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Abstract. We introduce SPHINCS-Simpira, which is a variant of the
SPHINCS signature scheme with Simpira as a building block. SPHINCS
was proposed by Bernstein et al. at EUROCRYPT 2015 as a hash-based
signature scheme with post-quantum security. At ASIACRYPT 2016,
Gueron and Mouha introduced the Simpira family of cryptographic per-
mutations, which delivers high throughput on modern 64-bit processors
by using only one building block: the AES round function. The Simpira
family claims security against structural distinguishers with a complex-
ity up to 2128 using classical computers. In this document, we explain
why the same claim can be made against quantum computers as well.
Although Simpira follows a very conservative design strategy, our bench-
marks show that SPHINCS-Simpira provides a 1.5× speed-up for key
generation, a 1.4× speed-up for signing 59-byte messages, and a 2.0×
speed-up for verifying 59-byte messages compared to the originally pro-
posed SPHINCS-256.

Keywords: Simpira, SPHINCS, post-quantum security, hash-based sig-
nature, AES-NI.

1 Introduction

Although it is not known how long it will be before large-scale quantum com-
puters can be built, the advent of such computers will make most currently-used
standards for public-key cryptography insecure. The goal of post-quantum cryp-
tography is to ensure that systems remain secure against quantum computers.

Hash-based signatures are one of the most promising candidates for post-
quantum digital signatures. The advantage of hash-based signatures is that the
choice of secure parameters is better understood than for other constructions,
against attacks using classical as well as quantum computers. Modern hash-
based signatures can be quite efficient in terms of key storage, signature sizes,
and computation times. A recently proposed hash-based signature scheme is
SPHINCS [3], introduced by Bernstein et al. at EUROCRYPT 2015.

Since the introduction of AES instructions by Intel, subsequently by AMD,
and recently by ARM, the playing field for cryptography on modern processors



has changed. At ASIACRYPT 2016, Gueron and Mouha introduced a family
of cryptographic permutations named Simpira [13], which supports inputs of
128 × b bits, where b is a positive integer. Simpira is designed to achieve high
throughput on processors with AES instructions, which include nearly all modern
64-bit processors. These permutations can be used in various applications, such
as encryption, authentication, and hashing.

In this paper, we will explain how Simpira can be used inside SPHINCS-256.
In particular, we will instantiate the F : {0, 1}256 → {0, 1}256 andH : {0, 1}512 →
{0, 1}256 functions of SPHINCS by Simpira with respectively b = 2 and b = 4,
combined with a Davies-Meyer feedforward.

The main goal of this paper will be to provide benchmarking results of the
resulting construction, and to compare them with the original SPHINCS-256.
As a side result, we will also argue that Simpira can provide 2128 security not
just against classical computers but also against quantum computers, so that
the security proof of SPHINCS can be carried over.

To improve the readability of this paper, we will use Simpira to refer to
Simpira v2, which is the published version of the design that appeared at ASIA-
CRYPT 2016. Also, SPHINCS will refer to SPHINCS-256, which a specific in-
stantiation of SPHINCS that was introduced in the SPHINCS paper at EURO-
CRYPT 2016.

Outline. First, we discuss hash functions, digital signatures and hash-based
signatures in Sect. 2. In Sect. 3, we describe SPHINCS and in particular the F

and H functions inside SPHINCS that dominate its performance. The descrip-
tion of Simpira is briefly recalled in Sect. 4. We explain how Simpira satisfies
the design requirements of SPHINCS in Sect. 5, and in particular its resistance
against quantum adversaries. In Sect. 6, we benchmark SPHINCS-Simpira, and
compare its performance to the original SPHINCS design. A comparison with
Haraka, another AES-based proposal to speed up SPHINCS, is made in Sect. 7.
We conclude the paper in Sect. 8.

2 Preliminaries

A hash function h is a function that transforms an input of an arbitrary length
into an output of a fixed length. It can be that the length of the input is fixed
by the application, in which case it is acceptable that h only supports inputs of
this specific length.

The requirements of a hash function depend on the application. In a very
informal way, we will state some common requirements for hash functions:

– preimage resistance, that is, given an output, it should be infeasible to find
a corresponding input to the hash function,

– second-preimage resistance, that is, given an input, it should be infeasible to
find another input that hashes to the same output,
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– undetectability, that is, it should be infeasible to distinguish the outputs from
uniformly random values,

– collision resistance, that is, it should be infeasible to find two distinct inputs
that hash to the same output,

– indifferentiability from a random oracle, that is, the hash function should
“behave” as a random oracle when it is instantiated with an “ideal” com-
pression function (or an “ideal” permutation for permutation-based hash
functions).

