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Abstract. In delegated computing, prominent in the context of cloud
computing, guaranteeing both the correctness and authenticity of compu-
tations is of critical importance. Homomorphic signatures can be used
as cryptographic solutions to this problem. In this paper we solve the
open problem of constructing a linearly homomorphic signature scheme
that is secure against an active adversary under standard assumptions.
We provide a construction based on the DL. and CDH assumption. Fur-
thermore we show how our scheme can be combined with homomorphic
encryption under the framework of Linearly Homomorphic Authenticated
Encryption with Public Verifiability. This way we can provide the first
such scheme that is context hiding. Furthermore our solution even allows
verification in constant time (in an amortized sense).
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1 Introduction

1.1 Motivation

Homomorphic signature schemes allow to check the correctness of a com-
putations result without having to perform the computation oneself. This
allows a client to delegate computations to a computationally more pow-
erful server, such that the server can verify the result. In this scenario the
server is asked to not only perform a computation but also to evaluate
this function over the signatures as well. The resulting signature to the
output can be used to verify the correctness of the result. There have been
multiple schemes proposed for this. Their security however is mostly based
on weaker non-standard assumptions. Besides outsourcing of computa-
tions, homomorphic signatures offer security in network coding [9]. These
constructions however do not consider confidentiality, i.e. the client might
not be comfortable with the server knowing what data he is computing
on. Homomorphic encryption schemes allow the evaluation of functions
over encrypted messages. That servers can perform computations, learning
neither the input nor the output. However, clients still have to trust the
server to a degree, as there is no way to check whether the function has
been evaluated as claimed. Combining both approaches allows a client
to verify the correctness by checking a signature and decrypting the ci-
pher returned by the server. However, naively combining both primitives
requires the cipher space of the encryption scheme to be (a subset of)
the message space of the homomorphic signature scheme. In the case of
Paillier encryption for instance the underlying message space is Z,, while
the cipher space is Z,,2, i.e. a doubling the signature size. Catalano et al.
[14] proposed a method which allows to combine the Paillier encryption
scheme with a homomorphic signature scheme instantiated to support
only the message space of the Paillier encryption scheme. Currently there
exists only one instantiation of this, whose security is also based on strong
assumptions.

1.2 Related work

Linearly homomorphic signature schemes: The idea of linearly ho-
momorphic signature schemes was introduced in [16] and later refined in
[19]. Freeman proposed stronger security definitions in [17]. An instantia-
tion based on 2-3-Diffie Hellmann was proposed in [9]. Later realizations
are based on subgroup decision problems [2,3], the k-Simultaneous Flex-
ible Pairing Problem [4], the RSA problem [18] (offering only security
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against weak adversaries), the strong RSA problem [11], the Flexible DH
Inversion problem [10], and the lattice based k-SIS problem [8]. As already
mentioned in [17] the construction of such a scheme, that is secure against
a strong adversary, and based on weak assumptions, has been solved by
using so called chameleon hash functions, which are very computation-
ally expensive. Constructing such a scheme without them, has remained
an open problem ever since. The idea of homomorphic signatures with
efficient verification was introduced in [12]. Intuitively, this means that
the outcome of a computation can be checked faster by using the schemes
verification algorithm than computing it oneself. However, this only holds
in an amortized sense, as an expensive preprocessing phase has to be
amortized over multiple datasets (see [5,14]).

Authenticated Homomorphic Encryption An and Bellare [1]
introduced a new paradigm called encryption with redundancy which allows
to achieve both privacy and authentication. In [6] the idea of authenticated
encryption is formalized. Analogous notions for the homomorphic setting
were given in [20] and [14]. In the latter the notion of linearly homomorphic
authenticated encryption with public verifiability (LAEPuV) was introduced
which will be used in this paper. As pointed out in [23], the candidate
instantiation of [14] suffers from false negatives however, and an improved
version was proposed.

1.3 Contribution and Roadmap

In this paper we propose a linearly homomorphic signature scheme that
is unforgeable against strong (adaptive) adversaries under the computa-
tional Diffie-Hellman assumption, which is one of the most well studied
cryptographic problems and thereby solve a problem left open in [17]. This
scheme has several desirable properties. The size of a signature does not
depend on the size of the dataset over which computations are executed,
so it is in particular succinct, it allows for efficient verification, in our case
even constant time verification, and is context hiding, i.e. no information
about the input values can be learned from the signature to the output of
a computation (not even if the secret key is compromised). We then show
how our scheme can be used in conjunction with Paillier encryption [21]
in order to instantiate a LAEPuV scheme. This is both the first context
hiding construction and the first to support vectors of messages.

We introduce notation and preliminaries in Section 2. We present a
new homomorphic signature scheme in Section 3 and prove its properties,
while Section 4 shows how our scheme can be combined with homomorphic
encryption.
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2 Preliminaries

To accurately describe what both correct and legitimate operations for
homomorphic signatures are, we will make use of multi-labeled programs
similar to [5]. On a high level a function is appended by several identifiers,
in our case input identifiers and dataset identifiers. Input identifiers label
in which order the input values are to be used and dataset identifiers
determine which signatures can be homomorphically combined. The idea
is that only signatures created under the same dataset identifier can be
combined. We will now give formal definitions.

