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The aim of a secret sharing scheme is to share a secret among a 
group of participants in such a way that while authorized subsets 
of participants are able to recover the secret, non-authorized 
subsets of them obtain no information about it. Multi-secret 
sharing is the natural generalization of secret sharing for 
situations in which the simultaneous protection of more than one 
secret is required. However, there exist some secret sharing 
schemes for which there are no secure or efficient multi-secret 
sharing counterparts. In this paper, using cellular automata, an 
efficient general method is proposed to reduce the problem of 
sharing ࢑ secrets (all assigned with the same access structure and 
needed to be reconstructed at once) under a certain secret sharing 
scheme (ࡿ), to the problem of sharing one secret under ࡿ such that 
none of the properties of ࡿ  are violated. Using the proposed 
approach, any secret sharing scheme can be converted to a multi-
secret sharing scheme. We provide examples to show the 
applicability of the proposed approach. 

Keywords- Cryptography; Cellular automata; Secret sharing; 
Multi-secret sharing; Access structure. 

I.  INTRODUCTION  

The concept of secret sharing ( ܵܵ ) is independently 
introduced by Shamir [1] and Blakley [2]. In ܵܵ  schemes, a 
secret is divided into some pieces, called secret shadows and 
then, these shadows are shared among a group of participants. 
This is done in such a way that any authorized subset of 
participants can retrieve the secret. A subset is called authorized 
when it belongs to a predetermined access structure. Many secret 
sharing applications require the protection of more than one 
secret. Using an ܵܵ scheme multiple times to share each secret 
separately is the trivial solution to this problem, but in this case 
each participant should remember too much secret information. 
In order to reduce the amount of information given to each 
participant, multi-secret sharing ( ܵܵܯ ) schemes have been 
introduced to the literature. Here, we consider the following case 
which has been introduced by Jackson et al. [3] and many ܵܵܯ 
schemes proposed based on it ([4-8]): 

A multi-secret sharing (ܵܵܯ) scheme is a method to share more 
than one secret among a group of participants in such a way that: 

1) any authorized subset of participants is able to recover 
all the secrets, 

2) any non-authorized subset of participants obtains no 
information about any of the secrets. 

If the two aforementioned conditions are held, but the 
knowledge on some of the secrets enables the participants in a 
non-authorized subset to recover some information on other 
secrets, the scheme would be called a weakly secure ܵܵܯ 

scheme. Otherwise, it would be called a strongly secure ܵܵܯ 
scheme. In the above definition, a single access structure has 
been used for all the secrets. The more general case is where 
each of the secrets is associated with a (possibly) different access 
structure. The interested readers can find more on the general 
case in [9], [10]. 

In recent years, a lot of researches are done to propose ܵܵ 
schemes [4-15]. However, among them, there are some ܵܵ 
schemes for which there are no secure ܵܵܯ  counterpart. For 
example, the hierarchical threshold ܵܵ schemes of [11] are not 
secure for sharing arbitrary number of secrets. There are also 
some other ܵܵ schemes for which the efficiency of their ܵܵܯ 
counterparts are almost as worse as executing them multiple 
times to share each secret separately. For example, in [12], the 
authors proposed an ܵܵܯ scheme in which while the share size 
of each participant is a constant value, the computational cost 
and the number of public parameters of this scheme is almost 
same as when it is used to share each secret separately. 

Motivated by these problems, the aim of this paper is to 
propose a general method to reduce the problem of sharing ݇ 
secrets (all assigned with the same access structure) under an 
arbitrary ܵܵ scheme (ܵ), to the problem of sharing one secret 
under ܵ  such that all the properties of ܵ  (if has any, such as 
access structure, multi-use, verifiability, etc.) are preserved. It is 
proved that after applying the proposed method to an ܵܵ 
scheme, the result would be a weakly secure ܵܵܯ scheme. In 
this way, any ܵܵ scheme can be converted to a weakly secure ܵܵܯ  scheme. The proposed method is based on cellular 
automata and can be considered as a generalization of the 
method used in [16, 17], where cellular automata is used to 
propose secure ܵܵܯ  and secret image sharing schemes for 
hierarchical threshold access structures [11, 15-19].  