A (digital) signature scheme consists of three algorithms:

– a key generation algorithm that draws a private key uniformly at random
from the space of possible private keys, and generates a corresponding public
key,

– a signature algorithm that given a private key and a message, generates a
signature for this message, and

– a verification algorithm that given a public key, a message, and a signature,
outputs “valid” if the signature is a correct signature for the given message,
or “invalid” otherwise.

The goal of a signature algorithm is to ensure that an adversary cannot generate a
forgery, that is, a new message and a corresponding signature, generated without
knowledge of the private key.

Traditional signatures schemes such as RSA [22], DSA [20] or ECDSA [20]
derive their security from the difficulty of number-theoretic problems such as the
factorization or the discrete logarithm problem. Large-scale quantum computers
are expected to render these signature schemes completely insecure due to Shor’s
algorithm [23], which runs in polynomial time with respect to the size of the
input.

When post-quantum security is required, hash-based signatures can present
an attractive alternative to traditional signature schemes. In fact, the very first
digital signature scheme was a hash-based signature scheme, and was proposed
around 1975 by Lamport [9,16]. In Lamport’s proposal, the private key consists
of two secret values, and the public key consists of the corresponding hashes of
these values. Then, to sign a one-bit message, reveal either the first or the second
secret value, depending on whether the message bit is zero or one. By repeating
this process, an arbitrary number of bits can be processed.

A downside of Lamport’s signature scheme is that the size of the private and
public keys grows quickly with the number of messages that need to be signed.
Another, perhaps more devastating downside of Lamport’s signature scheme,
is that it is a stateful signature scheme. That is, the signer needs to indicate
which public keys are used to sign a particular message, and therefore needs to
keep track of the number of messages signed so far. The security of the scheme
critically depends on this property. As pointed out by Langley [17], this is a “huge
foot-cannon” in many environments, for example when a private key needs to
be copied from one device to another.
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Many improved hash-based signature schemes have been proposed to ad-
dress the shortcomings of Lamport’s signature scheme. For example, the private
keys can be generated from a master key using a secure key derivation function
(KDF) [19], and Merkle trees [18] can be used to shorten the public keys. How-
ever most, if not all, practical hash-based signature schemes are stateful. To also
overcome this problem, the stateless hash-based signature scheme SPHINCS was
recently proposed.

3 Hash Functions in SPHINCS

For a full specification of SPHINCS, we refer to [3]. For the purposes of this
paper, it is sufficient to know that the performance of SPHINCS is largely de-
termined by two functions:

– F , a 256-bit-to-256-bit hash function, and
– H , a 512-bit-to-256-bit hash function.

The precise security requirements of F and H are stated in the SPHINCS
paper [3]. For this paper, it is sufficient to recall the informal definitions of Sect. 2,
and to say that F is required to be preimage resistant, second-preimage resistant
and undetectable, and that H is required to be second-preimage resistant. These
security properties should hold for both classical and quantum adversaries. In
the SPHINCS security proof, F and H are not required to be collision resistant,
nor indifferentiable from a random oracle.

To instantiate F and H , we will use two (unkeyed) cryptographic permuta-
tions of the Simpira family: P256 and P512 on 256-bit and 512-bit inputs respec-
tively. More specifically, let F (m) = P256(m)⊕m, and H(m) = ⌊P512(m)⊕m⌋,
where ⌊·⌋ truncates the input to the first 256 bits.

When P256 and P512 are random permutations, this construction of F and H

was shown to be optimally preimage, second-preimage and collision-resistant by
Black et al. [6], and can trivially be shown to be undetectable as well. However,
it is not indifferentiable from a random oracle, as shown by Chang et al. [8]. To
see this, observe that it is easy to find a fixed point for F (pick m = P−1

256
(0)),

whereas it is hard to find a fixed point for a random oracle. For H , a similar
differentiability attack applies. But as we noted earlier, the SPHINCS security
proof does not require F and H to be secure in the indifferentiability framework.

Note that Simpira comes with simple security arguments and comfortable
security margins against all structural distinguishers with up to 2128 queries.
The concept of structural distinguishers was introduced by Bertoni et al. [5, 21]
to set them apart from trivial distinguishers, such as the observation that the
algorithm has a compact description. The structural distinguisher claim allows
us to model P256 and P512 as random permutations for adversaries making up
to 2128 queries, from which the security results of F and H follow. It may be
considered to reduce the number of rounds of Simpira at a future point in time,
and perhaps only when Simpira is used in SPHINCS. However, we decided to
implement Simpira with the same number of rounds as in its design document,
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so that we can reuse Simpira’s claim against structural distinguishers in this
paper.