A labeled program P consists of a tuple (f, 71,...,7), where f : MF —
M is a function with k inputs and 7; € T is a label for the i-th input
of f from some set T. Given a set of labeled programs Py,...,P; and a
function g : M? — M, they can be composed by evaluating g over the
labeled programs, i.e. P* = g(P1, ..., P;). The identity program with label
T is given by Z; = (fiq, 7), where f;q: M — M is the identity function.
Note that program P = (f,71,...,7x) can be expressed as the composition
of k identity programs P = f(Z,,,...,Z;.).

A multi-labeled program P is a pair (P, A) of the labeled program P
and a dataset identifier A. Given a set of ¢ multi-labeled programs with
the same data set identifier A, i.e. (P1,A4),..., (P, AQ), and a function
g : M! = M, a composed multi-label program P can be computed,
consisting of the pair (P*, A), where P* = g(P4,...,P;). Analogous to the
identity program for labeled programs we refer to a multi-labeled identity
program by Zia -y = ((fia, 7), 4).

Definition 1 (Homomorphic Signature Scheme). A homomorphic
signature scheme is a tuple of the following probabilistic polynomial-time
algorithms:

HKeyGen(1*,k) : On input a security parameter X and an integer k, the
algorithm returns a key pair (sk, pk), where sk is the secret key kept
private and pk is the public key which determines the message space
M, the signature space Y, and the set F of admissible labeled programs
P MF - M.

HSign(sk, A, 7,m) : On input a secret key sk, a dataset identifier A, an
input identifier T, and a message m € M, the algorithm returns a
signature o € Y which is the signature for the message labeled by T in
the dataset identified by A.

HEval(pk, Pa, o) : On input a public key pk, a multi-labeled program Pa,
and a set of signatures o € Y*, the algorithm returns a signature
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o' € Y for the multi-labeled program P over the (tuple of) signatures
o identified by A.

HVerify(pk, Pa,m,0) : On input a public key pk, a multi-labeled program
Pa, a message m € M, and a signature o € Y, the algorithm either
accepts the signature o, for the multi-labeled program P over the dataset
identified by A, i.e. it returns 1, or rejects the signature, i.e. it returns
0.

We will now define the relevant properties for homomorphic signatures.

Definition 2 (Correctness). A homomorphic signature scheme
(HKeyGen, HSign, HEval, HVerify) is called correct, if for any security pa-
rameter X, any integer k, and any key pair (sk, pk) < HKeyGen(1*, k) the
following two conditions are satisfied.

Condition 1 For any dataset identifier A, any input identifier 7, and
any message m € M, it holds that

HVerify (pk, Z.,m, HSign(sk, A, 7,m)) = 1.

Condition 2 For any dataset identifier A, any multi-labeled program
Pa=((fry-- s fr)sT1y -, Thy Q) containing a linear function, and any
set of messages m € MF with m = (my,...,my), it holds that

HVerify(pk, Pa, f(m1,...,my), HEval(pk, Pa, o)) =1
where @ = (0, ..., 07,) € V¥ with o, + HSign(sk, A, 7,m,).

Definition 3 (Succinctness). A homomorphic signature scheme
(HKeyGen, HSign, HEval, HVerify) is called succinct if for a fized security
parameter \ the size of the signatures depends at most logarithmically on
the dataset size k.

For the security notion of our homomorphic signature scheme we
first provide a definition for well defined programs and forgeries on these
programs. Then, we introduce an experiment the attacker can run in order
to make a successful forgery and present a definition for unforgeability
based on this experiment.

Definition 4 (Well Defined Program). A labeled program P =

(f, 71y, 7k) is well defined with respect to a list L if one of the two
following cases holds: First, there exists exactly one m; such that (1;,m;) €
LVi=1,...,k. Second, there is ani € {1,...,k} such that (1;,-) ¢ L and
FUMG 1y myyec YU{Mit(n,)¢c) does not depend on the choice of 1y € M.
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Definition 5 (Forgery). A forgery is a tuple (Pa, m*,0*) such that
HVerify(pk, Pa, m*,0*) = 1 holds and one of the following conditions
is met:

Type 1: The list L was not initialized during the game, i.e. no message
was ever committed under the dataset identifier A.

Type 2: P is well defined with respect to the list L and m* is not the
correct output of the computation, i.e m* # f({m;}(r, m;ec)-

Type 3: Pa is not well defined with respect to L.

For the notion of unforgeability we define the following experiments
HomUF — CMA 4 Homsign(A) and Weak — HomUF — CMA 4 Homsign(A) be-
tween an adversary A and a challenger C.

HomUF — CMA 4 Homsign (A):

Key Generation C calls (sk, pk) <—g HKeyGen(1*, k) and gives pk to A.

Queries A adaptively submits queries for (A, 7,m) where A is a dataset,
T is an input identifier, and m is a message. C proceeds as follows:
if (A, 7,m) is the first query with dataset identifier A, it initializes
an empty list £ = () for A. If £ does not contain a tuple (7,-), i.e. A
never queried (A, 7, ), C calls o < HSign(sk, A, 7,m), updates the list
L = LU(1,m), and gives o to A. If (1,m) € L then C returns the
same signature o as before. If £ already contains a tuple (7, m’) for
m #m’, C returns L.

Forgery A outputs a tuple (Pa,m, o). The experiment outputs 1, if
(Pa,m,0) is a forgery according to Definition 5.

In the following experiment Weak — HomUF — CMA 4 Homsign(A), the
adversary has to declare the message components of the later signing
queries before the key generation and can later on specify in which dataset
A; it wants to query it.

Weak — HomUF — CMA 4 Homsign():

Declaration of Messages A outputs a list of possible messages
{mm}?eﬁ,j:l C M where (@ is the number of datasets to be queried.

