
A Constructive Perspective on Signcryption Security

Christian Badertscher, Fabio Banfi, and Ueli Maurer

Department of Computer Science, ETH Zurich, Switzerland
christian.badertscher@inf.ethz.chchristian.badertscher@inf.ethz.ch

fabio.banfi@inf.ethz.chfabio.banfi@inf.ethz.ch
maurer@inf.ethz.chmaurer@inf.ethz.ch

Abstract. Signcryption is a public-key cryptographic primitive, originally introduced by
Zheng (Crypto ’97), that allows parties to establish secure communication without the need
of prior key agreement. Instead, a party registers its public key at a certificate author-
ity (CA), and only needs to retrieve the public key of the intended partner from the CA
before being able to protect the communication. As suggested by the name, signcryption
schemes provide both authenticity and confidentiality of sent messages and are motivated
like their symmetric-key counterparts, i.e., authenticated-encryption schemes: better achiev-
able performance compared to generic compositions of signature and encryption schemes,
and a simpler interface to applications.
Although introduced two decades ago, the question which security notions of signcryption
are adequate in what applications has still not reached a fully satisfying answer, even for
the basic ones. To address this question, we conduct a constructive analysis of this public-
key primitive. Similar to previous constructive studies for other important primitives, this
treatment allows to identify the natural goal that signcryption schemes should achieve and
to formalize this goal in a composable language. More specifically, we capture the goal
of signcryption as a gracefully-degrading secure network, which is basically a network of
independent parties that allows secure communication between any two parties. However,
when a party is compromised, its respective security guarantees are lost, while all guarantees
for the remaining users stay unaffected. We show which security notions are sufficient to
realize this kind of secure network from a certificate authority (or key registration resource)
and insecure communication. As a finding of independent interest, our treatment shows that
a weaker notion of the traditional insider security notion is actually sufficient.
Last but not least, our study unveils that the graceful-degradation property is actually
an essential feature of signcryption that separates it from alternative and more natural
constructions that achieve a secure network from the same assumptions. This shows the
vital importance of the insider security notion for signcryption and strongly supports, in
contrast to the initial belief, the recent trend to consider the insider security notion as the
standard notion for signcryption.

1 Introduction

1.1 Motivation and Background

Signcryption is a public-key cryptographic primitive introduced by Zheng [3939] in 1997, which
simultaneously provides two fundamental cryptographic goals: confidentiality and authenticity.
Intuitively, the first property ensures that no one except the intended recipient should be able to
learn anything about a sent message, and this is typically achieved by means of an encryption
algorithm, and the second property ensures that the receiver can verify that a message indeed
originated from the claimed sender, which is typically achieved by employing a digital signature
scheme. Signcryption is the public-key analogue of the better known symmetric-key primitive called
authenticated encryption and shares part of its motivation: by merging the two security goals, one
might gain practical efficiency and at the same time offer better usability to applications, since
there is only a single scheme that needs to be employed.

Since its introduction in 1997, several concrete schemes have emerged in the literature based
on different hardness assumptions [3939,4040,3535,2222,2323]. Also, new properties beyond the basic security

mailto:badi@inf.ethz.ch
mailto:fabio.banfi@inf.ethz.ch
mailto:maurer@inf.ethz.ch

2 C. Badertscher and F. Banfi and U. Maurer

goals have been introduced recently, such as identity-based [2525,88,2222,2424,3333,3434], hybrid [1515], KEM-
DEM-based [77], certificateless [44], verifiable [3333], attribute-based [3131,1313], functional [1414], or key
invisible [3737] signcryption schemes. But finding the basic (or initial) security definitions for sign-
cryption proved to be a very subtle and challenging task. In fact, the original signcryption scheme
by Zheng was formally proven secure only about ten years after its introduction by Baek, Steinfield,
and Zheng [33]. While (symmetric) authenticated encryption was put on solid security definitions
directly from the start (cf. [55]), the basic security notions for signcryption have had a more difficult
path and converged to a set of commonly agreed notions only recently [3838] and only thanks to the
merits of a sequence of foundational works [22,11,33] that formally introduced what is now known as
the outsider security model (to capture various network attacks) and the insider security model
(to capture attacks of corrupted users).

Only little effort has subsequently been made to investigate what the security notions precisely
mean and whether they provide the expected service to higher-level protocols. An initial approach
to this question was taken in [1919] where a functionality is presented that idealizes the process
of using the signcryption algorithm to ensure unforgeability and confidentiality (focusing on the
outsider security model) along the lines of the signature and public-key encryption functionality
in the UC framework [99].

In this work, we significantly advance this line of research and provide a detailed application-
centric analysis of the basic security notions of signcryption. Our novel view underlines the im-
portance of insider security as a distinctive feature that indeed assigns signcryption a special
significance in actual deployments of network protocols. We note that its importance has been
overlooked for quite some time and our results contrasts the line of previous works that analyze
and revisit the signcryption security, including [1919,3636,3838,33], without giving enough credit to insider
security. We believe that our analysis provides sufficient evidence that insider security has to be
termed the standard notion for signcryption and that it identifies which of the initially proposed
variants of insider security should be the preferred choice.

The fundamental question of signcryption security. There is one main reason why finding
suitable definitions for signcryption has turned out to be a very intricate task: its application
as part of public-key infrastructures. In such a scenario, users register their public-keys with a
certificate authority, but are otherwise independent of each other, unlike in a setup with pre-shared
keys for symmetric-key cryptography where any two parties possess the same key. To protect
the communication, a user has to retrieve the public key of the communication partner from
the certificate authority (or any other trusted source) and protects the communication using the
signcryption scheme. The core question becomes:

What are the attacks we have to protect against in this setting?

In the process of finding an answer to this question two main notions emerged: the outsider security
model and the insider security model. Roughly speaking, outsider security considers an attacker
as being an outsider to the system, such as a network attacker or an adversarial entity that
registers a public key with a certificate authority. Insider security additionally tries to retain security
even when the attacker is an insider, for example an (a priori) legitimate user whose key got
compromised. While both models seem reasonable, insider security is intuitively more appealing.
However, only very recently, the idea of denoting insider security as the standard notion seems
to become mainstream. This is why some existing works slightly underestimate the importance of
insider security, including one of the main references on the basic notions [3838, page 29]:

[. . .], however, it might still seem that the distinction between insider and outsider security is a
bit contrived, especially for privacy. [. . .]. Similarly for authenticity, if non-repudiation is not an
issue, then insider security seems to make little sense [. . .]. Still, there are some cases where the
extra strength of the insider security might be important.

or [3838, page 46]:

A Constructive Perspective on Signcryption Security 3

[. . .] the insider confidentiality model is under normal circumstances not of significant importance
because it effectively assumes that the sender S is trying to decrypt (unsigncrypt) a signcryptext
which was sent by herself. Thus, this model appears only useful in providing “forward secrecy,”
i.e., providing security under the special circumstances in which an adversary who breaks into S’s
system obtains her secret key in order to unsigncrypt a message previously signcrypted by S to R.
As pointed out by Zheng in the full version of the original signcryption paper [. . .]. In view of this
discussion, we believe that for most applications it suffices for a signcryption scheme to achieve
confidentiality in the “multi-user outsider” model. [. . .] The signcryption literature is currently
confused as to which of these models best represents multi-user insider confidentiality, with some
papers preferring the weaker notion of insider security and some papers preferring the stronger
notion. [. . .]

In this paper, we take a step towards resolving this confusion. We present a systematic way
towards answering the question:

Which basic notion should a signcryption scheme fulfill and why?

We hope that the methodology that we put forward in this work will be applied to existing and
future, more enhanced notions of signcryption security in order to resolve similar questions.

1.2 Our Analysis

Defining an application scenario. To answer the above question, we formalize the typical
application of signcryption as a construction following the real-world/ideal-world paradigm: this
means we have to specify what resources are available in the real world (e.g., a certificate authority
or a network), we have to specify how the users in the real world employ a signcryption scheme to
protect their communication, and finally, we have to specify what they achieve. This is captured by
specifying an ideal world, where all desirable security properties are ideally ensured. The protocol
is called secure if it realizes the ideal specification, i.e., if the real world (where parties execute the
protocol) is as useful to an adversary as the ideal world, the latter world being secure by definition.
Formally, one has to construct a simulator in the ideal world to make the worlds computationally
indistinguishable.

In this work, the real world consists of the usual ingredients inspired by public-key infrastruc-
tures.

– An insecure network Net, where each user can register themselves with a unique identity and
send and receive messages, and where a network attacker, say Eve, has full control over the
network, including message delivery.

– A certificate authority CA, where users and the attacker Eve can register public keys in the
name of the identity. The certificate authority only guarantees that there is exactly one value
registered for an identity, but does not verify knowledge of, for example, a secret key.

– A memory resource Mem that models the storage of the secret values of each user. The storage
is possibly compromised by an intruder, say Mallory, which models key compromise.

Defining the goal for signcryption. The security goal of signcryption can be identified in a
very natural way: due to the nature of public-key cryptography, the security depends on which
user gets compromised. Furthermore, in a public-key setting, in sharp contrast to the secret-key
setting, parties are independent in principle. Hence, if a user is compromised, we have to give
up his security: this means that messages sent to this user can be read by the attacker, and the
attacker can act in the name of this user. This directly gives rise to a notion of a secure network
that gracefully degrades depending on which users gets compromised as follows. We denote this
gracefully-degrading secure network by SecNT and its main properties are as follows:

1. If two uncompromised legitimate users communicate, then the secure network guarantees that
the network attacker learns at most the length of the messages and the attacker cannot inject
any message into this communication: the communication between them can be called secure.

4 C. Badertscher and F. Banfi and U. Maurer

2. If, however, the legitimate sender is compromised, but not the receiver, then the network allows
the attacker to inject messages in the name of this sender. Still, Eve does not learn the contents
of the messages to the receiver: the communication is thus only confidential.

3. If, on the other hand, the legitimate receiver is compromised, but not the sender, the secure
network allows Eve to read the contents of the messages sent to this compromised user. Still,
no messages can be injected into this communication: the communication is only authentic.

4. If both, sender and receiver, are compromised, then the network does not give any guarantee
on their communication, Eve can read every message and inject anything at will.

As a special case, we observe that if no user is compromised, we have a fully secure network
between the users. And when a user is compromised, we lose just his respective guarantee. Our main
technical result is the proof of the following theorem in the constructive cryptography framework.11

Theorem (informal). If a signcryption scheme is secure in the multi-user outsider security model
and in the multi-user insider security model as specified in Fig. 1Fig. 1, Fig. 2Fig. 2, and Fig. 3Fig. 3, then the
associated protocol realizes a gracefully-degrading secure network from an insecure network and a
certificate authority with respect to any number of compromised keys of legitimate users (and with
respect to static security).

If the signcryption scheme is secure in the multi-user outsider security model as specified in
Fig. 1Fig. 1, then the secure network is realized if no key of legitimate users is compromised.

1.3 Implications of our Analysis and the Importance of Insider Security

This work enriches the study on signcryption security by giving an additional, application-centric
viewpoint for understanding the different notions in a composable setting. This paragraph provides
the consequences of our main result:

The preferred insider security notion. Our analysis identifies the notions that imply the
above construction and this provides confidence that the security games in Fig. 2Fig. 2 and Fig. 3Fig. 3 are an
adequate choice to model game-based insider security. The notions we use are in particular implied
by what is denoted in [3838] as “multi-user insider confidentiality in the FSO/FUO-IND-CCA2 sense”
and “multi-user insider unforgeable in the FSO/FUO-sUF-CMA sense”, respectively. An advantage
to additionally know which weaker notions are sufficient is that it might be possible to construct
more efficient schemes for that case. We discuss further definitions in Sect. 3Sect. 3.

Graceful degradation thanks to insider security. One crucial point of our main theorem is
that it is insider security that provably assures that the secure network degrades gracefully as a
function of compromised keys and does not lose the security guarantees in a coarse-grained fashion
(for example per pair of parties instead of a single party). This view assigns a more crucial, practical
role to the insider security model than what is commonly assumed.

Comparison with other constructions. By specifying the assumed resources and the desired
goal, we can now ask the question whether there exist other natural schemes that achieve the same
construction and to compare them. For example, in a recent work [1717], it is shown that universally
composable, non-interactive key-exchange (NIKE) protocols realize a functionality that provides
a shared key to each pair of (honest) users. This key can be used to protect the session between
any such pair by employing a (symmetric) authenticated-encryption scheme and is thus sufficient
to realize a secure network. NIKE needs as a setup a certificate authority (as specified in our real
world), and based on this setup, a shared secret key can be established with minimal communication

1 Our results are, however, not specific to the framework itself and developing our approach in another
framework like Canetti’s UC framework [99] would yield closely related findings (cf. [2121]).

A Constructive Perspective on Signcryption Security 5

and interaction between any two parties.22 The schemes are in addition arguably practically efficient
[1212]. We hence observe that this would be a second method to achieve the same as signcryption
does for the case when we only have a network attacker (i.e., no key is compromised). This second
method based on NIKE schemes [1818] and authenticated encryption [2020] is likely to outperform the
signcryption schemes in terms of efficiency.

