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Abstract

Over the past few years, the increased affordability of genome
sequencing and the ensuing availability of genetic data have
propelled important progress in precision medicine and en-
abled a market for personal genomic testing. This yields ex-
citing new opportunities for faster and more accurate diagno-
sis, personalized treatments, and genetically tailored wellness
plans. At the same time, however, it also creates important
security and privacy threats.

In this paper, we present a new cryptographic protocol, PA-
PEETE (Private, Authorized, fast PErsonal gEnomic TEsting)
suitable for running different types of tests on users’ genetic
data (specifically, SNPs). The protocol, which builds on top of
additively homomorphic encryption, provides privacy for both
users and test facilities, and it guarantees that the test is autho-
rized by an appropriate authority such as the FDA. Finally, we
present a prototype implementation of PAPEETE, and an ex-
perimental evaluation that attests to the real-world practicality
of our techniques.

1 Introduction

Over the past few years, progress in DNA sequencing and ge-
nomics has paved the way for a not-so-distant future where
large chunks of the population in developed countries will
have access to genetic testing. Sequencing is actually not the
only way to analyze the genome, as in-vitro techniques have
long been used to look for known genetic differences using
biomarkers. However, the availability of affordable sequenc-
ing makes it possible to perform genetic testing via computer
algorithms, more easily and at a lower cost. Individuals will
soon be able to get their genome fully sequenced once, then,
all tests can be done in computation over digitized copies of
the genomes.

This progress is also fostering a new “direct-to-consumer”
(DTC) personal genomic market, with companies offering ge-
netic testing for a few hundred US dollars or less. Most DTC
companies require individuals to provide a saliva sample via
mail, and then perform either genotyping or whole exome se-
quencing to extract relevant genetic information and provide
their customers with access to personalized reports related to
health (i.e., the individual’s susceptibility to Parkinson’s dis-
ease), carrier status, wellness (i.e., how well they metabolize
caffeine), and ancestry/genealogy.

Moreover, besides well-known efforts aimed to recruit par-
ticipants to voluntarily make their genome available for re-
search purposes1, pundits and policymakers have also begun
to advocate that we completely replace in-vitro testing with
sequencing, motivated by a possible reduction in life-time
costs [17].

Alas, widespread availability of genomic data prompts eth-
ical, security, and privacy concerns. A full genome sequence
not only identifies its owner, but also contains information
related to ethnic heritage, disease predispositions, and many
other phenotypic traits [7]. Furthermore, due to its hereditary
nature, access to one’s genome also implies access to close
relatives’ genomes. Therefore, disclosing genomic data of a
single individual might put at risk the privacy of more people
and for a long period, since genomes do not change much over
time and across generations [11].

1.1 Private & Authorized Personal Genomic
Testing

In this paper, we focus on personal genomic tests: these are
somewhat similar to those performed by DTC companies and
essentially work by analyzing an individual’s set of SNPs (Sin-
gle Nucleotide Polymorphisms). SNPs are the most common
DNA variations across individuals: more precisely, a SNP is
a variation at a single position, occurring in 1% or more of
a population.2 They constitute the genetic feature that is most
commonly studied, and are used in the majority of applications
of genetic testing [21].

We assume that users undergo sequencing/genotyping and
obtain the list of the SNPs they carry; users can then allow
doctors and testing facilities to perform genomic tests for a va-
riety of reasons, including personalized medicine [15] as well
as any kinds of test depending on their SNPs. Consider, for
instance, the following products already offered today:

• Personalized nutrition plans by the company Nu-
trigenomix, which tests 45 genetic SNPs [13];

• Analysis and personalization of diet, lifestyle, exercise,
cardiovascular and mental activities by GeneSNP, testing
61 SNPs [8];

• Genetic health risks and carrier status by 23andMe, test-
ing a few hundred SNPs [1];

1See, for instance, the 100K Genomes Project in the UK [10], the Precision
Medicine initiative in the US [20], or the Personal Genome Project [16].

2https://ghr.nlm.nih.gov/primer/genomicresearch/snp
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Figure 1: PAPEETE Architecture.

• Assessment of drug response and disease susceptibility at
GenePlanet [9].

Overall, we focus on tests that can be expressed as a weighted
average computed over the SNPs and some importance factors
(weights). Specifically, the result R to test X is computed as:

R(X) =

∑
i wi · Pr[X|SNPi]∑

i wi
(1)

where, for each of SNPi, wi is the weight and Pr[X|SNPi ∈
{0, 1, 2}] a SNP-dependent weight. {0, 1, 2} represents, re-
spectively, the presence of the SNP in no, one, or both chro-
mosomes.