Key Generation C calls (sk, pk) < HKeyGen(1*, k) and gives pk to .A.

Queries A adaptively submits queries for (A;,7,m,;) where A is a

dataset, 7 is an identifier, and m ; is a message. C proceeds as follows:
if (Aj,7,mr;) is the first query with dataset identifier A;, it initializes
an empty list £ = ) for A;. If £ does not contain a tuple (7,-), i.e. A
never queried (A;,7,-), C calls o <— HSign(sk, A;, 7,m), updates the
list L= LU (7, m,;), and gives o to A. If (7,m, ;) € L then C returns
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the same signature o as before. If £ already contains a tuple (7, m’”)
for m # m’ C returns L.

Forgery A outputs a tuple (Pa,m, o). The experiment outputs 1, if
(Pa,m, o) is a forgery according to Definition 5

Definition 6 (Unforgeability). A linearly homomorphic signature
scheme is unforgeable if for any PPT adversary A we have

Pr[HomUF — CMA 4 Homsign(A) = 1] < negl(X).
It is weakly unforgeable if for any PPT adversary A we have
Pr{Weak — HomUF — CMA 4 Homsign(A) = 1] < negl(X).

However any homomorphic signature scheme weakly-unforgeable un-
der a computational assumption can be transformed into one that is
unforgeable under the same assumption by [12, Theorem 1].

Additionally we will make use of the following statement.

Lemma 1 (Proposition 2.3 of [17]).

Let H = (HKeyGen, HSign, HEval, HVerify) be a linearly homomorphic
signature scheme over a message space M C R™ for some ring R. If H
is secure against Type 2 forgeries, then H is also secure against Type 3
forgeries.

Definition 7 (Context-Hiding). A homomorphic signature scheme for
multi-labeled programs is called context hiding if there exist additional
PPT procedures & < HHide(pk,m,o) and HHideVer(pk, P, m, &) such
that:

Correctness: For any (sk, pk) < HKeyGen(1*, k) and tuple (Pa,m,0),
such that HVerify(pk, Pa, m, o) = 1, and 6 < HHide(pk, m, o), it holds
that HHideVer(pk, Pa,m,) = 1.

Unforgeability: The homomorphic signature scheme is unforgeable (see
Definition 6) when replacing the algorithm HVerify with HHideVer in
the security experiment.

Context-Hiding Security: There is a simulator Sim such that, for any
fized (worst-case) choice of (sk,pk) < HKeyGen(1*, k), any multi-
labeled program Pa = (f,71,...,7k, A), messages my,...,my, and
distinguisher D there exists a function e(\) such that the following
equation holds:

| Pr[D(I,HHide(pk, m, o) = 1] — Pr[D(I,Sim(sk,Pa,m)) = 1]| = €(})



8 Lucas Schabhiiser, Johannes Buchmann, and Patrick Struck

where I = (sk, pk, Pa, {mi,oi}t_;,m, o) for o; < HSign(sk, A, 7;,m;),
m <« f(mi,...,mg), o < HEval(pk,Pa,01,...,0k),and the proba-
bilities are taken over the randommness of HSign, HHide and Sim. If
€(A) < negl(\) we call the homomorphic signature scheme statistically
context-hiding, if e(A) = 0 we call it perfectly context hiding.

Definition 8 (Efficient Verification). A homomorphic signature
scheme for multi-labeled programs allows for efficient verification, if there
exist two additional algorithms (VerPrep, EffVer) such that:

VerPrep(pk, P) : Given a public key pk and a labeled program P = (f, 1,
., Tk), this algorithm generates a concise public key pkp. This does
not depend on a dataset identifier A.
EffVer(pkp, m, 0, A): Given a concise public key pkp, a message m, a
signature o and a dataset A, it outputs 1 or O.

The above algorithms are required to satisfy the following two properties:

Correctness: Let (sk,pk) < HKeyGen(1*, k) be honestly generated keys
and (P,m, o) be a tuple such that for Po = (P, A) we have
HVerify(pk, Pa,m,0) = 1.

Then for every pkp & VerPrep(pk, P), EffVer(pkp,m,o, A) =1 holds
except with negligible probability.

Amortized Efficiency: Let P be a program, my,...,mg, be valid input
values and let t(k) be the time required to compute P(myq,...,my).

Then for pkp & VerPrep(pk, P) the time required to compute
EffVer(pkp, m, o, A) is t' = o(t(k)).

Note that efficiency here is used in an amortized sense. There is a
function dependent preprocessing so that the cost of verification amortizes
over multiple datasets.

2.1 Notation

Definition 9 (Asymmetric bilinear groups). An asymmetric bilinear
group is a tuple bgp = (¢, G1, G, Gr, g1, g2, €) such that (1) Gy, G, and
Gr are cyclic groups of order q, (2) the Discrete Logarithm Problem
is hard to be computed in Gi,Go, and Gp, (3) e : Gy x Gg — Grp is
bilinear, i.e. e(gl“,ggb) = e(gl,gg)“b holds for all g1 € Gy, g2 € Go, and
a,b € Zy, (4) e is non-degenerate, i.e. e(g1, g2) # 1, and (5) e is efficiently
computable. The function e is called bilinear map or pairing.
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During our constructions we will have multiple input messages m;
where the messages are vectors. For reasons of clarity we will make the
following convention: m; will be used to identify a certain message, while
m/[j] will be used to denote the j-th entry of the message vector m. Thus
m;[j] is the j-th entry of the i-th message.

