Noble gases in Lakes Nyos and Monoun, Cameroon

KEISUKE NAGAO,¹* MINORU KUSAKABE,² YUTAKA YOSHIDA³ and GREGORY TANYILEKE⁴

¹Geochemical Research Center, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan ²Department of Environmental Biology and Chemistry, University of Toyama, Gofuku, Toyama 930-8555, Japan ³Yoshida Consulting Engineer Office, Morioka, Iwate 020-0121, Japan

⁴The Institute for Geological and Mining Research (IRGM), B.P. 4110, Yaoundé, Cameroon

(Received August 4, 2009; Accepted June 4, 2010)

He, Ne and Ar isotopic ratios and concentrations of noble gases in different depths of Lakes Nyos and Monoun in Cameroon, West Africa, were investigated. Samples were collected in November 1999, January 2001 and December 2001. Improved sampling method applied in 2001 enabled us to detect detailed isotopic distribution in the lakes. Concentrations of Ne and Xe in the lake waters were low by factors of ~10 and ~3, respectively, compared with those of air saturated water (ASW), whereas in CO₂ gas they were depleted by 2 orders of magnitude compared to ASW. ³He/⁴He ratios of 8 × 10^{-6} (Lake Nyos) and 5×10^{-6} (Lake Monoun) indicated recharge of magnitude compared to ASW. ³He/⁴He ratios of 8 × 10^{-6} (Lake Nyos) and 5×10^{-6} (Lake Monoun) indicated recharge of magnatic gases of mantle origin to the lakes, though the ratios were lowered by the addition of radiogenic ⁴He from crustal rocks. A small contribution (<2%) of MORB-like Ne was detected in both lake waters. A simple mixing between two end members, i.e., atmosphere and gases from a deep-seated reservoir, can explain the noble gas signatures. Depth profile of He concentration in Lake Nyos showed a clear layered structure with a maximum at 190 m, 20 m above the lake bottom. Below this depth, ³He/⁴He ratio decreased slightly, suggesting that the fluid from the deep-seated reservoir is supplied to the lake mainly at *ca*. 190 m. C/³He ratios were 1.5 × 10^{10} and 0.6×10^{10} in deep and shallow layers of Lake Nyos, respectively. The C/³He ratio was 1.7×10^{10} at Lake Monoun. A gas recharge model to explain the observed layered structure in Lake Nyos is presented.

Keywords: noble gases, depth profile of noble gases, Lake Nyos, Lake Monoun, Cameroon volcanic line

INTRODUCTION

Lakes Nyos and Monoun in Cameroon, West Africa, are volcanic crater lakes situated along the 1600 km long Cameroon Volcanic Line (CVL) which trends from the Atlantic Ocean into mainland Africa. The CVL consists of three section: oceanic, continental, and their boundary in the middle (e.g., Halliday et al., 1990; Barfod et al., 1999; Aka et al., 2001, 2004a, 2004b). Lake Nyos is a maar, which has surface area of 1.58 km² and a maximum water depth of about 210 m with a flat bottom. The lake's geological and petrological background can be found in, e.g., Fitton and Dunlop (1985), Kling et al. (1987), Kusakabe et al. (1989). The last eruption age has been suggested as about 400 years by radiocarbon method (Lockwood and Rubin, 1989), while much older K-Ar ages (>100,000 yrs) have been reported (Freeth and Lockwood, 1988). Recently an eruption age of ~4000 yrs has been proposed using the U-Th-Ra disequilibria by Aka et al. (2008).

Lake Monoun is located *ca*. 100 km south of Lake Nyos and 10 km north of the town Foumbot at an altitude of 1080 m in the western highlands of Cameroon. At least 34 volcanic cones are recognized in the Foumbot volcanic area of ~300 km². The eastern part of the lake is only about 350 m in diameter, and its maximum depth is approximately 100 m (Sigurdsson *et al.*, 1987).

Gas disasters occurred in August 15, 1984 at Lake Monoun and in August 21, 1986 at Lake Nyos, with the total number of victims of 37 (Monoun) and 1746 (Nyos) associated with the death of numerous cattle (e.g., Sigurdsson et al., 1987; Kling et al., 1987; Sigvaldason, 1989). After the gas disasters, geochemical studies have been carried out to clarify the cause(s) of the gas burst, where the lakes' depth profiles of temperature, electric conductivity, pH, ionic and gas concentrations, isotopic compositions of C, H and O etc. were reported (e.g., Sigurdsson et al., 1987; Kling et al., 1987; Evans et al., 1993; Kusakabe et al., 1989, 2000, 2008). It has been found that the CO₂ derived from an underlying magmatic source accumulates in the bottom layers of the lakes as revealed by gradual increase of CO₂ in the lakes. Carbon isotopic ratios of the dissolved CO2 gases and isotopic ratios of the associated helium were $\delta^{13}C \approx -3.5\%$ and

^{*}Corresponding author (e-mail: nagao@eqchem.s.u-tokyo.ac.jp)

Copyright © 2010 by The Geochemical Society of Japan.

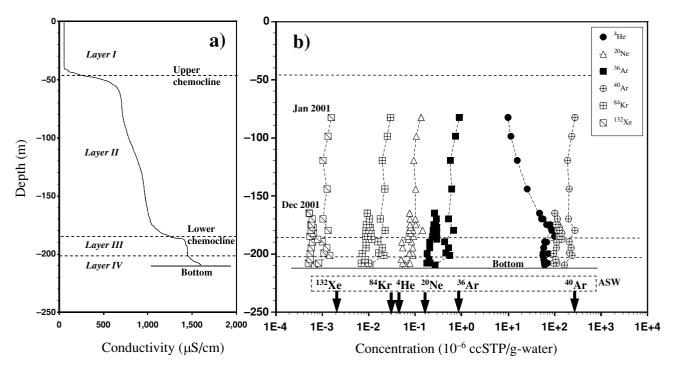


Fig. 1. a) Chemical structure of Lake Nyos as expressed by electric conductivity of water at 25 °C. Two chemoclines and four stratified layers are defined (see Kusakabe et al., 2008). b) Depth profiles of ⁴He, ²⁰Ne, ³⁶Ar, ⁴⁰Ar, ⁸⁴Kr and ¹³²Xe concentrations in water (10⁻⁶ ccSTP/g-water) measured at Lake Nyos in January 2001 and December 2001. Noble gas concentrations in air saturated water (ASW) at 30 °C (Table 2: Kipfer et al., 2002) are also shown by arrows for comparison.

-7% and ${}^{3}\text{He}/{}^{4}\text{He} \approx (7.7-8.0) \times 10^{-6}$ and 5.0×10^{-6} for Lakes Nyos and Monoun, respectively (Kling et al., 1987; Kusakabe et al., 1989; Sano et al., 1987). Sano et al. (1990) reported precise depth profiles of ${}^{3}\text{He}/{}^{4}\text{He}$ and ${}^{4}\text{He}/{}^{2}$ ²⁰Ne and He concentrations for Lake Nyos for the first time. Based on the He data, they estimated He and C fluxes of $(2.4 \pm 0.4) \times 10^5$ and $(7.2 \pm 3.8) \times 10^{15}$ atoms/cm² sec, respectively, and C/³He ratio of $(3.0 \pm 1.5) \times 10^{10}$ for Lake Nyos. Although the area is volcanically quiescent, magmatic volatiles are continuously released as exemplified by many soda springs in the nearby areas (e.g., Kusakabe and Sano, 1992). The magmatic CO₂ gas is continuously recharged at a rate of ~120 mega-mole/yr and ~8 megamole/yr into bottom waters of Lakes Nyos and Monoun, respectively, (Kling et al., 2005; Kusakabe et al., 2008). The lakes show characteristic stratified structures separated by clear chemoclines. Based on the electric conductivity profiles, stratified waters at Lakes Nyos and Monoun were grouped as layers I, II and III, separated by upper and lower chemoclines (Kusakabe et al., 2008). Layer IV was also defined as a layer characterized by a sharp increase in electric conductivity near the bottom (see Fig. 1a).

A HIMU-like Pb isotopic signature with enrichment in radiogenic ²⁰⁶Pb characterizes upper mantle beneath the CVL at the continent-ocean boundary, while it becomes less radiogenic toward both ends of the line. On the contrary, Nd isotopes show an opposite regional change (e.g., Halliday et al., 1988, 1990; Barfod et al., 1999). Barfod et al. (1999) studied He, Ne and Ar in ultramafic xenoliths, basaltic lavas and CO2-rich gases from the CVL, and reported that He was slightly more enriched in radiogenic ⁴He (${}^{3}\text{He}/{}^{4}\text{He} = (7-9.4) \times 10^{-6}$) than MORB-type He $({}^{3}\text{He}/{}^{4}\text{He} = (11-12) \times 10^{-6})$, while Ne isotopic composition was MORB-like with maximum values of 20 Ne/ 22 Ne = 11.87 and 21 Ne/ 22 Ne = 0.0508. The accompanied Ar had ⁴⁰Ar/³⁶Ar ratios of >1650. They concluded that mantle beneath the CVL is indistinguishable from HIMU mantle with respect to ³He/⁴He ratios, but MORB-like Ne is still preserved. Based on the analysis of ${}^{3}\text{He}/{}^{4}\text{He}$ ratios in mafic phases in basalts and ultramafic xenoliths from 10 volcanic centers on the CVL, Aka et al. (2004b) reported symmetrical distribution of the ³He/ ⁴He ratios along CVL. MORB-like ³He/⁴He ratios were observed at both ends of CVL, i.e., 11.6×10^{-6} for Annobon Island in the Atlantic Ocean (oceanic sector) and 11.0×10^{-6} for Ngaoundere in the northeastern part of CVL (continental sector). Interestingly, the lowest ³He/ ⁴He ratios of 4.3×10^{-6} which indicated an enhanced radiogenic signature were observed for the samples from Bioko, Etinde and Mount Cameroon situated at the continent-ocean boundary of CVL. This is consistent with the geographical distribution of ^{206,208}Pb/²⁰⁴Pb reported for CVL by Halliday *et al.* (1988, 1990).

We collected gas and water samples from various depths in Lakes Nyos and Monoun in November 1999, January 2001 and December 2001. Isotopic compositions of He, Ne and Ar as well as concentrations of all noble gases were measured to evaluate the magmatic source beneath the lakes. We found that the concentrations of Ne, Ar, Kr and Xe (except He) in CO_2 gas exsolved from the lake water are more than 2 orders of magnitude lower than those in atmosphere. Accordingly, minimization of atmospheric contamination during sampling was essential to obtain representative noble gas compositions in the lake water. We present here detailed noble gas isotopic compositions of the lakes for the first time because no noble gas data except He have been reported yet for the lakes.

EXPERIMENTAL METHODS

Sampling methods

We employed four different sampling methods to collect gases dissolved in lake water during the fieldwork at Lakes Nyos and Monoun from 1999 to 2001. Because of very low concentrations of noble gases in CO_2 gas exsolved from lake waters, it was essential to avoid atmospheric contamination during sampling. Atmospheric contamination of noble gases for the different methods will be evaluated later.

(1) "Al-bag method": In 1999 a laminated aluminumplastic bag with a capacity of 10 L (hereafter called as Al-bag) was connected to a Niskin water sampler. Air inside the bag was pumped out using a syringe before connecting it to the Niskin sampler. Exsolved CO_2 -rich gases from the water inside the Niskin sampler were transferred to the Al-bag through a hole of the sampler after retrieval. The gas inside the Al-bag was then transferred to a sampling gas bottle (50–100 cc) attached with vacuum-tight stopcocks at both ends. Samples were collected from 9 and 7 different depths at Lake Nyos (0–200 m in depth) and Lake Monoun (25–95 m in depth), respectively (Appendix 1).

(2) "Stainless steel cylinder": In 1999 the US team used an evacuated stainless steel bottle attached with metal valves which were operated from the surface of the lake by sending a sliding messenger (Evans *et al.*, 1993). The bottle was sent to a desired depth and filled with CO_2 -rich lake water. In the laboratory gas dissolved in the water was separated using a vacuum line for analysis. Part of the gas from each bottle was sealed in a He-impermeable borosilicate glass ampoule with breakable seal, and supplied to us for noble gas analysis.

(3) "Flute de Pan": As will be described later, gases collected by the Al-bag method were found heavily con-

taminated by atmospheric noble gas. So we collected samples from Lake Nyos in January 2001 using the "Flute de Pan" which had been deployed by the French scientific team. The Flute de Pan consisted of 11 plastic hoses, each having a different intake depth (83-210 m). Bubbling CO₂-rich gas spouting out of the hose were introduced in a basin filled with surface water of the lake, and then the bubbles were collected in a sampling glass bottle using a funnel. Although contamination of air dissolved in the water was still suspected to some extent especially for heavy noble gases, this sampling method was found promising since we could greatly reduce air contamination compared with the Al-bag method.

(4) "Plastic hose method": This is essentially the same as the Flute de Pan method. In December 2001, we deployed a single plastic hose (12 mm I.D.) to a desired depth of the lake. The sampling depth was measured with a calibrated wire that was attached to the hose. After water inside the hose was pumped up, exsolved CO_2 gas was allowed to pass through a sampling glass bottle, which was directly connected to the plastic hose to avoid air contamination. We waited for long enough to ensure that the water and gas coming out of the hose represented water from a target depth. With this method we were able to avoid air contamination almost completely judging from 40 Ar/ 36 Ar ratios of the samples as discussed later.

The sampling in January 2001 by the "Flute de Pan" was performed just before the initiation of the Nyos and Monoun Degassing Project (NMDP) at Lake Nyos. In December 2001, about 10 months after degassing started, we measured the depth profiles of noble gases as precisely as possible around the lower chemocline at ~180 m deep. We collected 17 samples from 13 different depths from close to bottom (208 m) to 165 m.

Analytical methods

An aliquot of each gas sample in glass bottle was sealed in a glass ampoule (~5 cc) with breakable seal. Absolute amount of CO_2 gas (ccSTP) inside the ampoule was calculated based on its volume, pressure and temperature of the gas. The pressure and the temperature were measured at the time of sealing; the gas pressure was measured by a Hg-manometer. The volume was obtained by measuring weight of water filled in the empty ampoule after noble gas measurement.

