x2, . . . , xk, x11, x12, . . . , xkk) is our plaintext treated as symbolic point
of the graph.

We refer for expression Fg1,g2,...,g2t as automaton presentation of F with the
symbolic key g1, g2, . . . , g2t. Notice that if g2t is an element of affine Cremona
group C(Kk) then Fg1,g2,...,g2t ∈ C(Kk(k+1)) and automaton presentation of its
inverse is Fg−1

2t g2t−1,g2t−1g2t−2,...,g2t−1g1,g2t−1 .

The restrictions on degrees and densities of multivariate maps gi of Kk to
Kk and size of parameter t allow to define a polynomial map F of polynomial
degree and density.

Let us assume that gi = (h1
i, h2

i, . . . , hk
i), i = 1, 2, . . . , 2t is the symbolic key

of the closed point to point computation F = F (k) of the symbolic automaton
DS(k,K). We set that g0 = (h1

0, h2
0, . . . , hk

0) = (x1, x2, . . . , xk). We set that
h1

0, h2
0, . . . , hk

0) = (z1, z2, . . . , zk). Then F is a transformation of kind

z1 → h1
2t(z1, z2, . . . , zk), z2 → h2

2t(z1, z2, . . . , zk), . . . , zk → hk
2t(z1, z2, . . . , zk))

z11 → z11 − h11z1 + h1
1h1

2 − h13h12 + h1
3h1

4 + · · ·+ h1
2t−1h1

2t

z12 → z12 − h11z2 + h1
1h2

2 − h13h22 + h1
3h1

4 + · · ·+ h2
2t−1h1

2t

. . .

zkk → zkk − hk1zk + hk
1hk

2 − hk3hk2 + hk
3hk

4 + · · ·+ hk
2t−1hk

2t

LEMMA 1.

The degree of F is bounded by a maximum M of γr,s,i(n) = deg(hr
i) +

deg(hs
i+1), 0 ≤ i ≤ 2t, 1 ≤ r ≤ k, 1 ≤ s ≤ k. The density of F is at most
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a maximum of d(r, s), where d(r, s) − 1 is the sum of parameters den(hr
i) ×

den(hs
i+1) for i = 0, 1, . . . , 2t.

We say that closed point to point computation F is affine if all elements gi
of symbolic key are elements of degree ≤ 1 .

We refer to a subsemigroup G in S(Kn) as semigroup of degree d if the
maximal degree for representative g equals d.

Let AGLn(K) be the group of affine transformations of Kn, i. e. the group
of all bijective transformations of degree 1.

Let us consider groups Ek(K) which consists of all transformations Fh1,h2,...,hl,g

where deghi ≤ 1 for i = 1, 2, . . . , l, l is an odd number and bijective map g is an
element of AGLk(K). It is clear that En(K) is a stable subgroup of degree 2.

REMARK. Notice that conditions of lemma 1 allow to construct large cyclic
groups of stable transformations of prescribed degree d. Such groups can be used
in the multivariate El Gamal algorithm and its modifications.

LEMMA 2. Let K = Fq and F be the map of closed point to point computation
Fh1,h2,...,hl,h and h is a Singer Cycle from GLk(Fq). Then the order of F is
≥ qk − 1.

QUADRATIC MULTIVARIATE CRYPTOSYSTEM.

Let us consider the semigroup G = Ek(Fq) and its embeddings µ1 and µ2

into semigroups E1 = En(Fqm) and E2 = En(Fqt), which are subgroups of
Affine Cremona Semigroups G1 and G2 of vector spaces Fqm

n and Fqt
n, where

n = k(k + 1). Let µ1
′ and µ2

′ are natural embeddings of E1 into G1 and E2

into G2. We assume that ηi is a composition of µi and µi
′ for i = 1, 2. They are

natural embeddings of G into G1 and G2. We can take internal automorphisms α
and β of group G of kind x→ gixg

−1
i , i = 1, 2. We assume that g = F satisfies to

conditions of LEMMA 2 and deg(hi) = 1 for i = 1, 2, . . . , l. Alice choses identical
φ3. Alice takes φi as maps of kind x→ τihxh

−1τ−1i h−1, i = 1, 2, where hi ∈ Ei
and τi are bijective transformation of degree 1 from Gi. Alice may choose kA
such that (kA, q − 1) = 1.