2.2 Assumptions

Definition 10. (DL) Let G be a group of order q (not necessarily prime):
We say the Discrete Logarithm assumption holds in G. if there exists no
ppt adversary A that given (g,g*) for a random generator g € G and
random a € Zg can output a with more than negligible probability.

Note that there exist different variations of Diffie-Hellman assump-
tions in bilinear groups (see for example [15]). We will use the following
definition.

Definition 11. (CDH in Bilinear Groups [15])

Let bgp = (¢, G1,Ga,Gr, g1, g2, €) be a description of a bilinear group.
We say the Computational Diffie-Hellman assumption holds in bgp, if
there exists no ppt adversary A that given (bgp, gf,g5) where a,b & Zqg
can output g8 with more than negligible probability.

Definition 12. (DCRA) Let n be the product of two (safe) primes, i.e.
n = pq. We say the Decisional composite residuosity assumption (DCRA)
holds if there exists no ppt adversary A that can distinguish between an
element drawn uniformly random from the set Z), and an element from
the set {z"|z € Z%,}, that is the set of the n-th residues modulo n?.

3 Construction

In the following we will describe a linearly homomorphic signature scheme
HSig = (HKeyGen, HSign, HEval, HVerify) based on CDH in bilinear groups.
In this instantiation the input identifiers are simply the integers from 1
to k. Multi-labeled programs contain linear functions f given by their

coefficients, i.e. f = (f1,..., fx).

HKeyGen(1*, k,T): On input a security parameter A, an integer k, and an
integer T', the algorithm runs G(1*) to obtain a bilinear group bgp =
(¢,G1,G2,Gr, ¢1, 92, €), and samples k+T elements Ry, ..., Rg, h,...,
hr + Gi. Additionally it generates a key pair (sk’, pk’) < KeyGen’(1%)
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of a regular signature scheme and a key K & Ktora pseudorandom
function PRF : IC x {0,1}* — Z,. It returns the key pair (sk, pk) with
sk = (sk', K) and pk = (pK', bep, {hi}]o1 AR

HSign(sk, A,i,m): On input a secret key sk, a dataset identifier A, an
input identifier ¢ € [k], and a message m € Z;F, the algorithm
generates the parameters for the dataset identified by A, by run-
ning z < PRFg(A) and computing Z = g¢5. It binds Z to the
dataset identifier A by using the regular signature scheme, i.e. it
sets oa < Sign’(sk’, Z|A). Then, it computes A <+ (R; - H;‘-le hj_m[]])z
and returns the signature o = (o, Z, A).

HEval(pk,Pa,o): On input a public key pk, a multi-labeled program P

containing a linear function f, and signatures o = (071, ..., 0%), where
oi = (oA, Zi, /), the algorithm checks if the signatures share the same
public values, i.e. if op1 =0oa; and Z; = Z; forall i = 2,...,k, and

the signature for each set of public values is correct and matches the
dataset identifier A, i.e. Verify'(pk’, Z;|A,04,;) = 1forany i = 1,..., k.
If that is not the case the algorithm rejects the signature, otherwise,
it proceeds as follows. It computes m = Z —, fim; and A = H Azf L
and returns the signature o = (Z1,04,1, 4).

HVerify(pk, Pa, m,0): On input a public key pk, a message m, a signa-
ture o = (o, Z, A), and a multi-labeled program containing a linear
function f, the algorithm returns 1, if Verify’ (pk Z|A,o4) =1 and
e (R H —1h; ml] Z) =e(A, g2), where R + H R{l Otherwise, it
returns 0.

Theorem 1. HSig is a correct linearly homomorphic signature scheme
according to Definiton 2.

Proof. Throughout this proof, let (sk,pk) < HKeyGen(1*,k,T) be an
honestly generated key pair with sk = (sk’, K) and pk = (pk’, bgp, {h; }] 1
{Ri}E).

Condition 1: Let A be a dataset identifier, i € [k] be an input iden-
tifier, m € ZqT be a message, and 0 = (04,2, A) < HSign(sk, A,i,m)
be the signature of m. Furthermore, let Z 4 ;) be the identity func-
tion for the i-th input under the tag A. By construction it holds that
Verify/(pk/, Z|A,04) = 1 and R = [ Ri = R! = R;, which yields
e (Ri- T2k, ™ 2) = e (R T by " gs) = e (R g2)" =

((R H -1 h mb]) ,g91) = € (A, g2). Thus, we have
HVerify (pk, Z( ,Z),m,o) = HVerify(pk, Z( A ;), m, HSign(sk, A,i,m)) = 1.
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Condition 2: Let A be a dataset identifier, m; € Z] for i € [k] be
messages, Pa = ((f1,---, fx),1,...,k, A), and o; < HSign(sk, A,i,m;),
with o; = (044, Zi, Ai), be a signature of m;. Furthermore, let ¢ =
(oA, Z,A) < HEval(pk, Pa, o) be the signature obtained by evaluating f
over the signatures in the dataset identified by A.

By construction we have Z = Z; and o0 ; = 04,1, hence we have
Verify' (pk’, Z| A, a.4) = 1. To prove the correctness it remains to show that

e (R-ITj_1 h; ™, Z) = e (4, 95), where R = [Ti; RY'. Tt holds that
] k T ok il
e|R-[[n;"™.z| = (IR T 2o Jimill e
Jj=1 i=1 j=1
kT . z k T i z
sz H Hh mil) fz —e H(RZHh]—mz])fz’gz
i=1 j=1 i=1 j=1
T k
(i fies <n>

i=1

=~ ||z?r euls

=1 7j=1

hence HVerify(pk, Pa, f(m1,...,my), HEval(pk, Pa, o)) = 1.