For noble gas analysis, several ampoules were attached to a noble gas purification line connected on-line to a modified-VG5400 (MS-III) noble gas mass spectrometer at the Geochemical Research Center, University of Tokyo. Noble gases introduced into the purification line were purified by two Ti–Zr getters heated to about 800°C and separated into three fractions, i.e., He, Ne and Ar–Kr– Xe. The Ar–Kr–Xe mixture was separated from He and Ne by adsorbing them on a charcoal trap cooled at liquid

Lake Nyos January 2001 (Flute de Pan method) NY01Jan-210 –209.8 NY01Jan-210 –209.8 NY01Jan-199 –199.2 NY01Jan-195 –195.0 NY01Jan-190 –189.9 NY01Jan-190 –180.0 NY01Jan-170 –170.0 NY01Jan-144 –1444	de Pan methe -209.8 -209.8 -201.6 -199.2 -195.0 -180.0 -180.0 -144.4																
NY01Jan-210 NY01Jan-210 NY01Jan-202 NY01Jan-199 NY01Jan-195 NY01Jan-190 NY01Jan-170 NY01Jan-170	-209.8 -209.8 -201.6 -199.2 -189.9 -180.0 -170.0																
NY01Jan-210 NY01Jan-202 NY01Jan-199 NY01Jan-195 NY01Jan-190 NY01Jan-170 NY01Jan-170	-209.8 -201.6 -199.2 -195.0 -189.9 -180.0 -170.0	624 648 735 735	7.93	.0 +1	0.12	10.016	+1	0.026	0.02991	+I	0.00035	0.18823	+1	0.00063	604.46	+1	1.26
NY01Jan-202 NY01Jan-199 NY01Jan-195 NY01Jan-190 NY01Jan-170 NY01Jan-170 NY01Jan-170	-201.6 -199.2 -195.0 -189.9 -180.0 -170.0	624 648 655 735	7.78	0 +1	0.05	10.115	+1	0.018	0.03019	+I	0.00023	0.18861	+1	0.00061	598.79	+1	0.89
NY01Jan-199 NY01Jan-195 NY01Jan-190 NY01Jan-170 NY01Jan-170	-199.2 -195.0 -189.9 -180.0 -170.0	648 655 735	7.93	0 +1	0.13	9.817	+1	0.024	0.02939	+I	0.00027	0.18824	+1	0.00048	433.51	+1	1.05
NY01Jan-195 NY01Jan-190 NY01Jan-180 NY01Jan-170 NY01Jan-170	-195.0 -189.9 -180.0 -170.0 -144.4	655 735 200	7.96	.0 +1	0.14	9.821	+1	0.019	0.02949	+1	0.00020	0.18821	+1	0.00070	454.99	+1	0.95
NY01Jan-190 NY01Jan-180 NY01Jan-170 NY01Jan-170	-189.9 -180.0 -170.0 -144.4	735	7.91	0 +	0.12	9.827	+1	0.021	0.02944	+1	0.00028	0.18800	+1	0.00060	438.52	+1	1.13
NY01Jan-180 NY01Jan-170 NY011 ₅₀₋₁₄₄	-180.0 -170.0 -144.4	001	7.98	0 +1	0.14	9.812	+1	0.019	0.02963	+I	0.00021	0.18841	+1	0.00044	479.17	+1	1.03
NY01Jan-170 NV01Jan-144	-170.0 -144.4	860	8.00	0 +	0.12	9.801	+1	0.019	0.02934	+I	0.00014	0.18819	+I	0.00044	407.39	+I	0.84
NV0113n-144	-144.4	515	8.04	0 +I	0.12	9.773	+1	0.017	0.02926	+I	0.00016	0.18854	+1	0.00051	381.63	+1	0.74
1 U L U LJAII-144		253	7.92	0 +1	0.15	9.772	+1	0.017	0.02906	+I	0.00016	0.18796	+I	0.00064	338.30	+1	0.83
NY01Jan-120	-119.7	166	8.08	0 +1	0.13	9.760	+1	0.023	0.02897	+I	0.00020	0.18874	+I	0.00050	327.84	+1	0.67
NY01Jan-99	-98.8	108	8.10	0 +1	0.39	9.785	+1	0.022	0.02915	+I	0.00021	0.18842	+I	0.00044	317.12	+1	0.67
NY01Jan-83	-82.9	74.3	7.93	0 +	0.14	9.749	+1	0.016	0.02886	+1	0.00014	0.18842	+1	0.00040	309.84	+1	0.64
December 2001 (Plastic hose method)	stic hose met	thod)		- -	Ľ	10.0		200		4	010000	00991 0	+	10000	530.16	+	
007-300 INI	-200.0	1011		-	10.0	17.4		C10.0	70000.0	-1	0.00040	60001.0	-1	16000.0	01.466	-1	
NY01Dec-208	-208.0	913	7.89	0 +I	0.11	9.90	+1	0.019	0.02983	+1	0.00047	0.18780	+1	0.00083	531.13	+1	0.69
NY01Dec-205	-205.0	1172	7 <i>.</i> 77	0 +i	0.08	9.86	+1	0.021	0.03010	+I	0.00043	0.18784	+1	0.00064	536.29	+1	0.66
NY01Dec-200	-200.0	982	7.91	0 +	0.11	9.91	+1	0.011	0.03017	+I	0.00026	0.18799	+1	0.00057	528.97	+1	1.02
NY01Dec-195	-195.0	1082	7.89	0 +	0.08	9.93	+1	0.014	0.03020	+I	0.00032	0.18748	+1	0.00059	526.97	+1	0.54
NY01Dec-190	-190.0	1317	T.T.T	0 +	0.06	9.85	+1	0.015	0.03029	+I	0.00027	0.18825	+1	0.00052	541.42	+1	0.87
NY01Dec-188	-187.5	1588	7.94	0 +	0.08	9.87	+1	0.013	0.02992	+I	0.00036	0.18815	+1	0.00080	497.43	+1	0.68
NY01Dec-185	-185.0	1311	7.97	0 +	0.10	9.86	+1	0.012	0.03003	+I	0.00050	0.18807	+1	0.00056	507.62	+1	0.52
NY01Dec-185	-185.0	1439	8.03	0 +I	0.07	9.89	+1	0.013	0.03010	+1	0.00026	0.18797	+1	0.00050	511.11	+1	1.35
NY01Dec-183	-182.5	1327	7.92	0 +	0.06	9.89	+1	0.014	0.03003	+1	0.00031	0.18824	+1	0.00087	490.09	+1	0.58
NY01Dec-180	-180.0	1185	7.85	0 +I	0.10	9.82	+1	0.018	0.02986	+1	0.00021	0.18782	+1	0.00077	466.25	+1	0.80
NY01Dec-180	-180.0	1236	8.12	0 +I	0.07	9.88	+1	0.007	0.02981	+1	0.00015	0.18763	+1	0.00027	466.12	+1	0.65
NY01Dec-178	-177.5	1038	7.89	0 +	0.07	9.85	+1	0.012	0.02973	+I	0.00015	0.18835	+1	0.00058	434.95	+1	0.39
NY01Dec-175	-175.0	870	8.08	0 +	0.07	9.86	+1	0.014	0.02963	+I	0.00025	0.18781	+1	0.00046	419.13	+1	0.51
NY01Dec-175	-175.0	794	7.95	0 +I	0.10	9.86	+1	0.008	0.02974	+1	0.00021	0.18771	+1	0.00056	419.20	+1	0.44
NY01Dec-170	-170.0	737	8.18	0 +	0.08	9.86	+1	0.010	0.02944	+I	0.00015	0.18770	+1	0.00034	401.34	+1	0.71
NY01Dec-165	-165.0	631	8.13	0 +I	0.09	9.85	+1	0.008	0.02954	+1	0.00012	0.18805	+1	0.00032	387.68	+1	0.46

Table 1. Isotopic ratios of He, Ne and Ar in waters and gases collected from Lakes Nyos and Monoun, Cameroon

Sample name	Depth (m) ${}^{4}\text{He}/{}^{20}\text{Ne}$	4 He/ 20 Ne	³ He/ ⁴ He (10 ⁻⁶)	He (1	(₉₋ 0)	20 Ne/ 22 Ne	$/^{22}N$	e	21]	21 Ne/ 22 Ne	Ne	38 ₁	$^{38}\mathrm{Ar}/^{36}\mathrm{Ar}$	٩r	$^{40}\mathrm{Ar}$	$^{40}{\rm Ar}/^{36}{\rm Ar}$	r
Lake Monoun																	
December 2001 (Plastic hose method)	lastic hose me	thod)															
MN01Dec-95	-95	1076	4.99	+1	0.06	9.865	+1	0.020	0.02963	+I	0.00029	0.1879	+1	0.0004	468.94	+1	0.63
MN01Dec-85	-85	1333	5.06	+I	0.07	9.849	+1	0.027	0.02982	+I	0.00034	0.1881	+1	0.0003	479.39	+I	0.50
MN01Dec-70	-70	1137	5.04	+I	0.07	9.851	+1	0.015	0.02999	+1	0.00021	0.1881	+1	0.0006	473.38	+I	0.65
MN01Dec-65	-65	1222	4.99	+I	0.07	9.877	+1	0.011	0.02959	+1	0.00026	0.1880	+1	0.0005	471.88	+I	0.88
MN01Dec-60	-60	1367	5.12	+I	0.07	9.881	+1	0.020	0.02986	+1	0.00040	0.1880	+1	0.0004	473.91	+I	0.80
MN01Dec-55	-55	1146	5.03	+I	0.07	9.874	+1	0.006	0.02992	+1	0.00030	0.1877	+1	0.0004	462.49	+I	0.62
MN01Dec-45	-45	107	5.14	+I	0.07	9.812	+1	0.006	0.02906	+I	0.00007	0.1876	+1	0.0005	316.59	+I	0.44
MN01Dec-35	-35	369	5.13	+1	0.07	9.876	+1	0.005	0.02933	+I	0.00008	0.1874	+1	0.0004	343.17	+I	0.34
Air (Ozima and Podosek, 2002) 0.32	dosek, 2002)	0.32	1.40			9.80			0.0290			0.1880			296.0		

nitrogen temperature. Ne was separated from He by adsorbing Ne onto a cryogenically cooled sintered stainless steel trap at a temperature of 15 K. He, Ne and Ar isotopic ratios and absolute abundances of all noble gases (He, Ne, Ar, ⁸⁴Kr and ¹³²Xe) were measured with the noble gas mass spectrometer. Sensitivities and mass discrimination correction factors of the mass spectrometer were determined by measuring known amounts of atmospheric gas with the same procedures applied to samples. The mass discrimination factor for ³He/⁴He was determined by measuring a laboratory He standard gas with ${}^{3}\text{He}/{}^{4}\text{He} = 1.71 \times 10^{-4}$, which was prepared by mixing known amounts of pure ³He and ⁴He. Uncertainty for the ratio is estimated as $\approx 1\%$ based on experimental errors in estimation of absolute amount of each helium gas sealed in an ampoule. Accuracy of the ³He/⁴He ratio of our laboratory He standard gas was confirmed by analyzing ³He/ ⁴He ratio of HESJ (He Standard of Japan: ${}^{3}\text{He}/{}^{4}\text{He} =$ $(28.88 \pm 0.14) \times 10^{-6}$, Matsuda *et al.*, 2002), i.e., measured ³He/⁴He ratio of HESJ using our laboratory standard $({}^{3}\text{He}/{}^{4}\text{He} = 1.71 \times 10^{-4})$ agreed with those using atmospheric He (${}^{3}\text{He}/{}^{4}\text{He} = 1.4 \times 10^{-6}$) as standard (see table 1 in Matsuda et al., 2002). Mass resolution of the mass spectrometer was about 600 (M/ Δ M), which was high enough to separate a ³He peak from HD and H_3 peaks. Correction for doubly charged ⁴⁰Ar and CO₂ ions, which may affect ²⁰Ne and ²²Ne measurement, was performed by measuring ⁴⁰Ar⁺ and CO₂⁺ before and after Ne analysis and by experimentally determined ${}^{40}Ar^{++}/{}^{40}Ar^{+}$ and CO_2^{++}/CO_2^+ ratios under same condition for Ne analysis. The contributions of ${}^{40}Ar^{2+}$ and CO_2^{-2+} to ${}^{20}Ne^+$ and ${}^{22}Ne^+$ were found as low as <0.4% and <0.01%, respectively, throughout the measurement.

The D/H analysis of water samples was carried out using hydrogen prepared from water by the use of a classic uranium reduction method, with a stable isotope ratio mass spectrometer (Micromass SIRA-10). The ¹⁸O/¹⁶O analysis was carried out using an automated CO₂-H₂O equilibration technique, with a stable isotope ratio mass spectrometer (Micromass PRISM). The isotopic ratios were expressed in the conventional δ -notation with the VSMOW as the standard. The ¹³C/¹²C analysis of CO₂ gas was made for an aliquot after the noble gas analysis had been done, using a stable isotope ratio mass spectrometer (Micromass PRISM). δ^{13} C values were expressed relative to the VPDB standard.

RESULTS

Isotopic ratios of He, Ne and Ar of the samples from Lakes Nyos and Monoun are listed in Table 1 which includes data for samples collected using the Flute de Pan and plastic hose methods only. Those from the Al-bag and SS-cylinder methods were given in Appendix 1. Er-

Sample name	⁴ He	²⁰ Ne	³⁶ Ar	$^{40}\mathrm{Ar}$	⁸⁴ K r	¹³² X e	⁴ He/ ³⁶ Ar	²⁰ Ne/ ³⁶ Ar	84Kr/36Ar	¹³² Xe/ ³⁶ Ar	⁴ He/ ⁴⁰ A
		Cor	ncentration	in CO ₂ gas	(ppm)						
Lake Nyos											
January 2001 (Flute de Pan n	nethod)										
NY01Jan-210	7.76	0.00780	0.0344	20.8	0.00136	0.000088	225	0.227	0.0394	0.0025	0.373
NY01Jan-210											
NY01Jan-202	7.30	0.0117	0.0721	31.2	0.00276	0.000190	101	0.162	0.0383	0.0026	0.234
NY01Jan-199	7.34	0.0113	0.0601	27.4	0.00217	0.000143	122	0.189	0.0360	0.0024	0.268
NY01Jan-195	7.63	0.0117	0.0679	29.7	0.00255	0.000164	112	0.172	0.0376	0.0024	0.257
NY01Jan-190	8.29	0.0113	0.0582	27.8	0.00215	0.000137	142	0.194	0.0369	0.0024	0.298
NY01Jan-180	21.8	0.0365	0.168	68.4	0.00565	0.000337	130	0.217	0.0337	0.0020	0.319
NY01Jan-170	15.2	0.0296	0.154	58.7	0.00526	0.000307	99.1	0.192	0.0342	0.0020	0.260
NY01Jan-144	8.54	0.0338	0.201	67.9	0.00733	0.000425	42.5	0.168	0.0365	0.0021	0.126
NY01Jan-120	6.02	0.0362	0.222	72.7	0.00752	0.000401	27.2	0.163	0.0339	0.0018	0.083
NY01Jan-99	5.83	0.0539	0.379	120	0.01286	0.000685	15.4	0.142	0.0339	0.0018	0.049
NY01Jan-83	6.13	0.0825	0.5442	169	0.01805	0.000968	11.3	0.152	0.0332	0.0018	0.036
December 2001 (Plastic hose	e method)										
NY01Dec-208	7.72	0.0070	0.0268	14.5	0.00130	0.000109	288	0.260	0.0483	0.0040	0.534
NY01Dec-208	9.09	0.0100	0.0232	12.3	0.00090	0.000065	392	0.429	0.0387	0.0028	0.737
NY01Dec-205	7.58	0.0065	0.0256	13.8	0.00109	0.000072	295	0.252	0.0423	0.0028	0.551
NY01Dec-200	9.57	0.0097	0.0233	12.3	0.00093	0.000072	410	0.418	0.0401	0.0031	0.775
NY01Dec-195	7.64	0.0071	0.0255	14.3	0.00115	0.000072	282	0.261	0.0426	0.0028	0.535
NY01Dec-190	9.08	0.0069	0.0278	15.0	0.00119	0.000084	327	0.248	0.0429	0.0020	0.604
NY01Dec-188	19.2	0.0121	0.0488	24.3	0.00119	0.000134	393	0.243	0.0406	0.0028	0.789
NY01Dec-185	26.7	0.0204	0.0488	24.5	0.00198	0.000134	509	0.388	0.0400	0.0025	1.003
NY01Dec-185	20.7	0.0154	0.0562	28.7	0.00191	0.000133	395	0.388	0.0305	0.0023	0.773
	22.2	0.0134	0.0302	28.7 34.8	0.00212	0.000121	393	0.274	0.0377	0.0022	0.742
NY01Dec-183											
NY01Dec-180	27.9	0.0235	0.0646	30.1	0.00231	0.000157	432	0.364	0.0358	0.0024	0.926
NY01Dec-180	23.8	0.0193	0.0721	33.6	0.00266	0.000154	331	0.267	0.0368	0.0021	0.709
NY01Dec-178	22.5	0.0217	0.0797	34.7	0.00295	0.000175	283	0.272	0.0370	0.0022	0.650
NY01Dec-175	19.1	0.0219	0.0788	33.0	0.00282	0.000162	242	0.278	0.0358	0.0020	0.578
NY01Dec-175	23.0	0.0290	0.0712	29.9	0.00253	0.000169	323	0.407	0.0355	0.0024	0.771
NY01Dec-170	16.5	0.0224	0.0836	33.5	0.00304	0.000179	198	0.268	0.0364	0.0021	0.493
NY01Dec-165	14.3	0.0226	0.0778	30.2	0.00279	0.000159	183	0.290	0.0359	0.0020	0.473
Lake Monoun											
December 2001 (Plastic hose											
MN01Dec-95	9.0	0.0083	0.0356	16.7	0.00170	0.000144	252	0.234	0.0478	0.00405	0.537
MN01Dec-85	13.0	0.0097	0.0436	20.9	0.00203	0.000167	298	0.223	0.0465	0.00384	0.621
MN01Dec-70	11.3	0.0100	0.0394	18.7	0.00182	0.000150	287	0.253	0.0461	0.00380	0.606
MN01Dec-65	12.9	0.0106	0.0446	21.0	0.00210	0.000171	290	0.237	0.0471	0.00384	0.614
MN01Dec-60	13.4	0.0098	0.0430	20.4	0.00207	0.000168	311	0.228	0.0480	0.00390	0.657
MN01Dec-55	11.7	0.0102	0.0431	19.9	0.00199	0.000157	272	0.237	0.0461	0.00363	0.588
MN01Dec-45	63.1	0.5878	1.1414	361	0.03411	0.002048	55	0.515	0.0299	0.00179	0.175
MN01Dec-35	56.7	0.1538	0.3873	133	0.01379	0.000943	146	0.397	0.0356	0.00244	0.427
Air (Ozima and Podosek, 200	02) 5.24	16.5	31.5	9303	0.649	0.0234	0.166	0.524	0.0206	0.00074	0.0005
Air saturated water (30°C wa							0.050	0.178	0.0359	0.00230	0.0001