We point out that such comparisons help to identify the specific core use-cases of a cryptographic
primitive that conceptually separates it from other primitives. In the context of signcryption, the
above observation might suggest that the real benefit of introducing signcryption as a public-key
primitive is to demand insider-security as the standard formal capability to limit the damage
against insider attacks or key compromises.

Remark 1 (On the comparison to AEAD). We point out that the above comparison does not mean
that the usage of AEAD is doomed to fail in achieving insider security. What we observe is that
if insider security is not demanded from a signcryption scheme, then there seem to be alternative
schemes that perform arguably better and achieve the same goal under the same assumptions. On
the other hand, finding a mode of operation for AEAD (in combination with key exchange) that
outperforms signcryption also in the case of key compromises is an interesting question for future
work.

On modeling corruptions. Our security analysis considers static corruptions: static corruption
means that a party either behaves honestly, or it is corrupted (or compromised) at the beginning of
the protocol execution. During the execution, an honest party cannot adaptively become compro-
mised. In our setting, the only secret information that a party carries is its secret key. Therefore,
compromising the key captures corruptions in this setting, as it allows the attacker to fully im-
personate the party, i.e., reading all incoming messages, sending any message in the name of this
party, and isolating the party by not delivering messages.

Our model thereby puts forward a conceptual contribution of independent interest. By modeling
explicit storage corruptions, we can formally express guarantees relative to compromised parties:
we refrain from letting those parties be absorbed completely by the adversary, but instead we leave
them operational as a stand-alone protocol machine and just assign enough power to the adversary
to actually completely impersonate the party. Therefore, all our statements still contain the typical
full corruption case, but they also contain the view that parties are partially corrupted, such as
subject to key compromises. Identifying reasonable partial corruption scenarios seems to be crucial
in building formal models that reflect specific real-world threats, such as bugs that result in key
leakage [2929,1616]. Our approach can be seen as a unified treatment to capture a range of corruption
scenarios and can serve as the basis for more fine-grained analyses in the future. As explained in the
previous paragraph, assigning guarantees to partially corrupted parties is very vital for reasoning
about the applicability of signcryption.33

Remark 2 (On adaptive corruptions and forward secrecy). The static corruption model is probably
the most prominent corruption model when analyzing security of network protocols in simulation-
based frameworks. Furthermore, achieving security against adaptive corruptions is substantially
harder and even requires additional, non-standard, assumptions due to the so-called commitment
problem of the simulator. The commitment problem is a standard technical problem in simulation-
based security which also occurs in the context of signcryption. To illustrate the very basic problem,
assume Alice sends an encrypted messagem to Bob over an authenticated channel (encrypted using
Bob’s public key). The goal is to realize a secure channel, i.e., an authenticated channel that leaks
only the length of m to a network attacker as long as sender and receiver are not corrupted). A
2 In case the NIKE scheme required a trusted CRS, distributing it could also be accomplished by the
trusted CA.

3 In particular, this allows to model the guarantees that insider security provides. For example, when a
compromised party sends a message to an uncompromised receiver, we want to express that the attacker
still does not learn the contents. If the compromised party was modeled as being completely absorbed
by the adversary, then no such guarantee could be formally expressed.

6 C. Badertscher and F. Banfi and U. Maurer

simulator in the ideal world, with access to the secure channel functionality, therefore needs to be
able to simulate a ciphertext44 without knowing the plaintext m. Later, if Bob gets (adaptively)
corrupted, the simulator additionally has to simulate the compromised real-world decryption key
skR (and any internal state) that correctly decrypts the previously made-up ciphertext c to the
original messagem. As shown by Nielsen [3030], if the message space is large compared to the key size,
then this simulation problem cannot be solved consistently. In particular it is shown in [3030] that a
public-key encryption scheme that can encrypt an unbounded number of messages with keys that do
not change (and have a reasonable size) cannot achieve adaptive security in the standard model. To
circumvent this problem, so-called non-committing schemes have been developed based on stronger
assumptions such as programmable random oracles or some forms of synchronization or interaction
between sender and receiver (cf. [1111] for an example in the context public-key encryption). An
interesting research direction is to develop adaptively secure signcryption schemes since they would
allow to realize a gracefully-degrading secure network under adaptive key-compromise attacks.

We further note that our analysis does not cover forward secrecy.55 The reason for this is that
standard signcryption security, and in particular the insider-security model, does not provide any
guarantee with respect to forward secrecy. Again, the same considerations from standard public-
key encryption apply here: once compromised, knowledge of the secret key allows to decrypt all
past messages of that party. As we know from the design of forward-secure public-key encryption
schemes as in [1111], or [1010], to achieve forward secrecy requires radically different schemes, for
example schemes that admit stateful decryption (i.e., the decryption key needs to be updated
as otherwise the above problem occurs that excludes forward secrecy). Here too, an interesting
question is to formally define forward secrecy for signcryption schemes and to develop schemes
that provably fulfill such a definition.

2 Preliminaries

2.1 Notation

We describe our systems with pseudocode using the following conventions: We write x ← y for
assigning the value y to the variable x. For a distribution D over some set, x� D denotes sampling
x according to D. For a finite set X, x � X denotes assigning to x a uniformly random value in
X. Typically queries to systems (for example a network) consist of a suggestive keyword and a list
of arguments (e.g., (send,m, IDr) to send a message m to a receiver with identity IDr). We ignore
keywords in writing the domains of arguments, e.g., (send,m, IDr) ∈ M× {0, 1}∗ indicates that
m ∈ M and IDr ∈ {0, 1}∗. The systems generate a return value upon each query which is output
at an interface of the system. We omit writing return statements in case the output is a simple
constant whose only purpose is to indicate the completion of an operation.

For the sake of presentation, we assume throughout the paper that the message space is repre-
sented byM := {0, 1}k for some fixed (and globally known) integer k > 0.66

We conduct a concrete security treatment in this work and therefore omit the security parameter
(and additional global domain parameters) as an additional input to the algorithms to simplify
notation. If needed, one can think of the experiments being indexed by a security parameter
and efficiency and negligibility being defined with respect to this parameter. The algorithms and
systems in this work are efficient with respect to the usual asymptotic notions.

4 One very common strategy is that the simulator just encrypts a random message of the correct length.
5 Recall that technically, adaptive security and forward secrecy are different properties: while forward
secrecy tries to retain privacy of messages received before a corruption happened, adaptive security
refers to simulation-based security with respect to a certain corruption model in composable frameworks.
Although related in spirit, the two notions do not imply each other. We refer to [1111] and [1010] for further
discussions.

6 It is typically assumed that a message has an encoding as a bitstring. Therefore, we do not distinguish
between a message and its encoding as an element in {0, 1}k (and fixed-length is always achievable by
an appropriate padding scheme).

A Constructive Perspective on Signcryption Security 7

2.2 Definition of Signcryption Schemes

We present the formal syntactic definition of Signcryption from [33]. For convenience, we assume
that the global domain parameters of a scheme (including the security parameter or the description
of a specific finite field F for the computations), are known.77

Definition 1 (Signcryption Scheme). A signcryption scheme Ψ = (GenS ,GenR,Signcrypt,
Unsigncrypt) for key space88 K, message space M, and signcryptext space S, is a collection of
four (efficient) algorithms:

– A sender key generation algorithm, denoted GenS, which outputs a sender key-pair (skS , pkS),
i.e., the sender private key skS ∈ K and the sender public key pkS ∈ K, respectively. We write
(skS , pkS)← GenS.

– A receiver key generation algorithm, denoted GenR, which outputs a receiver key-pair (skR, pkR),
i.e., the receiver private key skR ∈ K and the receiver public key pkR ∈ K, respectively. We
write (skR, pkR)← GenR.

– A (possibly randomized) signcryption algorithm, denoted Signcrypt, which takes as input a
sender private key skS, a receiver public key pkR, and a message m ∈ M, and outputs a
signcryptext s ∈ S. We write c← Signcrypt(skS , pkR,m).

– A (usually deterministic) unsigncryption algorithm, denoted Unsigncrypt, which takes as input
a receiver private key skR, a sender public key pkS, and a signcryptext (“the ciphertext”) s ∈ S,
and outputs a message m ∈M, or a special symbol ⊥. We write m← Unsigncrypt(skR, pkS , s).

The correctness condition requires that for all sender key pairs (skS , pkS) in the support of GenS,
and for all receiver key pairs (skR, pkR) in the support of GenR, and for all messages m ∈ M it
holds that

Unsigncrypt(skR, pkS , (Signcrypt(skS , pkR,m)) = m.

2.3 Discrete Systems

As briefly mentioned in the main body of this work, our security statements are statements about
reactive discrete systems that can be queried by their environment: Each interaction consists of an
input from the environment and an output that is given by the system in response. Discrete reactive
systems are modeled formally by random systems [2626], and an important similarity measure on
those is given by the distinguishing advantage. More formally, the advantage of a distinguisher D
in distinguishing two discrete systems, say R and S, is defined as

∆D(R,S) = Pr [DR = 1]− Pr [DS = 1] ,

where Pr [DR = 1] denotes the probability that D outputs 1 when connected to the system R.
More concretely, DR is a random experiment, where the distinguisher repeatedly provides an input
to one of the interfaces and observes the output generated in reaction to that input before it decides
on its output bit.

2.4 Constructive Cryptography

Resources and converters. The central object in constructive cryptography is that of a re-
source available to parties, and the resources we discuss in this work are modeled by reactive
discrete systems. As in general the same resource may be accessible to multiple parties, such as a
communication channel that allows a sender to input a message and a receiver to read it, we assign
inputs to certain interfaces that correspond to the parties: the sender’s interface allows to input
7 We therefore omit these parameters as explicit inputs to the algorithms and do not need to specify a
special Setup algorithm that generates such global parameters for a scheme.

8 For better readability, we assume that all the keys (both private and public) belong to the the same set,
but clearly this need not to be the case. The definition could be easily modified accordingly.

8 C. Badertscher and F. Banfi and U. Maurer

a message to the channel, and the receiver’s interface allows to read what is in the channel. More
generally, a resource is a discrete system with a finite set of interfaces I via which the resource
interacts with its environment.

Converters model protocols used by parties and can attach to an interface of a resource to
change the inputs and outputs at that interface. This composition, which for a converter π, interface
I, and resource R is denoted by πIR, again yields a resource. In this work, a converter π is modeled
as a systems with two interfaces: the inner interface in and the outer interface out. The inner
interface can be connected to an interface I of a resource R and the outer interface then becomes
the new interface I of resource πIR. For a vector of converters π = (πI1 , . . . , πIn) with Ii ∈ I,
and a subset of interfaces P ⊆ {I1, . . . , In}, πPR denotes the resource where πI is connected to
interface I of R for every I ∈ P. We write P := I \ P. Two special converters in this work are
the identity converter 1, which does not change the behavior at an interface, and the converter 0,
which blocks all interaction at an interface (no inputs or outputs).

For I-resources R1, . . .Rm the parallel composition [R1, . . . ,Rm] is again an I-resource that
provides at each interface access to the corresponding interfaces of all subsystems.99

In this paper, we make statements about resources with interfaces from the set I = {P1, . . . , Pn,
M1, . . . , Mn, E}. Interface Pi can be thought of as being the access point of the ith honest party to
the system. Interface Mi is the access point of an intruder (i.e., a hypothetical attacker entity like
Mallory), and E is the access point of the network attacker Eve (also a hypothetical entity).

Formally, a protocol is a vector π = (πI1 , . . . , πI|I|) that specifies one converter for each interface
I ∈ I. For the honest parties, this corresponds to the actions they are expected to execute (for
example, encrypt to protect the content of a message). For the hypothetical attacker entities, the
converter specifies their default behavior when no attack happens. Typically, for purely hypothetical
entities such as a network attacker or the intruder, we assign the identity converter since they are
not expected to perform additional tasks. However, the interfaces are possibly dishonest, which
means that the default behavior is not necessarily applied, but replaced by an arbitrary, adversarial
strategy that makes use of all potentially available capabilities (e.g., to inject messages into a
network).

Filtered resources. Typically, one would like to specify that certain capabilities at an interface
are only potentially available (e.g., to an attacker), but not guaranteed to be available (i.e, not a
feature of a protocol). A typical example is that the leakage to the network attacker of a secure
channel at interface E is at most the length of the message |m| (potentially available), but of course
not guaranteed (there exist encryption schemes that hide the length of the message). To model such
situation, constructive cryptography offers the concept called filtered resources. Let R be a resource
and φ = (φI1 , . . . , φIn) be a vector of converters. Then, the filtered resource Rφ is a I-resource,
where for an honest party at interface Ij , the interaction through the converter φIj is guaranteed
to be available, while interactions with R directly is only potentially available to dishonest parties.
The converter φIj can be thought of as filtering or shielding certain capabilities of interface Ij of
system R, we hence denote φ as the filter. We refer the reader to [2828] for more details and briefly
mention that this concept has turned out to be useful in modeling cryptographic problems [2121].