Then maps G and GA are quadratic maps of order ≥ qk − 1.

Let ei, i = 1, 2, . . . , k, es,j , s = 1, 2, . . . , k, j = 1, 2, . . . , k are elements of
standard basis of Kk(k+1) in which all points and lines of D(k,K) are presented.

Let us consider graph homomorphism δ ofDS(n, Fq) ontoDS(m,Fq) form <
n of ”deleting of coordinates of points and lines with indexes i ≥ m+1 and (s, j)
with s > m+1 or j > m+1 Let us consider elements F = Fh1,h2,...,hl,τ of En(Fq)
for which h1, h2, . . . , hl, τ preserve < e1, e2, . . . , em >, as invariant subspace.
They form semigroup G of En(K). Let us denote via µ the homomorphism of G
into Em(Fq) which sends F into computation F ′ of Em(Fq) with symbolic key
given by restrictions of hi, i = 1, 2, . . . , l and g onto subspace W . Let us assume
that we have g = F and g′ such that µ(gg′) = 1 and the restriction of τ on W is a
Singer cycle. We assume that α and β are internal automorphisms of G induced
by conjugations with elements of G. Let µ1 be the embedding of Em(Fq) into
Em(Fqs), s ≥ 1. We assume that η1 is the composition of µ and µ1 and η2 is an
embedding of Ek(q) into Ek(Fqt), t ≥ 1. We take φ3 as internal automorphizm
ofEm(Fq), φ1 and φ2 are internal automorphisms of Affine Cremona Semigroups
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induced by conjugations with elements from Em(Fqs) and Ek(Fqt) and affine
transformations corresponding vector spaces. Alice takes some positive integer
kA. Choosen data allows her to generate map G ∈ Ek(Fqt) and invertible GA.
Both maps are quadratic stable transformations. The discrete logarithm problem
in Affine Cremona Semigroup to solve equation Gz = H for z is hard (semigroup
generated by G contains more than qm − 1 elements).

REMARK ON FURTHER INCREASE OF SECURITY.
In case of long usage of unchanged parameter kA the adversary can find

the quadratic inverse of GA via linearisation attacks, but it is not yet a break
of the cryptosystems, because of complexity of finding kB . Notice that Alice
always can change GA for its conjugation with deformated stable element of
affine group with degree d to make linearisation algorithm to invert map of
degree 2d2 unfeasible. Alternatively one can use the following idea.

Let g = gl be the image of h under the canonical homomorphism µ of H into
Gl. Notice that the order of gl grows with increase of parameter l.

7 On generalised twisted discrete logarithm

Let S be a semigroup with subgroups A and B such that [A.B] =< e >. So
ab = ba for a ∈ A, b ∈ B.

Assume that Alice and Bob use the triple S, A, B and g ∈ G. So Alice
takes her private key as positive integer kA and group element a ∈ A. She
forms agkAa−1 and sends it to Bob. In his turn Bob chooses kB and b ∈ B
to create bgkBb

−1 for Alice. Secondly Alice transforms received bgkBb−1 into
abgkBkAb

−1a−1 and Bob forms the collision element as bagkAkBa
−1b−1.

We refer to this key exchange algorithm as generalised twisted Diffie Hellman
protocol.

Let us consider the following variant of desynchronised El Gamal algorithm
with the triple S, A, B and homomorphism φ : S → G, where G is a group
acting on the set M . Assume that Alice has knowledge on φ, but public user
Bob knows only the restriction of φ on the group B

Alice takes pair g and g′ such that φ(gg′) = e. She chooses parameters kA
and a ∈ A, h ∈ A and sends gA = agKAa−1 to Bob together with g1 = hg′h−1.