Table 2. Concentrations of noble gases in CO_2 gas and in water, and elemental abundance ratios normalized to ${}^{36}Ar$ for the samples from Lakes Nyos and Monoun, Cameroon

rors for the isotopic ratios are in one standard deviation including uncertainties for mass discrimination correction. Concentrations of noble gases in CO_2 gas exsolved from water are summarized in Table 2 and Appendix 2, together with the CO_2 concentrations in lake waters (Kusakabe *et al.*, 2008). Carbon isotopic ratios of CO_2 are also included in the tables.

The noble gas concentrations in CO_2 gas were calculated for each ampoule by dividing the measured absolute noble gas abundances (ccSTP) by the amount of CO_2 gas in the ampoule (ccSTP). The noble gas concentrations in CO_2 gas were converted to those in water in the unit of ccSTP/g-water using the CO_2 concentrations in

water (Kusakabe *et al.*, 2000, 2008). For two water samples NY99-35 and NY99-0, only isotopic ratios were shown in Appendix 1. Experimental uncertainties for the noble gas concentrations were estimated to be about 5–15% based on the fluctuation in sensitivity of the mass spectrometer observed by replicate measurements of standard gas.

Isotopic ratios of hydrogen and oxygen of waters from Lakes Nyos and Monoun are summarized in Table 5.

Evaluation of the sampling methods based on ${}^{4}He/{}^{20}Ne$ and ${}^{40}Ar/{}^{36}Ar$ ratios

⁴He/²⁰Ne ratio is often used as a measure of atmos-

Table 2.	(continued)
----------	-------------

Sample name	⁴ He	²⁰ N e	³⁶ Ar	⁴⁰ Ar	⁸⁴ K r	¹³² X e	CO ₂ (water)	$\delta^{13}\mathrm{C}_{\mathrm{PDI}}$
	(Concentrat	ion in wat	er (10 ⁻⁶ c	cSTP/g wat	er)	ccSTP/g water	%0
Lake Nyos								
January 2001 (Flute de Pan method)	<i></i>						- 01	
NY01Jan-210	61.4	0.062	0.27	165	0.0107	0.000692	7.91	-3.42
NY01Jan-210	56.6	0.001	0.50	242	0.0214	0.001460	7.75	2.20
NY01Jan-202	56.6	0.091	0.56	242	0.0214	0.001469	7.75	-3.36
NY01Jan-199	56.8	0.088	0.47	212	0.0168	0.001105	7.74	-3.38
NY01Jan-195	59.1	0.090	0.53	230	0.0198	0.001272	7.74	-3.37
NY01Jan-190	62.0	0.084	0.44	208	0.0161	0.001024	7.48	-3.37
NY01Jan-180	88.1	0.147	0.68	276	0.0228	0.001360	4.04	-3.32
NY01Jan-170	52.5	0.102	0.53	202	0.0182	0.001058	3.45	-3.34
NY01Jan-144	26.1	0.103	0.61	208	0.0224	0.001299	3.06	-3.32
NY01Jan-120	15.8	0.095	0.58	191	0.0198	0.001055	2.63	-3.30
NY01Jan-99	11.5	0.107	0.75	238	0.0255	0.001356	1.98	-3.27
NY01Jan-83	10.1	0.136	0.90	279	0.0298	0.001596	1.65	-3.24
December 2001 (Plastic hose method)								
NY01Dec-208	60.6	0.055	0.21	113	0.0102	0.000852	7.84	-3.46
NY01Dec-208	71.3	0.078	0.18	97	0.0070	0.000512	7.84	-3.38
NY01Dec-205	59.4	0.051	0.20	108	0.0085	0.000567	7.84	-3.35
NY01Dec-200	75.0	0.076	0.18	97	0.0073	0.000564	7.84	-3.35
NY01Dec-195	59.1	0.055	0.21	110	0.0089	0.000588	7.74	-3.36
NY01Dec-190	68.0	0.052	0.21	113	0.0089	0.000632	7.49	-3.35
NY01Dec-188	114.9	0.072	0.29	146	0.0119	0.000806	5.99	-3.35
NY01Dec-185	122.2	0.093	0.24	122	0.0088	0.000609	4.57	-3.31
NY01Dec-185	101.5	0.071	0.26	131	0.0097	0.000555	4.57	-3.36
NY01Dec-183	107.1	0.081	0.29	144	0.0114	0.000656	4.15	-3.41
NY01Dec-180	107.4	0.091	0.25	116	0.0089	0.000604	3.85	-3.32
NY01Dec-180	91.8	0.074	0.28	129	0.0102	0.000593	3.85	-3.36
NY01Dec-178	83.6	0.081	0.30	129	0.0109	0.000649	3.71	-3.36
NY01Dec-175	68.1	0.078	0.28	118	0.0101	0.000577	3.57	-3.34
NY01Dec-175	82.2	0.103	0.25	107	0.0090	0.000604	3.57	-3.38
NY01Dec-170	57.6	0.078	0.29	117	0.0106	0.000624	3.48	-3.35
NY01Dec-165	48.4	0.077	0.26	102	0.0095	0.000539	3.39	-3.37
Lake Monoun								
December 2001 (Plastic hose method)								
MN01Dec-95	33.5	0.031	0.133	62.3	0.00636	0.000538	3.74	-7.35
MN01Dec-85	46.1	0.035	0.155	74.3	0.00721	0.000595	3.56	-6.83
MN01Dec-70	40.2	0.035	0.140	66.2	0.00645	0.000531	3.55	-6.82
MN01Dec-65	45.8	0.037	0.158	74.6	0.00744	0.000607	3.55	-6.82
MN01Dec-60	47.4	0.035	0.152	72.2	0.00731	0.000595	3.54	-6.83
MN01Dec-55	38.7	0.034	0.142	65.8	0.00657	0.000517	3.30	-6.84
MN01Dec-45	81.4	0.758	1.472	466.2	0.04401	0.002642	1.29	-7.56
MN01Dec-35	56.3	0.153	0.385	132.0	0.01369	0.000937	0.99	-8.11
Air (Ozima and Podosek, 2002)								
Air saturated water (30°C water, Kipfer et al., 2002)	0.044	0.156	0.874	259	0.0314	0.00201		

pheric contamination, because the ratio is generally much higher (>1000) than the atmospheric value of 0.32 in samples derived from deep interior of the earth such as volcanic gases (e.g., Kusakabe *et al.*, 2009), natural gases in old continents (e.g., Ballentine and Sherwood Lollar, 2002; Cornides *et al.*, 1986; Ballentine *et al.*, 1991; Kotarba and Nagao, 2008, and see references therein), glassy basalts from mid oceanic ridges (e.g., Staudacher

Table 3. Comparison of ${}^{4}He/{}^{20}Ne$ and ${}^{40}Ar/{}^{36}Ar$ ratios for the deep water (>175 m) samples from Lake Nyos collected by different sampling methods

Method	⁴ He/ ²⁰ Ne	⁴⁰ Ar/ ³⁶ Ar
Al-bag	132-318	337-359
SS-cylinder	419-757	497–535
Flute de Pan	598–994	407-604
Plastic hose	913–1588	466–541
Air (Ozima and Podosek, 2002)	0.32	296

et al., 1989), and mantle xenoliths (e.g., Nagao and Takahashi, 1993). 40 Ar/ 36 Ar ratio is also seriously affected by addition of atmospheric Ar with 40 Ar/ 36 Ar = 296 because air contains high concentration of Ar (~1%).

 ${}^{4}\text{He}/{}^{20}\text{Ne}$ and ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ ratios in deep water (>175 m) from Lake Nyos by different sampling methods are compared in Table 3. The ⁴He/²⁰Ne ratios by the "Al-bag method" and the "stainless steel cylinder (SS-cylinder) method" were 132-318 and 419-757, respectively, which were much lower than those for the samples obtained using the "Flute de Pan" and the "Plastic hose" methods. ⁴⁰Ar/³⁶Ar ratios by the Al-bag and SS-cylinder methods were also lower than those obtained by the Flute de pan and plastic hose methods. The atmospheric contamination of the Al-bag samples can be attributed to a small amount of air which remained unremoved in the Al-bag when attached to the Niskin sampler, because the concentrations of noble gases in CO_2 gas in the lake are 2 orders of magnitude lower than those in atmosphere (Appendix 2). Only He was not seriously affected by such air contamination because of its high concentration in CO₂ gas.

With the "Flute de Pan" method, the highest ⁴⁰Ar/³⁶Ar ratio of 604 and a high ⁴He/²⁰Ne ratio of 994 were obtained for the sample from the bottom layer of Lake Nyos. However, since the gases from the Flute de Pan were collected by displacement in a glass bottle filled with surface water, contamination from atmosphere dissolved in the surface water was still suspected in this method. With the plastic hose method, bubbling gas was directly introduced into a sampling bottle. After thorough flushing of the bottle with the bubbling gas, stopcocks on both ends were closed. Advantage of this sampling method is demonstrated by high ${}^{4}\text{He}/{}^{20}\text{Ne}$ (>1000) and ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ (>400) ratios as shown in Table 3. Thus, this method was found most suitable for collection of contamination-free gas and water samples. In the following discussion we will use the data from samples collected in January 2001 and December 2001 only, for they are almost contamination-free (Tables 1, 2 and 4). The noble gas data for samples collected with the Al-bag and SS-cylinder methods are given in Appendixes 1 and 2.

Profile of noble gas concentration and chemical structure of lake water

Concentrations of ⁴He, ²⁰Ne, ³⁶Ar, ⁴⁰Ar, ⁸⁴Kr and ¹³²Xe in different water depths in January 2001 and December 2001 were shown in Figs. 1 and 2 for Lakes Nyos and Monoun, respectively. The concentrations in air-saturated water at 30°C (Kipfer *et al.*, 2002) were shown by arrows for comparison (also see Table 2). Chemical structures of both lakes in 2001 were also presented in the figures as exemplified by the measured electric conductivity profiles (Kusakabe *et al.*, 2008).

In Lake Nyos, the concentrations of Ne, Ar, Kr and Xe in water were roughly constant with respect to depths between 100 m and bottom (Fig. 1b) though they are up to several times lower than those of air saturated water. They increased by 3–5 times higher at 70 m, just below the upper chemocline at 50 m. Only He is enriched in water by 3 orders of magnitude compared to that in air saturated water, implying its different origin.

The concentrations of Ne, Ar, Kr and Xe in Lake Monoun are almost constant below the depth of about 50 m (Fig. 2b). Their concentrations are similar to those in Lake Nyos, suggesting a similar origin for Ne, Ar, Kr and Xe. The maximum concentrations were observed at the depth of 45 m, just above the lower chemocline at 50 m. Then the concentrations appeared to decrease upward, although we do not have data for water shallower than 20 m.

Relative elemental abundances of noble gases, normalized to air composition, are presented in Fig. 3. $F(^{m}X)$ is defined as $(^{m}X/^{36}Ar)_{sample}/(^{m}X/^{36}Ar)_{air}$, where ^{m}X stands for ^{20}Ne , ^{84}Kr and ^{132}Xe (Ozima and Alexander, 1976). The $F(^{m}X)$ values for air saturated water (ASW) at 30°C (Kipfer *et al.*, 2002) are shown for comparison. Ne is depleted, while Kr and Xe are enriched compared with air composition at both lakes. In deep waters the relative abundances are similar to those of air-saturated water, suggesting that the noble gases except He are mainly supplied from groundwater.

³He/⁴He ratios

Depth profiles of ³He/⁴He ratio for Lakes Nyos and Monoun are presented in Fig. 4a. Those in deep waters of Lake Nyos (140–210 m in depth) are enlarged in Fig. 4b. The ³He/⁴He ratios are much higher than the atmospheric value of 1.4×10^{-6} , confirming magmatic gas input to the lake water as already reported by Sano *et al.* (1987, 1990). The ratios are almost constant in the depth range of 80– 210 m at Lake Nyos and 40–100 m at Lake Monoun. The ³He/⁴He ratio approaches the atmospheric value of 1.4×10^{-6} in waters shallower than 80 m and 40 m for Lakes

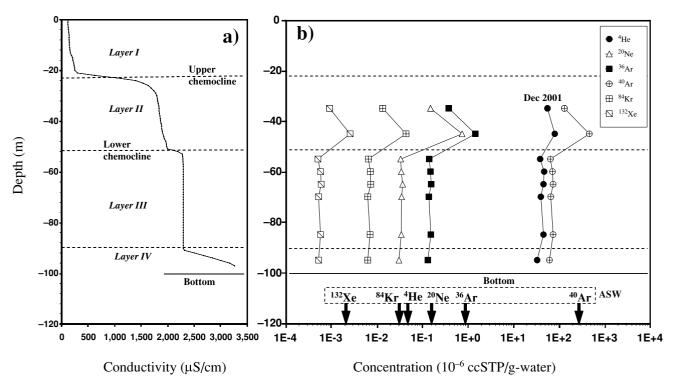


Fig. 2. a) Chemical structure of Lake Monoun as expressed by electric conductivity of water at 25 °C. Two chemoclines and four stratified layers are defined (see Kusakabe et al., 2008). b) Depth profiles of noble gas concentrations in water (10^{-6} ccSTP/g-water) for Lake Monoun. Noble gas concentrations in air saturated water (ASW) at 30 °C (Table 2: Kipfer et al., 2002) are also shown by arrows for comparison.