It should be noted that it is a while since cellular automata 
has been used in the context of ܵܵ [7, 16, 17, 20-23]. However, 
a drawback of existing cellular automata-based ܵܵ  schemes 
(except for the schemes of [16, 17]) is that their access structure 
is restricted in the sense that only a set of consecutive 
participants (based on a predefined ordering) can form an 
authorized subset. This constraint doesn't apply to the proposed 
method.  

The rest of the paper is organized as follows: In Section II, 
the basic definitions of memory cellular automata are 
introduced. The proposed method is described in Section III. In 
Section IV, the performance and security of the proposed 
method is analyzed. In Section V, two applications of the 
proposed method is provided. Finally, the paper is concluded in 
Section VI. 



II. ONE-DIMENSIONAL MEMORY CELLULAR 

AUTOMATA 

A cellular automaton (pl. cellular automata, abbrev. ܣܥ) is a 
discrete dynamical model which consists of a regular grid of 
cells. The grid can be in any finite number of dimensions and 
each cell can assume a finite number of states. For each cell, a 
set of cells called its neighborhood is defined. Then, a local 
transition function updates the cells simultaneously in discrete 
time steps. The updated state of each cell is determined via this 
function in terms of the current state of the cell and the state of 
the cells in its neighborhood. 

The simplest nontrivial ܣܥ  is a one-dimensional ܣܥ 
including an array of ܰ cells with two possible states ݏ ∈ ሼ0,1ሽ. 
For the ݅-th cell, denoted by 〈݅〉, the symmetric neighborhood of 
radius ݎ  is considered: ௜ࣨ = ሼ〈݅ − ,〈ݎ ⋯ , 〈݅〉, ⋯ 〈݅ + ሽ〈ݎ . The 
local transition function of the cellular automata with radius ݎ is 
of the following form: ܽ௜(்) = ݂൫ ௜ࣨ(்ିଵ)൯,   0 ≤ ݅ ≤ ܰ − 1,                                          (1) 

where ܽ௜(்)  denotes the state of 〈݅〉  at time ܶ  and ௜ࣨ(்ିଵ) ∈ሼ0,1ሽଶ௥ାଵ stands for the state of the neighboring cells of 〈݅〉 at 
time (ܶ − 1)  (It is assumed that ܽ௜(்) = ௝ܽ(்) , if ݅  ݎ with radius (ܣܥܮ) A linear cellular automaton .((ܰ ݀݋݉) ݆≡
has a local transition function of the following form: 

ܽ௜(்) = ෍ 0   ,(2 ݀݋݉) ௝ܽ௜ା௝(்ିଵ)ߙ ≤ ݅ ≤ ܰ − 1௥
௝ୀି௥ ,                   (2) 

where ߙ௝ ∈ ሼ0,1ሽ for every ݆. 

Note that there are 2ݎ + 1  neighboring cells for 〈݅〉 . 
Therefore, there exist 2ଶ௥ାଵ ܣܥܮs where each can be specified 
by the integer ݓ = ∑ ௝2௥ା௝௥௝ୀି௥ߙ  called rule number, where 0 ≤ ݓ ≤ 2ଶ௥ାଵ − 1. 

The vector ܥ(்) = ൫ܽ଴(்), ⋯ , ܽேିଵ(்) ൯ ∈ ሼ0,1ሽே  shows the 
configuration of a ܣܥ  at time ܶ , where ܥ(଴)  is the initial 
configuration. Moreover, the sequence ൛ܥ(்)ൟ଴ஸ்ஸ௞ is called the 
evolution of order ݇  of the ܣܥ  and ࣝ  denotes the set of all 
possible configurations of the ܣܥ. The global function of the ܣܥ 
is a linear transformation, ߮: ࣝ → ࣝ , which determines the 
configuration at the next time step during the evolution of the ܣܥ, i.e., ܥ(்) =  .((ଵି்)ܥ)߮

When there is exactly one past configuration for every 
current configuration of a cellular automaton, the ܣܥ is called 
reversible and the evolution backward is possible. For such ܣܥs, 
there exists another ܣܥ, called its inverse, with global function ߮ିଵ (see [24]). 

