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Abstract

How to efficiently search over encrypted data is an important and interesting problem in the cloud
era. To solve it, Boneh et al. introduced the notion of public key encryption with keyword search
(PEKS), in 2004. However, in almost all the PEKS schemes an inside adversary may recover the
keyword from a given trapdoor by exhaustively guessing the keywords offline. How to resist the
inside keyword guessing attack in PEKS remains a hard problem.

In this paper we propose introduce the notion of Public-key Authenticated Encryption with
Keyword Search (PAEKS) to solve the problem, in which the data sender not only encrypts a
keyword, but also authenticates it, so that a verifier would be convinced that the encrypted keyword
can only be generated by the sender. We propose a concrete and efficient construction of PAEKS,
and prove its security based on simple and static assumptions in the random oracle model under the
given security models. Experimental results show that our scheme enjoys a comparable efficiency
with Boneh et al.’s scheme.

Keywords: Public Key Authenticated Encryption with Keyword Search, Searchable Encryption,
Keyword Guessing Attack, Random Oracle Model

1. Introduction

With the rapid development of cloud computing technology, a large amount of data now has
been stored onto the cloud. Since the data owner loses its control of the data, several security
and privacy issues arise in cloud storage service, among which data privacy is a very sensitive
problem. Encryption is an effective way to protect the data from being leaked. However, traditional
search mechanisms do not work for encrypted data. How to efficiently search over encrypted data
thus becomes an important and interesting problem, and has attracted many researchers’ attention
[7, 23, 42, 38, 31, 16, 34, 21, 17, 15, 32, 40].

In 2004, Boneh et al. introduced the notion of Public Key Encryption with Keyword Search
(PEKS), integrating keyword search functionality into public key encryption. They proposed the
first PEKS scheme (denoted by BDOP-PEKS hereafter) [7] and showed that it is secure based on
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the bilinear Diffie-Hellman assumption in the random oracle model. The framework of PEKS is
illustrated in Figure 1.

There are three parties involved, a data sender called Alice, a data receiver called Bob and a
cloud server. Alice has a bunch of sensitive documents {Fi} to share with his friend Bob. First,
Alice extracts keywords {wi,j} from each document Fi, and encrypts the keywords using the PEKS
scheme. Besides, Alice encrypts each document with a (possibly another) encryption scheme. Let
the ciphertexts be {Cwi,j

} and {Ci}, respectively. Alice uploads all the ciphertexts onto the cloud
server. To search over the encrypted documents whether there is any one containing some keyword
w, Bob computes a trapdoor Tw for w using his secret key, and gives it to the cloud server (via a
secure channel). With Tw, the server runs the Test algorithm to test each encrypted keyword Cwi,j

weather it contains the same keyword as Tw or not. If Cwi,j
matches Tw, the associated document

contains w. When the search finishes, the server returns the search result to Bob. Notice that
during the search, the server does not know the content of the documents, nor the keyword.

1.1. Keyword Guessing Attack
Ideally, the keyword space is assumed to be at least super-polynomially large. However, in real

applications it is usually not that large. Keywords are often chosen from a low-entropy keywords
space. Therefore, it may be feasible for the adversary to guess what keywords a document contains
by launching the keyword guessing attack (KGA) [23, 42]. Roughly speaking, in a KGA attack the
adversary tries each possible keyword, encrypts it, and tests the ciphertext with the given trapdoor.
If the test succeeds, the adversary knows which keyword is encapsulated in the given trapdoor.
Because people usually choose keywords which are used frequently and easy to memorize, the
server is able to find out the underling keyword. Assuming in an encrypted mail system, user
Alice sends an encrypted email attached with the PEKS ciphertext of a keyword to another user
Bob. An adversary can apply the KGA attack on the PEKS ciphertext and may reveal the keyword
of the email if the trapdoor sent from Bob to the email server is available. In this way, the adversary
may know the theme of the email and thus the user’s privacy is leaked. Such an attack is usually
launched by the cloud server or any other role inside the cloud service management. Therefore, it
is also called Inside Keyword Guessing Attack (IKGA).

To resist the KGA attacks, researchers have proposed several ideas and introduced different
notions. Roughly speaking, the KGA works for two reasons possibly. First, the adversary could
get the trapdoor. Second, it can do the test freely. Therefore, in order to prevent an adversary
from launching a KGA attack, one can either protect the trapdoor from being leaked to an outside
attacker, for example, setting up a secure channel between the receiver and the server so that
only the server can get the trapdoor; or restrict the unauthorized adversary from doing the test,
i.e. designated-tester PEKS [34, 21] (i.e. only the designated server can do the test), PEKS with
authorization [38, 31] (i.e. only the authorized one can do the test). However, neither method can
prevent an inside adversary from launching the KGA attack. Hence, how to build a (public-key)
searchable encryption scheme which is secure against inside keyword guessing attack is still an
open problem.
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1.2. Related works
Recently, many PEKS schemes and variants have been proposed in the literature. Roughly

speaking, these works can be classified into the following types: 1) multi-users access control in
PEKS [37, 31, 38], 2) fuzzy keyword search in PEKS [10, 12, 27], 3) flexible keyword search in
PEKS [29, 18, 24], and 4) trapdoor privacy in PEKS [42, 23, 1, 28, 35]. Works on trapdoor privacy
mainly focus on preventing the adversary from revealing the keywords from given ciphertexts.
However, to the best of our knowledge, almost all of them can not resist the inside keyword
guessing attack. The only scheme [39] known to counterattack the IKGA attack makes use of two
servers and assumes that the two servers do not collude.