Theorem 2. If Sig’ is an unforgeable signature scheme, PRF is a pseu-
dorandom function, and the CDH assumption (see Definition 11) holds
in bgp, then the signature scheme describe above is a weakly-unforgeable
homomorphic signature scheme for linear functions.

Proof. To prove this Theorem we define a series of games with the adver-
sary A and we will show that the adversary A wins, i.e. the game outputs
1, only with negligible probability. Following the notation of [10] we will
write G;(A) to denote that a run of game ¢ with adversary A returns 1.
We will make use of flag values bad; initially set to false. If at the end of
the game any of these flags is set to true, the game simply outputs 0. Let
Bad; denote the event that bad; is set to true during a game.

Game 1: This is the experiment Weak — HomUF — CMA 4 Homsign (see
Definition 6) where A only outputs Type-1 or Type-2 forgeries.

Game 2: This game is defined as Game 1 apart from the fact that
whenever A outputs a forgery (Pa, m*,0*), where o* = (0%, Z*, A*)
such that Z* was not generated by the challenger, then Game 2 sets
bad, < true .

Game 3: This game is the same as Game 2, except that the pseudoran-

dom function of the scheme is replaced with a true random function
¢ :{0,1}* — Z,.
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Game 4: This game is the same as Game 3, except for an additional check.
When given a forgery (P* a«, m*, 0*) where P* o« = ((f*,1,...,k), A%)
the simulator computes m < f*(m1,a,...,mg ). It checks whether
H;-le h;nm = H;‘-le h;-n*m holds. If it does it sets bady = true.

We will first show that these games are computationally indistinguishable
under our assumptions and then proceed by showing how to construct
a simulator & which uses an efficient adversary A against the signature
scheme to solve the CDH problem.

Games 1 and 2 are only different if Bads occurs. By constructions
this means that A produced a forgery containing a valid signature o
on (A*|Z*) even though no signature has ever been queried for datatset
A*. This means that the adversary A can be used to obtain an existential
forgery for the signature scheme Sig’.

If PRF is a pseudorandom function then Game 2 is computationally
indistinguishable from Game 3.

We obviously have |Pr[G3(A)] — Pr[G4(A)]| < Pr[Bada].

In Lemma 3 in the Appendix we show how an adversary A, such
that Pr[Bads] is non negligible, can be used to break the DL assumption.
Afterwards in Lemma 2 we show how a simulator can use an adversary
winning Game 4 to break the CDH assumption.

Theorem 3. The homomorphic signature scheme HSig is succinct.
Proof. The signature size is independent of the size k of the datasets.

Theorem 4. The homomorphic signature scheme HSig allows for efficient
verification.

Proof. We describe the two algorithms (VerPrep, Eff\er).

VerPrep(pk, P) : It parses P = ((f1,-.-,fx),1,...,k) and takes the R;
for i € [k] contained in the public key. It computes Rp + [, sz :
and outputs pkp = (pk’, bgp, {hj}JTzl, Rp) where pk’, bgp, {hj}JT:1 are
taken from pk.

EffVer(pkp, m, 0, A): This algorithm does the same as HVerify only the
value R has been precomputed as Rp.

Obviously this satisfies correctness and the running time of EffVer is now
independent of k and therefore the runtime complexity of P. Thus our
construction is constant time (in an amortized sense).
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Theorem 5. The linearly homomorphic signature scheme HSig is per-
fectly context hiding according to Definition 7 if Sig’ is a deterministic
signature scheme.

For the proof we refer to the appendix (see Theorem 7).

4 Linearly Homomorphic Authenticated Encryption

We will give the formal definitions for Linearly Homomorphic Authenti-
cated Encryption with Public Verifiability.

Definition 13. (LAEPuV [14]). A LAEPuV scheme is a tuple of five
ppt algorithms (AKeyGen, AEncrypt, AEval, AVerify, ADecrypt) such that:

AKeyGen (1, k): It takes a security parameter \ and the mazimum number
k of encrypted messages in each dataset as input. It returns a key pair
(sk, pk), where sk is the secret key for encrypting and signing and pk is
the public key used for verification and evaluation. The message space
M, the cipher space C and dataset identifier space D are implicitly
defined by the public key pk.

AEncrypt(sk, A, 7,m): The input is a secret key sk, a dataset identifier A,
an input identifier 7, and a message m. The output is a cipher c.
AEval(pk, Pa,{ci le): The input is a public key pk, a multi-labeled pro-
gram Pa, and a set of k ciphers {c;}i=1.. k. The output is a cipher

c.

AVerify(pk, P, c): The input is a public key pk, a multi-labeled program
Pa containing a linear function f, and a cipher c. The output is either
1, i.e. the cipher is valid, or 0, i.e. the cipher is invalid.

ADecrypt(sk, Pa,c): It gets a secret key sk, a multi-labeled program Pa,
and a cipher ¢ as input and outputs a message m if ¢ is valid and L
if ¢ is inwvalid, respectively.

Definition 14 (Correctness).
Let LAE = (AKeyGen, AEncrypt, AEval, AVerify, ADecrypt) be a LAEPuV
scheme. We say LAE is correct if the following two conditions all hold.