Bob takes b ∈ B and computes φ(b) = b′. He chooses parameter kB and

forms b′gA
kBb′

−1
= gB and bg1

kBb−1 = g2.
Finally he takes his plaintext m ∈ M and forms ciphertext c = gB(m) and

sends it to Alice together with g2.
Alice computes g3 = ah−1g2

kAha−1 and its image δ = φ(g3) and computes
plaintext as δ(c).

EXAMPLE 1.
Let us consider the vector space V = Fq

n+r with the basis
< e1, e2, . . . , en, en+1, . . . , en+r > and singular linear transformations g, such

that it has an invariant subspace W =< e1, e2, . . . , en > and the restriction of
g on W is the Singer cycle C ′ with the inverse C. So CC ′ = e and orders of C
and C ′ equal to qn−1. Let G be a group of stable transformations of V of degree
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d with invariant subspace W , b̃ is a restriction of b ∈ G on W . Alice takes two
elements a and h = as from G and positive integer kA. She takes the bijective
affine transformation T of V for which W is not an invariant subspace together
with affine bijections T1 on W .

She chooses a ∈ G and forms gA = T1ãrC
kA ã−rT1

−1 and g′ = T ãsg ˜a−sT−1.
So she sends these two transformations of degree ≤ d2 to Bob together with
elements b1 = T1ãrT1

−1 and b2 = TarT−1.
So Bob writes plaintext p = (p1, p2, . . . , pn), takes parameter kB and sB .
He computes the value of b1

sBgA
KBb1

−sB in the point p as ciphertext c.
Additionally Bob computes b2

sBg′
kBb2

−sB and sends it to Alice together
with the ciphertext c.

8 On the implemented twisted El Gamal multivariate
cryptosystem

We implemented the following cryptosystem.
Alice takes the family of graphs DS(n, Fq) and constant m. She uses canon-

ical homomorphism µ of graph DS(n, Fq) onto DS(n−m,Fq) which sends point
(x1, x2, . . . , xn) to (x1, x2, . . . , xn−m) and line [y1, y2, . . . , yn] to [y1, y2, . . . , yn−m].

She chooses even parameter t and string A of linear maps L1, L2, . . . , Lt of
vector space Fq

n to itself such that the subspace W spanned by e1, e2, . . . , en−m
is invariant subspace for each Li, i = 1, 2, . . . , t and the restriction of Lt on
W is a Singer cycle. She takes a symbolic computation with symbolic key A
and gets the polynomial map G. If L2t is singular linear map then G is not a
bijection. Notice that subspace U spanned by elements e1, e2, . . . , en−m, eij ,
i = 1, 2, . . . , n−m, j = 1, 2, . . . , n−m is an invariant subspace for G.

Similarly Alice uses graph DS(n, Fq), symbolic key L′1, L′2, . . . , L′t and con-
stract the map G1 such that the restriction of GG1 on U is an identity map.

Secondly Alice takes other even parameter t1 and stringA1 of linear mapsM1,
M2, . . . , Mt1 such that W is invariant subspace for each Mi and the restriction
of Mt1 on W is a Singer cycle. She takes a symbolic computation with A1 as a
key and forms map H of large order (≥ qn − 1) with invariant subspace U . Let
G′ and H ′ be restrictions of G and H on the vector space U .