There are several ways to leak information about the keyword. For example, the search result,
e.g. the number of records satisfying the search query, leaks certain information about the keyword
in the trapdoor, which seems to be unavoidable if the server is curious about the keyword. Besides,
the trapdoor itself might reveal certain information about the keyword [1]. In existing PEKS
schemes, e.g. [7, 4], keywords may be revealed due to the leakage of search patterns [28]. The
server is often assumed to be honest-but-curious. It would honestly do its job but try to find more
information about the keywords (as well as the document contents). The server has the capability
to monitor the communication channels and obtain all encrypted data, indices and trapdoors. Once
the server reveals users’ search pattern, the search frequency of a keyword would be exposed to
the server, leading to privacy leakage.

In 2006 and 2008 Jin et al. [23] and Yau et al. [42] studied the off-line keyword guessing at-
tack on some existing PEKS schemes, and showed that those schemes are susceptible to attacks by
inside adversaries. Recently Fang et al. [14] and Guo et al. [20] proposed public key encryption
with keyword search schemes secure against outside keyword guessing attack. However, an inside
adversary would still have the chance to successfully launch a keyword guessing attack. Xu et
al. [41] proposed encryption schemes with fuzzy keyword search secure against outside keyword
guessing attack. Wang et al. [39] suggested to use two cloud servers in order to resist the inside
keyword guessing attack, as long as the two servers do not collude.

1.3. Our Contributions
In this paper we study the problem of how to resist inside keyword guessing attack in PEKS

and try to solve it. Based on the observation that in a KGA attack the server is able to encrypt each
keyword candidate and test its ciphertext with the given trapdoor, we suggest a method to prevent
the server from doing so. Roughly, we make the following contributions in the paper.

1. We introduce the notion of Public-key Authenticated Encryption with Keyword Search (PAEKS),
in which the data sender not only encrypts the keyword but also authenticates it, so that the
server cannot encrypt a keyword itself and thus cannot launch the inside keyword guessing
attack successfully.

2. We present the security model of PAEKS, and propose a concrete construction. Security of
the scheme is proved in the given security model based on simple and static assumptions,
for example Decisional Bilinear Diffie-Hellman assumption and a simple variant of Decision
Linear assumption, with the help of random oracles.
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3. We compare our scheme with some other related PEKS schemes in terms of both com-
putation and communication efficiency. We also do some experiments to demonstrate the
efficiency of our scheme. Experimental results show that its efficiency is comparable with
that of Boneh et al.’s scheme.

1.4. Paper Organization
In the next section we give a brief description of some preliminaries. We review the BDOP-

PEKS scheme and show its security weakness under the inside keyword guessing attack in Section
3. In Section 4 we define the new notion of PAEKS, and give its security model here. We then
propose our concrete construction of PAEKS in Section 5 and prove its security in random oracle
model. In Section 6 we compare our scheme with Boneh et al.’s scheme and show the experiment
results. Finally, we conclude the paper in Section 7.

Figure 1: PEKS System Framework Figure 2: PAEKS System Framework

2. Preliminaries

2.1. Bilinear Pairing
Bilinear pairing [8] plays an important role in the construction of many cryptographic schemes,

including our PAEKS scheme. Let ê : G1×G1 → GT be a bilinear pairing, mapping from groups
G1 and G1 to GT , where G1 and GT are cyclic groups of the same prime order p. It has the
following properties.

• Bilinearity. For any g, h ∈ G1 and a, b ∈ Z, ê(ga, hb) = ê(g, h)ab.

• Non-degeneracy. For any generator g ∈ G1, ê(g, g) ∈ GT is a generator of GT .

• Computability. For any g, h ∈ G1, there is an efficient algorithm to compute ê(g, h).
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2.2. Decisional Bilinear Diffie-Hellman Assumption
Decisional Bilinear Diffie-Hellman (DBDH) Problem [25, 9] is stated as below.

Given a generator g ∈ G1 and elements gx, gy, gz ∈ G1 where x, y, z are randomly
chosen from Zp, distinguish ê(g, g)xyz ∈ GT from a random element of GT .

Definition 1 (DBDH Assumption). The DBDH assumption [25, 9] assumes that for any proba-
bilistic polynomial-time algorithm A, the following holds:

|Pr[A(g, gx, gy, gz, ê(g, g)xyz) = 1]− Pr[A(g, gx, gy, gz, ê(g, g)r) = 1]| ≤ negl(λ),

where the probability is taken over the random choices of g ∈ G1, x, y, z, r ∈ Zp and the random
coins tossed by A.

2.3. Decision Linear Assumption and a Variant
The well-known Decision Linear (DLIN) problem [6] states as below.

Given g, gx, gy, gxr, gsy ∈ G1, distinguish gr+s from gz, where x, y, z, r, s are ran-
domly chosen from Zp.

Our public-key authenticated encryption with keyword search makes use of a variant of DLIN. We
call it modified Decision Linear (mDLIN) problem, and state it as below.

Given g, gx, gy, gxr, gs/y ∈ G1, distinguish gr+s from gz, where z is randomly chosen
from Zp.

The mDLIN problem differs from the DLIN problem only in the fifth component of the input,
which is gsy in DLIN problem and is gs/y in mDLIN problem.

It is not hard to find a reduction from the InvDDH problem (which is conjectured to be equiv-
alent to DDH problem) [5] to mDLIN problem in groups without pairings 1. The converse is
believed to be false. Therefore, we believe that the mDLIN problem is intractable, and make the
following assumption.