Nyos and Monoun, respectively. These depths are slightly deeper than the upper chemoclines (~50 m at Lake Nyos and ~25 m at Lake Monoun). No systematic differences were observed between the profiles at different times, i.e., November 1999, January 2001 and December 2001. This suggests that there was no temporal variation in ³He/⁴He ratios of magmatic He being supplied to both lakes. The ³He/⁴He ratios observed at these lakes clearly indicate a contribution of mantle-derived He. However, the ratios are distinctly lower than the values for MORB-like He of 12×10^{-6} as observed at the oceanic and continental sectors of CVL (Aka et al., 2004b). Figure 4b shows that the ${}^{3}\text{He}/{}^{4}\text{He}$ ratios increase from $(7.8-7.9) \times 10^{-6}$ in the bottom water to $(8.0-8.2) \times 10^{-6}$ above the lower chemocline that lies at ~180 m depth at Lake Nyos. ${}^{4}\text{He}/{}^{20}\text{Ne}$ ratios for these samples are close to 1000. Such high ${}^{4}\text{He}/{}^{20}\text{Ne}$ values indicate that we can ignore air contamination to the measured ${}^{3}\text{He}/{}^{4}\text{He}$ ratios. The observation that ${}^{3}\text{He}/{}^{4}$ ⁴He ratios of $(8.0-8.2 \times 10^{-6})$ at ~180 m are slightly higher than those of bottom water $(7.8-7.9 \times 10^{-6})$ may be explained by an idea that the recharge water is supplied to the lake at ~180 m depth. This possibility will be discussed later in more detail.

MORB-like Ne isotopic ratios

Ne isotopic ratios are presented in Fig. 5. Small excess in both ²⁰Ne/²²Ne and ²¹Ne/²²Ne ratios was observed compared with the values for atmospheric Ne. Most data points of both lakes lie on the MORB line that connects the atmospheric Ne and mantle Ne reported by Ballentine et al. (2005). The data clearly indicate the presence of mantle Ne in addition to the mantle-derived He in the lakes. The Nyos data points in January 2001 are plotted close to atmospheric Ne compared with other samples. This indicates that atmospheric contamination of the samples obtained by the "Flute de Pan" method is greater than those by the plastic hose method. Our Ne data are consistent with the conclusion by Barfod et al. (1999) that the CVL mantle contains MORB-like Ne, though the Ne isotopic variation in Lakes Nyos and Monoun is restricted $({}^{20}\text{Ne}/{}^{22}\text{Ne} \le 9.9 \text{ and } {}^{21}\text{Ne}/{}^{22}\text{Ne} \le 0.0303)$ compared with the ranges (${}^{20}\text{Ne}/{}^{22}\text{Ne} \le 11.87$ and ${}^{21}\text{Ne}/{}^{22}\text{Ne} \le 0.0508$) measured for xenoliths (Barfod et al., 1999). This indicates that atmospheric Ne from groundwater has diluted the MORB-like Ne in magmatic fluid beneath the lakes.

In contrast to the samples lying on the MORB-line (Fig. 5), two samples collected at the bottom of Lake Nyos

Sample name	Depth (m)	(C/ ³ He	*		³ He		²¹ ľ	Ne _{exc}	ess	⁴⁰ A	r _{exce}	55
			10+1	0	10-12	ccST	TP/g	10-12			10-6		
Lake Nyos				88 - 88 - 88	11					11 11			
January 2001 (>10	<i>,</i>												
NY01Jan-210	-209.8	1.63			487	±	7	5.6	±	2.2	83.99	±	0.34
NY01Jan-202	-201.62	1.73			448	±	7	3.6	±	2.5	76.79	±	0.59
NY01Jan-199	-199.22	1.71			452	±	8	4.4	±	1.8	74.00	±	0.44
NY01Jan-195	-195.04	1.66			467	±	7	4.0	±	2.6	74.92	±	0.59
NY01Jan-190	-189.85	1.51			495	±	9	5.4	±	1.8	79.69	±	0.45
Average		1.65	±	0.08									
NY01Jan-180	-180.03	0.57			704	±	11	5.1	±	2.1	75.51	±	0.57
NY01Jan-170	-170.04	0.82			422	±	6	2.7	±	1.7	45.39	±	0.39
Average		0.70	±	0.12									
December 2001 (a	all data)												
NY01Dec-208	-208	1.64			449	±	4	5.3	±	2.1	48.02	±	0.19
NY01Dec-208	-208	1.39			528	±	7	6.1	±	3.5	40.17	±	0.12
NY01Dec-205	-205	1.70			459	±	5	5.6	±	2.2	48.00	±	0.13
NY01Dec-200	-200	1.32			593	±	8	9.0	±	2.0	42.60	±	0.19
NY01Dec-195	-195	1.66			467	±	5	6.6	±	1.8	48.42	±	0.11
NY01Dec-190	-190	1.42			528	±	4	6.8	±	1.4	51.03	±	0.18
Average		1.52	±	0.15									
NY01Dec-188	-187.5	0.66			912	±	9	6.7	±	2.6	58.92	±	0.20
NY01Dec-185	-185	0.47			974	±	12	9.7	±	4.7	50.77	±	0.12
NY01Dec-185	-185	0.56			815	±	7	7.8	±	1.9	55.27	±	0.35
NY01Dec-183	-182.5	0.49			848	±	6	8.4	±	2.5	57.19	±	0.17
NY01Dec-180	-180	0.46			843	±	11	7.9	±	1.9	42.37	±	0.20
NY01Dec-180	-180	0.52			745	±	6	6.1	±	1.1	47.24	±	0.18
NY01Dec-178	-177.5	0.56			659	±	6	6.0	±	1.2	41.07	±	0.12
NY01Dec-175	-175	0.65			551	±	5	5.0	±	2.0	34.65	±	0.14
NY01Dec-175	-175	0.55			653	±	8	7.8	±	2.2	31.34	±	0.11
NY01Dec-170	-170	0.74			471	±	5	3.5	±	1.2	30.64	±	0.21
NY01Dec-165	-165	0.86			393	±	4	4.2	±	0.9	24.18	±	0.12
Average		0.59	±	0.12									
Lake Monoun													
December 2001 (2	>50 m)												
MN01Dec-95	-95	2.24			167	±	2	2.0	±	0.9	22.99	±	0.08
MN01Dec-85	-85	1.52			233	±	3	2.9	±	1.2	28.42	±	0.08
MN01Dec-70	-70	1.75			202	±	3	3.6	±	0.8	24.81	±	0.09
MN01Dec-65	-65	1.55			228	±	3	2.2	±	1.0	27.79	±	0.14
MN01Dec-60	-60	1.46			243	±	3	3.0	±	1.4	27.09	±	0.12
MN01Dec-55	-55	1.70			195	±	3	3.1	±	1.0	23.69	±	0.09
Average		1.70	±	0.26									

Table 4. Concentrations of ³He, ²¹Ne_{excess} and ⁴⁰Ar_{excess}, and C/³He, ²¹Ne_{excess}/⁴He, ⁴He/⁴⁰Ar_{excess}, ³He/⁴⁰Ar_{excess} and ³He/²¹Ne_{excess} for deep water samples from Lake Nyos (>160 m) and Lake Monoun (>50 m) collected in 2001 by Flute de Pan and Plastic hose methods

Table 4. (continued)

Sample name	²¹ Ne _e	xcess/4	He*	⁴ He/	⁴⁰ Ar	* excess	³ He/ ²	⁴⁰ Ar	excess	³ He/	²¹ Ne	excess
		10 ⁻⁸						10-6				
Lake Nyos												
January 2001 (>10	50 m)											
NY01Jan-210	9.1	±	3.5	0.731	±	0.003	5.80	±	0.09	87	±	33
NY01Jan-202	6.4	±	4.4	0.736	±	0.006	5.84	±	0.11	124	±	86
NY01Jan-199	7.7	±	3.1	0.768	±	0.005	6.11	±	0.11	103	±	42
NY01Jan-195	6.8	±	4.4	0.789	±	0.006	6.24	±	0.11	116	±	74
NY01Jan-190	8.7	±	2.9	0.778	±	0.004	6.21	±	0.11	91	±	30
Average	7.8	±	1.1	0.760	±	0.023	6.04	±	0.19	104	±	14
NY01Jan-180	5.8	±	2.4	1.166	±	0.009	9.33	±	0.16	138	±	57
NY01Jan-170	5.2	±	3.2	1.157	±	0.010	9.30	±	0.16	156	±	96
Average	5.5	±	0.3	1.162	±	0.004	9.32	±	0.01	147	±	9
December 2001 (a	all data)											
NY01Dec-208	9.3	±	3.6	1.184	±	0.005	9.34	±	0.09	85	±	33
NY01Dec-208	9.2	±	5.2	1.665	±	0.005	13.14	±	0.19	86	±	49
NY01Dec-205	9.5	±	3.7	1.229	±	0.003	9.55	±	0.10	82	±	32
NY01Dec-200	12.0	±	2.7	1.760	±	0.008	13.93	±	0.20	66	±	15
NY01Dec-195	11.2	±	3.0	1.221	±	0.003	9.64	±	0.10	71	±	19
NY01Dec-190	9.9	±	2.1	1.332	±	0.005	10.35	±	0.09	78	±	16
Average	10.2	±	1.1	1.40	±	0.23	11.0	±	1.8	78	±	7
NY01Dec-188	5.9	±	2.3	1.950	±	0.007	15.48	±	0.16	135	±	53
NY01Dec-185	8.0	±	3.9	2.406	±	0.006	19.18	±	0.25	100	±	49
NY01Dec-185	7.7	±	1.8	1.836	±	0.012	14.74	±	0.16	104	±	25
NY01Dec-183	7.8	±	2.4	1.873	±	0.006	14.84	±	0.12	101	±	30
NY01Dec-180	7.4	±	1.8	2.535	±	0.012	19.90	±	0.27	106	±	26
NY01Dec-180	6.6	±	1.2	1.943	±	0.007	15.78	±	0.15	122	±	23
NY01Dec-178	7.1	±	1.5	2.035	±	0.006	16.06	±	0.15	111	±	23
NY01Dec-175	7.3	±	2.9	1.967	±	0.008	15.89	±	0.15	110	±	44
NY01Dec-175	9.4	±	2.7	2.622	±	0.009	20.85	±	0.27	84	±	24
NY01Dec-170	6.1	±	2.1	1.879	±	0.013	15.37	±	0.18	135	±	46
NY01Dec-165	8.7	±	1.9	1.999	±	0.010	16.26	±	0.20	94	±	21
Average	7.5	±	1.0	2.10	±	0.27	16.8	±	2.0	109	±	15
Lake Monoun												
December 2001 (2						0.05-			o o -			<i></i>
MN01Dec-95	5.9	±	2.7	1.455	±	0.005	7.26	±	0.09	84	±	39
MN01Dec-85	6.2	±	2.6	1.623	±	0.004	8.21	±	0.12	81	±	34
MN01Dec-70	8.8	±	1.9	1.618	±	0.006	8.16	±	0.12	57	±	12
MN01Dec-65	4.9	±	2.2	1.646	±	0.008	8.22	±	0.12	102	±	45
MN01Dec-60	6.4	±	3.0	1.749	±	0.008	8.95	±	0.13	80	±	37
MN01Dec-55	8.1	±	2.7	1.633	±	0.006	8.22	±	0.12	62	±	20
Average	6.7	±	1.3	1.621	±	0.086	8.17	±	0.49	78	±	15

*Concentrations of ⁴He and CO_2 are presented in Table 2.

(210 m in depth) in January 2001 plot above the MORBline. They plot close to a line for hot-spot Ne such as Loihi-type Ne (Graham, 2002). The ${}^{3}\text{He}/{}^{4}\text{He}$ ratios of these samples (Fig. 4b) suggest an input of small amount of radiogenic crustal ⁴He as noted previously. The highest ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ ratios of 604 and 599 (Fig. 6) were observed for these samples, which suggest contribution of radiogenic ${}^{40}\text{Ar}$ to the bottom water along with crustal ⁴He. If

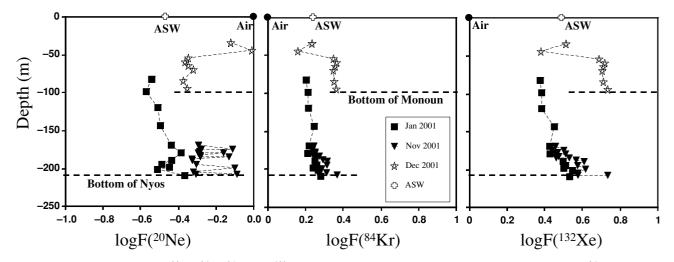


Fig. 3. Relative abundances of ${}^{20}Ne$, ${}^{36}Ar$, ${}^{84}Kr$ and ${}^{132}Xe$, normalized to air composition, defined as $F({}^{m}X) = ({}^{m}X/{}^{36}Ar)_{sample}/({}^{m}X/{}^{36}Ar)_{air}$, where ${}^{m}X$ stands for ${}^{20}Ne$, ${}^{84}Kr$ and ${}^{132}Xe$ (Ozima and Alexander, 1976). The $F({}^{m}X)$ values for air and air saturated water (ASW) at 30 °C (Kipfer et al., 2002) are shown for comparison.

nucleogenic ²¹Ne in crust also contributes to the observed MORB-like Ne, however, data point would have shifted to the right of the MORB-Ne line.

Though the Ne data points could be qualitatively explained by addition of nucleogenic ²¹Ne in the crust to mass fractionated atmospheric Ne, the nucleogenic ²¹Ne may not be sufficient to explain the observed concentration of excess ²¹Ne of $(6 \pm 2) \times 10^{-12}$ ccSTP/g-water (Table 4). Based on production rate ratio of ${}^{4}\text{He}/{}^{21}\text{Ne}$ of 2 × 10^7 in crust (Ballentine and Burnard, 2002) and the addition of crustal ⁴He of $<5 \times 10^{-6}$ ccSTP/g-water to the bottom water, concentration of nucleogenic ²¹Ne is estimated to be $<3 \times 10^{-13}$ ccSTP/g-water, much smaller than the observed excess ²¹Ne. Moreover, it is difficult to imagine that two different types of magma sources such as hot-spot type and MORB-type exist in this small region of CVL. Thus, we believe that contribution of nucleogenic ²¹Ne to the observed MORB-like Ne is denied. Hence, most plausible explanation for the Ne isotopic ratios in the bottom-most water is mass fractionation of Ne from a common reservoir for other samples. A pass of fluid containing noble gases observed in the bottom samples NY01Jan-210 will be discussed later in a recharge model for Lake Nyos.