The ܣܥs considered so far are memoryless, i.e., the updated 
state of a cell depends on its neighborhood configuration only at 
the preceding time step. Nevertheless, one can consider cellular 
automata for which the state of neighboring cells at time ܶ as 
well as ܶ − 1, ܶ − 2, ⋯ contribute to determine the state at time ܶ + 1. This is the concept of the Memory cellular automaton 
 we mean a particular type of ,ܣܥ Hereafter, by a .([25]) (࡭࡯ࡹ)

ܣܥܯ  called the ݇ -th order linear ܣܥܯ  whose local (ܣܥܯܮ) 
transition function takes the following form: ܽ௜(்) = ଵ݂൫ ௜ࣨ(்ିଵ)൯ + ଶ݂൫ ௜ࣨ(்ିଶ)൯ + ⋯+ ௞݂൫ ௜ࣨ(்ି௞)൯ (݉2 ݀݋)                               (3) 

where ௝݂  ( 1 ≤ ݆ ≤ ݇ ) is the local transition function of a 
particular ܣܥܮ  with radius ݎ . In this case, ݇  initial 
configurations ܥ(଴), ⋯ ,  are required to start the evolution (௞ିଵ)ܥ
of ܣܥܯܮ.  

Furthermore, in order for a memory cellular automaton to be 
reversible, we have the following proposition proved in [7]. 

Proposition 1. If ௞݂൫ ௜ࣨ(்ି௞)൯ = ܽ௜(்ି௞) , then the ܣܥܯܮ 
given by (3) is reversible and its inverse is another ܣܥܯܮ with 
the following local transition function: 

ܽ௜(்) = ෍ ௞݂ି௠ିଵ൫ ௜ࣨ(்ି௠ିଵ)൯ +௞ିଶ
௠ୀ଴ ܽ௜(்ି௞) (݉2 ݀݋)               (4) 

III. THE PROPOSED SCHEME 

In this section, we employ cellular automata to propose a 
general method to reduce the problem of sharing ݇ secrets (all 
assigned with the same access structure) to the problem of 
sharing only one secret. Applying the proposed method to an 
arbitrary (ܯ)ܵܵ  scheme (ܵ) would result in an ܵܵܯ  scheme 
preserving all properties of ܵ  (if has any, including access 
structure, multi-use, verifiability, etc.). 

The basic idea behind the proposed approach is to construct 
an ܣܥܯܮ  ( ܯ ) of order ݇  with the secrets as its initial 
configurations. Then, ܯ  is evolved and a set of ݇  suitably 
chosen consecutive configurations are chosen, ݇ − 1 of them 
would be published and the remaining one would be shared 
under ܵ. This means that practically, we share only one single 
secret. In the recovery phase, any qualified subset of participants 
can use their shares to recover the shared configuration. Then, 
using the recovered configuration and the public ones, they can 
reconstruct the inverse cellular automata ܯ෩  and obtain all ݇ 
secrets. The general idea is depicted in Fig. 1 with notations as 
in Table 1.  

Let ሼܵܥଵ, ⋯ ,  ௞ሽ be the set of secrets where each of them isܥܵ
a binary string of length ݈ . Consider ܵ as an arbitrary (ܯ)ܵܵ 
scheme. Now, the ܵܵܯ scheme obtained by using our reduction 
and ܵ as its underling (ܯ)ܵܵ scheme consists of 3 phases: (1) 
the setup phase, (2) the sharing phase, and (3) the recovery 
phase. The details of each phase are provided in the following 
sections.  