Definition 2 (mDLIN Assumption). The mDLIN assumption assumes that for any probabilistic
polynomial-time algorithm A, the following holds:

|Pr[A(g, gx, gy, gxr, gs/y, gr+s) = 1]− Pr[A(g, gx, gy, gxr, gs/y, gz) = 1]| ≤ negl(λ),

where the probability is taken over the random choices of g ∈ G1, x, y, z, r, s ∈ Zp and the random
coins tossed by A.

1InvDDH problem is easy in bilinear groups.
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3. Public Key Encryption with Keyword Search

3.1. Definition
A public-key encryption scheme with keyword search (PEKS) consists of the following five

(probabilistic) polynomial-time algorithms [7].

• Setup(λ): It takes as input the security parameter λ and outputs a global system parameter
Param.

• KeyGen(Param): It takes as input a system parameter Param and outputs a public/secret key
pair (Pk, Sk). The algorithm is run by the data receiver.

• PEKS(w,Pk): It takes as input a keyword w and the receiver’s public key Pk, and outputs a
ciphertext C of w. The algorithm is run by the data sender.

• Trapdoor(w, Sk): It takes as input a keyword w and the secret key Sk, and outputs a corre-
sponding trapdoor Tw. The algorithm is run by the data receiver.

• Test(Pk, C, Tw): It takes as input the receiver’s public key Pk, a ciphertext C and a trapdoor
Tw, and outputs 1 indicating that C and Tw contain the same keyword, and 0 otherwise. The
algorithm is run by the cloud server.

Boneh et al. proposed the first bilinear pairing based PEKS scheme in 2004 [7]. Hereafter
we denote it by BDOP-PEKS. They proved that the BDOP-PEKS scheme is secure against chosen
keyword attacks in the random oracle model assuming Bilinear Diffie-Hellman (BDH) problem is
intractable. The BDOP-PEKS scheme is described below.

• Setup(λ): The algorithm initializes the global system parameter Param = {p, g,G1,GT ,
ê, H1, H2}, where G1,GT are cyclic groups of prime order p, g is the generator of G1, and
ê : G1 × G1 → GT is a bilinear pairing, H1 : {0, 1}∗ → G1 and H2 : GT → {0, 1}log p are
cryptographic hash functions.

• KeyGen(Param): The algorithm randomly selects x ← Zp and sets Pk := (g, h = gx) and
Sk := x.

• PEKS(w,Pk): The algorithm randomly selects r ← Zp, and computes the PEKS ciphertext
of keyword w as

C := (C1, C2) = (gr, H2(t)),

where t = ê(H1(w), h
r).

• Trapdoor(w, Sk): Output Tw := H1(w)
Sk = H1(w)

x.

• Test(Pk, C, Tw): Output 1 if H2(ê(Tw, C1)) = C2, and 0 otherwise.
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3.2. Analysis of BDOP-PEKS against IKGA
Now we are going to show that Boneh et al.’s scheme is vulnerable to the inside keyword

guessing attack. Assume the cloud server is honest-but-curious. To recover the keyword contained
in a trapdoor Tw, the cloud server chooses a keyword candidate w′ from the keyword space, and
checks whether w′ equals to the keyword w contained in Tw. The keyword guessing attack works
as follows [23, 42].

1. Assume that the data receiver wants to search some keyword over the encrypted documents.
It computes a trapdoor Tw according to the keyword, and gives it to the server for searching.

2. The server begins an exhaustive search. It chooses a new keyword candidate w′ from the
keyword space, runs the PEKS algorithm to encrypt w′. Let the ciphertext be C ′. It then
runs the Test algorithm on input C ′ and Tw (as well as the receiver’s public key). If the al-
gorithm outputs 0, the server choose another keyword candidate and repeat the above again.
Otherwise, the server knows that the receiver wanted to search for documents containing the
keyword w′.

Due to the fact that the keyword space in real applications is usually not that big, the server would
be able to finish the keyword guessing attack in a reasonably short time.

4. Public-key Authenticated Encryption with Keyword Search

4.1. Definition
Since the introduction of PEKS, many researches have been working on its security, for ex-

ample, [35, 4, 13]. However, to the best of our knowledge, none of them could resist keyword
guessing attack from inside adversaries (in the single-server setting) [33, 34, 28, 2, 11]. In this
section, we introduce the notion of Public-key Authenticated Encryption with Keyword Search
(PAEKS), which aims to resist inside keyword guessing attack. Our notion differs from PEKS
and its variants mainly in that the server in PAEKS could no more encrypt a keyword by itself.
Instead, the encryption algorithm requires the sender to authenticate the keyword while encrypting
it. To achieve the goal, the PEKS encryption algorithm requires the sender’s secret key as part of
the input. Therefore, the server could not launch again the keyword guessing attack over the ci-
phertexts shared between the sender and the receiver, because it could not compute authenticated
ciphertexts on behalf of the sender.

Same as PEKS, there are three parties in PAEKS as well, a data sender, a data receiver, and
a server. Algorithms run by these parties are almost the same as those in PEKS, except that the
PEKS encryption algorithm now requires the sender to put its secret key into the input, and that
the trapdoor generation algorithm and test algorithm also need the sender’s public key as part of
the input. Formally, we consider the following definition.

Definition 3 (PAEKS). A Public-key Authenticated Encryption with Keyword Search (P-AEKS)
scheme consists of the following (probabilistic) polynomial-time algorithms.

• Setup(λ): The global parameter generation algorithm takes the security parameter λ as
input, and outputs global system parameter Param.
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• KeyGenS(Param): The sender’s key pair generation algorithm takes the global system pa-
rameter Param as input, and outputs a public/secret key pair (PkS, SkS) of the sender.

• KeyGenR(Param): The receiver’s key pair generation algorithm takes the global system
parameter Param as input, and outputs a public/secret key pair (PkR, SkR) of the receiver.