For fast software implementations of SPHINCS, it is recommended to evalu-
ate F and H on multiple independent inputs in parallel. This property is impor-
tant for the fast vectorized implementation of the original SPHINCS, and will
be used in this paper as well. In the following section, we will explain how to
use Simpira to instantiate P256 and P512 respectively.

4 Description of Simpira

We now recall the specification of Simpira for the parameters that are relevant
to this paper: b = 2 and b = 4, corresponding to 256-bit and 512-bit inputs
respectively. A complete description, together with a design rationale, a security
analysis and benchmarks, can be found in the Simpira design document [13].

An algorithmic specification of the Simpira design of Fig. 3 is given in Fig. 4.
It uses one round of AES as a building block, which corresponds to the AESENC

instruction on Intel processors (see Alg. 1). Its input is a 128-bit xmm register,
which stores the AES 4 × 4 matrix of bytes as shown in Fig. 1. For additional
details, we refer to [12].

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

Fig. 1. The internal state of AES can be represented by a 4× 4 matrix of bytes, or as
a 128-bit xmm register value s = s15 . . . s0, where s0 is the least significant byte.

The G-function5 is specified in Alg. 2. It is parameterized by a counter c and
by the number of subblocks b. Here, SETR EPI32 converts four 32-bit values into
a 128-bit value, using the same byte ordering as the mm setr epi32() compiler
intrinsic. Fig. 2 shows how the constants can be expressed using the 4 × 4 byte
matrix of AES.

Both the input and output of Simpira consist of b subblocks of 128 bits. The
arrays use zero-based numbering, and array subscripts should be taken modulo
the number of elements of the array. The subblock shuffle is done implicitly: we
do not reorder the subblocks at the end of a Feistel round, but instead we apply
the G-functions to other subblock inputs in the subsequent round.

As a result of this implementation choice, Simpira for b = 2 and b = 4 and
their reduced-round variants are not always equivalent to a (generalized) Feistel

5 The F -function of the Simpira paper [13] is called G here to avoid confusion with
the F -function of the SPHINCS design document [3].
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0x00⊕ c0 ⊕ b0 0x10⊕ c0 ⊕ b0 0x20⊕ c0 ⊕ b0 0x30⊕ c0 ⊕ b0

c1 ⊕ b1 c1 ⊕ b1 c1 ⊕ b1 c1 ⊕ b1

c2 ⊕ b2 c2 ⊕ b2 c2 ⊕ b2 c2 ⊕ b2

c3 ⊕ b3 c3 ⊕ b3 c3 ⊕ b3 c3 ⊕ b3

Fig. 2. The constants used inside the Gc,b function of Alg. 2, expressed as a 4 × 4
matrix of bytes. Here, c = c4 . . . c0 and b = b4 . . . b0 are 32-bit integers, where the
least significant byte is c0 and b0 respectively.

with identical rounds. For example, for b = 2 the G-function is alternatingly
applied from left to right and from right to left. When the number of rounds
is odd, this is not equivalent to a Feistel with identical rounds: the two output
subblocks will be swapped.

G GG

b = 2 b = 4

x0 x1 x0 x1 x2 x3

Fig. 3. One round of the Simpira construction for b = 2 and b = 4 In both cases, the
total number of rounds is 15. G is shorthand for Gc,b, where c is a counter that is
initialized by one, and incremented after every evaluation of Gc,b. Every Gc,b consists
of two AES round evaluations, where the round constants that are derived from (c, b).

5 Post-Quantum Security of Simpira

We refer to [13] for the security claims of Simpira in the classical (non-quantum)
setting, where it is argued to be secure against structural distinguishers with a
complexity up to 2128. In this section, we argue why Simpira is also secure in a
post-quantum setting against attacks with the same complexity.