A. The setup phase 

In this phase, the dealer constructs a reversible ܣܥܯܮ  of 
order ݇  (denoted by ܯ ). In details, the dealer performs the 
following steps: 

 Chooses 1 ≤ ݎ ≤ ቔ௟ିଵଶ ቕ as the radius of the symmetric 

neighborhood of ܯ and publishes it.  



 Chooses a random number 1 ≤ ଵݓ ≤ 2ଶ௥ାଵ − ݇ + 1 

and publishes it. Then, computes the values of ݓ௜ ଵݓ= + ݅ − 1 for 1 ≤ ݅ ≤ ݇ − 1 as the rule numbers of ܯ. 

 Constructs ܯ of order ݇ by  

௝ܽ(்) = ௪݂భ൫ ௝ࣨ(்ିଵ)൯ + ⋯ + ௪݂ೖషభ൫ ௝ࣨ(்ି௞ାଵ)൯+ ௝ܽ(்ି௞)   (݉2 ݀݋)                       (5) 

 

where 0 ≤ ݅ ≤ ݈ − 1  and ௪݂೔  is the local transition 

function of the ܣܥܮ  with radius ݎ  and rule number ݓ௜ (1 ≤ ݅ ≤ ݇ − 1). Note that in the proposed scheme 

each configuration consists of ݈ cells, i.e., the number 

of cells in each configuration is equal to the size of 

each secret. 

 Sets initial configurations of ܯ   as (଴)ܥ = ଵܥܵ , ⋯ (௞ିଵ)ܥ , =  .௞ܥܵ

 Performs the setup phase of ܵ (if applicable). 

B. The sharing phase 

In this phase, the dealer performs the following steps: 

 Computes the evolution of ܯ  of order 2݇ − 1  and 

obtains ܥ(଴),⋯, ܥ(௞ିଵ), ܥ(௞),⋯, ܥ(ଶ௞ିଵ). 
 Publishes the values of ߚଵ = ௞ିଵߚ ,⋯,(௞)ܥ =  .(ଶ௞ିଶ)ܥ
 Performs the sharing phase of ܵ to share ߚ௞ =  (ଶ௞ିଵ)ܥ

among participants. 

C. The recovery phase 

On input of the set of shares corresponding to an authorized 

subset of participants (which belongs to the access structure 

of ܵ), a trusted party can execute the following steps to 

recover all the secrets: 

 Runs the recovery phase of ܵ to recoverߚ௞. 

 Constructs ܯ෩  according to Eq. (4), i.e., the inverse of ܯ, with initial configurations ܥሚ(଴) = ሚ(ଵ)ܥ ,௞ߚ = ሚ(௞ିଵ)ܥ ,⋯  ,௞ିଵߚ =  .ଵߚ

 Evolves  ܯ෩  2݇ − 1 times to obtain ܵܥଵ = ௞ܥܵ ,⋯ ,(ଶ௞ିଵ)ܥ =  .(௞)ܥ
 

Table 1. Notations ܵܥଵ, ⋯ ,  .௞ The secrets to be sharedܥܵ

ଵܲ, ⋯ , ௡ܲ The participants. ܵℎଵ, ⋯ , ܵℎ௡ The shares to be distributed among 

participants. ݎ, ܰ Radius of neighborhood and number of cells 

in a configuration of the ܣܥܯܮ, respectively. 

 

 

IV. PERFORMANCE AND SECURITY ANALYSIS 

 
In this section, the performance and the security of the ܵܵܯ 

schemes obtained by applying the proposed method is analyzed.  

A. Performance analysis 

In this section, the performance of the ܵܵܯ  schemes 
obtained by using the proposed method is analyzed. The analysis 
is done in terms of the share size, the computational complexity, 
the number of public values, and the properties of the obtained ܵܵܯ schemes.  

1) The share size 
In the ܵܵܯ schemes obtained by using the proposed method, 

the share size of each participant is exactly the same as that when ܵ (the underling ܵܵ scheme) is used to share only one secret. 
That is because in the sharing phase of the resulting ܵܵܯ 
scheme, the corresponding share to each participant is obtained 
by sharing only one secret using ܵ. 