• PEKS(w, SkS,PkR): The keyword encryption algorithm takes a keyword w, the receiver’s
public key PkR and the sender’s secret key SkS as input, and outputs a PEKS ciphertext C
of the keyword w.

• Trapdoor(w,PkS, SkR): The trapdoor generation algorithm takes a keyword w, the sender’s
public key PkS and the receiver’s secret key SkR as input, and outputs a trapdoor Tw.

• Test(Tw, C,PkS,PkR): The test algorithm takes a trapdoor Tw, a PEKS ciphertext C, the
sender’s public key PKS and the receiver’s public key PkR, and outputs 1 if C and Tw

contain the same keyword, and 0 otherwise.

Correctness requires that for any honestly generated key pairs (PkS, SkS) and (PkR, SkR), for
any keyword w,

Test(Tw, C,PkS,PkR) = 1

holds with probability 1, where C ← PEKS(w, SkS,PkR) and Tw ← Trapdoor(w,PkS, SkR).

The global system parameter generation algorithm is run in a trusted way so that everyone in
the system would trust the parameters. The sender and the receiver run their own key generation
algorithm once. To encrypt a keyword w, the sender runs the PEKS algorithm to generate the
corresponding ciphertext C, which is then uploaded to the server (along with the encrypted doc-
uments containing w). To search over the ciphertexts shared by the sender (to the receiver), the
receiver runs the trapdoor generation algorithm to generate a trapdoor for some keyword w, and
gives it to the server via a secure channel. Given the trapdoor, the server runs the Test algorithm
to search over those ciphertexts shared between the sender and the receiver, and returns the search
result to the receiver. Figure 2 (page 4) shows the system framework of PAEKS.

Remark. The notion of PAEKS prevents a third-party from generating a valid ciphertext, and pro-
vides both confidentiality and integrity of the plaintext. In this sense it could be viewed as a
public-key variant of authenticated encryption [26]. On the other hand, PAEKS is closely related
to the notion of Signcrpytion [43] which guarantees confidentiality and integrity of the plaintext
simultaneously as well. However, as we will show below, PAEKS imposes different requirements
on security than signcryption.

4.2. Security Models
Similar with PEKS, security of PAEKS requires that there is no probabilistic polynomial-time

adversary which could distinguish trapdoors or ciphertexts. Formally, we consider the following
games, which are played between a challenger C and an adversary A.

Game 1: Trapdoor Privacy
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1. Given a security parameter λ, the challenger C generates the global system parameter Param,
and prepares the challenge sender’s public key PkS and the challenge receiver’s public key
PkR. It then invokes the adversary A on input (Param,PkS,PkR).

2. The adversary is allowed to adaptively issue queries to the following oracles for polynomi-
ally many times.

• Trapdoor Oracle OT : Given a sender’s public key P̃kS and a keyword w, the oracle
computes the corresponding trapdoor Tw with respect to P̃kS and SkR, and returns Tw

to A.

• Ciphertext OracleOC : Given a receiver’s public key P̃kR and a keyword w, the oracle
computes the corresponding ciphertext C with respect to SkS and P̃kR, and returns C
to A.

3. At some point, A chooses two keywords (w∗0, w
∗
1) such that (PkS, w∗0), (PkS, w∗1) have not

been queried for trapdoors and (PkR, w∗0), (PkR, w∗1) have not been queried for ciphertexts,
and submits them to C as the challenge keywords. The challenger C randomly chooses a bit
b ∈ {0, 1}, computes Tw∗

b
← Trapdoor(w∗b ,PkS, SkR) and returns it to A.

4. The adversary continues to issuing queries to OT and OC as above, with the restriction
that neither (PkS, w∗0) nor (PkS, w∗1) could be submitted to OT and neither (PkR, w∗0) nor
(PkR, w∗1) could be submitted to OC .

5. Finally, A outputs a bit b′ ∈ {0, 1}. It wins the game if and only if b′ = b.

We define A’s advantage of successfully distinguishing the trapdoors of PAEKS as

AdvTA(λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
Game 2: Ciphertext Indistinguishability

1. The challenger C generates Param and prepares challenge PkS,PkR as in Game 1. It then
invokes the adversary A on input (Param,PkS,PkR).

2. The adversary issues queries to oracles OT and OC as in Game 1.
3. At some point, A chooses two keywords (w∗0, w

∗
1) such that (PkS, w∗0), (PkS, w∗1) have not

been queried for trapdoors and (PkR, w∗0), (PkR, w∗1) have not been queried for ciphertexts,
and submits them to C as the challenge keywords. The challenger C randomly chooses a bit
b ∈ {0, 1}, computes C∗b ← PEKS(w∗b , SkS,PkR) and returns it to A.

4. The adversary continues to issue queries toOT andOC as above, with the restriction that nei-
ther (PkS, w∗0) nor (PkS, w∗1) could be submitted to OT and neither (PkR, w∗0) nor (PkR, w∗1)
could be submitted to OC .

5. Finally, A outputs a bit b′ ∈ {0, 1}. It wins the game if and only if b′ = b.

We define A’s advantage of successfully distinguishing the ciphertexts of PAEKS as

AdvCA(λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
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Definition 4. A PAEKS scheme is semantically secure against inside keyword guessing attack if
for any probabilistic polynomial-time adversary A, both AdvTA(λ) and AdvCA(λ) are negligible in
the security parameter λ.