The way we use filters in this work is as follows: we want to make security statements that
depend on the set of compromised keys of honest parties. We model this in the real world with
a memory functionality, where each party can store its own key. We model that this storage is
potentially unsafe, meaning that if an intruder is present at interface Mi, he potentially gets the
key. However, the memory does not guarantee that the key is leaked (e.g., if no intruder is present,
no key is leaked at interface Mi). The same idea is used to model the capabilities of the network

9 Note that if the two interfaces do not have the same interface set, one can simply add “dummy interfaces”
that do not take any input and output to lift them to identical interface sets. In this sense, we also allow
resources with different interface sets here.

A Constructive Perspective on Signcryption Security 9

attacker. This is also reflected in the ideal world, where a dishonest intruder (and the network
attacker if present) can potentially get more power by removing the filter.1010

Construction. A constructive security definition then specifies the goal of a protocol in terms
of assumed (also known as hybrid functionalities) and constructed resources (ideal functionality).
The goal of a protocol is to realize the ideal functionality from the given ones. We directly state
the central definition of a construction of [2828] and briefly explain the relevant condition.

Definition 2. Let Rφ and Sψ be filtered resources with interface set I and let π = (πI1 , . . . , πI|I|)
be a protocol. Let further be U ⊆ I be the set of interfaces with potentially dishonest behavior and
let ε be a function that maps distinguishers to a value in [−1, 1]. The protocol π constructs Sψ from
Rφ within ε and with respect to potentially dishonest U , denoted by

Rφ

(π, ε,U)
==⇒ Sψ,

if there exist converters σ = (σU1 , . . . , σU|U|), Ui ∈ U , such that for all subsets C ⊆ U we have that

∆D(πC φCR, σC ψCS) ≤ ε(D)

for any distinguisher D.

The condition in Definition 2Definition 2 ensures that for any combination of dishonest interfaces, whatever
they can do in the assumed resource using the unfiltered capabilities, they could do as well with the
constructed resource by applying the simulators σUi to the respective (unfiltered) interfaces Ui of
the ideal resource. Turned around, if the constructed resource is secure by definition (for example,
a secure channel does potentially leak at most the length of a message), there is no successful
attack on the protocol. The notion of construction is composable, which intuitively means that the
constructed resource can be replaced in any context by the assumed resource with the protocol
attached without affecting the security. We refer to [2828,2727] for a proof. For readers more familiar
with Canetti’s UC Framework [99], we refer to [2121] for explanations of how the above concepts relate
to similar concepts in UC. We refer to Fig. 4Fig. 4 for a graphical illustration of our main construction,
for the case of two dishonest interfaces.

We are interested in concrete security statements and reductions in this work and typically
ε(·) is the advantage of an adversary A = ρ(D) in a related security game (such as the outsider
security game of signcryption) where ρ(·) stands for an efficient black-box construction of such an
adversary A from a distinguisher D.

3 An Overview of Signcyrption Security

In this section we present the security definitions of signcryption which we use in this work. In the
literature, two main models are defined:

– The ADR model : this model corresponds to the two-user setting (comprising both outsider and
insider security, called TOS and TIS, respectively), and was extensively studied by An, Dodis,
and Rabin in [11];

– The BSZ model : this model corresponds to the multi-user setting (comprising both outsider
and insider security, called MOS and MIS, respectively), and was extensively studied by Baek,
Steinfield, and Zheng in [33].

We focus on the multi-user model in this work and present security definitions for outsider security
and insider security.1111

10 This concept can be seen as a variant of the following UC concept: in UC, a functionality is informed
which party is corrupted and its behavior can depend on this corruption set (e.g., leaking inputs to parties
that get corrupted to the simulator). The same is achieved using the concept of filters in constructive
cryptography, where removing the filter uncovers potential information needed to simulate.

11 From an application perspective, the two-user case is a special case of the multi-user case and therefore
not explicitly considered here.

10 C. Badertscher and F. Banfi and U. Maurer

3.1 Multi-User Outsider Security

Usually, security for signcryption schemes is proven based on two separate notions defined by
two separate experiments, one for confidentiality and one for authenticity. For multi-user outsider
security, such experiments are indistinguishability of signcryptexts under a chosen-signcryptext at-
tack by an outsider adversary (which is abbreviated to MOS-Conf) and strong unforgeability of
signcryptexts (also called integrity of signcryptexts) under a chosen-message attack by an outsider
adversary (which is abbreviated to MOS-Auth). We defer the specification of such security defi-
nitions to Appendix A.1Appendix A.1. In this work we define a new all-in-one definition of multi-user outsider
security in the spirit of the all-in-one security definition for authenticated encryption introduced
by Rogaway and Shrimpton in [3232], and show its equivalence to the combination of the two men-
tioned separate security notions. In the experiment associated with this security notion, a sender
key-pair and a receiver key-pair (corresponding to a fixed sender and a fixed receiver, respectively)
are first generated. Then the goal of the adversary is to distinguish between a real system where
he can interact with so-called flexible signcryption/unsigncryption oracles, that is, he is allowed
to signcrypt messages under any receiver public key and also to unsigncrypt signcryptexts under
any sender public key (but where he gets ⊥ when querying previously obtained signcryptexts, in
order to avoid trivial attacks), and an ideal system where he can again signcrypt messages under
any receiver public key with the catch that if the public key corresponds to the one of the fixed
receiver, a uniformly random message (of the same length) is signcrypted instead, and he can again
unsigncrypt signcryptexts under any sender public key with the catch that is if the public key cor-
responds to the one of the fixed sender, he obtains ⊥. We call this new notion real-or-random1212

multi-user outsider security, which is abbreviated to simply MOS security. Therefore, we consider
a signcryption scheme secure if it satisfies the following definition.

Definition 3. Let Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt) be a signcryption scheme and A a
probabilistic algorithm. Consider the experiments RealMOS

Ψ and IdealMOS
Ψ from Fig. 1Fig. 1. We define

the real-or-random multi-user outsider security all-in-one advantage of A as

AdvMOS
Ψ,A := Pr

[
ARealMOS

Ψ = 1
]
− Pr

[
AIdealMOS

Ψ = 1
]
.

We say that the scheme Ψ is MOS secure if AdvMOS
Ψ,A is negligible for all efficient adversaries A.

Such a definition for multi-user outsider secure signcryption comes in very handy, but it should
also be clear what this definition actually means in terms of other existing definitions. We discover
that MOS security is equivalent to MOS-Conf security1313 coupled with MOS-Auth security.

Lemma 1 (MOS ←→ MOS-Conf + MOS-Auth). A signcryption scheme Ψ = (GenS ,GenR,
Signcrypt,Unsigncrypt) is MOS secure if and only if it is both MOS-Conf secure and MOS-Auth
secure.

The proof of Lemma 1Lemma 1 is given in Appendix A.2Appendix A.2 for completeness.

3.2 Multi-User Insider Security

Also for insider security, signcryption schemes are proven secure based on two separate notions
defined by two separate experiments, one for confidentiality and one for authenticity. Such ex-
periments are indistinguishability of signcryptexts under a chosen-signcryptext attack by an insider
adversary (which is abbreviated to MIS-Conf) and strong unforgeability of signcryptexts (also called
integrity of signcryptexts) under a chosen-message attack by an insider adversary (which is abbre-
viated to MIS-Auth). For confidentiality we use the real-or-random paradigm as we do for outsider
security (see Appendix A.1Appendix A.1), by defining the two experiments RealMIS-Conf

Ψ and IdealMIS-Conf
Ψ in

12 Note that in this context we use the terms “ideal” and “random” interchangeably.
13 We also define MOS-Conf using the real-or-random paradigm, which can be easily seen to be equivalent

to the more frequent version using indistinguishability found in the literature.

A Constructive Perspective on Signcryption Security 11

RealMOS
Ψ

Initialization
(sk?S , pk

?
S)← GenS

(sk?R, pk
?
R)← GenR

S ← ∅
return (pk?S , pk

?
R)

Oracle Scr

Input: (pkR,m) ∈ K ×M
s← Signcrypt(sk?S , pkR,m)
if pkR = pk?R then

S ← S ∪ {s}
return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if pkS = pk?S ∧ s ∈ S then

m← ⊥
else

m← Unsigncrypt(sk?R, pkS , s)
return m

IdealMOS
Ψ

Initialization
(sk?S , pk

?
S)← GenS

(sk?R, pk
?
R)← GenR

return (pk?S , pk
?
R)

Oracle Scr

Input: (pkR,m) ∈ K ×M
if pkR = pk?R then

m �M
s← Signcrypt(sk?S , pkR,m)
return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if pkS = pk?S then

m← ⊥
else

m← Unsigncrypt(sk?R, pkS , s)
return m

Fig. 1. RealMOS
Ψ and IdealMOS

Ψ experiments for the all-in-one definition for multi-user outsider secure
signcryption schemes.

Fig. 2Fig. 2, whereas for authenticity we define the game AuthMIS
Ψ in Fig. 3Fig. 3. We point out that it is easy

to verify that our real-or-random formulation for confidentiality for insider security is equivalent
to the one found in the literature which is based on indistinguishability of signcryptexts, by using
a standard hybrid argument. Finally, note that in all of RealMIS-Conf

Ψ , IdealMIS-Conf
Ψ , and AuthMIS

Ψ ,
just one key-pair is generated, as the other must be presented by the insider adversary.

For confidentiality, where the adversary is supposed to be the sender, only a receiver key-
pair (skR, pkR) for the fixed receiver is generated, and the respective public key pkR is given
to the adversary. Note that this implies that the adversary can only have access to a (flexible)
unsigncryption oracle,1414 but not a (flexible) signcryption oracle, as no fixed sender is defined in the
experiment. Instead, we define a special signcryption oracle which allows the adversary to select a
target receiver public key (just as the regular flexible signcryption oracle does), but in addition it
also requires a valid sender key-pair. Note that it is possible to specify in (at least) two different
ways whether the key-pair provided by the adversary is to be considered valid or not: on the one
hand, as defined usually in the literature, one considers a sender key-pair valid if it belongs to
the support of the sender key-generation algorithm,1515 on the other hand, this requirement can be
sharpened by requiring the adversary to use a specific oracle Gen (offered by the game itself)
for generating the sender key-pairs, and requesting that only keys generated as such are provided
to signcryption queries.1616 The sender secret key provided by the adversary is then used together
with the fixed receiver public key to signcrypt the message. Finally, the only difference between
RealMIS-Conf

Ψ and IdealMIS-Conf
Ψ is that in the latter a uniformly random message is encrypted instead

of the queried one. The formal definition of MIS-Conf follows. Technically, we have two variants
of MIS-Conf (the traditional one and our weaker version), but only define the advantage for the
weaker version, since this is the one we use in this work. The other definition would be analogous.
14 As usual, the unsigncryption oracle returns ⊥ when the adversary queries previously obtained signcryp-

texts, in order to avoid trivial attacks.
15 This requirement can be implemented by an (efficiently computable) membership-test for the support

of GenS , and it is actually indispensable in order to avoid trivial attacks. For example, an attacker could
specify a pair (skS , 0) in a signcryption query, which allows him to unsigncrypt the respective result
using the actual (correct) public key pkS .

16 Essentially, this requirement “shifts” the choice of the randomness of the keys from the adversary to
the game. This is a weaker security notion in the sense that any attack against the new game can be
translated into an attack against the traditional game.

12 C. Badertscher and F. Banfi and U. Maurer

RealMIS-Conf
Ψ

Initialization
(sk?R, pk

?
R)← GenR

S ← ∅
K ← ∅
return pk?R

Oracle Gen

(skS , pkS)← GenS
K ← K ∪ {(skS , pkS)}
return (skS , pkS)

Oracle Scr

Input: ((skS , pkS), pkR,m) ∈ supp(GenS)×K×M
if (skS , pkS) /∈ K then

return ⊥
s← Signcrypt(skS , pkR,m)
if pkR = pk?R then

S ← S ∪ {(pkS , s)}
return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if (pkS , s) ∈ S then

m← ⊥
else

m← Unsigncrypt(sk?R, pkS , s)
return m

IdealMIS-Conf
Ψ

Initialization
(sk?R, pk

?
R)← GenR

S ← ∅
K ← ∅
return pk?R

Oracle Gen

(skS , pkS)← GenS
K ← K ∪ {(skS , pkS)}
return (skS , pkS)

Oracle Scr

Input: ((skS , pkS), pkR,m) ∈ supp(GenS)×K×M
if (skS , pkS) /∈ K then

return ⊥
if pkR = pk?R then

m �M
s← Signcrypt(skS , pkR,m)
if pkR = pk?R then

S ← S ∪ {(pkS , s)}
return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if (pkS , s) ∈ S then

m← ⊥
else

m← Unsigncrypt(sk?R, pkS , s)
return m

Fig. 2. RealMIS-Conf
Ψ and IdealMIS-Conf

Ψ experiments for confidentiality for multi-user insider secure signcryp-
tion schemes. The boxed statements describe the weaker version of the game.