Additionaly Alice uses symbolic automata corresponding to graphsDS(n, Fq)
and DS(n − m,Fq) with strings B1 and B2 of linear maps of length t3 and

t4 and forms transformation D1 and D2 of vector spaces V1 = Fq
n(n+1) and

V2 = Fq
(n−m)(n−m+1). She takes also bijective affine maps τ1 and τ2 on V1 and

V2.
Finally Alice takes triple of positive integer parameters kA, rA and r from

open interval (1, qn−1). She form the following maps in their standard forms GA
which is the composition of τ2, D2, H ′

rA , 6′
rA , H ′

−rA , D2
−1, τ2

−1. Notice that
GA is a bijective transformation of U . Alice computesG1 as τ1D1H

rG1H−rD1
−1τ1

−1.
She sends standard forms ofGA andG1 to Bob together withH2 = τ2D2H

′D2
−1τ2

−1

and H1 = τ1D1HD1
−1τ1

−1 and G2 = τ1D1H
rG1H−rD1

−1τ1
−1.
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Bob chooses parameters kB and rB . He writes plaintext p ∈ U . Computes
H1rBGAH

1−rB and applies it kB times to the plaintext. Bob sends resulting
vector as ciphertext to Alice together with G3 = HrB

1 G2
kBH−rB1 . Alice is able

to decrypt according to described above general algorithm. So she transforms

G3 = τ1D1H
r+rBG1kBH−r−rBD1

−1τ1
−1 to G4 = HrBG1kBH−rB , computes

µ(G4) and G5 = H ′
rAµ(G4)

kAH ′
−rA . Alice applies G5 = τ2D2G4D2

−1τ2
−1 to

the ciphertext and reads the plaintext p.
REMARK. All maps GA, G1, H1, H2 and G3 are quadratic transformations.

9 On cubical multivariate El Gamal type cryptosystem
with hidden decomposition of group element

EXAMPLE 2. Let K be a commutative ring. We define A(n,K) as bipartite
graph with the point set P = Kn and line set L = Kn (two copies of a Cartesian
power of K are used).

We will use brackets and parenthesis to distinguish tuples from P and L. So
(p) = (p1, p2, . . . , pn) ∈ Pn and [l] = l1, l2, . . . , ln) ∈ Ln. The incidence relation
I = A(n,K) (or corresponding bipartite graph I) is given by condition pIl if
and only if the equations of the following kind hold.

p2 − l2 = l1p1
p3 − l3 = p1l2
p4 − l4 = l1p3
p5 − l5 = p1l4
. . .
pn − ln = p1ln−1 for odd n
pn − ln = l1pn−1 for even n
Let us consider the case of finite commutative ring K, |K| = m.
As it instantly follows from definition the order of our bipartite graph A(n,K)

is 2mn. The graph is m-regular. Really, the neighbour of given point p is given by
above equations, where parameters p1, p2, . . . , pn are fixed elements of the ring
and symbols l1, l2, . . . , ln are variables. It is easy to see that the value for l1 could
be freely chosen. This choice uniformly establishes values for l2, l3 . . . , ln. So each
point has precisely m neighbours. In similar way we observe the neighbourhood
of the line, which also contains m neighbours. We introduce the colour ρ(p) of
the point p and the colour ρ(l) of line l as parameter p1 and l1 respectively.
Graphs A(n,K) with colouring ρ belong to class of linguistic graphs defined in
[14]. In the case of linguistic graph Γ the path consisting of its vertices v0, v1, v2,
. . . , vk is uniquely defined by initial vertex v0 and colours ρ(vi), i = 1, 2, . . . , k
of other vertices from the path.

So the following symbolic computation can be defined. Take the symbolic
point x = (x1, x2, . . . , xn) where xi are variables and symbolic key which is a
string of polynomials f1(x), f2(x), . . . , fs(x) from K[x]. Form the path of ver-
tices v0 = x, v1 such that v0Iv1 and ρ(v1) = f1(x1), v2 such that v1Iv2 and
ρ(v2) = f2(x1), . . . , vs such that vs−1Ivs and ρ(vs) = fs(x1). We use term sym-
bolic point to point computation in the case of even k and talk on symbolic point to
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line computation in the case of odd k. We notice that the computation of each co-
ordinate of vi via variables x1, x2, . . . , xn and polynomials f1(x), f2(x), . . . , fi(x)
needs only arithmetical operations of addition and multiplication. Final vertex vs
(point or line) has coordinates (h1(x1), h2(x1, x2), h3(x1, x2, x3), . . . , hn(x1, x2, . . . , xn)),
where h1(x1) = fs(x1).