1. For any key pair (sk, pk) < AKeyGen(1*, k) and any cipher ¢ € C we
have

AVerify(pk, Pa,c) =1 < Im € M : ADecrypt(sk, Pa,c) = m.
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2. Let (sk,pk) + AKeyGen(1* k) be a key pair, A € {0,1}* be any
dataset identifier, my,...,my € M be a tuple of messages, and let
¢; < AEncrypt(sk, A, 7;,m;). For any admissible multi-labeled program
Pa=(f1y- s [r)sT1y--- Tk, Q) it holds that

ADecrypt(sk, Pa, AEval(pk, Pa, {c; i?:l)) = f(mq,...,mg).

Note that in particular, if we have Pa = Z(a 7,y the identity program,
then ADecrypt(sk,Z(a 7), i) = m; holds.

We will give a security definition for a LAEPuV scheme in the Appendix
(Definition15).

We will now show how our linearly homomorphic signature scheme can
be used to instantiate such a LAEPuV scheme LAE = (AKeyGen, AEncrypt,
AEval, AVerify, ADecrypt) when using bilinear groups of composite order.
In [7] it is shown how to construct even asymmetric bilinear groups of
composite order n = pq. Note that previous instantiations of LAEPuV
schemes can only sign messages in Z,, i.e. vectors of length 1, while we
show the first use of LAEPuV for vectors of polynomial length. Note again,
that in this case the input identifiers are integers i € [k].

AKeyGen(1*,k,T): On input a security parameter ), an integer k, and
an integer T, it chooses two (safe) primes p,q and computes the
modulus n < p - ¢. It runs G(1*) to obtain a bilinear group bgp =
(n,G1,Ga, Gy, g1, g2, €) of composite order and samples k + T elements
Ry,...,Rg, h1,... hy < Gy uniformly at random. Additionally, the
algorithm generates a key pair (sk’, pk’) <+ KeyGen’(1%) of a regular

signature scheme and a key K & K for the pseudorandom function
PRF. Furthermore it chooses an element g € ZZQ of order n as well
as a hash function H : {0,1}* — Z*,. It returns the key pair (sk, pk)
with sk = (sk', K, p, q) and pk = (bgp, H,pk’, g, {h;}]_1, {Ri}}_).
AEncrypt(sk, A,i,m): On input a secret key sk, a dataset identifier A,
an input identifier i € [k], and a message m € ZZI, it chooses $3;
uniformly at random from Z, for j € [T]. It computes the cipher
C[j] < g™V B[j]* mod n?, computes S[j] + H(A[i|j) and computes
(alf], bj]) € Zn x Z7, such that g®Vl-b[j]* = C[4]S[j] mod n? using the
factorization of n (see [21] for a detailed description). It generates the
parameters for the dataset identified by A, by running z < PRF(A)
and computing Z = g¢5. It binds Z to the dataset identifier A by

using the regular signature scheme, i.e. it sets o & Sign’(sk’, Z|A).
Then, it computes A <+ (R; - H]T:1 hj_a[j ])Z and returns the the cipher
c=(C,a,b,o0n,Z,A).
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AEval(pk, Pa, {ci}le): On input a public key pk, a multi-labeled program
Pa, and a set of cipers ¢;, it parses Pa = ((f1,.--, fx),1,..., k, A)
and ¢; = (Cj,a4,bi,00,4, Zi, Ay). It Z; # Z for any i € [k], it aborts.
Otherwise, it sets

k k
C’<—HCZ-f" mod n? ‘”_Zfz‘az‘ mod n
=1 i=1
k k
blj] < Hbi[j]fi mod n?, for j € [T] A+ HAi% mod n
=1 i=1

It returns the cipher ¢ = (C,a,b,01, Z1, A).

AVerify(pk, Pa,c): On input a public key pk, a multi-labeled program
Pa, and a cipher ¢, it parses Pa = ((f1,..-, fx), 11, -+, 7k, Q) and
¢ = (C,a,b,on,Z,A). The algorithm checks whether the following
equations hold: }

Verify’ (pk’, Z|A,o0) =1, ¢ (R . H?:l hj_a[j], Z) = e (A, g2), and gV
blj]* = CH|TIE, H(A|i[j)f mod n2. If all checks are satisfied, it
returns 1. Otherwise, it returns 0.

ADecrypt(sk, Pa,c): Returns L if AVerify(pk, Pa,c) = 0. Otherwise, com-

pute (m, 3) such that ¢™V!B[j]" = C[j] mod n? and return m.

We will formally show the correctness of LAE in Theorem 8 in the
Appendix.

Theorem 6. (/14]). In the random oracle model, if the DCR Assumption
(see Definition 12)and the CDH Assumption (see Definition 11) hold and
H is a random oracle the LAEPuV scheme LAE is a LH-IND-CCA secure
(see Definition 15) LAEPuV scheme.

Proof. This is a direct corollary of [14, Theorem 1] and Theorem 2.

5 Conclusion

We provide a new linearly homomorphic signature scheme directly based
on the CDH assumption, without using a chameleon hash function thereby
solving the problem introduced in [17]. Additionally we provide the first
LAEPuV scheme that supports vectors as inputs and hereby give an
alternative to the instantiation provided in [23]. Our construction achieves
two additional properties, that are constant time verification and context
hiding. It would be interesting to see if the security of homomorphic
schemes supporting a larger class of computations can also be based on
such well studied assumptions.
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A Appendix: Postponed Proofs

Lemma 2. An efficient adversary A winning Game 4 in Theorem 2, can
be used to break the CDH assumption.