Remark. Our security model has a major difference with other PEKS schemes. In our model, the
adversary is given access to not only the trapdoor generation oracle, but also the PEKS ciphertext
generation oracle. This is because in PAEKS any third party other than the sender and the receiver,
is not able to (authenticatively) encrypt a keyword with respect to the sender and the receiver.
Furthermore, the security models above are considered in the multi-user setting and the chosen-key
model [22], in which there are multiple data senders and multiple data receivers, and the adversary
is allowed to choose any (rogue) public key to use even without knowing the corresponding secret
key.

5. Our PAEKS Scheme

5.1. Construction
Below we are going to present our construction of PAEKS. The scheme is based on the DBDH

assumption and mDLIN assumption, and makes use of a bilinear pairing ê : G1 × G1 → GT ,
as well as a collision resistant hash function H : {0, 1}∗ → G1. Our PAEKS scheme works as
follows.

• Setup(λ): Select a bilinear pairing ê : G1 × G1 → GT , where G1,GT are cyclic groups
of prime order p. Choose two random generators g, h of G1. Choose a cryptographic hash
function H : {0, 1}∗ → G1. Return Param = (G1,GT , p, g, h, ê, H).

• KeyGenS(Param): Randomly select y ← Zp and set PkS := gy and SkS := y. Return
(PkS, SkS).

• KeyGenR(Param): Randomly select x ← Zp and set PkR := gx and SkR := x. Return
(PkR, SkR).

• PEKS(w, SkS,PkR): Randomly select a number r ← Zp, and compute

C1 := H(PkS,PkR, w)
SkS · hr, C2 := PkR

r.

Output the ciphertext C := (C1, C2).

• Trapdoor(w,PkS, SkR): Output the trapdoor Tw := ê(H(PkS,PkR, w)
SkR ,PkS).

• Test(Tw, C,PkS,PkR): Output 1 if

Tw · ê(C2, h) = ê(C1,PkR),

and 0 otherwise.
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Correctness. Let the receiver’s key pair be (PkR, SkR) = (gx, x) and the sender’s key pair be
(PkS, SkS) = (gy, y). Let w be the keyword contained in C and w′ be that in Tw. Then we have
the followings.

C1 = H(gy, gx, w)SkS · hr = H(gy, gx, w)y · hr

C2 = PkR
r = gxr

Tw = ê(H(gy, gx, w′)SkR ,PkS) = ê(H(gy, gx, w′)x, gy)

Tw · ê(C2, h) = ê(H(gy, gx, w′)x, gy) · ê(gxr, h)
= ê(H(gy, gx, w′)y, gx) · ê(hr, gx)

e(C1,PkR) = ê(H(gy, gx, w)y · hr, gx)

= ê(H(gy, gx, w)y, gx) · ê(hr, gx)

We take into account the following two cases.

1. If the keywords w and w′ are the same, i.e., w = w′, we have H(gy, gx, w) = H(gy, gx, w′)
and thus the equation

Tw · ê(C2, h) = ê(C1,PkR)

holds.
2. If the keywords w and w′ are different, i.e., w ̸= w′, we have H(gy, gx, w) ̸= H(gy, gx, w′)

due to the collision resistance of hash function H , and thus

Tw · ê(C2, h) ̸= ê(C1,PkR).

Therefore, our PAEKS scheme is correct.

5.2. Security Proof
In this section we provide a security proof of our PAEKS scheme. Formally, we have the

following theorem.

Theorem 1. Our PAEKS scheme is semantically secure against inside keyword guessing attack in
the random oracle model, assuming DBDH problem and mDLIN problem are intractable.

The theorem simply follows from the lemmas below.

Lemma 1. For any PPT adversary A against the trapdoor privacy of our PAEKS scheme, its
advantage AdvTA(λ) is negligible if DBDH assumption holds.

PROOF. Assume that there is a PPT adversaryA which breaks the trapdoor privacy of our PAEKS
scheme with a non-negligible advantage ϵT , we then use it to construct another PPT algorithm B
to solve the DBDH problem. The reduction is shown in Figure 3.

The algorithm B takes as input a DBDH problem instance, e.g. (G1,GT , ê, p, g, g
x, gy, gz, Z),

where x, y, z are randomly chosen from Zp, and Z is either equal to ê(g, g)xyz or a random element
11
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= 0

�
�
�
�
�
�
�
�
�
�
�
�
� T ∗

//

choose (P̃kS, wj) ̸=
(gy, w∗0), (g

y, w∗1) for OT

choose (P̃kR, wj) ̸=
(gx, w∗0), (g

x, w∗1) for OC

�
�
�
�
�
�

P̃kS ,P̃kR,wjoo
Cj , Tj //

�

�

�
�
�
�

�
�
�
�

b̂′←{0,1}oo

�
�
�
�

�
�
�
�

if b̂′ = b̂
A wins the game

and b′ = 0,
Otherwise, b′ = 1 �

�
�
�

b′oo b′oo

if b′ = b
B wins the DBDH game

Figure 3: Trapdoor Privacy Reduction
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of GT . Let b be a bit such that b = 0 if Z = ê(g, g)xyz, and b = 1 if Z is random. B randomly
selects h ∈ G1, and sets the public parameter as Param = (G1,GT , ê, p, g, h), the challenged
receiver’s public key as PkR = gx and, the challenged sender’s public key as PkS = gy, which
implies SkR = x and SkS = y. It then runs A on input (Param,PkS,PkR), and begins to answer
the adversary’s queries. We make the following assumptions for simplicity.

1. The adversary issues at most qH , qT , qC queries to the hash oracle OH , the trapdoor oracle
OT and the ciphertext oracle OC , respectively.