Privacy. Our goal is to support testing in such a way that the
only information revealed is the outcome of the test. No other
information is leaked, for both the user and the test owner.
This is crucial for both parties: the former so that testing can
be performed on their genomic data without having to expose
the whole genome; the latter as test specifics might need to be
kept confidential, as they likely constitute valuable intellectual
property.

Authorization. Furthermore, we argue that the test itself –
specifically, the weights in Eq. 1 as well as their position –
needs to be authorized by an appropriate authority, such as the
FDA. This is just as important as privacy in order to guarantee
the user that, while the test specifics are concealed for con-
fidentiality reasons, the test has actually been verified by an
appropriate authority so that the testing facility cannot dishon-
estly learn SNPs information from the user. As discussed be-
low, this is a crucial issue that has been overlooked in previous
work [2, 4].

PAPEETE. With this motivation in mind, we present PA-
PEETE (Private, Authorized, fast PErsonal gEnomic TEsting).
As illustrated in Fig. 1, the protocol involves three entities:
(1) a Testing Facility, which wants to run a test on user’s ge-
nomic data without revealing which positions are being tested
and the weights associated to them; (2) a User, who allows
the Testing Facility to run the test, if authorized, without re-
vealing her SNPs; and (3) a Certification Authority, which is
trusted to authorize the Testing Facility’s test, specifically, the
weights and their positions. The protocol is formed by two
main blocks, one for the authorization and one for the actual
test, built on top of Additively Homomorphic Elliptic Curve
El-Gamal, both incurring complexity linear in the number of

Work Privacy Authorization Efficiency Weighted Avg

Baldi et al. [3] ! ! ! %

Ayday et al. [2] ! % % !

Danezis et al. [4] ! % ! !

PAPEETE ! ! ! !

Table 1: Comparison to previous work.

the SNP dictionary. We also implement a protocol prototype,
demonstrating that our authorization mechanism introduces a
negligible overhead compared to related work yielding non-
authorized protocols [2, 4].

1.2 Related Work

Our work aims to support personal genomic testing, expressed
as a weighted average computed over SNPs, while simulta-
neously guaranteeing privacy, authenticity, and efficiency. To
the best of our knowledge, prior work has not produced any
solution that simultaneously achieves all of our requirements.

Baldi et al. [3] introduce a protocol for private personal-
ized medicine testing, guaranteeing authorization and privacy;
they only support testing for the presence of some SNPs in the
user’s genome, but not more complex operations like weighted
average. Their protocol relies on Authorized Private Set Inter-
section [5] and can operate on full genomes, but can achieve
efficiency by means of offline pre-computation. Ayday et
al. [2] introduce Private Disease Susceptibility (PDS) testing
which, similar to our work, aims to perform a weighted aver-
age over a patient’s SNPs. They use Paillier [14] to privately
compute the weighted average and rely on a semi-trusted au-
thority (Storage & Processing Unit, or SPU) to store and re-
trieve the user’s encrypted SNPs. Their protocol is relatively
slow when considering hundreds of thousand/million SNPs
and, more importantly, does not provide any mechanism for
authorizing the weights. Then, Danezis and De Cristofaro [4]
present an improvement over [2], introducing a different en-
coding allowing them to replace Paillier with Additively Ho-
momorphic El-Gamal cryptosystem [6], reducing computa-
tional and communication complexities. Their protocol does
not support authorization either. The difference between PA-
PEETE and previous work is also summarized in Table 1.

Finally, Naveed et al. [12] introduce a primitive called Con-
trolled Functional Encryption (C-FE) and use it to let individ-
uals authorize use of their genetic data for specific research
purposes. C-FE is used to encrypt the user’s genome under
a public key issued by a central authority; then, testing fa-
cilities can run tests using a one-time function key, obtained
by the authority, which corresponds to a specific function. In
other words, the authorization mechanism determines whether
or not a function can be executed, without any control on the
data being tested or the weights used.
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2 Preliminaries
We now review relevant cryptography background informa-
tion.
Elliptic Curve Discrete Logarithm Problem (ECDLP). Let
E be an elliptic curve of order q with generator g. Informally,
given points P,Q ∈ E, such that Q ∈ 〈P 〉, the ECDLP as-
sumption states that determining k s.t. Q = P k is computa-
tionally unfeasible.
Decisional Diffie-Hellman assumption (DDH). Let E be an
elliptic curve of order q with generator g. Informally, the DDH
assumption states that, given ga and gb for uniformly and inde-
pendently chosen a, b ∈ Zq , the value gab is indistinguishable
from a random element in E.
Additively Homomorphic Elliptic Curve based El-Gamal
(AH-ECC). The AH-ECC cryptosystem [6] involves three al-
gorithms:

1. KeyGen(1λ): On input a security parameter λ, select an
appropriate elliptic curve E of order q and public gener-
ator g. Choose random private key x ∈ Zq , define the
public key as pk = gx, and output public parameters
(E, g, pk).