Definition 4. Let Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt) be a signcryption scheme and A a
probabilistic algorithm. We define the advantage of A in distinguishingRealMIS-Conf

Ψ and IdealMIS-Conf
Ψ

from Fig. 2Fig. 2 as
AdvMIS-Conf

Ψ,A := Pr
[
ARealMIS-Conf

Ψ = 1
]
− Pr

[
AIdealMIS-Conf

Ψ = 1
]
.

We say that the scheme Ψ is MIS-Conf secure if AdvMIS-Conf
Ψ,A is negligible for all efficient adver-

saries A, where we consider the weaker game including the boxed lines (and considering the version
which excludes those lines, and also the Gen oracle, would yield the definition traditionally found
in the literature).

For authenticity, where the adversary is supposed to be the receiver, only a sender key-pair
(skS , pkS) for the fixed sender is generated, and the respective public key pkS is given to the
adversary. Note that this implies that the adversary can only have access to a (flexible) signcryption
oracle, but not a (flexible) unsigncryption oracle, as no fixed receiver is defined in the experiment.
Instead, we define a special unsigncryption oracle which allows the adversary to select a target
sender public key (just as the regular flexible unsigncryption oracle does), but in addition it also
requires a valid receiver key-pair. Note that, again, it is possible to specify this validity analogously
in two ways: either as defined traditionally in the literature, where one considers a receiver key-
pair valid if it belongs to the support of the receiver key-generation algorithm,1717 or as before
by sharpening this requirement by demanding the adversary to use a specific oracle Gen for
generating the receiver key-pairs, and requesting that only keys generated as such are provided to
unsigncryption queries. The receiver secret key provided by the adversary is then used together
with the fixed sender public key to unsigncrypt the signcryptext. Finally, the special unsigncryption
17 Again, this requirement can be implemented by an (efficiently computable) membership-test for the

support of GenS , and it is again indispensable in order to avoid trivial attacks.

A Constructive Perspective on Signcryption Security 13

AuthMIS
Ψ

Initialization
(sk?S , pk

?
S)← GenS

S ← ∅
win← 0
return pk?S

Oracle Gen

(skR, pkR)← GenR
K ← K ∪ {(skR, pkR)}
return (skR, pkR)

Oracle Scr

Input: (pkR,m) ∈ K ×M
s← Signcrypt(sk?S , pkR,m)
S ← S ∪ {(pkR, s)}
return s

Oracle Usc

Input: ((skR, pkR), pkS , s) ∈ supp(GenR)×K× S
if (skR, pkR) /∈ K then

return ⊥
m← Unsigncrypt(sk?R, pkS , s)
if pkS = pk?S ∧ m 6= ⊥ ∧ (pkR, s) /∈ S then

win← 1
return m

Fig. 3. AuthMIS
Ψ experiment for authenticity for multi-user insider secure signcryption schemes. The boxed

statements describe the weaker version of the game.

oracle checks for every query whether the unsigncrypted message is valid (in case the provided
sender public key corresponds to the one fixed in the experiment) and whether such a signcryptext
was new. The formal definition of MIS-Auth follows.

Definition 5. Let Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt) be a signcryption scheme and A a
probabilistic algorithm. We define the advantage of A when interacting with AuthMIS

Ψ from Fig. 3Fig. 3 as

AdvMIS-Auth
Ψ,A := Pr

[
AAuthMIS

Ψ ⇒ win
]
.

We say that the scheme Ψ is MIS-Auth secure if AdvMIS-Auth
Ψ,A is negligible for all efficient adver-

saries A, where we consider the weaker game including the boxed lines (and considering the version
which excludes those lines, and also the Gen oracle, would yield the definition traditionally found
in the literature).

Secret Key Ignorance. In the literature (e.g., in [3838]) it is suggested that it is possible to
propose stronger security models for both insider confidentiality and authenticity, namely, the so-
called secret key ignorant (SKI) models. In such models, the definitions of security remain the same
as those from Definition 4Definition 4 and Definition 5Definition 5, except that for confidentiality the adversary is now
required to give as argument to the special signcryption oracle only a sender public key instead of
a valid sender key-pair, whereas for authenticity the adversary is now required to give as argument
to the special unsigncryption oracle only a receiver public key instead of a valid receiver key-pair.
Our analysis, however, suggests that such a strengthening is not of importance in applications.

4 Constructive Analysis

4.1 Assumed Resources

Insecure network. We assume a network resourceNetn that accepts, at each interface Pi, i ∈ [n],
a registration query that assigns an identifier to that interface. Any bitstring ID ∈ {0, 1}∗ is valid,
and uniqueness is enforced (reflecting IP-addresses). Subsequently, messages can be sent at this
interface in the name of that identifier, by indicating the message content m and a destination
identifier. Any request is leaked at interface E of the network (to the network attacker). Eve can
further inject any message it wants to each destination address and indicate any source address as
sender. The specification as pseudo-code is found in Fig. 5Fig. 5.

14 C. Badertscher and F. Banfi and U. Maurer

scrΨ

scrΨ

scrΨ

Mem

CA

Net

P1

P2

P3

M1

M2

M3

E

≈

SecNT σM2

σE

Inject

Eaves.

Sec.

Conf.

Auth.

P1

P2

P3

M1

M2

M3

E

Fig. 4. An illustration of the construction notion: On the left, we have the real world for three parties
with interfaces Pi and where the interfaces with dishonest behavior are E and M2. This models the case
that the second party’s key got compromised. The other keys are not compromised. In the ideal world, this
translates to a secure network resource which guarantees secure (confidential and authentic) communication
between P1 and P3, only confidential communication from party P2 to party P1 (but not vice-versa), and
only authentic communication from party P3 to party P2 (but not vice-versa). Note that we do not depict
the filter explicitly, but only indicate their effect, e.g., by not giving output at intruder interfaces M1 and M3.

At interface E, these capabilities are only potentially available and thus not guaranteed. We
thus specify a filter converter for this interface, denoted dlv, which, upon any (·, IDs, IDr) from
interface E of Netn, it immediately outputs (inject, ·, IDs, IDr) at interface E of Netn to reliably
deliver the message and does not give any output at its outer interface and it does not react on any
other input. If no attacker is present, i.e., if the filter is not removed, then the network is trivially
“secure”. However, if an attacker is there, it can access all the potentially available capabilities.
Formally, the filter for the network is defined as φnet = (1P1 , . . . ,1Pn , dlvE) where 1 is the identity
converter (i.e., does not change any inputs and outputs at the interface).

Memory. We model the local memory of each honest party by a memory resource Memn. The
memory can be thought of as being composed of n local memory modules. For the ease of exposition,
we summarize these modules in one memory functionality that mimics this behavior (each party
can read and write to its (and only this) memory location). The memory allows each party to store
a value. In the construction, this will be the key storage. We make the storage explicit to model
key compromises. To this end, we associate an intruder interface Mi to each party interface Pi. At
interface Mi, the key is only potentially available to an intruder Mallory and thus not guaranteed.
This means that we consider a filtered memory as an assumed resource where the filter is φmem =
(1P1 , . . . ,1Pn ,0M1 , . . . ,0Mn) where 1 is the identity converter (i.e., does not change any inputs and
outputs at the interface), and 0 is the converter that blocks all interaction and in particular does
not give any output. Therefore, key-compromise attacks (or key leakage) is captured with this
filtered resource. To see this recall the construction notion of Definition 2Definition 2: for every potentially
dishonest interface, we consider the case when no attacker is there—in which case no key is leaked
because the filter is there—and the case when the attacker is present—in which case the filter is
removed and the key readable by the attacker.1818 This allows to model each key compromise as a
separate event.

Certificate authority. The resource CAn models a key registration functionality, and we denote
it by certificate authority to stick to the common term in public-key infrastructures. The resource
allows to register at an interface with an identity-value pair. The resource stores this assignment and
does not accept any further registration with the same identity. The certificate authority is weak
in the sense that it does not perform any further test and corresponds to typical formalizations of
key registration functionalities. Any party can query to (fetch, ID) to retrieve the value registered
18 Looking ahead, our ideal resource will depend on which parties have been subject to an attack by an

intruder and will weaken the security guarantees for this party accordingly as described later. Note that
we consider static security only in this work.

A Constructive Perspective on Signcryption Security 15

Resource CAn

Initialization
T ← empty table
J ← ∅

Interface Pi, i ∈ [n]

Input: (register, ID, val) ∈ {0, 1}∗×{0, 1}∗
if ID 6∈ J then

J ← J ∪ {ID}
T [ID]← val
output Success at Pi

else
output Fail at Pi

Input: (fetch, ID) ∈ {0, 1}∗
if ID ∈ J then

output T [ID] at Pi
else

output ⊥ at Pi

Interface E

Input: (register, ID, val) ∈ {0, 1}∗×{0, 1}∗
if ID 6∈ J then

T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Resource Netn

Initialization
I1, I2 ← empty tables
J ← ∅

Interface Pi, i ∈ [n]

Input: (register, ID) ∈ {0, 1}∗
if ID 6∈ J ∧ I1[Pi] = ⊥ then

J ← J ∪ {ID}
I1[Pi]← ID
I2[ID]← Pi
output Success at Pi

else
output Fail at Pi

Input: (send,m, IDr) ∈ M× {0, 1}∗
IDs ← I1[Pi]
if IDs 6= ⊥ then

output (m, IDs, IDr) at E

Interface E

Input: (inject,m, IDs, IDr)
∈ M× {0, 1}∗ × {0, 1}∗

if IDr ∈ J then
P← I2[IDr]
output (m, IDs) at P

Resource Memn

Initialization
val ← ⊥

Interface Pi, i ∈ [n]

Input: (store, x) ∈ {0, 1}∗
val ← x

Input: read

output val at Pi

Interface Mi, i ∈ [n]

Input: reveal

output val at Mi

Fig. 5. The (unfiltered) behavior of the assumed resources.

16 C. Badertscher and F. Banfi and U. Maurer

for identity ID. Eve can register any value with any identity, under the constraint that the identity
is not already registered. The specification as pseudo-code is found in Fig. 5Fig. 5. The capabilities at
interface E are again not guaranteed and will be filtered as in the case of the network.

4.2 The Protocol

Signcryption converter. The signcryption converter scrΨ is defined for any given signcryption
scheme Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt). The converter specifies the actions that each
party takes to secure the communication over the insecure network at interface Pi. Upon a reg-
istration query, a party generates the two key-pairs required by the signcryption scheme, i.e., a
sender key pair and a receiver key pair that it uses to send and receive message, respectively. It
then tries to register its identity at the insecure network and tries to register the identity and the
two public keys with the certificate authority. If everything succeeded, the converter stores the keys
its local memory. Otherwise, the initialization is not complete and the party remains un-initialized.

Upon sending a message, an initialized party retrieves the receiver public key of its intended
communication partner, and signcrypts the message according to the signcryption scheme (and
retrieves the secret key from the memory) and sends the signcryptext over the network (indicating
the destination address). Upon receiving a pair (s, ID) consisting of a signcryptext and a candidate
source address from the insecure network, it tries to unsigncrypt the given value and outputs the
resulting message. The formal specification of this protocol converter appears in Fig. 6Fig. 6.

The default behavior for possibly dishonest interfaces. The converters for the potentially
dishonest interfaces are quite simple: the intruder is assumed to perform no additional operation
(the filter is not removed and exports no capability) and this converter is therefore simply the
identity converter 1. The same holds for the network attacker where no additional operation needs
to be specified. Recall that attackers are hypothetical entities as discussed in Sect. 2.4Sect. 2.4.

4.3 Goal: A Secure Network with Graceful Degradation

The ideal system we want to achieve is a secure network that gracefully degrades and is specified in
Fig. 7Fig. 7. This ideal network is basically a secure network. To see this, imagine there was no interface
Mi: then parties register to the resource like to the normal network and can send and receive
messages. In addition, the adversary learns the length of the message (and sender and receiver
identities), and cannot inject messages. The reason for this behavior is that in the case of an
honest registration query, if party Pi registers its identity successfully, then its associated identity
is only added to the special set S if there was no input reveal at interface Mi. Now observe that
the condition under which the network attacker can inject a message for some party identity ID
includes that ID 6∈ S. In addition, the network attacker learns only the length of the messages
whenever a message is sent to an identity ID ∈ S. Thus, since all registered identities of honest
parties are in S, communication between any two of them is secure.

Now, the input reveal is potentially available at interface Mi (this models the fact that the
party is compromised). Whenever this input happens, then the corresponding party identity is not
included in S. This means that the network attacker at interface E can inject messages on behalf
of the identity registered at interface Pi and obtains the content of any message sent to Pi. We see
that only the security of Pi is affected. To complete this description, note that the secure network
outputs shared randomness between the intruder of party Pi and the network attacker. This models
that in the ideal world, shared randomness is potentially available to the parties. This is indeed the
case, since the network attacker learns signcryptexts that are created with the secret key leaked at
interface Mi.1919

19 There is a more technical argument why shared randomness is leaked: the simulator for the intruder has
to simulate a correct key pair, and the simulator for the network attacker has to compute the same key
pair to simulate the correct distribution of signcryptexts. Otherwise, the simulation is not consistent.
Looking ahead, both simulators will run the key generation algorithms using the provided randomness
of sufficient length.