2. The adversary does not repeat a query to an oracle.
3. The adversary would not issue a query (P̃kS, w) to OT nor issue (P̃kR, w) to OC before

issuing (P̃kS,PkR, w) or (PkS, P̃kR, w) to OH .

The oracles are simulated by B as follows.

• Hash Oracle OH . Given a tuple (P̃kS, P̃kR, wi), B randomly selects ai ← Zp, and tosses a
biased coin ci such that Pr[ci = 0] = δ, which will be determined later. B sets

hi = gz · gai

if ci = 0, and sets
hi = gai

otherwise. It then adds the tuple ⟨(P̃kS, P̃kR, wi), hi, ai, ci⟩ into a list LH (which is initially
empty), and returns H(P̃kS, P̃kR, wi) = hi as the hash value of (P̃kS, P̃kR, wi) to A.

• Trapdoor OracleOT . Given (P̃kS, wi), B retrieves ⟨(P̃kS,PkR, wi), hi, ai, ci⟩ from list LH .
If ci = 0, it aborts and outputs a random bit b′ as its guess of b. Otherwise, it computes the
trapdoor Ti as

Twi
= ê(PkR, P̃kS)

ai = ê(H(P̃kS,PkR, wi), P̃kS)
SkR .

It is easy to see that Twi
is a correct trapdoor. B then returns Twi

to the adversary.

• Ciphertext Oracle OC . Given (P̃kR, wi), B randomly selects ri ← Zp and retrieves the
tuple ⟨(PkS, P̃kR, wi), hi, ai, ci⟩ from list LH . If ci = 0, it aborts and outputs a random bit b′

as its guess of b. Otherwise, it computes the ciphertext as

Cwi
= (Cwi,1, Cwi,2) = ((PkS)

ai · hri , (P̃kR)
ri).

Obviously Cwi
is a well distributed ciphertext. B returns it to A.

At some point the adversary submits two keywords w∗0, w
∗
1, where (gy, w∗0), (g

y, w∗1) have not
been queried to oracle OT and (gx, w∗0), (g

x, w∗1) have not been queried to oracle oracle OC .
B retrieves the tuples ⟨(gy, gx, w∗0), h∗0, a∗0, c∗0⟩ and ⟨(gy, gx, w∗1), h∗1, a∗1, c∗1⟩ from the list LH , and
computes the challenge trapdoor T ∗ as follows.

• In case c∗0 = c∗1 = 1, B aborts and outputs a random bit b′ as its guess of b.

13



• In case c∗0 = 0 or c∗1 = 0, let b̂ be the bit such that c∗
b̂
= 0. B computes the trapdoor

T ∗ = Z · ê(gx, gy)a
∗
b̂ . If Z = ê(g, g)xyz, then T ∗ = ê(g, g)xy(z+a∗b ) = ê(hb̂′ , g

xy). If Z is a
random element of GT , so is T ∗.

B returns T ∗ to the adversary, which then continues to issuing queries to the oracles, with the
restriction that it could not issue (gy, w∗0), (g

y, w∗1) to OT and could not issue (gx, w∗0), (g
x, w∗1) to

OC . Finally, A outputs a bit b̂′. If b̂′ = b̂, B outputs b′ = 0; otherwise, it outputs b′ = 1.

Denote by abt the event that B aborts during the game. There are two cases in which B aborts,
as follows.

1. ci = 0 in the simulation of OT and OC . Denote it by abt1. Due to that each ci is selected
randomly and independently, the probability that abt1 does not happen is

Pr[abt1] = (1− δ)qT+qC .

2. c∗0 = c∗1 = 1 in the generation of the challenge trapdoor. Denote it by abt2. The probability
that abt2 does not happen is

Pr[abt2] = 1− (1− δ)2.

Therefore, the probability that B does not abort in the game is bounded by

Pr[abt] = Pr[abt1] · Pr[abt2] = (1− δ)qT+qC · (1− (1− δ)2).

When δ = 1−
√

qT+qC
qT+qC+2

, the probability Pr[abt] takes the maximum value

Pr[abt] =

(
qT + qC

qT + qC + 2

)(qT+qC)/2

· 2

qT + qC + 2
,

which is approximately equal to 2
(qT+qC)e

. and thus non-negligible.
It is readily seen that if B does not abort in the game, the view of A is identically distributed

as in a real attack. Conditioned on that B does not abort, if A succeeds in breaking the trapdoor
privacy of our scheme, B also succeeds in telling Z is equal to ê(g, g)xyz or a random element of
GT . Therefore, the probability that B succeeds in guessing the bit b (and thus solves the DBDH
problem) is

Pr[b′ = b] = Pr[b′ = b ∧ abt] + Pr[b′ = b ∧ abt]

= Pr[b′ = b|abt]Pr[abt] + Pr[b′ = b|abt]Pr[abt]

=
1

2
(1− Pr[abt]) + (ϵT +

1

2
) · Pr[abt]

=
1

2
+ ϵT · Pr[abt].

If ϵT is non-negligible, so is |Pr[b′ = b]− 1/2|.
This completes the proof. □
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Lemma 2. For any PPT adversary against the ciphertext indistinguishability of our PAEKS scheme,
its advantage AdvCA(λ) is negligible if mDLIN assumption holds.

PROOF. Assume that there is a PPT adversary A which breaks the ciphertext indistinguishability
of our PAEKS scheme with a non-negligible advantage ϵC , we use it to construct another PPT
algorithm B to solve the mDLIN problem. The reduction is shown in Figure 4.