2. Encrypt(m, pk): The message m is encrypted by draw-
ing a random element k ∈ Zq and computing two EC-
points as (A,B) = (gk, pkk · gm). The output ciphertext
is (A,B).

3. Decrypt(A,B, x): Compute the element gm = B ·A−x.
A pre-computed table of discrete logarithms may then be
used to recover m from gm (which is practical for small
ranges of m).

The cryptosystem is additively homomorphic, as (A1, B1) ·
(A2, B2) = (A1 ·A2, B1 ·B2) = (gk1+k2 , pkk1+k2 ·gm1+m2).

3 The PAPEETE Protocol
We now present the PAPEETE (Private, Authorized, fast PEr-
sonal gEnomic TEsting) protocol.
Entities. PAPEETE involves the following parties:

• User (U), on input their genomic data
{SNP1, . . . , SNPn}, stored on their device and
encoded as 3-bit binary vectors – e.g., if SNPi = 1, it is
encoded as 010;

• Testing Unity (T), on input weights, w1, . . . , wn, to be
assigned to each SNP; and

• Certification Authority (CA).

Authorization. As illustrated in Fig. 2, T needs to obtain,
from the CA, the authorization to use weights {w1, . . . , wn} to
conduct personal genomic testing on users. Public parameters
include an elliptic curve E of order q, a generator G, as well

• Common input: E, q,G, n

• T’s input: {w1, · · · , wn}

1. CA chooses following values and keeps them secret:
d← Zq and e = 1/d (mod q)

2. T - CA: {w1, · · · , wn}

3. CA:
∀i = 1, · · · , n, compute: Wi = Gi·e ·Gwi·e

4. CA - T: {W1, · · · ,Wn}

5. T:
Pick: x← Zq and, ∀i, ki ← Zq

∀i, compute: cti = (Ai, Bi) = (Gki , Gx·ki ·Wi)

Figure 2: Authorization (offline).

as the number of SNPs n. We also assume that T and CA can
establish a secure and authenticated channel, using standard
network security techniques.

CA generates a keypair (e, d) s.t. e = 1/d (mod q), and
keeps both values secret. Granting authorization to use weight
wi at position i essentially corresponds to CA performing an
exponentiation, using her exponent e, over wi and i. Note that
CA needs to authorize the test only once (independently from
the number of users), hence, we consider this to be part of an
“offline” phase. Also, T can pre-compute the encryption of the
(authorized) weights to speed up the online phase presented
next.

Test. Fig. 3 shows how to execute a private and authorized
test on U’s SNPs. T sends each encrypted and authorized
weight, cti, to U, which, in a streaming fashion, computes
the encrypted result of the test (ctres). U also computes the
sum of the positions of the SNPs (pres), and sends it, together
with ctres, to CA. The latter needs to unmask the result before
sending it back to T.

Correctness. It is easy to observe that the protocol is correct:

Res = Bdres ·G−pres ·A−x·dres

= Gd·x·
∑
kj ·Gd·e·

∑
ij ·Gd·e·

∑
wj ·G−pres ·G−d·x·

∑
kj

= G
∑
ij ·G

∑
wj ·G−pres

If
∑
ij = pres, the equation above will be equal to G

∑
wj �

Security. To ease presentation, we do not include a complete
security proof of the protocol, as it actually stems straightfor-
wardly from ECDLP and DDH assumptions, respectively, for
the authorization step and the underlying encryption scheme.
As for the former, note that even if T could somehow calcu-
late both Gd and Ge in some way, it would still not be able
to sign weights, or remove the authorization exponent e from
previously signed weights or results.
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• T’s input: x, {ct1, · · · , ctn}
• U’s input: SNP1, · · · , SNPn

• CA’s input: d

1. T - U: {ct1, · · · , ctn}

2. U sets ctres, pres to 0, and, in a streaming manner,
computes:

ctres = ctres + (cti · SNPi)

pres = pres + (i · SNPi)

3. U - CA: ctres, pres

4. CA computes:
(ctres)

d = [(Ares)
d, (Bres)

d], G−pres , and
Res = [(Ares)

d, (Bres)
d ·G−pres ]

5. CA - T: Res

6. T decrypts Res as: G
∑

wj = Bd
res ·G−pres ·A−x·d

res

OUTPUT: G
∑

wj

Figure 3: Test (online).

4 Evaluation and Implementation
In this section, we present an empirical evaluation of the per-
formance of the PAPEETE protocol. We also compare it
against prior work not providing authorization, specifically,
the protocol in [4].