2) The computational complexity 
In the proposed method, computing the evolutions of an ܣܥܯܮ 
is all that is needed to accomplish the desired reduction. It should 
be noted that in cellular automata-based secret sharing schemes 
[7, 20-23], it is assumed that the computational complexity of 
evolving an ܣܥܯܮ is linear in terms of the order of the desired 
evolution. However, this is not true and it can be easily verified 
that computing the next configuration of a ݇-th order ܣܥܯܮ has 
computational complexity ܱ(݇) and therefore, computing the 
evolution of order ݇ᇱ  of this ܣܥܯܮ  has computational 
complexity ܱ(݇(݇ᇱ − ݇)) . Using this fact, the achieved 
reduction has ܱ(݇ଶ)  cost where, ݇  is the number of secrets. 
Therefore, assuming that ܵ  is an ܵܵܯ  scheme, based on the 
computational complexity of ܵ in terms of the number of the 
secrets, the obtained ܵܵܯ scheme by using the proposed method 
can be less or more efficient than ܵ.



 

Fig. 1.  The diagram of the proposed scheme. 

  

3) The number of public parameters 
The obtained reduction has the cost of publishing ݇ − 1 

public values.  Based on the order of growth of the number of 
public values of ܵ  (assuming that ܵ  is an ܵܵܯ  scheme) in 
terms of the number of the secret, the obtained ܵܵܯ scheme 
by applying the proposed method to ܵ can be more or less 
efficient than the original ܵܵܯ scheme. For example, in the 
next section it is shown that applying the proposed method to 
the ܵܵ  scheme of [12] would result in a decrease in the 
number of public parameters, but applying the proposed 
method to ܵܵܯ  schemes with constant number of public 
values would result in an increase in the number of public 
values. 

 

 

4) The properties 
Applying the proposed method to ܵ  (as the underlying  (ܯ)ܵܵ scheme) will preserve all the properties of ܵ (if has 

any, such as multi-use, verifiability, access structure, etc.). 
The only constraints of the proposed method are that it is not 
applicable in situations where the secrets are assigned with 
different access structures or it is required to reconstruct the 
secrets independently. 

B. The security analysis 

In the following we prove that with knowledge on none of 
the secrets, non-authorized subsets of participants obtain no 
information about the secrets. First, we have the following 
lemma which states a natural property of the memory cellular 
automata. 



Lemma 1. Let ܯ  denote a ݇ -th order ܣܥܯܮ  and ܥ(௝), ,(௝ିଵ)ܥ ⋯ , (௝ି௞ାଵ)ܥ  denote ݇  consecutive 
configurations of it. Then, without any knowledge about even 
one of these configurations, it is not possible to obtain any 
information about ܥ(௝ାଵ). 

Proof. Without loss of generality assume that there is only 
one configuration ܥ(௝ି௟) (for a fixed number 0 ≤ ݈ ≤ ݇ − 1) 
that we have no information about. In order to compute ܥ(௝ାଵ) = ൫ܽ଴(௝ାଵ), ⋯ , ܽேିଵ(௝ାଵ)൯, we have to solve the following 
system of equations ܽ௜(௝ାଵ) = ෍ ଵ,௧ܽ௜ା௧(௝)௥௧ୀି௥ߙ + ⋯ + ෍ ௟ାଵ,௧ܽ௜ା௧(௝ି௟)௥௧ୀି௥ߙ + ⋯+ ෍ ௞,௧ܽ௜ା௧(௝ି௞ାଵ)௥௧ୀି௥ߙ ,   ݅ = 0, ⋯ , ܰ − 1. 

In the above system there is 2ܰ unknown values (ܽ௜(௝ାଵ) 
and ܽ௜(௝ି௟)  for ݅ = 0, ⋯ , ܰ − 1 ) and only ܰ  equations. 
Therefore, no information about ܥ(௝ାଵ) can be obtained.          