Ar isotopic ratios and concentrations

 38 Ar/ 36 Ar ratios for all samples agree with atmospheric value of 0.1880 within 2σ error limits (Table 1). This indicates that no detectable fractionation effect on the 38 Ar/ 36 Ar ratio was observed for the samples with high 20 Ne/ 22 Ne ratio as noted above. Small fractionation effect on 38 Ar/ 36 Ar ratio, if any, would be easily masked by atmospheric Ar dissolved in groundwater, because solubility of

Ar is much greater than that of Ne. 40 Ar/ 36 Ar ratios for all samples are higher than the atmospheric value of 296 as shown in Fig. 6, but much lower than the estimated value of >1650 for upper mantle beneath the CVL (Barfod *et al.*, 1999). This means atmospheric Ar was mixed with the mantle Ar in a sub-lacustrine fluid reservoir. This is consistent with the dilution of mantle-derived Ne by atmospheric Ne as shown in Fig. 5.

Of the samples collected in January 2001, just prior to the initiation of degassing operation at Lake Nyos, the highest ⁴⁰Ar/³⁶Ar ratio was about 600 at the bottom (210 m) of the lake. The ratio decreased to 433-455 between depths 202-195 m, increased again to 479 at 190 m, sharply decreased to 310 at 83 m, and then approached the atmospheric value of 296. At 190 m where ⁴⁰Ar/³⁶Ar ratio showed a maximum (Fig. 6), CO₂ concentration in water stayed constant at ~7.8 ccSTP/g-water and ³He concentration increased significantly as will be discussed later. Figure 6 shows that the ⁴⁰Ar/³⁶Ar ratios between 190 and 208 m in December 2001, 10 months after the initiation of degassing operation, became almost constant in a narrow range of 527-541, and the high ratios of about 600 observed at the bottom layer in January 2001 disappeared when compared at the same depth. It may be noted, however, that the maximum ratios of ⁴⁰Ar/³⁶Ar (541) and ⁴He/²⁰Ne (1320–1590) still remained at 188–190 m depth.

Almost uniform ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ ratios between 190 m and 208 m in December 2001, and high ${}^{4}\text{He}/{}^{20}\text{Ne}$ ratios (~1100, Table 1) at the same depths, are quite a contrast to those in January 2001. This may have resulted from vertical mixing in the depth range caused by the degassing operation, because water was pumped out by the degassing pipe with the intake depth of 203 m. Such homogeniza-

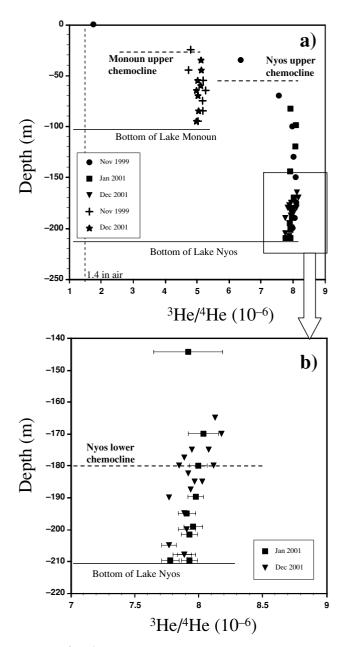


Fig. 4. a) ${}^{3}He/{}^{4}He$ ratios as a function of depth at Lakes Nyos and Monoun during 1999 and 2001. b) A part of deep layer (140–210 m) of Lake Nyos is enlarged.

tion observed in the ${}^{4}\text{He}/{}^{20}\text{Ne}$ and Ar isotopic ratios, however, was also observed in the water temperature and electric conductivity profiles at the corresponding depths, although they were less clear than the noble gas profiles (Kusakabe *et al.*, 2008).

At Lake Monoun, the ⁴⁰Ar/³⁶Ar ratios were in a narrow range at about 470 between 60 m and 100 m (bottom) (Fig. 6). The ratios are lower than those in deep waters of Lake Nyos. This indicates that contribution of atmospheric Ar to the magma-derived gases at Lake

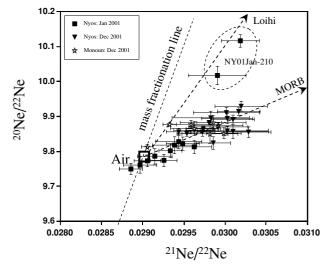


Fig. 5. Plot of ²⁰Ne/²²Ne versus ²¹Ne/²²Ne for samples collected in January and December 2001 from Lakes Nyos and Monoun (see Table 1). The "mass fractionation line" indicates Ne isotopic ratios for mass fractionated atmospheric Ne; A dashed line heading to MORB represents a mixing line between atmospheric Ne and Ne in MORB or upper mantle (Ballentine et al., 2005). A dashed line heading to Loihi represents a mixing line between atmospheric Ne and hot-spot type Ne such as Loihi (Graham, 2002).

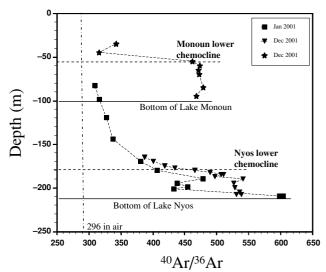


Fig. 6. Depth profiles of 40 Ar/ 36 Ar in Lakes Nyos and Monoun. Chemoclines are from Kusakabe et al. (2008).

Monoun is greater than that at Lake Nyos. The ratio decreases sharply at depths shallower than 55 m, which corresponds to the depth of lower chemocline in 2001 (Fig. 6) (Kusakabe *et al.*, 2008).

Plots of ⁴⁰Ar/³⁶Ar vs. 1/³⁶Ar are presented in Fig. 7,

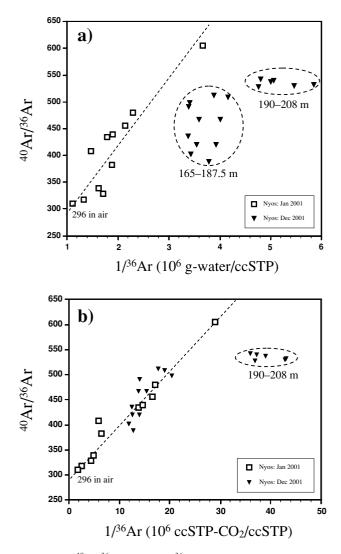


Fig. 7. (a) ${}^{40}Ar/{}^{36}Ar$ versus $1/{}^{36}Ar$ (concentration in water) and (b) $1/{}^{36}Ar$ (concentration in CO₂ gas) for the samples collected from Lake Nyos in January and December 2001.

where the ³⁶Ar concentrations in water (Fig. 7a) and in CO_2 gas (Fig. 7b) are shown. If Ar in the lake is a simple mixture between atmospheric Ar and Ar from a magmatic source, the data points should plot on a straight line passing through the atmospheric ⁴⁰Ar/³⁶Ar ratio of 296 at 1/³⁶Ar = 0. In both plots, the Ar data for January 2001 plot roughly on a single line, suggesting simple mixing between atmospheric Ar and magmatic Ar. On the contrary, the December 2001 data do not show linear correlation in Fig. 7a, but form two clusters for the samples from two layers of 165–187.5 m and 190–208 m. The December 2001 line in Fig. 7b, but the samples from the 190–208 m layer show almost constant ⁴⁰Ar/³⁶Ar and 1/³⁶Ar values, plotting away from the mixing line. The high

 $1/^{36}$ Ar values correspond to low Ar concentrations in CO₂ gas at 190–208 m in December 2001 (Fig. 7b).

Carbon, hydrogen and oxygen isotopic compositions of lake water

 δ^{13} C values for Lake Nyos of $\approx -3.4\%$ (Table 2 and Appendix 2) are consistent with previously reported values (Kling et al., 1987; Kusakabe et al., 1989). The values are slightly higher than those for the nominal mantle values of $-5 \sim -7\%$. They are close to those reported for soda springs from islands along the CVL (Kusakabe and Sano, 1992), and may represent carbon from the CVLmantle, where carbon from marine carbonate might have contributed. On the other hand the δ^{13} C values of $\approx -6.8\%$ for Lake Monoun are slightly lower than that for mantle. Contribution of organic carbon to the CVL-mantle carbon is conceivable. The δ -values of D/H and ${}^{18}\text{O}/{}^{16}\text{O}$ ratios of waters collected in 1998-2001 from Lakes Nyos and Monoun (Table 5) were almost the same as those for waters collected in 1986 reported in Kusakabe et al. (1989). No magmatic isotope signature was detected. All data points lie close to the typical meteoric water line with Lake Nyos waters being isotopically heavier than Lake Monoun waters. The results indicate that the lake waters were originated from surface meteoric water, though the water was subjected to evaporation with respect to the surface waters.

DISCUSSION

Table 4 lists ³He, excess ²¹Ne and ⁴⁰Ar concentrations, and ratios of C/³He, ²¹Ne_{excess}/⁴He, ⁴He/⁴⁰Ar_{excess}, ³He/ ⁴⁰Ar_{excess} and ³He/²¹Ne_{excess} for the samples collected in 2001 from deep layers of Lake Nyos (>160 m) and Lake Monoun (>55 m). The excess ²¹Ne and ⁴⁰Ar concentrations are defined as;

$$^{21}\text{Ne}_{\text{excess}}$$
] = [(²¹Ne/²²Ne)_{measured} - 0.0290] × [²²Ne], and
 $^{40}\text{Ar}_{\text{excess}}$] = [(⁴⁰Ar/³⁶Ar)_{measured} - 296] × [³⁶Ar],

where 0.0290 and 296 are 21 Ne/ 22 Ne and 40 Ar/ 36 Ar ratios in atmosphere, respectively.

CO_2 and ³He concentrations and Cl^3 He ratios in deep water of Lake Nyos

The CO₂ and ³He concentrations and C/³He ratios in water were compared for the bottom layer (160-210 m) of Lake Nyos in Fig. 8. The CO₂ and ³He concentrations were in the ranges of (3.3–7.8) ccSTP/g-water and (3.9–9.7) × 10⁻¹⁰ ccSTP/g-water, respectively. The ³He concentrations are nearly constant at 5×10^{-10} ccSTP/g-water below the lower chemocline at around 187 m. However, the ³He concentration increases sharply toward the

		Lake Nyo	s		Lake Monc	oun
	Depth	$\delta D_{\rm VSMOW}$	$\delta^{18}\mathrm{O}_{\mathrm{VSMOW}}$	Depth	$\delta D_{\rm VSMOW}$	$\delta^{18} \mathrm{O}_{\mathrm{VSMOW}}$
	(m)	(‰)	(‰)	(m)	(‰)	(‰)
May 1998						
5	-1.0	-8.7	-2.00	-1.0	-12.7	-2.42
	-15.0	-11.5	-2.42	-15.0	-20.2	-3.93
	-30.0	-12.9	-2.59	-45.7	-22.0	-4.26
	-50.0	-12.1	-2.48	-61.0	-22.0	-4.34
	-100.0	-12.0	-2.66	-68.6	-22.2	-4.26
	-150.0	-12.6	-2.76	-79.3	-22.4	-4.24
	-200.0	-12.4	-2.86	-95.4	-21.1	-4.09
	-208.0	-12.7	-2.87	2011	2	
November 1999						
	-35.0	-14.3	-2.76	-0.5	-26.1	-4.70
	-70.0	-11.7	-2.77	-1.5	-25.8	-4.68
	-100.0	-11.5	-2.77	-3.0	-26.0	-4.73
	-130.0	-11.5	-2.88	-5.0	-28.6	-5.03
	-150.0	-11.0	-2.87	-10.0	-28.7	-5.05 -5.06
	-130.0 -175.0	-11.2 -11.9	-2.87 -2.83	-10.0 -15.2	-28.7 -29.2	-3.00 -4.98
	-173.0 -190.0	-11.9 -14.0	-2.85 -2.99	-13.2 -20.0		-4.98 -4.57
					-26.6	
	-200.0	-13.9	-3.05	-79.2 -95.4	-23.3 -23.3	-4.33 -4.31
January 2001	0.5	14.2	2.80	-0.5	10.1	2.60
	-0.5	-14.2	-2.80		-19.1	-3.62
	-10.0	-14.5	-2.78	-3.0	-19.6	-3.65
	-20.0	-14.7	-2.80	-7.0	-20.4	-3.98
	-30.0	-14.6	-2.84	-22.9	-21.7	-4.13
	-40.0	-14.7	-2.78			
	-50.0	-12.7	-2.63			
	-75.0	-12.0	-2.68			
	-125.0	-12.3	-2.76			
	-150.0	-12.2	-2.83			
	-198.1	-13.0	-2.99			
	-205.8	-13.0	-2.97			
December 2001						
	-165.0	—	-2.81	-35.0	_	-4.23
	-170.0		-2.84	-45.0	—	-4.12
	-175.0	—	-2.83	-55.0	_	-4.36
	-180.0	—	-2.82	-60.0	_	-4.35
	-182.5		-2.91	-65.0	_	-4.37
	-185.0	_	-2.86	-70.0	_	-4.35
	-187.5		-2.95	-85.0	_	-4.27
	-190.0		-2.95	-95.0	_	-4.35
	-205.0	—	-2.94			
January 2005						
-	0.0	_	-2.65	-7.0	_	-3.69
	-20.0	_	-2.61	-22.9	_	-3.69
	-50.0	_	-2.62	-30.0	_	-4.42
	-70.0	_	-2.81	-35.0	_	-4.31
	-98.8		-2.84	-45.7	_	-4.27
	-136.9		-2.96	-50.0	_	-4.38
	-170.4		-2.95	-60.0	_	-4.38
	-180.0	_	-2.92	-80.0	_	-4.43
	-190.2	_	-3.04	-95.4	_	-4.47
	-197.8	_	-3.08			
	-205.5		-3.05			

Table 5. δD and $\delta^{18}O$ values of Lakes Nyos and Monoun

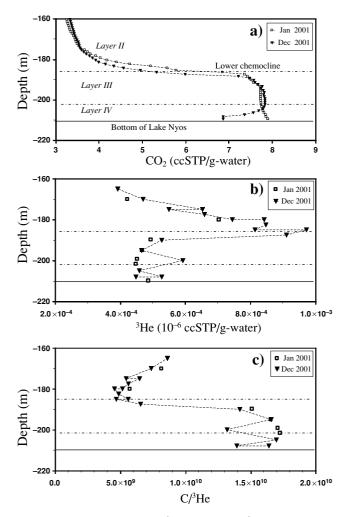


Fig. 8. Profiles of $CO_2(a)$, ³He (b), and Cl^3 He ratios (c) in deep water from 160 to 210 m at Lake Nyos. Refer to Kusakabe et al. (2008) for Layers II, III and IV and lower chemocline.

lower chemocline, followed by gradual decrease toward shallower water (layer II) (Fig. 8b). The change in $C/{}^{3}He$ ratios from $(1.5 \pm 0.2) \times 10^{10}$ in layers III and IV to (0.6 ± 0.1) $\times 10^{10}$ above the lower chemocline reflects the different profiles of CO₂ and ³He concentrations. The low ³He concentrations in the bottom layer (190–210 m) may be difficult to attribute to a selective removal of He from this layer by the degassing operation, because the concentrations are almost the same for the samples before and after the initiation of degassing operation. There may be a mechanism to accumulate He below the lower chemocline due to lowered diffusivity of gases across the density-stratified chemocline (Tietze, 1987) that will lead to accumulation of gases below the chemocline. The observation that ³He (and ⁴He as well) has a maximum concentration at 190 m whereas CO₂ does not may reflect higher diffusivity of He ($6.28 \times 10^{-5} \text{ cm}^2 \text{sec}^{-1}$ at 25°C) than CO₂ (1.92×10^{-5} cm²sec⁻¹ at 25°C) in water (Ferrell and Himmelblau, 1967). Another possible mechanism, which will be discussed later, is that gases with different C/³He ratios (e.g., ~1.7 × 10¹⁰) are added to the bottom layer. In this model, gases in shallower layer (above 190 m) are interpreted to represent a main magmatic fluid with C/³He of ~0.6 × 10¹⁰. These ratios are about 1/5 to 1/2 of the estimation of (3.0 ± 1.5) × 10¹⁰ by Sano *et al.* (1990) for the samples collected in 1986 and 1988. The C/³He ratio might have decreased with time.