Offline operations. We start by analyzing the complexity of
the authorization phase (Fig. 2), which is linear in the number
of SNPs considered. CA needs to perform n exponentiations
to authorize n weights (step (3)), while T performs O(n) ex-
ponentiations to encrypt the authorized weights (5). Note that
T can reuse the same values (cti) for multiple tests. Commu-
nication complexity is also linear, as in steps (2) and (4), O(n)
values are transferred between T and CA. Finally, we observe
that all operations can be pipelined, which means that, unless
T and CA are connected via a very slow link, authorizing the
test (3) does not introduce a significant overhead on top of the
weight encryption (5).

Online test. Next, we analyze the complexity of the online test
(Fig. 3). Both computation and communication complexities
are linear in the number of SNPs, and the steps involving CA
(3)–(5) only requires the transmission of a constant number
of ciphertexts and the computation of a constant number of
exponentiations. Once again steps (1)–(2) can be pipelined.

Experimental setting. We have implemented our protocols
and performed 1,000 runs to evaluate real-world running times
and bandwidth consumption. Both T and CA run on an Ap-
ple MacBook Pro (OSX 10.11) equipped with an Intel Core
i5 2.4 GHz processor and 8GB of RAM memory, while U on
a Google Nexus 5 (Android 6.0.1), with a Qualcomm Snap-
dragon 800 2.3 GHz CPU and 2GB of RAM memory, all con-
nected over a WiFi network (40Mbps) using TCP sockets. Our
code base, available upon request, is written in Java, using the

SNPs Offline Online Bandwidth
PAPEETE [4] PAPEETE [4]

1,000 3.88s 3.85ms 0.83s 0.82s 64.51KB
10,000 37.77s 37.40s 7.04s 7.03s 645.12KB

100,000 6.27m 6.22m 1.31m 1.31m 6.3MB
1,000,000 62.77m 62.21m 18.89m 18.88m 63MB

Table 2: Execution times and bandwidth consumption.

Spongy Castle cryptographic library for Android [18] and the
Bouncy Castle library for Mac [19].3

Experimental results. To speed up operations, we have used
the following encoding in step (2) in the online test protocol
(Fig. 3): if SNPi = 0, we jump to the next value, while if
SNPi = 1, we execute the two computations as described;
otherwise (SNPi = 2), we sum the ciphertext cti twice. In
Table 2, we report the running times as well as bandwidth
consumption incurred by the PAPEETE protocol, and com-
pare them against prior work that does not support authoriza-
tion. More specifically, we have re-implemented and run the
protocol in [4] using the same experimental settings discussed
above. Note that [4] also has an “offline” step where weights
can be pre-encrypted. We vary the number of SNPs consid-
ered, assuming that, on average, 20% of them is non-zero, as
advised by colleagues in UCL’s Genetics Department.

We note that in all cases, complexities grow linear in the
number of SNPs. Above few hundred thousand SNPs, we
also observe a small “penalty” on the mobile device that is
introduced by Android’s garbage collector, which is executed
more often, thus occupying a non-negligible CPU time. With
1 million SNPs, the time required to authorize and encrypt the
weights is approximately 1 hour, and anyway this operation
needs to be performed only once. The same values can be
used to run any number of tests on user’s SNPs, taking only
an average time of less than 19 minutes. As for the band-
width, with 1 million SNPs, 35MB are exchanged during the
offline and 63MB during the online parts. We also measure the
space required to store the SNPs on U’s smartphone, and for
the authorized and encrypted weights on T’s computer. With
1 million SNPs, we need 418.5KB on the smartphone and
63MB on the laptop. Overall, our experiments demonstrate
that (1) the overhead incurred by the authorization is negligi-
ble, when compared to state of the art [4] (running times are
only 1% slower), and (2) our protocol is very efficient and can
thus already be used in the real world.

Finally, we perform another experiment aiming to evaluate
the impact of non-zero SNPs on the user’s genome. To this
end, in Fig. 4, we plot the total running time for the execution
of a test using 10,000 SNPs, varying the percentage of non-
zero SNPs from 20 (as in the previous experiments) to 50. We
observe that performance also grows linearly, similarly to [4],
but not to [2], where exponentiations are executed on all the
SNPs, even the zero ones.
3Somewhat unexpectedly, we find that, if we encode elliptic curve points in
byte arrays before transferring them, we unexpectedly get a significant per-
formance slow down. Thus, we encode and send each coordinate of the
points individually.
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Figure 4: Running time for different % of non-zero SNPs.

5 Conclusion
In this short paper, we presented PAPEETE, a novel protocol
supporting Private, Authorized, fast PErsonal gEnomic TEst-
ing. We implemented a prototype of the protocol and evalu-
ated experimentally, also comparing it against prior work that
does not support authorization [4]. Our experiments attested
to the real-world practicality of the protocol, which makes us
confident that we will soon be able to deploy it in pilot appli-
cations in collaboration with geneticists and doctors.

As part of future work, we plan to develop a full-blown
graphical user interface and perform user studies to assess the
usability and acceptability of our techniques.
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