Now, we have the following lemma which is a 
generalization of Lemma 1 and can be proved easily by 
induction on ݅. 

Lemma 2. Let ܯ  denote a ݇ -th order ܣܥܯܮ  and let ܥ(௝), ,(௝ିଵ)ܥ ⋯ , (௝ି௞ାଵ)ܥ  denote ݇  consecutive 
configurations of it. Then, without knowledge about even one 
of ܥ(௟)s, (݆ − ݇ + 1) ≤  ݈ ≤  ݆, it is not possible to obtain any 
information about any further configurations of ܯ, i.e., it is 
not possible to obtain information about ܥ(௝ା௜) for any ݅ ≥ 1. 

Now, the following theorem shows that the result of 
applying the proposed method to an arbitrary secret sharing 
scheme ܵ  (with perfect secrecy) would result in a weakly 
secure ܵܵܯ scheme. 

Theorem 2. Let S be an arbitrary ܵܵ scheme with perfect 
secrecy. Then, the ܵܵܯ  scheme obtained by applying the 
proposed method to ܵ is a weakly secure ܵܵܯ scheme, i.e., in 
the obtained ܵܵܯ  scheme, with knowledge on none of the 
secrets, the set of shares corresponding to any non-authorized 
subset of participants reveals no information about any of the 
secrets. 

Proof. Let ࣛ be an attacker and let ܤ be an arbitrary non-
authorized subset of participants. Perfect secrecy of ܵ makes 
it impossible for ࣛ  (even by accessing to the set of shares 
corresponding to the participants in ܤ ) to obtain any 
information about the shared configuration of ܯ under ܵ in 
the sharing phase. Therefore, ࣛ  has only access to ݇ − 1 
consecutive configurations of ܯ (i.e., the published values). 
Now, Lemma 2 implies that ࣛ  can obtain no information 
about any further configuration of M . Therefore, he obtains 
no information about any of the secrets from shares 
corresponding to ܤ.                                                                 

V. APPLICATIONS FOR THE PROPOSED MEHOD  

In this section, the applicability of the proposed method is 
shown by providing two examples. Since it is straightforward 
to apply the proposed method to an ܵܵ  scheme, only the 
results of these implementations are reported. The interested 

readers can find the details of the underlying ܵܵ schemes in 
the referred sources. 

A. Applying the proposed method to the ࡿࡿ scheme 

of [11] 

As explained in the introduction, the ܵܵܯ scheme 
presented in [16] is a special case of the proposed method 
when it is applied to Tassa’s hierarchical threshold ܵܵ scheme 
[11]. To the best of our knowledge, it is the only known secure 
hierarchical threshold ܵܵܯ  scheme. The interested readers 
can see [16] for the details of this specific implementation.  

B. Applying the proposed method to the ࡿࡿࡹ scheme 

of [12] 

In 2010, Das and Adhikari proposed an ܵܵܯ scheme with 
general access structure (hereafter, this scheme is denoted for 
short by ܣܦ .(ܣܦ provide some desirable properties such as 
verifiability, multi-usability and constant share size. However, 
the number of public parameters in ܣܦ is of order  ܱ(݇ଶ) 
where, ݇  is the number of the secrets. By applying the 
proposed method to ܣܦ as the underlying ܵܵ scheme, while 
the computational complexity of the achieved ܵܵܯ scheme 
would be the same as that of the original ܵܵܯ scheme, the 
number of public parameters of the scheme would be 
decreased from ܱ(݇ଶ) to ܱ(݇).   

VI. CONCLUSIONS 

In this paper, cellular automata is employed to propose a 
general method to reduce the problem of sharing ݇  secrets 
with a certain secret sharing scheme ܵ , to the problem of 
sharing one secret under ܵ such that all properties of ܵ remain 
intact. The proposed method is applicable to situations where 
the same access structure is assigned to all the secrets and all 
of them should be recovered at once. Some examples are also 
provided to show the applicability of the proposed method. 
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