Proof. We will now show how to construct a simulator S which uses an
efficient adversary A against Game 4 to solve the CDH problem. Let
bgp = (¢, G1,Ga, Gr, g1, g2, €) + G(11) be a bilinear group of order q. The
simulator S is given g1, g7, g5, where a,b & Zg4, and intends to compute
b
91
Initialization: Let () be the number of datasets in which the adversary
makes signature queries. The adversary gives the simulator all messages
{m(i7l)}f:1, for I € [Q] on which he makes signature queries.
Setup: The simulator runs the key generation algorithm of the regular
signature scheme to obtain a key pair (sk’, pk’) < KeyGen’(1*) and samples

a key K & K for the pseudorandom function PRF. The simulator guesses
the dataset in which the adversary produces a forgery, in the following

identified by the dataset identifier A. Then, it chooses r; & Zq for i € [K]

T .
as well as s; & Zq for j € [T). Tt sets R; < gy -g(ll Ej:lm@’mm, sets

h; = (¢1)%, and sends the public key pk = (pk’, g1, {Ri}j—;, {h;}]=;) to
the adversary. Note that since the s; and r; are chosen uniformly at
random this is perfectly indistinguishable from an honest setup.

Query: While the adversary queries signatures for messages, we dis-
tinguish between the following two cases.

— Case I: The adversary queries signatures for the dataset A; # A.
— Case II: The adversary queries signatures for the dataset 4A; = A.

Case I: In this case, the simulator answers the signing queries by
the adversary with honestly generated signatures. More precisely, let
mi, ..., mx be the messages and A; be the dataset identifier. The simulator
computes z < PRFg(4;), sets Z = g3, and o + Sign’(sk’, 4;|Z). Then,
for any ¢ € [k], it computes A; < (R; - H};l hj_mi b })Z and returns the set
of signatures o = {(c4,, Z, 4;) k_|. The validity of the signatures can be
easily verified.

Case II: In this case the adversary A queries signatures in the dataset
the simulator expects A to produce a forgery in. It chooses u < Z,
uniformly at random and sets Z = (g4)*. Let my, ..., my be the messages
and A be the dataset identifier. The simulator sets o « Sign’(sk’, Z|A).

Then, for ¢ =€ [k], the simulator computes A; < (gS)un and returns the
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signatures o = (01,...,0%), where 0; = (0a,Z, ;). Note that for any
1=1,...,k, it holds that

L j im;lJ a-s; 4
e(Ri- [[ h; ™V, 2) = e(gy - gy ™) (gi*) 7l gty
j=1

=e(91,92)" = e((9")", 92) = e(A, g2)

Thus, o; is a valid signature for any ¢ € [k] and the simulated signatures
are perfectly indistinguishable from honestly generated signatures.
Challenge Let (P}., m*, 0*) be the forgery returned by the adversary
A. Parse 0* = (0., 2%, A4%)) and Ph. = (f*,1,...,k, A%). If A* # A,
restart the simulation. Otherwise, the simulator evaluates the function f*
over the dataset identified by A, i.e. it computes m + f*(my,...,my) and
o = (oa,Z,A) < HEval(pk, A, o, f*). Note that we have H]T:1 h;-nm +
;‘[’:1 h?*[j], since bady = false and therefore also Z;‘le sj-mlj] # Z;‘-le S5
m*[j]. It returns
(A- (A*)_l)(zjzl s [=mD™ 55 a solution. Let R « [15, RV Since
A and A* are valid signatures for the function f*, it holds that

ub
T ) . '
A = (R . H hj_m[]}) — (Rub . (g%)i’Mb(Zﬂ':l sjm[]])>
7j=1

_ pub. 942;‘; smlj])uab
- 1

T ub
A= (R n;™
Jj=1
] - T s.m*[j])ua
— Rub(g%)—Ub(Zle Sjm*[ﬂ]) — Rubgl (ijl i [JD b

Therefore, we have

—u(32 ), sjmlj))ab

Ky — ” —u u( .T: s;-m*[j])ab
A (A4 = (R g, ) (R - grt i ety

(o symrliuab  —(327 symlihuab  ab(uY]] | si(m*[j]=mlj])
=0 01 =0

which yields

) WY1 sy m* )= mli))

(A (A*)q)uzle sj(m*l=ml)) _ (gzlm)uzjllsj<m*[j]—m[j]> — g
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Since the simulator guesses the right dataset with probability at least 1/Q),
it holds that

Pr[Adv(S)] PriG4(A)]

1
> .
- Q

which proves the statement.

Lemma 3. Assuming the DL assumption holds in G, then Pr[Bads] <
negl(\)

Proof. Given ¢1,¢} € G; from bgp we show how to simulate the game in
order to break the discrete logarithm in Gq, i.e. computing x for ¢} = ¢7.
The simulator chooses an index v € [T]. It follows the protocol faithfully

except for the generation of the h;. It chooses s; & Zg. and sets h; = gfj for
all j # v and sets h, = ¢|*. This is perfectly indistinguishable from a real
execution of the game. It answers all queries faithfully. When the adversary
returns a forgery (P*ax, m*,o*) it checks whether m[v] # m*[v]. If not it
restarts the simulation. Otherwise we know that Hle h;n[] = ]T:1 h;n*b }
and therefore we have

T T
symlv]z + Z s;m[j] = s,m*[v]z + Z s;m* (4]
j=1j#v j=Ljv
1 T
sy (m[v] — m*[v]) 2 sitml] = mii)

i=Lj#v

& T =

and found the discrete logarithm ¢§ = ¢j.