A Constructive Perspective on Signcryption Security 17

Converter scrΨ

Initialization
IDreg ← ⊥

Interface out

Input: (register, ID) ∈ {0, 1}∗
if IDreg = ⊥ then

(skS , pkS)← GenS
()← GenR
val ← [skS , pkS , skR, pkR]
output (register, ID, (pkS , pkR))

at in to CA
Let retca be the return value
if retca = Success then

output (register, ID) at in to Net
Let retnet be the return value
if retnet = Success then

IDreg ← ID
output (store, val) at in to Mem
output Success at out

else
output Fail at out

else
output Fail at out

Input: (send,m, ID) ∈ M× {0, 1}∗
if IDreg 6= ⊥ then

output read at in to Mem
Let val = [skS , pkS , skR, pkR] be the

return value
output (fetch, ID) at in to CA
Let retca be the return value
Parse retca as pair (pk ′S , pk

′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

s← Signcrypt(skS , pk
′
R,m)

output (send, s, ID) at in to Net

Interface in

Input: (s, ID) ∈ S × {0, 1}∗ from Net
if IDreg 6= ⊥ then

output read at in to Mem
Let val = [skS , pkS , skR, pkR] be the return value
output (fetch, ID) at in to CA
Let retca be the return value
Parse retca as pair (pk ′S , pk

′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if m 6= ⊥ then
output (m, ID) at out

Fig. 6. The signcryption converter.

At interface Mi, the capability to reveal is only potentially available to an intruder Mallory
and thus not guaranteed. This means that we also consider here a filtered resource, namely
SecNTn,φideal

with the following filter φideal := (1P1 , . . . ,1Pn ,0M1 , . . . ,0Mn , dlvE) where 1 is again
the identity converter and 0 is the converter that blocks all interactions, and dlv at interface E sim-
ply turns SecNT into a reliable-delivery and “secure” network (since this models the case without
any network attacker). Looking ahead, the potentially available capability to compromise a party
corresponds to the potentially available input reveal in the ideal world.

4.4 Formal Statement

We are now ready to formally state the main theorem of this work. To recall, we assign to every
honest (party) interface the signcryption converter scrΨ , to the possibly dishonest network attacker
interface E and to the potentially dishonest intruder interfaces Mi the identity converter (they model
hypothetical entities). This can be summarized by the vector πΨ = (scrΨ , . . . , scrΨ ,1, . . . ,1,1). The
real system is the parallel composition of the assumed resources [Netn,CAn,Memn]φreal , where
φreal is the filter that shields the memory (interfaces Mi), the network, and the certificate authority
(interface E), as described above and thus is equal to the filter in the ideal world.2020 We prove the
following result:

20 Formally, this means that for all interfaces Pi, the filter φreal applies the identity converter, for all
interfaces Mi it applies 0, and for interface E it applies the filter converter dlv. The filter in the real world
and in the ideal world are thus the same.

18 C. Badertscher and F. Banfi and U. Maurer

Resource SecNTn

Initialization
r1||r2|| . . . ||rn � ({0, 1}2κ)n

. Common randomness
I1, I2 ← empty tables

. Mapping interfaces and identities
J ← ∅ . Registered identities
L← [] . Inputs of parties
for i = 1 to n do

setupCompletedi ← false . Init. flag

Interface Mi

Input: reveal

Ic ← Ic ∪ {i}
if setupCompletedi then

output ri at Mi

Interface E
Input: (deliver, j) ∈ N

if j ≤ |L| then
Parse L[j] as (m, IDs, IDr)
P← I2[IDr]
output (m, IDs) at P

Input: (register, ID) ∈ {0, 1}∗
if ID 6∈ J then

J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: (inject,m, IDs, IDr)
∈ M× {0, 1}∗ × {0, 1}∗

P← I2[IDr]
if IDs ∈ J and P 6= ⊥ and IDs 6∈ S then

output (m, IDs) at P

Input: getCommonRand
output {(i, ri) | i ∈ Ic} at E

Input: getMapping
output (I1, I2, J) at E

Interface Pi

Input: (register, ID) ∈ {0, 1}∗
if ID 6∈ J ∧ I1[Pi] = ⊥ then

J ← J ∪ {ID}
I1[Pi]← ID
I2[ID]← Pi
setupCompletedi ← true
if i 6∈ Ic then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

Input: (send,m, ID) ∈ M× {0, 1}∗
IDs ← I1[Pi]
if IDs 6= ⊥ then

if ID ∈ J and ID ∈ S then
L← L||(m, IDs, ID)
output (|m|, IDs, IDr) at E

else
output (m, IDs, IDr) at E

Fig. 7. The (unfiltered) behavior of the constructed resource.

Theorem 1. Let Ψ be a signcryption scheme, and let κ be an upper bound on the random-
ness used in one invocation of the key-generation algorithm. Then, the associated protocol πΨ :=
(scrΨ , . . . , scrΨ ,1, . . . ,1,1) constructs the gracefully-degrading secure network from an insecure net-
work, a certificate authority, and a memory resource within ε(·) and with respect to potentially
dishonest U := {M1, . . . , Mn, E}, i.e.,

[Netn,CAn,Memn]φreal

(πΨ , ε,U)
==⇒ SecNTnφideal ,

for ε(D) := n2 ·AdvMOS
Ψ,ρ1(D)+n·Adv

MIS-Auth
Ψ,ρ2(D) +n·Adv

MIS-Conf
Ψ,ρ3(D) , where the (efficient) black-box reductions

ρ1, ρ2, and ρ3 are defined below in the proofs for Lemma 2Lemma 2, Lemma 3Lemma 3, and Lemma 4Lemma 4, respectively.
Stated differently, if the signcryption scheme is secure in the respective multi-user, outsider-

security and insider-security model, then the construction is achieved.

5 Proof of Theorem 1Theorem 1

To prove Theorem 1Theorem 1, we specify the two converters σmem and σnet in Fig. 8Fig. 8 and prove that
Definition 2Definition 2 is fulfilled for σ = (σM1 , . . . , σMn , σE), where σE := σnet and σMi := σmem and for
the above choice of ε(.). In particular, we show that for any subset C ⊆ U we have that

∆D(πΨC φ
real
C [Netn,CAn,Memn], σC φ

ideal
C SecNTn) ≤ ε(D),

for any distinguisher D. Fix any set C ⊆ {Mi, . . . , Mn, E}. We first observe that if E 6∈ C, then
the real and the ideal world are indistinguishable: both systems behave like a secure network,

A Constructive Perspective on Signcryption Security 19

and for any interface Mi ∈ C, two signcryption key pairs are leaked. Since the network attacker is
not present, this has no observable effect to the security properties. We can thus, without loss of
generality assume that E ∈ C. The set C induces a special corruption set Z ⊆ {M1, . . . , Mn}, i.e.,
Mi ∈ Z ↔ Mi ∈ C. The set Z intuitively describes the corruption set, i.e., the set of parties whose
keys are stolen. We prove the statement by a game-hopping argument. We start with the real world
HZ0 which is equivalent to the real world πΨC φ

real
C [Netn,CAn,Memn] with C := {E}∪Z, and end

with system HZ6 which is equivalent to ideal world σC φidealC SecNTn with with C := {E}∪Z. Each
hop in this sequence is justified by careful syntactic inspection of the differences of the systems and
their difference is either 0 (in case of syntactic modifications that do not affect the behavior) or can
be bounded by the respective advantage of an attacker against the security games of signcryption.
Note that we prove the statement for a insider-security notion that is implied by the traditional
insider-security notion. By transitivity, Theorem 1Theorem 1 also holds with respect to the traditional notion.

5.1 Sequence of Hybrid Worlds

Let Z be an arbitrary and fixed corruption set. We describe the systems below informally, indicating
what is the change from one hybrid to the next. The code is given in the supplementary material
Appendix CAppendix C including graphical indication in the pseudo-code what changes from one hybrid to
the next.

The first hybrid system HZ0 , depicted in Fig. 15Fig. 15 in Appendix CAppendix C, describes the behavior of the
real world, where we plugged together the protocol converters and the assumed system. We further
introduce some new variables such as bad1 and bad2 that do not have an impact on the behavior.

The second hybrid system HZ1 , first depicted in Fig. 16Fig. 16 in Appendix CAppendix C, is a slight modification
of the first, where we replace encryptions of messages by encryptions of random messages, in case
the communication is between two honest parties whose keys were not stolen. Furthermore, the
adversary cannot inject messages for any such pairs of parties. The variable bad1 is true, if and
only if the adversary succeeds in breaking the security between any such pair. Note that the set S
computed by the hybrids comprises all parties which are not corrupted, that is, all parties not in
Z.

For the difference between the first and second hybrid, we can prove the following lemma.

Lemma 2. If Ψ is MOS secure, then HZ0 ≈ HZ1 (that is, systems HZ0 and HZ1 are computationally
indistinguishable). More precisely, for any distinguisher D we have ∆D(HZ0 ,H

Z
1) ≤ n2 ·Adv

MOS
Ψ,ρ(D),

that is, a (successful) distinguisher D for HZ0 and HZ1 can be transformed into a (successful)
distinguisher A = ρ(D) (defined in the proof) for RealMOS

Ψ and IdealMOS
Ψ .

Proof (sketch). The complete formal proof of Lemma 2Lemma 2 is deferred to Appendix B.1Appendix B.1. The idea is
to use a standard hybrid argument on the set of all pairs of users which (pairwise) do not leak
their secret key in the real world, that is, the set of all pairs of users which in the ideal world can
communicate in a secure (both confidential and authentic) fashion. More precisely, we select one
of those pairs of users uniformly at random, and for their (mono-directional) communications we
use the oracles provided to the adversary by the security experiment. ut

The third hybrid system HZ2 , first depicted in Fig. 17Fig. 17 in Appendix CAppendix C, is a slight modification
of the second: in this hybrid system, a message cannot be injected for pairs of parties, where the
source of a message is a honest party whose key was not stolen (and the recipient is a party about
whom we do not make an assumption). The variable bad2 is true, if and only if the adversary
succeeds in breaking the security between any such pair.

For the difference between the second and third hybrid, we can prove the following lemma.

Lemma 3. If Ψ is MIS-Auth secure, then HZ1 ≈ HZ2 (that is, systems HZ1 and HZ2 are com-
putationally indistinguishable). More precisely, for any distinguisher D we have ∆D(HZ1 ,H

Z
2) ≤

n · AdvMIS-Auth
Ψ,ρ(D) , that is, a (successful) distinguisher D for HZ1 and HZ2 can be transformed into a

(successful) forger A = ρ(D) (defined in the proof) for AuthMIS
Ψ .

20 C. Badertscher and F. Banfi and U. Maurer

Converter σnet

Initialization
T ← empty table; valPk ← ⊥ for all k ∈ [n]; j ← 0

Interface out

Input: (inject, s, IDs, IDr) (for Net)
UpdateKeyTable . s ∈ S
Let valPi = [skS , pkS , skR, pkR]

Parse T [IDs] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

if ∃j : Lsim[c, IDs, IDr] = j} then
j ← Lsim[c, IDs, IDr]
output (deliver, j) to SecNT

else
m← Unsigncrypt(skR, pk

′
S , s)

if m 6= ⊥ then
(inject,m, IDs, IDr)

Input: (register, ID, val) (for CA)
output (register, ID) at SecNT
Let v be the returned answer
if v = Success then

T [ID]← val
output Success at E

else
output Fail at E

Input: fetchAll (for CA)
UpdateKeyTable
output getMapping at in to SecNT
Let (I1, I2, J) be the returned value
output (J, T) at out

Interface in

Input: (v, IDs, IDr) (from Net)
UpdateKeyTable . v ∈ M or v ∈ N
output getMapping at in to SecNT
Let (I1, I2, J) be the returned value
Let Pi ← I2[IDs]
Parse vali as [skS , pkS , skR, pkR]
Parse T [ID] as (pk ′S , pk

′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

if v ∈ N then
Let `← v
m∗ � {0, 1}`
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← v
s← Signcrypt(skS , pk

′
R,m

∗)
Lsim[c, IDs, IDr]← j
j ← j + 1
output (s, IDs, IDr) at E

Helper procedure of this simulator:
procedure UpdateKeyTable

output getMapping at in to SecNT
Let (I1, I2, J) be the returned value
output getCommonRand to SecNT
Let Z := {(i, ri)} be the return value
for each ID ∈ J do

if I2[ID] 6= ⊥ ∧ T [ID] = ⊥ then
Let Pk ← I2[ID]
if (k, ·) 6∈ Z then (r1k, r

2
k) � {0, 1}2κ

(skS , pkS)← GenS(r
1
k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

Converter σmem

Initialization
val ← ⊥
output reveal at in to SecNT . Compromise this party in the ideal world.