The C/³He ratios at Lake Monoun were $(1.7 \pm 0.3) \times 10^{10}$, similar to the value in the Lake Nyos bottom water (Table 4). These ratios, however, are several times higher than the value of ~2 × 10⁹ reported for mantle gases (Marty and Jambon, 1987) as pointed out by Sano *et al.* (1990). Relatively high C/³He ratios have been observed for gas samples from islands of São Tomé and Bioko, and mainland Cameroon along the CVL (e.g., Tanyileke *et al.*, 1996; Barfod *et al.*, 1999; Aka *et al.*, 2001). They were attributed to addition of CO₂ derived from marine limestone and sedimentary rock (Aka *et al.*, 2001).

Based on the observed $C/^{3}$ He ratios, a flux of mantlederived ³He can be calculated. Kusakabe *et al.* (2008) estimated a mean accumulation rate of CO₂ in Lake Nyos as 0.12 ± 0.04 G mole/yr, i.e., $(2.3 \pm 0.8) \times 10^{24}$ atom C/ sec, as an average over the period from November 1986 to January 2001 below the upper chemocline. Based on the C/³He ratios of 1.5×10^{10} at the bottom layer and 0.6 $\times 10^{10}$ at the 190 m layer (Fig. 8c), recharge rates of ³He to the lake waters were calculated as 1.5×10^{14} and $3.8 \times$ 10¹⁴ atoms/yr at the respective layers. The values correspond to average ³He-flux of 2.9×10^4 and 7.4×10^4 atoms/cm² sec, if we adopt the bottom area below 183 m depth of 5.16×10^9 cm² (Kling *et al.*, 2005). The fluxes are 10–30% of the estimation of $(2.4 \pm 0.4) \times 10^5$ atoms/ cm² sec based on data in 1988 by Sano et al. (1990). He flux from the magmatic gas reservoir beneath the lake might have decreased during the last 12 years.

Noble gas signatures in sub-lacustrine reservoirs of Lakes Nyos and Monoun

In contrast to ³He, part of ⁴He is radiogenic, though its source is difficult to indentify. Excess ²¹Ne (Fig. 5) and excess ⁴⁰Ar (Fig. 6) can be attributed to both mantle and crustal origins. MORB-type Ne with high ²¹Ne/²²Ne ratio (Fig. 5) and Ar with high ⁴⁰Ar/³⁶Ar ratio (>20000) are present in upper mantle, while in crustal rocks ²¹Ne is produced by nuclear reactions and ⁴⁰Ar by ⁴⁰K-decay. Hence, we can examine the sources from which the high ²¹Ne/²²Ne and ⁴⁰Ar/³⁶Ar ratios have been derived.

A positive linear relationship is found between ⁴⁰Ar/ ³⁶Ar and ²¹Ne/²²Ne ratios that pass through the atmospheric ratios (Fig. 9). There is no systematic difference between the two lakes as well as the different sampling

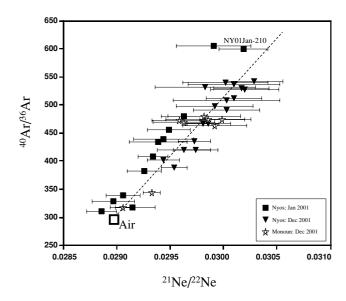


Fig. 9. Plot of ${}^{40}Ar/{}^{36}Ar$ versus ${}^{21}Ne/{}^{22}Ne$ for Lakes Nyos and Monoun.

dates. This implies a common source for these gases. ³He/ ⁴He ratios versus ⁴⁰Ar/³⁶Ar and ²¹Ne/²²Ne ratios are presented in Figs. 10a and 10b together with a mixing line between the gases that derives from the sub-lacustrine reservoirs and atmosphere. Because He/Ne and He/Ar ratios are high in sub-lacustrine CO₂ gas and low in atmosphere, the mixing lines are horizontal until atmospheric gas becomes dominant in the mixture. Both ⁴⁰Ar/ 36 Ar and 21 Ne/ 22 Ne data are plotted on the horizontal lines for both lakes, confirming the two component mixing. The isotopic compositions of gases from the sublacustrine reservoirs are ${}^{3}\text{He}/{}^{4}\text{He} = 8 \times 10^{-6}$, ${}^{21}\text{Ne}/{}^{22}\text{Ne} \sim$ 0.0305, and ${}^{40}\text{Ar}/{}^{36}\text{Ar} \sim 550$ for Lake Nyos, and ${}^{3}\text{He}/{}^{4}\text{He}$ = 5 × 10⁻⁶, ²¹Ne/²²Ne ~ 0.03, and ⁴⁰Ar/³⁶Ar ~ 500 for Lake Monoun. The above estimated ²¹Ne/²²Ne and ⁴⁰Ar/ ³⁶Ar ratios must be minimum, because atmospheric Ne and Ar dissolved in groundwater possibly contribute to the reservoirs, and groundwater is likely added to the fluid during ascent to the bottom of the lakes.

Relationship between ${}^{3}He$, ${}^{21}Ne_{excess}$ and ${}^{40}Ar_{excess}$ in deep water

Figure 11a shows a positive linear correlation between ³He and ²¹Ne_{excess} at Lake Nyos. The ³He/²¹Ne_{excess} ratio (slope of the regression line) was about 100, although the ³He/²¹Ne_{excess} ratios of 78 ± 7 in the bottom layer (190–208 m) were slightly lower than 109 ± 15 in upper layer (165–188 m) (Fig. 11a' and Table 4). The low value corresponds to the low concentration of ³He in the bottom layer as indicated in Fig. 8. In contrast to the ³He vs. ²¹Ne_{excess} plot, the concentrations of ³He and ⁴⁰Ar_{excess} in Lake Nyos plotted in Fig. 11b do not show such a simple

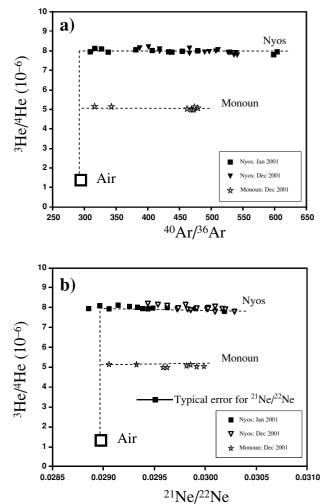


Fig. 10. (a) ${}^{3}He/{}^{4}He$ versus ${}^{40}Ar/{}^{36}Ar$, and (b) ${}^{3}He/{}^{4}He$ versus ${}^{21}Ne/{}^{22}Ne$ for Lakes Nyos and Monoun. The dashed lines represent mixing lines between atmosphere and magmatic sources for Lakes Nyos and Monoun.

correlation. In January 2001, both ³He and ⁴⁰Ar_{excess} concentrations in deep water (190–210 m) are nearly constant, i.e., ³He ~ 5 × 10⁻¹⁰ and ⁴⁰Ar_{excess} ~ 80 × 10⁻⁶ ccSTP/g-water. At 180 m ³He concentration increased to ~ 7 × 10⁻¹⁰ ccSTP/g-water, while ⁴⁰Ar_{excess} remained unchanged. In shallower depth both ³He and ⁴⁰Ar_{excess} concentrations decreased with a constant ³He/⁴⁰Ar_{excess} ratio of ~9 × 10⁻⁶, though only two data were available (Fig. 11b' and Table 4). A similar trend was also seen for the samples collected in December 2001, i.e., ³He ~ 5 × 10⁻¹⁰ and ⁴⁰Ar_{excess} ~ 50 × 10⁻⁶ ccSTP/g-water below 190 m. At 188–185 m ³He concentration increased to ~10 × 10⁻¹⁰ ccSTP/g-water (also shown in Fig. 8b), and decreased in shallower depth keeping roughly a constant ³He/⁴⁰Ar_{excess} ratio of ~17 × 10⁻⁶ (Fig. 11b'). The concentrations of ⁴⁰Ar_{excess} in deep water were about half of those

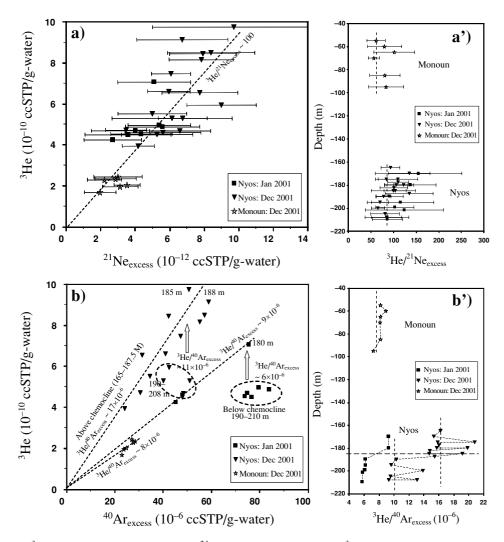


Fig. 11. (a) Plots of ³He concentration versus excess ²¹Ne concentration, and (b) ³He concentration versus excess ⁴⁰Ar concentration of deep waters of Lakes Nyos and Monoun. Samples were collected in January and December 2001 from depths deeper than 160 m at Lake Nyos and deeper than 55 m at Lake Monoun. ³He/²¹Ne_{excess} and ³He/⁴⁰Ar_{excess} ratios are also plotted against water depth in (a') and (b').

in January 2001. This indicates that $^{40}\rm{Ar}_{\rm excess}$ supply from the sub-lacustrine reservoir to deep water decreased during the 10 months.

 3 He/ 40 Ar_{excess} for Lake Monoun is ~8 × 10⁻⁶, slightly lower than that in the Nyos water, though it is still higher than that for bottom water of Lake Nyos in January 2001. This is consistent with relatively low 3 He/ 4 He of 5 × 10⁻⁶ of deep water at Monoun, suggesting greater contribution of radiogenic 4 He and 40 Ar in Lake Monoun than in Lake Nyos.

Recharge of gases from magmatic source to Lake Nyos

Characteristic features of noble gases observed at Lake Nyos are summarized as follows: 1) Helium with 3 He/ 4 He ratio of 8 × 10⁻⁶ observed in the lake water is not

supplied directly from mantle, because the ³He/⁴He ratios of upper mantle beneath the area have been found to be $(9.3-9.8) \times 10^{-6}$ in clinopyroxene and amphibole separated from mantle xenoliths collected at Lake Nyos, and 10×10^{-6} in olivine from basalt collected at Lake Monoun (Aka *et al.*, 2004b). Approximately 20% of radiogenic ⁴He that accumulated in crustal rocks must have been admixed to the mantle-derived He, probably in sublacustrine region beneath the lake. 2) ⁴⁰Ar/³⁶Ar ratios are in the range of 450–550 (Figs. 6 and 7), which cannot be produced by addition of radiogenic ⁴⁰Ar to the mantlederived Ar if ⁴⁰Ar/³⁶Ar in the mantle is as high as 1650 (Barfod *et al.*, 1999). Both radiogenic ⁴He and ⁴⁰Ar are produced from U, Th and ⁴⁰K in local granitic rocks. Most likely source of Ar to reduce the ⁴⁰Ar/³⁶Ar ratio is atmospheric Ar (40 Ar/ 36 Ar = 296) carried to the source region by groundwater. 3) Ne may be a mixture of atmospheric Ne and a small amount of MORB-like Ne from the mantle, because MORB-like Ne with maximum 20 Ne/ 22 Ne = 11.87 and 21 Ne/ 22 Ne = 0.0508 has been reported for the CVL mantle (Barfod *et al.*, 1999). 4) Non-uniform distribution of 3 He (Fig. 8b), and 40 Ar/ 36 Ar (Figs. 6 and 7) and 3 He/ 40 Ar_{excess} (Fig. 11b) were observed in lake water, e.g., sharp increase in 3 He concentration at 185~190 m may reflect higher recharge rate of magmatic He than in deeper water.

Relationships between the observed He, Ne and Ar isotopic ratios at the lake waters can be best explained by mixing between two noble gas reservoirs, i.e., air dissolved ground water and the sub-lacustrine reservoir (Fig. 10), where the mantle-derived gases meet radiogenic ⁴He from crustal rocks and atmospheric gases in ground water. The admixed gases must be homogenized in the sub-lacustrine reservoir.

Apart from the general features noted above, samples collected at the bottom (210 m) of Lake Nyos in January 2001 showed exceptional isotopic ratios; highest ⁴⁰Ar/³⁶Ar ratio of 600 (Fig. 6) and anomalous Ne isotopic ratios (Fig. 5). A contribution of Loihi-type Ne to the samples is unacceptable to explain the observed isotopic ratios, because coexistence of MORB-type and Loihi-type mantle in a small area like Nyos–Monoun beneath CVL is unlikely. Another significant feature is ³He/⁴He ratios show a maximum at ~180 m at Lake Nyos (Fig. 4). These isotopic features observed in the bottom water can be explained by greater input of radiogenic ⁴He and ⁴⁰Ar to the bottom water along with mass fractionated Ne.

The model illustrated in Fig. 12 may explain the above isotopic features in the Lake Nyos water. The volcanic vent immediately beneath the lake bottom, or diatreme, is filled by fractured rocks and covered by sediments. There may be a sub-lacustrine reservoir of fluid beneath the lake, to which noble gases and CO₂ of upper mantle origin are supplied from magma. Isotopic signatures of the CVL mantle characterize such gases. Mixing of noble gases enriched in ⁴He and ⁴⁰Ar from surrounding crustal rocks reduces the ³He/⁴He ratios of mantle He from 10×10^{-6} to 8×10^{-6} at Lake Nyos. About 20% of total ⁴He is estimated to be of crustal origin. Similarly, if crustal Ar, therefore, radiogenic Ar is mixed, the resulting ⁴⁰Ar/ ³⁶Ar ratio would have increased from the mantle value (>1650; Barfod *et al.*, 1999). However, the 40 Ar/ 36 Ar ratios observed in the deep water were ca. 500, much lower than the mantle value. Thus, atmospheric Ar dissolved in ground water is an only candidate to reduce the ⁴⁰Ar/³⁶Ar ratio without affecting the He isotopic ratio. This is due to a large difference between the concentrations of ⁴He and 40 Ar in air saturated ground water (4 He/ 40 Ar = 1.7 ×

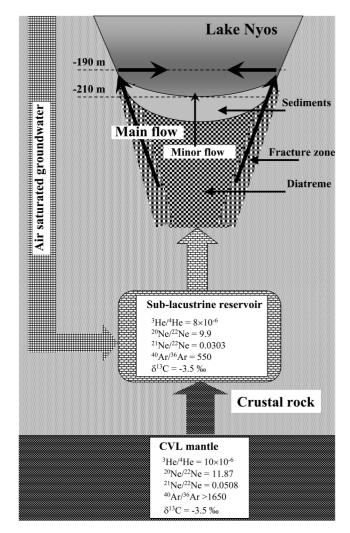


Fig. 12. A model of gas recharge for Lake Nyos. In the sublacustrine reservoir, gases from upper mantle are accumulated and mixed with radiogenic ⁴He and ⁴⁰Ar from the crust and atmospheric noble gases dissolved in groundwater. Two recharge passes for the fluids from the reservoir to lake water may produce the layered structure in the water; most of fluids are supplied into the lake at depth of ~190 m. A smaller flux of the fluids may be supplied the lake bottom. The fluids gain radiogenic ⁴He and ⁴⁰Ar and may also be subjected to mass fractionation as observed in Ne isotopic ratios.