In particular, we evaluate the security of F and H of SPHINCS when in-
stantiated by Simpira with respectively b = 2 and b = 4, combined with a
Davies-Meyer feedforward, as described in Sect. 3. We explain why this construc-
tion is undetectable, preimage resistant, second-preimage resistant and collision-
resistant up to 2128 operations, both in a classical and in a quantum setting. As
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Algorithm 1 AESENC (see [12])

1: procedure AESENC(state, key)
2: state ← SubBytes(state)
3: state ← ShiftRows(state)
4: state ← MixColumns(state)
5: state ← state ⊕ key
6: return state
7: end procedure

Algorithm 2 Gc,b(x)

1: procedure Gc,b(x)
2: C ← SETR EPI32(0x00⊕ c⊕ b,
3: 0x10⊕ c⊕ b,
4: 0x20⊕ c⊕ b,
5: 0x30⊕ c⊕ b)
6: return AESENC(AESENC(x,C), 0)
7: end procedure

Algorithm 3 Simpira (b ∈ {2, 4})

1: procedure Simpira(x0, . . . , xb−1)
2: R ← 15
3: c ← 1
4: for r = 0, . . . , R − 1 do

5: xr+1 ← xr+1 ⊕Gc,b(xr)
6: c ← c+ 1
7: if b = 4 then

8: xr+3 ← xr+3 ⊕Gc,b(xr+2)
9: c ← c+ 1
10: end if

11: end for

12: return (x0, x1, . . . , xb−1)
13: end procedure

Algorithm 4 Simpira−1 (b ∈ {2, 4})

1: procedure Simpira
−1(x0, . . . , xb−1)

2: R ← 15
3: c ← bR/2
4: for r = R − 1, . . . , 0 do

5: if b = 4 then

6: xr+3 ← xr+3 ⊕Gc,b(xr+2)
7: c ← c− 1
8: end if

9: xr+1 ← xr+1 ⊕Gc,b(xr)
10: c ← c− 1
11: end for

12: return (x0, x1, . . . , xb−1)
13: end procedure

Fig. 4. Alg. 2 specifies Gc,b using the AESENC operation that is defined in Alg. 1. Alg. 3
and Alg. 4 specify Simpira and its inverse for b = 2 and b = 4, where both the input and
output consist of b subblocks of 128 bits. Note that all arrays use zero-based numbering,
and array subscripts should be taken modulo the number of elements of the array.

such, they satisfy the properties that are required in the post-quantum security
proof of SPHINCS [3].

A common misunderstanding is that the complexity of a quantum algorithm
is the square root of the corresponding classical algorithm. This would mean that
F and H need to have a preimage and second-preimage resistance of 2256. Such
a claim is not made in the Simpira design document [13], as only security up
to structural distinguishers with complexity up to 2128 is argued. Although no
preimage or second-preimage attack is known, the claims in the Simpira design
document do not exclude preimage or second-preimage attacks on F and H with
a complexity of less than 2256, possibly as the result of a distinguisher that makes
more than 2128 evaluations.
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This incorrect interpretation of post-quantum security is likely the result of
some confusion about Grover’s algorithm [10, 11], a quantum algorithm that
inverts a function with a s-bit output using about 2s/2 operations. As s = 256
in our case, this corresponds to about 2128 quantum operations. Note that only
the digest size s determines the complexity of Grover’s algorithm, and not any
particular structure about the function. When the function is a random oracle,
Grover’s algorithm was shown to be optimal by Bennett et al. [1].

But more efficient quantum algorithms exist to invert particular functions.
The discrete logarithm problem comes in mind, for which Shor [23,24] provided
a quantum algorithm that is polynomial-time in the size of the input. How-
ever, Shor’s algorithm crucially relies on the special structure of the function.
Here in particular, it uses the fact that exponentiation can be performed using
the square-and-multiply algorithm. For Simpira, however, no such structure is
present. Therefore, although the Simpira design document only claims security
up to 2128 in the classical setting, also no quantum algorithm is known that
can find preimages or second-preimages for F or H in less than 2128 quantum
operations.

Furthermore, there is no algorithm that can find collisions in less than 2128

operations (classical or quantum). Note that a quantum algorithm by Brassard,
Høyer and Tapp [7] is frequently claimed to find collisions with a lower complex-
ity. We refer to Bernstein [2] for an explanation of why the Brassard-Høyer-Tapp
quantum algorithm does not outperform classical collision search algorithms.
Bernstein’s argument is used to argue the security of SPHINCS against multi-
target preimage attacks, and applies regardless of the primitives by which it is
instantiated.

Undetectability can be seen as a rather broad notion, as there are many ways
in which the outputs of some weak instantiation of F (or H) could be distin-
guished from uniformly random values. Perhaps the first output bit is biased
towards zero, the XOR of the output bits is biased towards one, the probability
of finding a collision is higher than for a uniformly random distribution,... The
definition of undetectability requires security against all of these distinguishers,
and many more. In a classical setting, Simpira claims security against structural
distinguishers up to 2128 queries, which includes all detectability attacks. In this
claim, no specific computational model is imposed on the distinguisher, so that
it carries over to the post-quantum setting as well. Note that F (or H) is evalu-
ated on uniformly random inputs, so the quantum computer has no control over
the inputs, but can base its decision only on the observation of the outputs of
F (or H) in the “real world,” or uniformly random values in the “ideal world.”