The algorithm B takes as input an mDLIN problem instance, e.g. (G1,GT , ê, p, g, g
x, gy, grx,

gs/y, Z) where x, y, r, s are randomly chosen from Zp, and Z is either equal to gr+s or a random
element of G1. Let b be a bit such that b = 0 if Z = gr+s, and b = 1 if Z is random. B randomly
selects t← Zq, and sets the public parameter as Param = (G1,GT , ê, p, g, h = gt) , the challenged
receiver’s public key as PkR = gx, and the challenged sender’s public key as PkS = gy, which
implies SkR = x and SkS = y. It then runs A on input (Param,PkR,PkS), and begins to answer
the adversary’s queries. Here we make the same assumptions as in Lemma 1. The oracles are then
simulated by B as follows.

• Hash Oracle OH . Given a tuple (P̃kS, P̃kR, wi), B randomly selects a∗i ← Zp, computes
ai = a∗i · t, and tosses a biased coin ci such that Pr[ci = 0] = δ, which will be determined
later. B sets

hi = gs/y · gai

if ci = 0, and sets
hi = gai

otherwise. It then adds the tuple ⟨(P̃kS, P̃kR, wi), hi, ai, ci⟩ into a list LH (which is initially
empty), and returns H(P̃kS, P̃kR, wi) = hi as the hash value of (P̃kS, P̃kR, wi) to A.

• Trapdoor OracleOT . The trapdoor oracle answers the adversary’s queries in the same way
as in the proof of Lemma 1.

• Ciphertext Oracle OC . The ciphertext oracle answers the adversary’s queries in the same
way as in the proof of Lemma 1.

At some point the adversary submits two keywords w∗0, w
∗
1, where (gy, w∗0), (g

y, w∗1) have not
been queried to oracle OT and (gx, w∗0), (g

x, w∗1) have not been queried to oracle oracle OC .
B retrieves the tuples ⟨(gy, gx, w∗0), h∗0, a∗0, c∗0⟩ and ⟨(gy, gx, w∗1), h∗1, a∗1, c∗1⟩ from the list LH , and
computes the challenge ciphertext C∗ as follows.

• In case c∗0 = c∗1 = 1, B aborts and outputs a random bit b′ as its guess of b.

• In case c∗0 = 0 or c∗1 = 0, let b̂ be the bit such that c∗
b̂
= 0, and we have h∗

b̂
= gs/y · ga

∗
b̂ =

g(s+y·a∗
b̂
)/y. B computes the ciphertext

C∗ = (C∗1 , C
∗
2) = (Z · ga

∗
b̂ · gy·a

∗
b̂ , (gxr · (gx)a

∗
b̂ )

1
t ).

If Z = gr+s, then

C∗1 = gr+s · ga
∗
b̂ · gy·a

∗
b̂ = g(s+y·a∗

b̂
)g(r+a∗

b̂
)= h∗

b̂

y · h(r+a∗
b̂
)/t, C∗2 = gx(r+a∗

b̂
)/t,

where (r + a∗
b̂
)/t is a random number inA’s view. If Z is a random element of G1, so is C∗1 .

Besides, C∗2 is also random in A’s view because of the randomness of a∗
b̂
.
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� Param // Param, h //

PkR = gx

PkS = gy

�
�
�
�
�
�
�
�
�
� (PkR, PkS) //

choose P̃kS, P̃kR, wi

for OT and OC

�
�
�
�
�
�
�
�
�
�P̃kS ,P̃kR,wioo

Ci, Ti //
(w∗

0 , w
∗
1)oo

choose b̂ ∈ {0, 1}
make sure c∗

b̂
= 0

�
�
�
�
�
�
�
�
�
�
�
�
�
� C∗

//

choose (P̃kS, wj) ̸=
(gy, w∗0), (g

y, w∗1) for OT

choose (P̃kR, wj) ̸=
(gx, w∗0), (g

x, w∗1) for OC

�
�
�
�
�
�
�
�
�

P̃kS ,P̃kR,wjoo
Cj , Tj //

b̂′←{0,1}oo

�
�
�
�

if b̂′ = b̂
A wins the game

and b′ = 0,
Otherwise, b′ = 1 �

�
�
�

b′oo b′oo

if b′ = b
B wins the mDLIN game

Figure 4: Ciphertext Indistinguishability Reduction

16



B returns C∗ to the adversary, which then continues to issuing queries to the oracles with the
restriction that it could not issue (gy, w∗0), (g

y, w∗1) to OT and could not issue (gx, w∗0), (g
x, w∗1) to

OC . Finally, A outputs a bit b̂′. If b̂′ = b̂, B outputs b′ = 0; otherwise, it outputs b′ = 1.
Denote by abt the event that B aborts during the game. The probability that B does not abort

in the game is the same as that in the proof of Lemma 1. Therefore, when δ = 1−
√

qT+qC
qT+qC+2

, the

probability Pr[abt] takes the maximum value

Pr[abt] =

(
qT + qC

qT + qC + 2

)(qT+qC)/2

· 2

qT + qC + 2
,

which is approximately equal to 2
(qT+qC)e

, and thus non-negligible.
It is readily seen that if B does not abort in the game, the view of A is identically distributed

as in a real attack. Conditioned on that B does not abort, if A succeeds in breaking the semantic
security of our scheme, B also succeeds in telling Z is equal to gr+s or a random element of G1.
Therefore, we have that the probability that B succeeds in guessing the bit b is

Pr[b′ = b] = Pr[b′ = b ∧ abt] + Pr[b′ = b ∧ abt]

= Pr[b′ = b|abt]Pr[abt] + Pr[b′ = b|abt]Pr[abt]

=
1

2
(1− Pr[abt]) + (ϵC +

1

2
) · Pr[abt]

=
1

2
+ ϵC · Pr[abt].