 10^{-4} at 30°C in Table 2; Kipfer *et al.*, 2002) and those in the mantle gases with high ⁴He/⁴⁰Ar ratio of ~1.

The observed depth profiles of ³He/⁴He, ⁴⁰Ar/³⁶Ar and ⁴He/²⁰Ne ratios and He concentration in deep water, which showed a maximum at around the lower chemocline (~190 m in depth), strongly suggest that fluids from the sublacustrine reservoir are supplied not from bottom but mainly from side wall of the lake at that depth. Figure 12 schematically illustrates the idea mentioned above. Since the sediments in the central part of the lake bottom would consist of finer particles and be thicker than the sediments in the periphery, it would be easier for the fluids to find their way to the lake through the periphery. The peripheral sediments would be coarser than those in the central part of the lake, thus allowing easier input of the fluids from the periphery.

It has been suggested that high temperature fluids enriched in CO_2 containing mantle-derived He ascend along the wall of diatreme of Nigorikawa caldera, southwest Hokkaido, Japan (Nagao *et al.*, 1979; Yoshida, 1991). It is noted that the geological structure of the Nigorikawa basin is very similar to that of Lake Nyos with respect to the volcanic vent in that it is filled with fractured basaltic and granitic rocks. The Nigorikawa caldera may be said to be a fossil of Lake Nyos.

Another possible pathway of the fluids from the reservoir may be through the lake bottom. During ascent of the fluid it may acquire radiogenic ⁴He and ⁴⁰Ar from surrounding crustal rocks. Then, it is finally supplied to the bottom of the lake. The highest ⁴⁰Ar/³⁶Ar of 600 (Fig. 6) can be attributed to the addition of radiogenic ⁴⁰Ar of crustal origin. Isotopic mass fractionation of Ne that favors enrichment of lighter isotopes may take place during the ascent, resulting in the enhanced Ne isotopic ratios as observed for samples NY01Jan-210 (Fig. 5 and Table 1). In this case, only 2% enrichment in ²⁰Ne/²²Ne and 1% enrichment in ²¹Ne/²²Ne ratios relative to Ne in the sub-lacustrine reservoir (which contains MORB-like Ne with ²⁰Ne/²²Ne ~ 9.85 and ²¹Ne/²²Ne ~ 0.0295) may produce the observed Ne isotopic ratios (Fig. 5).

Similar recharge model seems to be applicable to Lake Monoun. Distribution of noble gases as well as CO_2 in both lake waters is very similar, although some differences such as ³He/⁴He ratios and $\delta^{13}C$ values are present (Tables 1 and 2) (³He/⁴He ratios are 8×10^{-6} and 5×10^{-6} (Table 1) and $\delta^{13}C$ values are -3.4% and -6.8% for Lakes Nyos and Monoun, respectively.) The lower values of ³He/⁴He and $\delta^{13}C$ for Lake Monoun can be explained by a contribution of radiogenic ⁴He and organic carbon enriched in crustal materials to the source reservoir of the lake. Slight increase in ³He/⁴He ratio from bottom to shallower water in Lake Monoun suggests similar recharge pass ways for noble gases from the reservoir.

SUMMARY

Noble gas isotopic compositions in water from different depths of Lakes Nyos and Monoun were investigated for samples collected in November 1999, January 2001 and December 2001.

1. Direct sampling of lake water by using a hose that was deployed to a desired depth was found to be the most suitable method to collect noble gas samples that are free of atmospheric contamination.

2. Concentrations of Ne, Ar, Kr and Xe in the lake waters were very low, by factors of ~10 for Ne and ~3 for Xe compared with air saturated water (ASW). Moreover, their concentrations in CO_2 gas were 2 orders of magnitude lower than those in atmosphere. Only He was heavily enriched by more than three orders of magnitude compared with ASW.

3. The ³He/⁴He ratios in the lakes were reduced by the addition of radiogenic ⁴He from crustal rocks, because magmatic ³He/⁴He ratio is about 10×10^{-6} as reported for mantle-derived minerals collected around the lakes.

4. Ne with a MORB-like isotopic signature was detected in both lake waters, though the isotopic shift from air-Ne was as small as <2%. This means that part of Ne in the lake was derived from the CVL upper mantle, for which presence of MORB-like Ne has been indicated.

5. Noble gases in each lake are a simple twocomponent mixture; atmosphere and deep-seated reservoir beneath the lakes.

6. Anomalous isotopic ratios of Ne (plotted along Loihi line in Fig. 5) and Ar (highest ${}^{40}\text{Ar}/{}^{36}\text{Ar} = 600$) were observed at the bottom of Lake Nyos in January 2001, just before initiation of degassing operation. The anomalies disappeared 10 months later (in December 2001). ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ ratios were vertically homogenized between the depths of 210 (bottom) to 180 m.

7. Depth profile of ³He concentration in Lake Nyos shows a maximum at the depth of ~190 m. In the deeper layer, ³He concentration and ³He/⁴He ratio decrease. C/ ³He ratios were 0.6×10^{10} and 1.5×10^{10} in upper and lower layers, respectively.

8. A gas recharge model to explain the observed layered structure of noble gases in Lake Nyos was presented. A sub-lacustrine fluid reservoir was assumed to exist beneath the lake, where gases from mantle with CVL noble gas signatures, radiogenic ⁴He and ⁴⁰Ar from crustal rocks, and air saturated groundwater are homogenized. Main flow of gas and water from the reservoir is supplied to the lake either at a depth of about 190 m through the lake wall. In addition to the major flow(s), a minor flow to bottom water (210 m depth), which acquired radiogenic ⁴⁰Ar from the crustal rocks and mass fractionated Ne, would explain the anomalous Ne and Ar isotopic ratios observed in January 2001.

Acknowledgments—The authors thank J. V. Hell, director of the Institute for Geological and Mining Research (IRGM, Cameroon) and the IRGM staff for their technical and logistic support in this research. We are indebted to W. C. Evans and G. W. Kling who provided us with the SS-cylinder samples. T. Ohba is acknowledged for their help in the field work. The field surveys were made while M.K. was working for the Institute for Study of the Earth's Interior, Okayama University at Misasa, and supported by the fund to M.K. from the Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (No. 13573013, 2001–2002). We also thank the Japanese and U.S. Embassies in Cameroon. The manuscript has been improved by constructive suggestions from two anonymous reviewers.

REFERENCES

- Aka, F. T., Kusakabe, M., Nagao, K. and Tanyileke, G. (2001) Noble gas isotopic compositions and water/gas chemistry of soda springs from the islands of Bioko, São Tomé and Annobon, along with Cameroon Volcanic Line, West Africa. *Appl. Geochem.* 16, 323–338.
- Aka, F. T., Kusakabe, M., Nagao, K., Tanyileke, G., Nnange, J. and Nfomou, N. (2004a) Rare gases in mantle-derived rocks from Annobon Island: Preliminary stepheating helium results. J. Cameroon Acad. Sci. 4, 163–169.
- Aka, F. T., Nagao, K., Kusakabe, M., Sumino, H., Tanyileke, G., Ateba, B. and Hell, J. (2004b) Symmetrical Helium isotope distribution on the Cameroon Volcanic Line, West Africa. *Chem. Geol.* 203, 205–223.
- Aka, F. T., Yokoyama, T., Kusakabe, M., Nakamura, E., Tanyileke, G., Ateba, B., Ngako, V., Nnange, J. and Hell, J. (2008) U-series dating of Lake Nyos maar basalts, Cameroon (West Africa): Implications for potential hazards on the Lake Nyos dam. J. Volcanol. Geotherm. Res. 176, 212–224.
- Ballentine, C. J. and Burnard, P. G. (2002) Production, release and transport of noble gases in the continental crust. *Noble Gases in Geochemistry and Cosmochemistry* (Porcelli, D., Ballentine, C. J. and Wieler, R., eds.), 481–538, *Rev. Mineral. Geochem.* 47, Geochem. Soc. Mineral. Soc. America, Washington, D.C.
- Ballentine, C. J. and Sherwood Lollar, B. (2002) Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. *Geochim. Cosmochim. Acta* 66, 2483–2497.
- Ballentine, C. J., O'Nions, R. K., Oxburgh, E. R., Horvath, F. and Deak, J. (1991) Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. *Earth Planet. Sci. Lett.* **105**, 229–246.
- Ballentine, C. J., Marty, B., Sherwood Lollar, B. and Cassidy, M. (2005) Neon isotopes constrain convection and volatile origin in the Earth's mantle. *Nature* 433, 33–38.
- Barfod, D. N., Ballentine, C. J., Halliday, A. N. and Fitton, J. G. (1999) Noble gases in the Cameroon line and the He, Ne, and Ar isotopic compositions of high μ (HIMU) mantle. *J. Geophys. Res.* **104**, 29509–29527.
- Cornides, I., Takaoka, N, Nagao, K. and Matsuo, S. (1986) Contribution of mantle-derived gases to subsurface gases in a tectonically quiescent area, the Carpathian Basin, Hungary revealed by noble gas measurements. *Geochem. J.* 20, 119–125.
- Evans, W. C., Kling, G. W., Tuttle, M. L., Tanyileke, G. and White, L. D. (1993) Gas buildup in Lake Nyos, Cameroon: the recharge process and its consequences. *Appl. Geochem.* 8, 207–221.
- Ferrell, R. T. and Himmelblau, D. M. (1967) Diffusion coefficients of hydrogen and helium in water. AIChE J. 13, 702–

708.

- Fitton, J. G. and Dunlop, H. M. (1985) The Cameroon Line, West Africa, and its bearing on the origin of oceanic and continental alkali basalt. *Earth Planet. Sci. Lett.* **72**, 23–38.
- Freeth, S. J. and Lockwood, J. P. (1988) Lake Nyos dam; comment and reply. *EOS* **69**, 776.
- Graham, D. W. (2002) Noble gas isotope geochemistry of midoceanic ridge and ocean island basalts: characterization of mantle source reservoirs. *Noble Gases in Geochemistry and Cosmochemistry* (Porcelli, D., Ballentine, C. J. and Wieler, R., eds.), 247–317, *Rev. Mineral. Geochem.* 47, Geochem. Soc. Mineral. Soc. America, Washington, D.C.
- Halliday, A. N., Dicken, A. P., Fallick, A. E. and Fitton, J. D. (1988) Mantle dynamics: A Nd, Sr, Pb and O isotope study of the Cameroon Line volcanic chain. J. Petrol. 29, 181– 211.
- Halliday, A. N., Davidson, J. P., Holden, P., DeWolf, C., Lee, D.-C. and Fitton, J. G. (1990) Trace-element fractionation in plumes and the origin of HIMU mantle beneath the Cameroon line. *Nature* 347, 523–528.
- Kipfer, R., Aeschbah-Hertig, W., Peeters, F. and Stute, M. (2002) Noble gases in lakes and ground waters. *Noble Gases in Geochemistry and Cosmochemistry* (Porcelli, D., Ballentine, C. J. and Wieler, R., eds.), 615–700, *Rev. Mineral. Geochem.* 47, Geochem. Soc. Mineral. Soc. America, Washington, D.C.
- Kling, G. W., Clarke, M. A., Compton, H. R., Devine, J. D., Evans, W. C., Humphrey, A. M., Koenigsberg, E. J., Lockwood, J. P., Tuttle, M. L. and Wagner, G. N. (1987) The 1986 Lake Nyos gas disaster in Cameroon, West Africa. *Science* 236, 169–175.
- Kling, G. W., Evans, W. C., Tanyileke, G., Kusakabe, M., Ohba, T., Yoshida, Y. and Hell, J. V. (2005) Degassing Lakes Nyos and Monoun: Defusing certain disaster. *Proc. Natl. Acad. Sci. USA* **102**, 14185–14190.
- Kotarba, M. J. and Nagao, K. (2008) Composition and origin of natural gases accumulated in the Polish and Ukrainian parts of the Carpathian region: Gaseous hydrocarbons, noble gases, carbon dioxide and nitrogen. *Chem. Geol.* 255, 426–438.
- Kusakabe, M. and Sano, Y. (1992) Origin of gases in Lake Nyos, Cameroon. Natural Hazards in West and Central Africa, International Monograph Series on Interdisciplinary Earth Science Research and Applications (Freeth, S. J., Ofoegb, C. O. and Onohua, K. M., eds.), 83–95, Friedrich Vieweg & Sohn Verlag, Braunschweig, Wiesbaden.
- Kusakabe, M., Ohsumi, T. and Aramaki, S. (1989) The Lake Nyos gas disaster: chemical and isotopic evidence in waters and dissolved gases from three Cameroonian crater lakes, Nyos, Monoun and Wum. J. Volcanol. Geotherm. Res. 39, 167–185.
- Kusakabe, M., Tanyileke, G. Z., McCord, S. A. and Schladow, S. G. (2000) Recent pH and CO₂ profiles at Lakes Nyos and Monoun, Cameroon: implications for the degassing strategy and its numerical simulation. J. Volcanol. Geotherm. Res. 97, 241–260.
- Kusakabe, M., Ohba, T., Issa, Yoshida, Y., Satake, H., Ohizumi,
 T., Evans, W. C., Tanyileke, G. and Kling, G. W. (2008)
 Evolution of CO₂ in Lakes Monoun and Nyos, Cameroon,

before and during controlled degassing. *Geochem. J.* **42**, 93–118.

- Kusakabe, M., Nagao, K., Ohba, T., Seo, J. H., Park, S.-H. Lee, J. I. and Park, B.-K. (2009) Noble gas and stable isotope geochemistry of thermal fluids from Deception Island, Antarctica. *Antarc. Sci.* 21, 255–267.
- Lockwood, J. P. and Rubin, A. (1989) Origin and age of the Lake Nyos maar, Cameroon. J. Volcanol. Geotherm. Res. 39, 117–124.
- Marty, B. and Jambon, A. (1987) C/³He in volatile fluxes from the solid Earth: Implications for carbon geodynamics. *Earth Planet. Sci. Lett.* **83**, 16–26.
- Matsuda, J., Matsumoto, T., Sumino, H., Nagao, K., Yamamoto, J., Miura, Y. N., Kaneoka, I., Takahata, N. and Sano, Y. (2002) The ³He/⁴He ratio of the new internal He standard of Japan (HESJ). *Geochem. J.* **36**, 191–195.
- Nagao, K. and Takahashi, E. (1993) Noble gases in the mantle wedge and lower crust: an inference from the isotopic analyses of xenoliths from Oki-Dogo and Ichinomegata, Japan. *Geochem. J.* 27, 229–240.
- Nagao, K., Takaoka, N. and Matsubayashi, O. (1979) Isotopic anomalies of rare gases in the Nigorikawa geothermal area, Hokkaido, Japan. *Earth Planet. Sci. Lett.* **44**, 82–90.
- Ozima, M. and Alexander, E. C., Jr. (1976) Rare gas fractionation patterns in terrestrial samples and the earthatmosphere evolution model. *Rev. Geophys. Space Phys.* 14, 385–390.
- Ozima, M. and Podosek, F. A. (2002) *Noble Gas Geochemistry*. 2nd ed., Cambridge Univ. Press, 286 pp.
- Sano, Y., Wakita, H., Ohsumi, T. and Kusakabe, M. (1987) Helium isotope evidence for magmatic gases in Lake Nyos, Cameroon. *Geophys. Res. Lett.* 14, 1039–1041.
- Sano, Y., Kusakabe, M., Hirabayashi, J., Nojiri, Y., Shinohara, H., Njine, T. and Tanyileke, G. (1990) Helium and carbon fluxes in Lake Nyos, Cameroon: constraint on next gas burst.