6 Benchmarks of SPHINCS-Simpira

We measured the performance of SPHINCS on one of the latest Intel proces-
sors, Architecture Codename Skylake, with Hyper-Threading and Turbo Boost
disabled. Our measurements consider both the original SPHINCS, as well as
SPHINCS-Simpira where the F and H functions are replaced by Simpira with
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respectively b = 2 and b = 4 and a Davies-Meyer feedforward, as explained in
Sect. 3. As the performance of F and H largely determined by F and H , we only
replaced these two functions. As none of the other parameters are changed, both
the original SPHINCS and SPHINCS-Simpira have a private-key size of 1 088
bytes, a public-key size of 1 056 bytes, and the size of each signature is 41 000
bytes.

The authors of SHPINCS made an optimized implementation available as
part of eBACS [4]. To ensure the fairest possible comparison, we use the latest
SPHINCS implementation on eBACS in the SUPERCOP benchmarking frame-
work (version 20170228). In particular, we perform 32 runs to measure the av-
erage and mean speed of the key generation algorithm (crypto sign keypair),
the signature algorithm (crypto sign) on 59-byte messages, and the verification
algorithm (crypto sign open) on 59-byte messages. The results are shown in
Table 1.

Table 1. Cycle counts on Intel Skylake for the crypto sign keypair, crypto sign, and
crypto sign open operations of both the original SPHINCS and SPHINCS-Simpira,
using the SUPERCOP benchmarking framework. Messages are chosen to be 59 bytes
long.

SPHINCS (orig.) SPHINCS-Simpira speed-up

Cycles to generate a key pair
median 2 841 398 1 875 254 1.52×
average 2 844 989 1 878 209 1.51×

Cycles to sign 59 bytes
median 43 993 732 32 549 062 1.35×
average 44 007 958 32 568 235 1.35×

Cycles to verify 59 bytes
median 1 283 710 629 086 2.04×
average 1 286 054 631 346 2.04×

7 Comparison with Haraka

Haraka [15] has been proposed as another AES-based hash function to replace
the F and H functions of SPHINCS. The first version of Haraka was vulnerable
to an attack by Jean [14] due to a weak choice of round constants, but was
subsequently updated to prevent the attack.

Haraka was announced before Simpira, and is even faster than Simpira when
used in SPHINCS. An additional advantage of the F and H functions of Haraka
is that it is optimized for both latency and throughput, whereas Simpira fo-
cuses only on optimizing throughput. Although the latency of F and H is not
a bottleneck in SPHINCS, having a low latency can be an advantage in other
applications.
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It is difficult to make a comparison between Haraka and Simpira. Although
both AES-based, they are entirely different designs, and make different security
claims as well. Simpira claims security against structural distinguishers up to
2128 queries in a classical setting, inspired by the hermetic sponge strategy of
SHA-3 [5,21]. From this, the security of F and H in SPHINCS-Simpira against
preimage, second-preimage and undetectability attacks follow. Haraka makes
a stronger claim against preimage and second-preimage resistance (up to 2256

queries in a classical setting), but makes no claim against other non-randomness
properties. No explicit claim of undetectability is made for Haraka, but this seems
implied as it is required by the SPHINCS post-quantum proof of security [3].

We hope that the different designs and security claims of Haraka and Simpira
will be an interesting starting point for discussions, and that this may lead to
a better understanding of the pre-quantum and post-quantum security of AES-
based designs in general.

8 Conclusion

For modern 64-bit processors that nowadays all have AES instructions, Simpira
offers a family of high-throughput cryptographic permutations of various input
sizes. This makes it an interesting candidate for the 256-bit-to-256-bit and 512-
bit-to-256-bit hash functions that dominate the performance of SPHINCS, when
these are combined with a Davies-Meyer feedforward.

However, Simpira only claims security up to 2128 queries using classical com-
puters, and no security against quantum computers. By recalling that the com-
plexity of Grover’s algorithm depends on the output size of the function, and
not on any particular structure of the function, we claim that Simpira has the
same security both pre-quantum and post-quantum.

SPHINCS-Simpira then provides the same post-quantum security claims as
the original SPHINCS. However, our benchmarks show that SPHINCS-Simpira
gives a 1.5× speed-up for generating key pairs, a 1.4× speed-up for signing 59-
byte messages, and a 2.0× speed-up for verifying the signatures.
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