Theorem 7. The linearly homomorphic signature scheme HSig is per-
fectly context hiding according to Definition 7 if Sig’ is a deterministic
signature scheme.

Proof. First we note that in our case the algorithm HHide is just the
identity function, i.e. o < HHide(pk, m, o) for all pk,m,o and we have
HHideVer = HVerify. We will show how to construct a simulator Sim
that outputs signatures perfectly indistinguishable from the ones ob-
tained by running HEval. Parse the simulator’s input as sk = (sk’, K),
Pa = ((fi,- -, fx),1,...,k,A), and m = (m[1],...,m[T]). With this

information the simulator computes the following:
7! — g5 where z <+ PRFK(A)
o'y & Sign'(sk’, Z|A)
A = (T lei . ;frzl hj—mb])z
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The simulator outputs the signature o’ = (0’4, Z’, A').

We will now show that this simulator allows for perfectly context
hiding security. We will fix an arbitrary key pair (sk, pk), a multi-labeled
program ((f1,..., fx),1,...,k, A), and messages my,...,my € ZqT.

Let o < HEval(pk, Pa, o) and parse it as o = (oa, Z, A).

We look at each component of the signature.

We have Z = PRFg(A) by definition and therefore also Z = Z’. In
particularly we also have z = 2’ where Z = g% and Z' = ¢5 .

We have o = Sign’(sk’, Z|A) by definition and since Z = Z’ therefore
also o = ¢’y since Sign’ is deterministic.

We have A ‘

A =TI (BT by ™ )6 = (T B (TS T by 7Y =
(15, R{" : };1 h;m[j])z, where the last equation holds since m = Y28, f;-
m;. Thus we also have A = A’.

We can see that we have identical elements and therefore even a computa-
tionally unbounded distinguisher has no advantage distinguishing the two
cases.

Definition 15 (LH-IND-CCA [13]).

Let LAE = (AKeyGen, AEncrypt, AEval, AVerify, ADecrypt) be a LAEPuV
scheme. We define the following experiment LH — IND — C’CA%A(I)‘, k)
between a challenger C and an adversary A:

Setup: The challenger runs (sk, pk) < AKeyGen(1*, k). Then it initializes
an empty list L and gives pk to the adversary A.

Queries I: A can ask a polynomial number of both encryption and de-
cryption queries. The former are of the form (m, A, ) where m € M
is a message, A € {0,1}* is a dataset identifier, and 7 € T is an input
identifier. The challenger computes ¢ <— AEncrypt(sk, A, 7,m), gives ¢
to A and updates the list L+ LU{(m,A,7)}. If L already contains a
query (-, A, ) the challenger C will answer L.

The latter queries are of the form (Pa,c) and A receives the output of
ADecrypt(sk, Pa, c). Note that this can be L if ¢ is not a valid cipher.

Challenge: A produces a challenge tuple (mg, m1, A*, 7). If a query of

the form (-, A*,7*) is contained in L, the challenger returns L as

before. The challenger chooses a random bit b & {0,1} and gives
c* < AEncrypt(sk, A*, 7%, my) to A. Then it updates the list L <+
LU {(my, A%, 7%)}.

Queries II: This phase is carried out similar to the Queries I phase.
Any decryption query (Pax,c) with Pax = ((fi,. .y fr)s Ty .oy Thy AF)
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where fr« # 0 is answered with L. All other queries are answered as
in phase Queries I.

Output: Finally A outputs a bit b' € {0,1}. The challenger outputs 1if
b=10" and Ootherwise.

We say that a LAEPuV scheme is LH-IND-CCA secure if for any ppt
adversary A we have

|Pr[LH — IND — CCALag A(1%, k) = 1] — 1/2] < negl(\).

Theorem 8. The LAEPuV scheme LAE is correct in the sense of Defini-
tion 14.

Proof. We fix a random key pair (sk, pk) - AKeyGen(1*, &, T,
with sk = (sk’, K, p,q) and pk = (bgp, H, pk', g, {h;}]_y, {Ri}}_y).

1. If g € Z*, has order n then the map: Z, x Zy — Z*,, (a,b) — g* - b"
is an 1som0rphlsm (see [21]). If AVerify(pk,PA,c) = 1 holds then we
have in particular ¢°U - b[j]" = C[j] 1%, H(A|i|j)’ mod n?, where
each ¢l . b[4]" and H(Ali|j)/ is an element of Z,. Since this is a
group so is every C[j] which means every Paillier decryption yields a
valid message m.

2. We choose messages m; & 7T as well as a dataset identifier A € {0, 1}*
and a multi-labeled program Pa = ((f1,..-, fx), 71, -, Tk, Q). Let
ci + AEncrypt(sk, A, i,m;) and ¢ < AEval(pk, Pa, {ci}r ;).

By definition we have ¢ = (C,a,b,o0n, Z, A). Where for each j € [T
we have

k A . "
H ( m,[]]ﬁ )fz _ gZizl fim; (4] <H 61 ) mod n

=1 =1

no
] = X fnl] (Hb ) = [T (ct" - meain)

k
— - TIUH(A))  mod n?
i=1
2z =PRFg(A), Z = g5, o = Sign'(sk’, Z|A)

k z T A\ °
A= 1_[1/1{1 _ (H sz H h > 1flal J]) — (R . l_llhj_a[]])
i= j=

Therefore we have AVerify(pk, P, C) = 1 and due to the first equation
Paillier decryption of C[j] yields >°F_; fim;[j] for each j € [T7].
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