Earth Planet. Sci. Lett. 99, 303-314.

- Sigurdsson, H., Devine, J. D., Tchoua, F. M., Presser, T. S., Pringle, M. K. W. and Evans, W. C. (1987) Origin of the lethal gas burst from Lake Monoun, Cameroun. J. Volcanol. Geotherm. Res. 31, 1–16.
- Sigvaldason, G. E. (1989) International conference on Lake Nyos disaster, Yaoundé Cameroon 16–20 March, 1987: conclusions and recommendations. J. Volcanol. Geotherm. Res. 39, 97–107.
- Staudacher, Th., Sarda, Ph., Richardson, S. H., Allègre, C. J., Sagna, I. and Dmitriev, L. V. (1989) Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14°N: geodynamic consequences. *Earth Planet. Sci. Lett.* **96**, 119–133.
- Tanyileke, G., Kusakabe, M. and Evans, W. C. (1996) Chemical and isotopic characteristics of fluids along the Cameroon Volcanic Line, Cameroon. J. Afr. Earth Sci. 22, 433–441.
- Tietze, K. (1987) The Lake Nyos gas catastrophe in Cameroon: cause, sequence of events, consequences. *Topics in Lake* and Reservoir Hydraulics. Proc. 22nd Congress of IAHR (Graf, W. H., ed.), 93–98, Lausanne, 31 August–4 September 1987.
- Yoshida, Y. (1991) Geochemistry of the Nigorikawa geothermal system, southwest Hokkaido, Japan. *Geochem. J.* **25**, 203–222.

APPENDIX

Noble gas data for the samples collected by the Albag and the SS-cylinder methods are presented in Appendixes 1 and 2. Noble gases of these samples might have been affected by contamination from atmospheric noble gases (see text), and the data are not used in most discussion.

Sample name	Depth (m)	4 He/ 20 Ne	³ He/ ⁴ He (10 ⁻⁶)	He (10^{-6})	²⁰	$^{20}Ne/^{22}N$	Ne	2 ¹ L	²¹ Ne/ ²² N	Ne	38,	${}^{38}\mathrm{Ar}/{}^{36}\mathrm{A_{1}}$	٩r	$\mathbf{A}^{0}\mathbf{A}$	$^{40}\mathrm{Ar}/^{36}\mathrm{A}$	١٢
Lake Nyos November 1999 (Al-bag method) NY99-200 –200	Al-bag method) -200	132	8.00	+1	0.06	9.748	+1	0.017	0.02867	+	0.00026	0.1885	+	0.0005	336.83	+1	0.33
NY99-190	-190	318	8.07	+1	0.07	9.763	+1	0.024	0.02885	+1	0.00029	0.1883	+1	0.0006	358.75	+1	0.38
NY99-175	-175	167	8.11	+1	0.06	9.811	+1	0.017	0.02889	+1	0.00010	0.1882	+1	0.0005	339.02	+1	0.44
NY99-150	-150	86.5	8.10	+1	0.07	9.810	+1	0.017	0.02891	+1	0.00008	0.1879	+1	0.0005	316.51	+1	0.27
NY99-130	-130	36.0	8.03	+1	0.07	9.830	+1	0.016	0.02894	+1	0.00007	0.1881	+1	0.0005	305.84	+1	0.35
NY99-100	-100	20.5	7.99	+1	0.06	9.813	+1	0.017	0.02896	+1	0.00011	0.1881	+1	0.0004	303.70	+1	0.33
07-99-70	-70	3.40	7.57	+1	0.07	9.807	+1	0.016	0.02901	+1	0.00007	0.1878	+1	0.0005	296.27	+1	0.45
NY99-35*	-35	0.906	6.37	+1	0.12	9.728	+1	0.017	0.02883	+1	0.00011	0.1886	+1	0.0003	297.73	+1	0.30
*0-99VN	0	0.427	1.76	+1	0.27	9.756	+1	0.017	0.02891	+1	0.00011	0.1886	+1	0.0004	297.93	+1	0.17
USA, November 1999 (Stainless st	999 (Stainless s		method				-		11000 0	-		1001	-			-	Ċ
002-SU991	/.002-	401	00.7	+1 ·	60.0	9./05 0 - 05	H ·	0.024	11620.0	+1 ·	0.00038	C881.U	+1 ·	0.0004	534./4	H ·	0.09 07 0
N Y99US-191	-190.5	419	7.60	+1	0.06	9.799	+1	0.024	0.02929	+1	0.00037	0.1885	+1	0.0006	499.17	+1	0.59
NY99US-183	-182.9	757	7.70	+1	0.06	9.807	+1	0.019	0.02887	+1	0.00032	0.1880	+1	0.0005	496.90	+1	0.71
NY99US-53	-53.3	24.3	7.08	+1	0.07	9.845	+1	0.021	0.02865	+1	0.00013	0.1880	+1	0.0008	303.34	+1	0.36
Lake Monoun November 1999 (Al-bag method)	vl-bag method)																
MN99-95	-95	51.1	5.03	+1	0.04	9.807	+1	0.017	0.02898	+I	0.00010	0.1878	+I	0.0004	319.74	+1	0.25
MN99-85	-85	436	5.19	+1	0.04	9.816	+I	0.018	0.02912	+1	0.00025	0.1879	+1	0.0004	371.81	+I	0.41
MN99-75	-75	304	5.18	+1	0.04	9.812	+I	0.018	0.02895	+1	0.00015	0.1879	+1	0.0006	355.66	+1	0.54
MN99-65	-65	297	5.28	+1	0.06	9.822	+I	0.017	0.02894	+1	0.00015	0.1877	+1	0.0005	358.40	+I	0.52
MN99-55	-55	193	5.20	+1	0.05	9.818	+I	0.017	0.02889	+1	0.00014	0.1877	+1	0.0004	333.82	+I	0.46
MN99-45	-45	191	4.74	+1	0.04	9.719	+I	0.016	0.02896	+1	0.00013	0.1886	+1	0.0005	335.70	+I	0.49
MN99-25	-25	29.9	4.81	+1	0.05	9.646	+1	0.016	0.02879	+1	0.00007	0.1885	+1	0.0004	304.11	+1	0.41
USA, November 1999 (Stainless st	999 (Stainless s	steel cylinder mothod)	mothod	~													
MN99US-95	-95.4	486	4.82	+1	0.04	9.787	+I	0.031	0.02876	+1	0.00026	0.1881	+1	0.0006	446.85	+I	0.70
67-SU99NM	-78.5	412	4.92	+1	0.04	9.857	+I	0.022	0.02890	+1	0.00015	0.1877	+I	0.0007	448.06	+I	0.70
MN99US-61	-61.0	375	4.92	+1	0.04	9.866	+I	0.025	0.02868	+I	0.00019	0.1877	+I	0.0004	419.34	+1	0.72
MN99US-46	-45.7	179	4.88	+1	0.05	9.856	+1	0.023	0.02870	+1	0.00015	0.1879	+1	0.0004	332.74	+1	0.46
MN99US-23	-22.9	6.58	4.28	+1	0.04	9.760	+1	0.021	0.02857	+I	0.00013	0.1884	+1	0.0004	298.87	+I	0.41
Air (Orima and Dodoeds 2002)	dosek 2002)	032	1 40			0.80			0.0290			0.1880			296.0		

	$^{4}\mathrm{He}$	20 Ne	${}^{36}\mathrm{Ar}$	${}^{40}\mathrm{A}\mathrm{r}$	$^{84}\mathrm{Kr}$	¹³² Xe	$^{4}\mathrm{He}/^{36}\mathrm{Ar}$	$^{20}\mathrm{Ne}/^{36}\mathrm{Ar}$	$^{84}{ m Kr}/^{36}{ m Ar}$	$^{132}{\rm Xe}/^{36}{\rm Ar}$	$^{4}\mathrm{He}/^{40}\mathrm{Ar}$
		Con	Concentration in CO ₂ gas (ppm)	n CO ₂ gas	(udd)		ī				
Lake Nyos											
November 1999 (Al-bag method)							0				
NY99-200	11.9	0.0902	0.245	82.8	0.00720	0.000415	48.6	0.368	0.0294	0.0017	0.144
NY99-190	10.9	0.0343	0.129	46.3	0.00483	0.000344	84.5	0.266	0.0374	0.0027	0.235
NY99-175	29.8	0.178	0.310	105	0.00841	0.000457	96.1	0.574	0.0271	0.0015	0.284
NY99-150	14.1	0.163	0.289	91.3	0.00739	0.000383	48.8	0.564	0.0256	0.0013	0.154
NY99-130	10.2	0.283	0.452	138	0.0111	0.000571	22.6	0.626	0.0246	0.0013	0.074
NY99-100	7.02	0.342	0.647	197	0.0168	0.000887	10.9	0.529	0.0260	0.0014	0.036
0 <i>L</i> -66 <i>X</i> N	9.09	2.67	3.64	1080	0.0808	0.00364	2.50	0.734	0.0222	0.0010	0.0084
IISA November 1999 (Stainless st	teel cylind	steel cvlinder mothod)									
	11 2	0.0045	0.0561	30.0	0.00012		100	0.437	0.0200	0.0027	
002-2007 I M	C.11	0.0243	10000	7.30	C1200.0	0.000200	201	104.0	0000.0	1000.0	110.0
N 19905-191 NV00115-183	315	02020.0	41CU.U A110	0.02	C0100.0	0.000377	017	010.0	000000	0.0022 00.0022	0.544
	U.IC	0.1410	011.0	2.10		20100.0	1/1	00000	76000		
5C-201667 N	0.41	0.223	0./43	C 77	0.0200	C6100.0	97.1	005.0	8050.0	0700.0	0.024
Lake Monoun											
November 1999 (Al-bag method)											
MN99-95	8.07	0.158	0.290	92.8	0.00849	0.000472	27.8	0.545	0.0293	0.0016	0.087
MN99-85	13.2	0.0303	0.108	40.3	0.00449	0.000326	122.2	0.281	0.0416	0.0030	0.328
MN99-75	17.6	0.0578	0.182	64.7	0.00678	0.000487	96.7	0.318	0.0373	0.0027	0.272
MN99-65	10.7	0.0360	0.133	47.5	0.00537	0.000406	80.5	0.271	0.0404	0.0031	0.225
MN99-55	19.3	0.100	0.247	82.4	0.00831	0.000554	78.1	0.405	0.0336	0.0022	0.234
MN99-45	29.6	0.155	0.688	231	0.0247	0.00150	43.0	0.225	0.0359	0.0022	0.128
MN99-25	18.7	0.625	2.56	<i>611</i>	0.0881	0.00513	7.3	0.244	0.0344	0.0020	0.024
USA, November 1999 (Stainless st	teel cylind	steel cylinder mothod)									
MN99US-95	10.6	0.0218	0.0839	37.5	0.00363	0.000282	126	0.260	0.0433	0.0034	0.283
02-SU99UM	11.9	0.0289	0.0844	37.7	0.00373	0.000381	141	0.342	0.0442	0.0045	0.316
19-SU99US-61	11.0	0.0293	0.0749	31.4	0.00337	0.00030	147	0.391	0.0450	0.0040	0.350
MN99US-46	17.0	0.0952	0.274	90.7	0.0113	0.000848	62	0.347	0.0412	0.0031	0.187
MN99US-23	24.6	3.74	16.8	5040	0.657	0.0475	1.5	0.223	0.0391	0.0028	0.005
Air (Ozima and Podosek, 2002)	5.24	16.5	31.5	9303	0.649	0.0234	0.166	0.524	0.0206	0.00074	0.00056
Air saturated water (30°C water, k	Kipfer et al., 2002)	ıl., 2002)					0.050	0.178	0.0359	0.00230	0.00017

Sample name	⁴ He	$^{20}\mathrm{Ne}$	${}^{36}\mathrm{Ar}$	${}^{40}\mathrm{Ar}$	$^{84}\mathrm{Kr}$	132 X e	CO ₂ (water)	$\delta^{13}C_{PDB}$
		Concentral	tion in wa	er (10 ⁻⁶ cc	Concentration in water (10 ⁻⁶ ccSTP/g water)	sr)	- ccSTP/g water	$\%_{0}$
Lake Nyos								
November 1999 (Al-bag method)								
NY99-200	93.4	0.708	1.92	650	0.0565	0.003258	7.85	
061-66AN	81.6	0.257	0.97	347	0.0362	0.002577	7.49	
NY99-175	98.6	0.589	1.03	348	0.0278	0.001513	3.31	
NY99-150	42.7	0.494	0.88	277	0.0224	0.001160	3.03	
NY99-130	29.2	0.809	1.29	395	0.0317	0.001633	2.86	
NY99-100	14.4	0.701	1.33	404	0.0344	0.001818	2.05	
02-66XN	13.6	4.005	5.46	1620	0.1212	0.005460	1.50	
USA, November 1999 (Stainless steel cylinder mothod)								
NY99US-206	90.2	0.196	0.45	239	0.0170	0.001660	7.98	
NY99US-191	83.5	0.199	0.39	193	0.0138	0.000887	7.52	
NY99US-183	166.0	0.219	0.61	305	0.0240	0.001987	5.27	
NY99US-53	6.7	0.277	0.92	279	0.0330	0.002418	1.24	
Lake Monoun November 1999 (Al-bag method)								
MN99-95	28.8	0.564	1.035	331.3	0.03031	0.001685	3.57	-7.50
MN99-85	47.0	0.108	0.384	143.5	0.01598	0.001161	3.56	-7.05
MN99-75	62.5	0.205	0.646	229.7	0.02407	0.001729	3.55	-6.83
MN99-65	38.0	0.128	0.472	168.6	0.01906	0.001441	3.55	-6.99
MN 99-55	63.7	0.330	0.815	271.9	0.02742	0.001828	3.30	-7.29
MN99-45	38.2	0.200	0.888	298.0	0.03186	0.001935	1.29	-8.28
MN99-25	5.1	0.171	0.701	213.4	0.02414	0.001406	0.27	
USA, November 1999 (Stainless steel cylinder mothod)								
WN99US-95	37.8	0.078	0.300	133.9	0.01296	0.001007	3.57	
62-SD66NW	42.4	0.103	0.300	134.2	0.01328	0.001356	3.56	
MN99US-61	39.1	0.104	0.266	111.5	0.01196	0.001054	3.55	
MN99US-46	22.4	0.126	0.362	119.7	0.01492	0.001119	1.32	
MN99US-23	0.8	0.115	0.517	155.2	0.02024	0.001463	0.031	
Air (Ozima and Podosek, 2002) Air saturated water (30°C water, Kipfer <i>et al.</i> , 2002)	0.044	0.156	0.874	259	0.0314	0.00201		