Assume that the equation of kind fs(x) = b has exactly one solution. Then
the map H : xi → h(x1, x2, . . . , xi), i = 1, 2, . . . , n is a bijective map.

In the case of finite parameter s and finite densities of fi(x), i = 1, 2, . . . , s
the map H also have finite density. If all parameters deg(fi(x)) are finite then
the map H has a linear degree in variable n. Let consider the totality G(n,K)
of point to point computations with the symbolic key of kind fi(x) = x + ai,
i = 1, 2, . . . , s, where parameter s is even. We can prove that G(n,K) is a stable
group of degree 3.

We have a natural homomorphism G(n+ 1,K) onto G(n,K) induced by the
homomorphism δ fromA(n+1,K) ontoA(n,K) sending point (x1, x2, . . . , xn, xn+1)
to (x1, x2, . . . , xn) and line [x1, x2, . . . , xn, xn+1] to [x1, x2, . . . , xn]. It means that
there is a well defined projective limit A(K) of graphs A(n,K) when n→∞. Let
δn,t, n > t be a canonical homomorphism of A(n,K) onto A(t,K) corresponding
to procedure of deleting of coordinates withindexes t+ 1, t+ 2, . . . , n. This map
defines the canonical homomorphism η(n, t) of group G(n,K) onto G(t,K).

Alice takes the sequence of transformations gn ∈ G(n,K) of increasing order
with the grows of n. The existence of such sequences is stated in [20]. together
with several other sequences of elements u1, u2, . . . , ur from the group G(n,K).
Alice can easily generate gn

−1, and ui
−1, i = 1, 2, . . . , r. She takes l = n−t, where

t is some constants and computes values wi and wi
−1 of η(n, l) from (ui) and

ui
−1. Alice will use affine transformations τ1 and τ2 of free modules Kn and Kl.

She takes positive integer kA and prepares the following data for public user Bob.
She computes gA = τ2η(n, l)((gn))

kAτ2
−1 and di = τ2wiτ2

−1, i = 1, 2, . . . , r.
Alice creates g′ = τ1(gn

−1)τ1
−1 and vi = τ1(ui)τ1

−1, i = 1, 2, . . . , r. Bob gets di
and vi together with their inverses.

ALGORITHM.

Bob writes plaintext p = (p1, p2, . . . , pl) and selects positive parameter kB ,
string j1, j2, . . . , js such that jk ∈ {1, 2, . . . , r} and jk differs from jk−1 and jk+1.
He takes integer parameter α1, α2, . . . , αs and form element b = dα1

j1
dα2
j2
. . . dαs

js

together with b−1. Bob computes bgAb
−1 and applies it kB times to p, Re-

sulting tuple c = (c1, c2, . . . , cl) is the ciphertext. Additionally Bob computes

v = vα1
j1
vα2
j2
. . . vαs

js
and sends to Alice element gB = vg′

kBv−1 together with the
ciphertext c.

Decryption process is the following. Alice computes g1 = τ1
−1gBτ1. She gets

g2 = η(n, l)(g1) and g3 = g3
kA . Alice applies g4 = τ2g3τ2

−1 to the ciphertext.
Result of this application is the plaintext.

REMARK. The adversary has to find parameter kA via studies of gA and
g′ from different transformation groups. Additionally he has to compute the
value on gB of partially defined homomorphism δ from the subgroup of C(Kn)
generated by v1, v2, . . . , vr, g

′ onto subgroup of C(Km) generated by d1, d2,
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. . . , dr and gA which sends ui to wi, i = 1, 2, . . . , r. Adversary can try to find
decomposition of gB into generators vi and g′ of special ” central” form ag′

k
a−1,

a ∈< v1, v2, . . . , vk >. After that adversary can compute δ(a) and study options
of δ(g′) = (gA)t with various parameters t.
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