Interface out

Input: reveal

if val = ⊥ then
output reveal at in to SecNT
Let r be the returned value
if r equals r1||r2 ∈ {0, 1}2κ then

(skS , pkS)← GenS(r
1)

(skR, pkR)← GenR(r2)
val ← [skS , pkS , skR, pkR]

output val at out

Fig. 8. The simulator converters for the construction.

A Constructive Perspective on Signcryption Security 21

Proof (sketch). The complete formal proof of Lemma 3Lemma 3 is deferred to Appendix B.2Appendix B.2. The idea is
again to use a standard hybrid argument, but this time on the set of all senders which did not
leak their secret key in the real world, that is, the set of all users which in the ideal world can
send messages in an authentic fashion to other users. More precisely, we select one of those users
uniformly at random, and for his (outgoing) communications we use the oracles provided to the
adversary by the security experiment. Note that for the very special case that Z = ∅ the statement
is trivial since there is no difference between HZ1 and HZ2 by definition. ut

The fourth hybrid system HZ3 , first depicted in Fig. 18Fig. 18 in Appendix CAppendix C, is a slight modification
of the third, where we replace encryptions of messages by encryptions of random messages, in case
the recipient of a message is an honest party whose key was not stolen (and the source is a party
about whom we make no assumption).

For the difference between the third and the fourth hybrid, we can prove the following lemma.

Lemma 4. If Ψ is MIS-Conf secure, then HZ2 ≈ HZ3 (that is, systems HZ2 and HZ3 are com-
putationally indistinguishable). More precisely, for any distinguisher D we have ∆D(HZ2 ,H

Z
3) ≤

n · AdvMIS-Conf
Ψ,ρ(D) , that is, a (successful) distinguisher D for HZ2 and HZ3 can be transformed into a

(successful) distinguisher A = ρ(D) (defined in the proof) for RealMIS-Conf
Ψ and IdealMIS-Conf

Ψ .

Proof (sketch). The complete formal proof of Lemma 4Lemma 4 is deferred to Appendix B.3Appendix B.3. The idea is
again to use a standard hybrid argument, but this time on the set of all receivers which did not
leak their secret key in the real world, that is, the set of all users which in the ideal world can
receive messages in a confidential fashion. More precisely, we select one of those users uniformly at
random, and for his (ingoing) communications we use the oracles provided to the adversary by the
security experiment. Note that for the very special case that Z = ∅ the statement is trivial since
there is no difference between HZ2 and HZ3 by definition. ut

The fifth hybrid system HZ4 , first depicted in Fig. 19Fig. 19 in Appendix CAppendix C, is a syntactic modification
of the fourth. In particular, we observe that the mapping of identities to interfaces is stored redun-
dantly, once within the network and once within the certification authority. Hence, it is sufficient to
store it only once. We further simplify the case distinction upon input (send,m, ID) at an interface
Pi, and upon input (inject, s, IDs, IDr) at interface E. The behavior of the resulting system is not
affected by any of these changes and the two hybrids are equivalent, i.e., HZ3 = HZ4 .

The sixth hybrid systemHZ5 , first depicted in Fig. 20Fig. 20 in Appendix CAppendix C, is a syntactic modification
of the previous one. In this system, we observe that also the identities are stored redundantly, so it
is sufficient to only store the identities in one set (which is Jca in this case). Furthermore, we can
test various conditions at once and do not need nested if-statements upon input (register, ID)
at an interface Pi. The modifications we make in this step do not affect the behavior. Their sole
purpose is to bring this system closer to the ideal world system. By inspecting the pseudo-code in
Fig. 20Fig. 20 we conclude HZ4 = HZ5 .

Finally, the seventh hybrid system HZ6 , first depicted in Fig. 21Fig. 21 in Appendix CAppendix C, contains the
final, syntactic modifications and equals the ideal world with simulators attached at the corre-
sponding interfaces.

These final modifications include the following items: first, instead of generating the key pairs
upon registration, we simply generate them when needed. For this, the system first generates some
sufficiently long shared randomness. Whenever a key is generated for an honest party whose key
is stolen, the corresponding part of the shared randomness is used to generate it (the simulator
will learn the shared randomness for those people). If a key is to be generated for a party whose
key is not stolen, the randomness is sampled uniformly at random to generate the keys (this will
eventually be done within the simulator). Finally, we replace the the list L that stores messages,
source and destination identities, and the ciphertext by two lists and implement an equivalent
lookup using these two lists. Finally, we also rename the set Jca to J and conclude that HZ5 = HZ6 .

We depict the final hybrid system HZ6 a second time in Fig. 22Fig. 22 in Appendix CAppendix C. For better
accessibility, we color the corresponding parts of the simulators in blue and surround it by a solid

22 C. Badertscher and F. Banfi and U. Maurer

line, and we color the code executed by the constructed resource SecNTn green and surround it by
a dashed line. The last hybrid system is thus the compilation of the simulator and the constructed
resource–and thus equals the ideal system—which can be concluded by inspection.

This concludes the game-hopping argument and the proof of Theorem 1Theorem 1.

A special case. An interesting corollary that we can directly observe by looking at the game-
hopping argument is that in the special case when the set of interfaces with potential dishonest
behavior is the set {E}, then we get the following statement, which expresses that the outsider secu-
rity model implies the construction of a secure network if no honest parties’ keys are compromised.

Corollary 1. If there are no key compromises, i.e, U = {E}, then

[Netn,CAn,Memn]φreal

(πΨ , ε, {E})
==⇒ SecNTnφideal ,

for ε(D) := n2 · AdvMOS
Ψ,ρ1(D), where the (efficient) black-box reduction ρ1 is defined in the proof of

Lemma 2Lemma 2.

Proof. The proof follows by inspecting the above arguments for Z := ∅. ut

6 Conclusions

In this work, we have taken a novel look at the basic notions of signcryption security. We have
identified and formalized an important application of signcryption schemes as network protocols
in a typical PKI setup. We observed which game-based security notions are adequate to conclude
the security of this construction. This is important as it serves at least two purposes: (1) it helps to
understand the importance of insider security and strongly supports considering it as the standard
notion, and (2) it helps to identify which variant of insider security is the preferred one by providing
evidence that the one discussed in this work is adequate to achieve a meaningful construction. The
methodology that we put forward in our work can be the basis for future reviews on different notions
for signcryption security in order to investigate what they exactly achieve in a given application
scenario, i.e., based on a set of assumed resources modeling the real-world. It is an interesting future
research direction to analyze alternative definitions, including the recently introduced enhanced
definitions, by conducting an application-centric analysis in our spirit.

A Constructive Perspective on Signcryption Security 23

References

1. An, J., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Advances in
Cryptology—EUROCRYPT 2002. pp. 83–107. Springer (2002)

2. An, J.H.: Authenticated encryption in the public-key setting: Security notions and analyses. Cryptology
ePrint Archive, Report 2001/079 (2001), http://eprint.iacr.org/2001/079http://eprint.iacr.org/2001/079

3. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. Journal of cryptology
20(2), 203–235 (2007)

4. Barbosa, M., Farshim, P.: Certificateless signcryption. In: Proceedings of the 2008 ACM symposium
on Information, computer and communications security. pp. 369–372. ACM (2008)

5. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the
generic composition paradigm. In: Advances in Cryptology—ASIACRYPT 2000. pp. 531–545. Springer
(2000)

6. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. In:
Advances in Cryptology–EUROCRYPT 2006. pp. 409–426 (2006)

7. Bjørstad, T.E., Dent, A.W.: Building better signcryption schemes with tag-kems. In: Public Key
Cryptography - PKC 2006. pp. 491–507. Springer (2006)

8. Boyen, X.: Multipurpose identity-based signcryption. In: Advances in Cryptology - CRYPTO 2003.
pp. 383–399. Springer (2003)

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Pro-
ceedings of the 42nd Symposium on Foundations of Computer Science. pp. 136–145. IEEE (2001)

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Advances in
Cryptology — EUROCRYPT 2003. pp. 255–271. Springer (2003)

11. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key encryption. In: Theory
of Cryptography - TCC 2005. pp. 150–168. Springer (2005)

12. Çapar, Ç., Goeckel, D., Paterson, K.G., Quaglia, E.A., Towsley, D., Zafer, M.: Signal-flow-based anal-
ysis of wireless security protocols. Information and Computation 226, 37–56 (2013)

13. Datta, P., Dutta, R., Mukhopadhyay, S.: Compact attribute-based encryption and signcryption for
general circuits from multilinear maps. In: Progress in Cryptology – INDOCRYPT 2015. pp. 3–24.
Springer (2015)

14. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional signcryption: Notion, construction, and applica-
tions. In: Provable Security – ProvSec 2015. pp. 268–288. Springer (2015)

15. Dent, A.W.: Hybrid signcryption schemes with insider security. In: Information Security and Privacy:
10th Australasian Conference, ACISP 2005. pp. 253–266. Springer (2005)

16. Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N., Adrian, D., Paxson,
V., Bailey, M., Halderman, J.A.: The matter of heartbleed. In: Proceedings of the 2014 Conference on
Internet Measurement Conference. pp. 475–488. IMC ’14, ACM (2014)

17. Freire, E.S., Hesse, J., Hofheinz, D.: Universally composable non-interactive key exchange. In: Security
and Cryptography for Networks – SCN 2014. pp. 1–20. Springer (2014)

18. Freire, E.S., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. In: Public-Key
Cryptography – PKC 2013. pp. 254–271. Springer (2013)

19. Gjosteen, K., Krakmo, L.: Universally composable signcryption. In: EuroPKI 2007. pp. 346–353.
Springer (2007)

20. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption aez and the problem that it
solves. In: Advances in Cryptology – EUROCRYPT 2015, Part I. pp. 15–44. Springer (2015)

21. Hofheinz, D., Matt, C., Maurer, U.: Idealizing identity-based encryption. In: Advances in Cryptology
– ASIACRYPT 2015, Part I. pp. 495–520. Springer (2015)

22. Libert, B., Quisquater, J.J.: A new identity based signcryption scheme from pairings. In: Information
Theory Workshop, 2003. Proceedings. pp. 155–158. IEEE (2003)

23. Libert, B., Quisquater, J.J.: Efficient signcryption with key privacy from gap diffie-hellman groups. In:
Public Key Cryptography – PKC 2004. pp. 187–200. Springer (2004)

24. Liu, J.K., Baek, J., Zhou, J.: Online/offline identity-based signcryption revisited. In: Inscrypt 2010.
pp. 36–51. Springer (2010)

25. Malone-Lee, J.: Identity-based signcryption. Cryptology ePrint Archive, Report 2002/098 (2002),
https://eprint.iacr.org/2002/098https://eprint.iacr.org/2002/098

26. Maurer, U.: Indistinguishability of random systems. In: Advances in Cryptology — EUROCRYPT
2002. pp. 110–132. Springer (2002)

27. Maurer, U.: Constructive cryptography - a new paradigm for security definitions and proofs. In: TOSCA
2011. pp. 33–56 (2011)

http://eprint.iacr.org/2001/079
https://eprint.iacr.org/2002/098

24 C. Badertscher and F. Banfi and U. Maurer

28. Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Theoretical Computer Science. pp.
1–21. Tsinghua University Press (2011)

29. Nemec, M., Sys, M., Svenda, P., Klinec, D., Matyas, V.: The return of coppersmith’s attack: Practical
factorization of widely used rsa moduli. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. pp. 1631–1648. ACM (2017)

30. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-committing
encryption case. In: Advances in Cryptology — CRYPTO 2002. Springer (2002)

31. Pandit, T., Pandey, S.K., Barua, R.: Attribute-based signcryption: Signer privacy, strong unforgeability
and ind-cca2 security in adaptive-predicates attack. In: Provable Security – ProvSec 2014. pp. 274–290.
Springer (2014)

32. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Advances in
Cryptology – EUROCRYPT 2006. pp. 373–390. Springer (2006)

33. Selvi, S.S.D., Vivek, S.S., Rangan, C.P.: Identity based public verifiable signcryption scheme. In: Prov-
able Security – ProvSec 2010. pp. 244–260. Springer (2010)

34. Selvi, S.S.D., Vivek, S.S., Vinayagamurthy, D., Rangan, C.P.: Id based signcryption scheme in standard
model. In: Provable Security – ProvSec 2012. pp. 35–52. Springer (2012)

35. Steinfeld, R., Zheng, Y.: A signcryption scheme based on integer factorization. Information Security:
Third International Workshop, ISW 2000 pp. 131–146 (2000)

36. Tian, Y., Peng, C.: Universally composable secure group communication. Cryptology ePrint Archive,
Report 2014/647 (2014), https://eprint.iacr.org/2014/647https://eprint.iacr.org/2014/647

37. Wang, Y., Manulis, M., Au, M.H., Susilo, W.: Relations among privacy notions for signcryption and
key invisible “sign-then-encrypt”. In: Information Security and Privacy: 18th Australasian Conference,
ACISP 2013. pp. 187–202. Springer (2013)

38. Young, M., Dent, A.W., Zheng, Y.: Practical signcryption. Springer Science & Business Media (2010)
39. Zheng, Y.: Digital signcryption or how to achieve cost (signature & encryption) � cost (signature)+

cost (encryption). In: Advances in Cryptology – CRYPTO 1997. pp. 165–179. Springer (1997)
40. Zheng, Y., Imai, H.: How to construct efficient signcryption schemes on elliptic curves. Information

Processing Letters 68(5), 227–233 (1998)

A Security of Signcryption

In this section we first state the separate definitions of confidentiality and authenticity (as found in
the literature) for signcryption in the multi-user setting for an outsider adversary, and then show
the equivalence of their coupling with our all-in-one formulation.