If ϵC is non-negligible, so is |Pr[b′ = b]− 1/2|.
This completes the proof. □

6. Experiments and Efficiency Comparison

In this section we compare our scheme with some other related PEKS schemes. The compari-
son in terms of computation efficiency is given in Table 1, where we use symbols E, H , and P to
denote the evaluation of a modular exponentiation, a collision-resistant hash function and a bilin-
ear pairing, respectively. As shown in Table 1, the computation costs of the PEKS, the Trapdoor
and Test algorithms of our PAEKS scheme are comparable with those of the schemes in [7], [24],
[3] and [4].

The comparison of communication cost is shown in Table 2, where the symbols |G1|, |GT |,
and |Zp| denote the length of an element in group G1, GT and Zp, respectively. Length of the
security parameter is denoted by n. We compare the schemes in terms of the sizes of public key,
ciphertext and trapdoor. All the schemes have secret keys of almost the same length. As shown
in Table 2, our PAEKS scheme has a low communication cost comparable with [7], [3], [4], and
[19].

We implemented our PAEKS scheme and BDOP-PEKS scheme [7] on a laptop with 2.30GHz
Intel i7 CPU, 8GB memory, and Ubuntu 15.04 64-bit operating system and used PBC library [30].
We chose Type-A pairing in the PBC library, which makes use of the curve y2 = x3 + x over the
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field Fq for prime q ≡ 3 mod 4 [30]. 2 We did experiments to compare the computation efficiency
of the two schemes. We ran each algorithm for different times and record the time consumed by
it. To compare the efficiency of each algorithm of BDOP-PEKS scheme and our PAEKS scheme
in more details, we tested the running time of PEKS, Trapdoor and Test algorithms of the two
schemes, respectively. The results are shown in Figure 5 to Figure 7. Figure 5 tells that the PEKS
algorithms in PAEKS and BDOP-PEKS schemes enjoy similar efficiency. Figure 6 shows that the
Trapdoor algorithms of the two schemes require comparable running time. The Test algorithm
in our PAEKS scheme consumes time nearly twice that of the same algorithm in BDOP-PEKS
scheme, as shown in Figure 7. However, in both schemes the running time of Test algorithm is
much less than PEKS and Trapdoor algorithms.

(Optimized Keyword Search). Our PAEKS scheme has a feature that the trapdoor generation is
deterministic and is valid with respect to the specified sender and receiver. The server is able to
pre-process all the keyword ciphertexts shared between the sender and the receiver, i.e. computing
T ′ = ê(C1,PkR)/ê(C2, g) for each ciphertext, then the search over encrypted keywords becomes
extremely fast as the server can simply compare the trapdoor Tw received from the data receiver
with each T ′, and return the files associated to the matched encrypted keyword.

Table 1: Computation Efficiency Comparison

Scheme PEKS Trapdoor Test

[7] 2E+2H+P E+H H+P
[24] 2E+H+P 2E+H E+P
[3] 3E+4H+P E+H H+P
[4] 3E+2H+2P E+H H+P
[19] 6E+2H+P 2E+H E+H+P
[13] 6E+H+3P 2E+H E+H+P
[35] 2E+2H+9P H+P E+H+P
[34] 2E+2H+P 3E+2H E+H+P
[21] 2E+2H+3P 2E+H E+H+P
[36] 9E+3H+3P 2E 5E+H+4P
PAEKS 3E+H E+H+P 2P

7. Conclusion and Future Work

In this paper we proposed another method to resist inside keyword guessing attacks against
public key encryption with keyword search. We introduced the notion of public-key authenticated
encryption, which differs from PEKS mainly in that we now require the data sender to use its

2In our experiment we used the prime q = 878071079966331252243778198475404981580688319941420821102
865339926647563088022295707862517942266222142315585876958231745927771336731748132492512999822
4791.
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Figure 5: Running Time of PEKS Algorithm Figure 6: Running Time of Trapdoor Algorithm

Figure 7: Running Time of Test Algorithm
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Table 2: Communication Efficiency Comparison

Scheme |Pk| |C| |Tw|

[7] |G1| |G1|+ n |G1|
[24] 2|G1| 2|G1|+ |GT | |G1|+ |Zp|+ n
[3] |G1| |G1|+ 3n |G1|
[4] 2|G1| |G1|+ n |G1|
[19] |G1| 2|G1|+ n |G1|
[13] 2|G1| 2|G1|+ 2|GT | |G1|+ |Zp|
[35] 2|G1| |G1|+ n 2|G1|
[34] 2|G1| |G1|+ n 2|G1|
[21] 3|G1| |G1|+ n 2|G1|
[36] 2|G1| 5|G1|+ 3|GT | 3|G1|
PAEKS |G1| 2|G1| |GT |

secret key to authenticate the data while encrypting it. The server would not be able to encrypt
again a random keyword chosen by itself on behalf of the sender and the receiver, and thus could
not launch the inside keyword guessing attack. We present a concrete construction of PAEKS and
proved it to be semantically secure in the random oracle model based on reasonable assumptions.
The scheme is efficient in the sense that it has almost the same computation efficiency as Boneh et
al.’s PEKS scheme.

Our construction of PAEKS relies on the mDLIN assumption, which was newly proposed. In
the future work we consider to construct PAEKS schemes based on standard and well-accepted
assumptions, i.e. DLIN. Besides, the security of our scheme needs the random oracle model,
which may not be reserved when the random oracles are replaced with real-life hash functions.
Therefore, it would be meaningful to construct a scheme in the standard model. Furthermore, our
scheme considers single keyword. How to build a PAEKS scheme supporting multi keywords is
also an interesting problem.
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