A.1 Standard Notions for Multi-User Outsider Security

In the literature, usually confidentiality of signcryption is defined using an experiment in which
the adversary is supposed to distinguish signcryptexts of two messages chosen by him and sign-
crypted using the keys of some fixed sender and receiver, while having access to both flexible
signcryption and unsigncryption oracles (which as usual, returns ⊥ when the adversary queries
previously obtained signcryptexts, in order to avoid trivial attacks), with the restriction that the
unsigncryption oracle does not unsigncrypt the challenge signcryptexts under the fixed sender’s
public key. Using a standard hybrid argument, it is easy to see that such definitions are equivalent
to real-or-random definitions, where the adversary must distinguish whether it is interacting with
a true flexible signcryption oracle, or one which always signcrypts freshly uniform messages when
queried with the fixed receiver’s public key, and a flexible unsigncryption oracle which in both
cases does not unsigncrypt a signcryptext under the fixed sender’s public key previously returned
by the signcryption oracle where it was signcrypted under the fixed receiver’s public key (formally,
in such cases the adversary obtains the special symbol ⊥ back from the unsigncryption oracle). We
formally define confidentiality of signcryption in the multi-user setting for an outsider adversary
as follows.

Definition 6. Let Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt) be a signcryption scheme and A a
probabilistic algorithm. We define the advantage of A in distinguishingRealMOS-Conf

Ψ and IdealMOS-Conf
Ψ

from Fig. 9Fig. 9 as

AdvMOS-Conf
Ψ,A := Pr

[
ARealMOS-Conf

Ψ = 1
]
− Pr

[
AIdealMOS-Conf

Ψ = 1
]
.

https://eprint.iacr.org/2014/647

A Constructive Perspective on Signcryption Security 25

RealMOS-Conf
Ψ

Initialization
(sk?S , pk

?
S)← GenS

(sk?R, pk
?
R)← GenR

S ← ∅
return (pk?S , pk

?
R)

Oracle Scr

Input: (pkR,m) ∈ K ×M
s← Signcrypt(sk?S , pkR,m)
if pkR = pk?R then

S ← S ∪ {s}
return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if pkS = pk?S ∧ s ∈ S then

m← ⊥
else

m← Unsigncrypt(sk?R, pkS , s)
return m

IdealMOS-Conf
Ψ

Initialization
(sk?S , pk

?
S)← GenS

(sk?R, pk
?
R)← GenR

S ← ∅
return (pk?S , pk

?
R)

Oracle Scr

Input: (pkR,m) ∈ K ×M
if pkR = pk?R then

m �M
s← Signcrypt(sk?S , pkR,m)
if pkR = pk?R then

S ← S ∪ {s}
return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if pkS = pk?S ∧ s ∈ S then

m← ⊥
else

m← Unsigncrypt(sk?R, pkS , s)
return m

Fig. 9. RealMOS-Conf
Ψ and IdealMOS-Conf

Ψ experiments for confidentiality for multi-user outsider secure sign-
cryption schemes.

We say that the scheme Ψ is MOS-Conf secure if AdvMOS-Conf
Ψ,A is negligible for all efficient adver-

saries A.

For authenticity we define an experiment in which the adversary has free access to both flexible
signcryption and unsigncryption oracles, and wins if it is able to submit a signcryptext query2121 to
the unsigncryption oracle which is new (was never returned by the signcryption oracle under the
fixed receiver’s public key) and valid (successfully decrypts to a message from the message space
other than the special symbol ⊥, under the fixed sender’s public key). Such a definition is called
strong-unforgeability of signcryptexts in the multi-user setting for an outsider adversary, and is
stated formally as follows.

Definition 7. Let Ψ = (GenS ,GenR,Signcrypt,Unsigncrypt) be a signcryption scheme and A a
probabilistic algorithm. We define the advantage of A when interacting with AuthMOS

Ψ from Fig. 10Fig. 10
as

AdvMOS-Auth
Ψ,A := Pr

[
AAuthMOS

Ψ ⇒ win
]
.

We say that the scheme Ψ is MOS-Auth secure if AdvMOS-Auth
Ψ,A is negligible for all efficient adver-

saries A.

A.2 All-in-One Security

Outline. In this section we show that our all-in-one formulation of multi-user outsider secure
signcryption (MOS security) is equivalent to the combination of the security notions of MOS-Conf
(for confidentiality) and MOS-Auth (for authenticity). Concretely, we show Lemma 1Lemma 1 by showing
that for every PPT adversary Ac, there exists a PPT adversary As such that

AdvMOS-Conf
Ψ,Ac ≤ 2 · AdvMOS

Ψ,As ,

21 Note that such a definition of authenticity is equivalent to one where the adversary is required to output
such a forgery, instead of just querying it to the unsigncryption oracle.

26 C. Badertscher and F. Banfi and U. Maurer

AuthMOS
Ψ

Initialization
(sk?S , pk

?
S)← GenS

(sk?R, pk
?
R)← GenR

S ← ∅
win← 0
return (pk?S , pk

?
R)

Oracle Scr

Input: (pkR,m) ∈ K ×M
s← Signcrypt(sk?S , pkR,m)
if pkR = pk?R then

S ← S ∪ {s}
return s

Oracle Usc

Input: (pkS , s) ∈ K × S
m← Unsigncrypt(sk?R, pkS , s)
if pkS = pk?S ∧ m 6= ⊥ ∧ s /∈ S then

win← 1
return m

Fig. 10. AuthMOS
Ψ experiment for authenticity for multi-user outsider secure signcryption schemes.

Adversary As(pk?S , pk
?
R) with oracle access to Scr(·, ·) and Usc(·, ·)

Procedure Main
b̂ � {0, 1}
obtain b′ by running Ac(pk?S , pk

?
R) with oracle access to Scr′(·, ·) and Usc(·, ·)

return 1− b′ ⊕ b̂

Procedure Scr′

Input: (pkR,m) ∈ K ×M
if b̂ = 0 then

m �M
s← Scr(pkR,m)
return s

Fig. 11. Adversary As for RealMOS
Ψ /IdealMOS

Ψ .

for every PPT Aa, there exists a PPT adversary As′ such that

AdvMOS-Auth
Ψ,Aa ≤ AdvMOS

Ψ,As′ ,

and for every PPT As′′ , there exists a PPT adversary Aa′ such that

AdvMOS
Ψ,As′′ ≤ AdvMOS-Conf

Ψ,As′′ + AdvMOS-Auth
Ψ,Aa′ .

Proof (of Lemma 1Lemma 1). We start by showing the first direction of the theorem, namely that MOS
security implies both MOS-Conf and MOS-Auth security. For this, we first define in Fig. 11Fig. 11 a
PPT adversary As interacting with either RealMOS

Ψ or IdealMOS
Ψ , which is given access to oracles

Scr(·, ·), Usc(·, ·), and internally uses a PPT adversaryAc for eitherRealMOS-Conf
Ψ or IdealMOS-Conf

Ψ ,
defined in Fig. 9Fig. 9. Specifically, As chooses a random bit b̂ ∈ {0, 1} uniformly at random, invokes
Ac with public keys pk?S and pk?R as argument, and forwards each unsigncryption query to its own
oracleUsc(·, ·) and each signcryption query ofAc to its own oracle Scr(·, ·), but replaces the queried
message with a uniform randomly selected message if b̂ = 0. Note that if As is interacting with
RealMOS

Ψ , it then perfectly simulates the game where Ac is interacting with either RealMOS-Conf
Ψ

or IdealMOS-Conf
Ψ , while if it is interacting with IdealMOS

Ψ , then for both possible values of the bit b̂
chosen by As, the signcryptexts which Ac gets from Usc′(·, ·) are identically distributed, that is, Ac
has (information-theoretically) no information about b̂, and thus when interacting with IdealMOS

Ψ ,
As wins with probability exactly 1

2 (by simply guessing). We can now analyze the MOS advantage

A Constructive Perspective on Signcryption Security 27

Adversary As′(pk?S , pk
?
R) with oracle access to Scr(·, ·) and Usc(·, ·)

Procedure Main
b̃← 0
S ← ∅
M ← empty table
Run Aa(pk?S , pk

?
R) with oracle access to Scr′(·, ·) and Usc′(·, ·)

return b̃

Procedure Scr′

Input: (pkR,m) ∈ K ×M
s← Scr(pkR,m)
if pkR = pk?R then

S ← S ∪ {s}
M [s]← m

return s

Procedure Usc′

Input: (pkS , s) ∈ K × S
m← Usc(pkS , s)
if pkS = pk?S then

if m 6= ⊥ ∧ s /∈ S then
b̃← 1

if m = ⊥ ∧ s ∈ S then
m←M [s]

return m

Fig. 12. Adversary As′ for RealMOS
Ψ /IdealMOS

Ψ .

of As for Ψ as follows:

AdvMOS
Ψ,As = Pr

[
ARealMOS

Ψ
s = 1

]
− Pr

[
AIdealMOS

Ψ
s = 1

]
=

1

2
· Pr

[
ARealMOS

Ψ
s = 1

∣∣∣ b̂ = 1
]
+

1

2
· Pr

[
ARealMOS

Ψ
s = 1

∣∣∣ b̂ = 0
]
− 1

2

=
1

2
·
(
Pr
[
ARealMOS-Conf

Ψ
c = 1

]
−
(
1− Pr

[
ARealMOS-Conf

Ψ
s = 0

]))
=

1

2
·
(
Pr
[
ARealMOS-Conf

Ψ
c = 1

]
− Pr

[
AIdealMOS-Conf

Ψ
c = 1

])
=

1

2
· AdvMOS-Conf

Ψ,Ac ,

where we used Pr
[
AIdealMOS

Ψ
s = 1

]
= 1

2 and the fact that, since As outputs 1− b′⊕ b̂, if As outputs

1 then Ac has output b′ = b̂.

As the next step, we define in Fig. 12Fig. 12 a PPT adversary As′ interacting with either RealMOS
Ψ or

IdealMOS
Ψ , which is given access to oracles Scr(·, ·), Usc(·, ·), and internally uses a PPT adversary

Aa for the AuthMOS
Ψ security game defined in Fig. 10Fig. 10. Specifically, As′ invokes Aa with public keys

pk?S and pk?R as argument, and forwards each signcryption query of Aa to its own oracle Scr(·, ·)
and in case pkR = pk?R, it keeps track of the returned signcryptexts (via the set S) as well as
the original plaintext associated with every element of S (via the mapping M). As′ also forwards
unsigncryption queries of Aa to its own oracle Usc(·, ·), but if pkS = pk?S and some of those queries
were already asked (and therefore ⊥ is returned by Usc(·, ·)), then the corresponding plaintext is
retrieved from M . Note that if As′ is interacting with RealMOS

Ψ , it then perfectly simulates the
AuthMOS

Ψ experiment for Aa, while if it is interacting with IdealMOS
Ψ , Usc′(·, ·) always returns ⊥

if pkS = pk?S , and thus b̃ will never be set to 1, and in turn As′ will always (correctly) return 0
(recall that 0 identifies the ideal world). We can now analyze the MOS advantage of As′ for Ψ as

28 C. Badertscher and F. Banfi and U. Maurer

Real0Ψ and Real1Ψ

Initialization
(sk?S , pk

?
S)← GenS

(sk?R, pk
?
R)← GenR

S ← ∅
return (pk?S , pk

?
R)

Oracle Scr

Input: (pkR,m) ∈ K ×M
s← Signcrypt(sk?S , pkR,m)
if pkR = pk?R then

S ← S ∪ {s}
return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if pkS = pk?S ∧ s ∈ S then

m← ⊥
else

m← Unsigncrypt(sk?R, pkS , s)
return m

Ideal0Ψ and Real1Ψ

Initialization
(sk?S , pk

?
S)← GenS

(sk?R, pk
?
R)← GenR

S ← ∅
return (pk?S , pk

?
R)

Oracle Scr

Input: (pkR,m) ∈ K ×M
if pkR = pk?R then

m �M
s← Signcrypt(sk?S , pkR,m)

if pkR = pk?R then
S ← S ∪ {s}

return s

Oracle Usc

Input: (pkS , s) ∈ K × S
if pkS = pk?S then

m← ⊥
else

m← Unsigncrypt(sk?R, pkS , s)

if pkS = pk?S then
m̃← Unsigncrypt(sk?R, pk

?
S , s)

if m̃ 6= ⊥ ∧ s /∈ S then
bad← 1

m← m̃

return m

Fig. 13. Security games Real0Ψ , Ideal0Ψ and Real1Ψ , Ideal1Ψ .

follows:

AdvMOS
Ψ,As′ = Pr

[
ARealMOS

Ψ
s = 1

]
− Pr

[
AIdealMOS

Ψ
s = 1

]
= Pr

[
AAuthMOS

Ψ
s ⇒ win

]
− 0

= AdvMOS-Auth
Ψ,Aa ,

where we used Pr
[
AIdealMOS

Ψ
s = 1

]
= 1− Pr

[
AIdealMOS

Ψ
s = 0

]
= 1− 1 = 0.

From the two calculations above, it follows that AdvMOS-Conf
Ψ,Ac ≤ 2 · AdvMOS

Ψ,As and AdvMOS-Auth
Ψ,Aa ≤

AdvMOS
Ψ,As′ as claimed, which means that if Ψ is MOS secure, then it is also MOS-Conf secure and

MOS-Auth secure.
Finally, it remains to show the opposite direction of the theorem, that is, that together MOS-

Conf and MOS-Auth security imply MOS security. In turn, this means that a PPT adversary for
distinguishing RealMOS

Ψ and IdealMOS
Ψ can be used to construct a PPT adversary for distinguishing

RealMOS-Conf
Ψ and IdealMOS-Conf

Ψ or a PPT adversary for winning AuthMOS
Ψ . For this, let define the

four games Real0Ψ , Ideal
0
Ψ and Real1Ψ , Ideal

1
Ψ as in Fig. 13Fig. 13.

The lines within the dashed box of Ideal0Ψ/Ideal
1
Ψ highlight the difference of the two games

with IdealMOS
Ψ . The line within the solid box in Ideal1Ψ denotes the only difference between Ideal0Ψ

and Ideal1Ψ . Clearly, Ideal
0
Ψ and Ideal1Ψ are identical until bad is set to 1. Note that Ideal0Ψ is

identical to IdealMOS
Ψ to an adversary, because setting bad to 1 does not affect the behavior of

the adversary in any way (the adversary cannot learn that bad has been set). On the other hand,
Ideal1Ψ is identical to IdealMOS-Conf

Ψ to an adversary, because now the unsigncryption oracle does
not return ⊥ for valid signcryptexts if pkS = pk?S and b = 0 (that is, in the random world), but
it returns the correct message as it would when b = 1 (that is, in the real world), thus behaving
exactly as the unsigncryption oracle of RealMOS-Conf

Ψ and IdealMOS-Conf
Ψ . Also note that RealMOS

Ψ ,

A Constructive Perspective on Signcryption Security 29

Adversary Aa′(pk?S , pk
?
R) with oracle access to Scr(·, ·) and Usc(·, ·)

Procedure Main
S ← ∅
Run As′′ (pk

?
S , pk

?
R) with oracle access to Scr′(·, ·) and Usc′(·, ·)

Procedure Scr′

Input: (pkR,m) ∈ K ×M
if pkR = pk?R then

m �M
s← Scr(pkR,m)
if pkR = pk?R then

S ← S ∪ {s}
return s

Procedure Usc′

Input: (pkS , s) ∈ K × S
if pkS 6= pk?S ∧ s ∈ S then

m← ⊥
else

m← Usc(pkS , s)
return m

Fig. 14. Adversary Aa′ for AuthMOS
Ψ .

Real0Ψ , Real
1
Ψ , and Real

MOS-Conf
Ψ are all the same. We can therefore proceed in analyzing the MOS

advantage of As′′ for Ψ as follows:

AdvMOS
Ψ,As′′ = Pr

[
ARealMOS

Ψ

s′′ = 1
]
− Pr

[
AIdealMOS

Ψ

s′′ = 1
]

= Pr
[
AReal0Ψ
s′′ = 1

]
− Pr

[
AIdeal0Ψ
s′′ = 1

]
= Pr

[
AReal0Ψ
s′′ = 1

]
− Pr

[
AIdeal0Ψ
s′′ = 1

]
+

+ Pr
[
AIdeal1Ψ
s′′ = 1

]
− Pr

[
AIdeal1Ψ
s′′ = 1

]
≤ Pr

[
AIdeal1Ψ
s′′ ⇒ bad

]
+ Pr

[
ARealMOS-Conf

Ψ

s′′ = 1
]
+

− Pr
[
AIdealMOS-Conf

Ψ

s′′ = 1
]

(1)

= Pr
[
AAuthMOS

Ψ

a′ ⇒ win
]
+ AdvMOS-Conf

Ψ,As′′ (2)

= AdvMOS-Auth
Ψ,Aa′ + AdvMOS-Conf

Ψ,As′′ ,

where for (11) we used from [2626, Theorem 1] (or equivalently, a concretization thereof for code-based
games in [66, Lemma 2 (“Fundameltal Lemma of Game-Playing”)]) and the fact that Ideal1Ψ and
Ideal0Ψ behave identically until bad is set, and for (22) we used the reduction implemented by the
adversary Aa′ forAuthMOS

Ψ described from Fig. 14Fig. 14, which simply simulates Ideal1Ψ to As′′ . Clearly,
as soon as As′′ queries a winning query to Usc′(·, ·), so does Aa′ to Usc(·, ·). Note that the bit
output by As′′ is useless and thus ignored.

Therefore, AdvMOS
Ψ,As′′ ≤ AdvMOS-Conf

Ψ,As′′ + AdvMOS-Auth
Ψ,Aa′ as claimed, which means that if Ψ is both

MOS-Conf secure and MOS-Auth secure, then it is also MOS secure. ut

B Proofs of Lemma 2Lemma 2, Lemma 3Lemma 3, and Lemma 4Lemma 4

B.1 Proof of the First Game-Hop

Proof (of Lemma 2Lemma 2). We need to provide a reduction ρ(·) so that distinguishing RealMOS
Ψ from

IdealMOS
Ψ can be reduced to distinguishing HZ0 from HZ1 . Let the system D be a distinguisher

30 C. Badertscher and F. Banfi and U. Maurer

for HZ0 and HZ1 , and for the set I := {i ∈ [n] | Mi /∈ Z} of indexes of uncorrupted parties,2222 let
L := I ×I denote the set of all `2 two-element2323 tuples over the set I, with ` := |I|. Let also fix an
order over L, that is, fix some efficiently computable bijection ω : [`2]→ L as well as its efficiently
computable inverse map ω−1 : L → [`2]. We construct an adversary A for distinguishing RealMOS

Ψ

from IdealMOS
Ψ using distinguisher D via a reduction ρ(·), denoted A := ρ(D).

The reduction works by first choosing an index t uniformly at random from [`2], and then
computing the pair of indexes of designated parties (S,R) := ω(t) (thus S,R ∈ [n]), corresponding
to the designated sender PS and the designated receiver PR, respectively. In the following, let At be
the same as A but where the index t is fixed instead of uniformly randomly selected. For a random
variable T uniformly distributed over [`2], this implies A = AT . Recall that when At interacts
with RealMOS

Ψ or IdealMOS
Ψ , it receives a pair of public keys, a sender public key pk?S , which will

be set as PS ’s sender public key, and receiver public key pk?R, which will be set as PR’s receiver
public key. Upon registration, At generates and stores both sender and receiver key-pairs for every
user, except that for party PS only a receiver key-pair is generated and stored and for party PR
only a sender key-pair is generated and stored (recall that for both those parties At uses one of
the public keys provided by either RealMOS

Ψ or IdealMOS
Ψ , whereas the corresponding secret keys

are “hard-coded” into the provided oracles). Whenever reveal is input at interface Mi ∈ Z (i.e.,
i /∈ I), At returns the two generated key-pairs to the distinguisher D (and ⊥ if Mi /∈ Z, i.e., i ∈ I).
We now describe the behavior of At on the remaining inputs.

On input (send,m, ID) at interface Pi: The reduction At retrieves IDPi and Pj from ID (recall
that i, j ∈ [n]), and if both parties have previously successfully registered, At performs the
following case distinction:
– If (i, j) /∈ L, then the message m is signcrypted into s using Pi’s sender private key and

Pj ’s receiver public key, and (s, IDPi , ID) is output at E.
– If (i, j) ∈ L, then the further case distinction is made:
• If ω−1(i, j) < t, then the message m is replaced by a uniform message m∗ of the same

length which is signcrypted into s using Pi’s sender private key and Pj ’s receiver public
key, and (s, IDPi , ID) is output at E. Note that if i = S (that is, the sender is the
designated sender PS), then At uses the provided signcryption oracle.

• If ω−1(i, j) > t, then the message m is signcrypted into s using Pi’s sender private key
and Pj ’s receiver public key, and (s, IDPi , ID) is output at E. Note that if i = S (that is,
the sender is the designated sender PS), then At uses the provided signcryption oracle.

• If ω−1(i, j) = t (that is, the parties are exactly the designated sender PS and receiver
PR), then the message m is signcrypted into s using the provided signcryption oracle,
and (s, IDPi , ID) is output at E. Moreover, in this case the mapping (s 7→ m) is stored
into table M .

On input (inject, s, ID, ID′) at interface E: The reduction At retrieves IDPi from ID and Pj
from ID′ (recall that i, j ∈ [n]), and if both parties have previously successfully registered, At
performs the following case distinction:
– If (i, j) /∈ L, then the signcryptext s is unsigncrypted into m using Pj ’s receiver private key

and Pi’s sender public key, and (m, ID) is output at Pj .
– If (i, j) ∈ L, then the further case distinction is made:
• If ω−1(i, j) < t, then (⊥, IDPi , ID) is output at E.
• If ω−1(i, j) > t, then the signcryptext s is unsigncrypted into m using Pj ’s receiver

private key and Pi’s sender public key, and (m, ID) is output at Pj . Note that if j =
R (that is, the receiver is the designated receiver PR), then At uses the provided
unsigncryption oracle.

• If ω−1(i, j) = t (that is, the parties are exactly the designated sender PS and receiver
PR), then if possible m is retrieved from M [s], otherwise the signcryptext s is un-
signcrypted into m using the provided unsigncryption oracle, and (m, ID) is output at
Pj .

22 Recall that the corruption set is defined as Z ⊆ {Mi | i ∈ [n]}, and is known to the adversary.
23 Note that same-element tuples, i.e. (ID, ID), for ID ∈ I, are also included in L.

A Constructive Perspective on Signcryption Security 31

Towards a standard hybrid argument, note that:

– Pr
[
ARealMOS

Ψ
1 = 1

]
= Pr

[
DHZ0 = 1

]
, that is, if the reduction adversary is connected to real

oracles, and it sets (S,R) as the first pair of indexes in L according to the ordering induced by
ω, then for the distinguisher D the view is the same as if it was connected to the real world
resource HZ0 , since all pairs of parties with indexes after (S,R) as well as (PS , PR) act as real
users.

– Pr
[
AIdealMOS

Ψ

`2 = 1
]
= Pr

[
DHZ1 = 1

]
, that is, if the reduction adversary is connected to ideal

oracles, and it sets (S,R) as the last pair of indexes in L according to the ordering induced by
ω, then for the distinguisher D the view is the same as if it was connected to the ideal world
resource HZ1 , since all pairs of parties with indexes before (S,R) as well as (PS , PR) act as ideal
users.

– Pr
[
AIdealMOS

Ψ
t = 1

]
= Pr

[
ARealMOS

Ψ
t+1 = 1

]
, that is, if the reduction adversary At is connected to

ideal oracles, then for the distinguisher D the view is the same as if it was being used by the
reduction adversary At+1 when connected to real oracles.

We can now conclude the proof using the hybrid argument:

AdvMOS
Ψ,A =

`2∑
t=1

AdvMOS
Ψ,At · Pr[T = t] (3)

=
1

`2

`2∑
t=1

(
Pr
[
ARealMOS

Ψ
t = 1

]
− Pr

[
AIdealMOS

Ψ
t = 1

])
(4)

=
1

`2

`2∑
t=1

(
Pr
[
ARealMOS

Ψ
t = 1

]
− Pr

[
ARealMOS

Ψ
t+1 = 1

])
(5)

=
1

`2

(
Pr
[
ARealMOS

Ψ
1 = 1

]
− Pr

[
ARealMOS

Ψ

`2+1 = 1
])

(6)

=
1

`2

(
Pr
[
ARealMOS

Ψ
1 = 1

]
− Pr

[
AIdealMOS

Ψ

`2 = 1
])

(7)

=
1

`2
(
Pr
[
DHZ0 = 1

]
− Pr

[
DHZ1 = 1

])
(8)

=
1

`2
·∆D(HZ0 ,H

Z
1), (9)

where for (33) we used A = AT and the law of total probability, for (44) we used Pr[T = t] = 1
`2 (for

any t ∈ [`2]), for (55), (77), and (88) we used the three equalities outlined above, for (66) we used the
hybrid argument, and for (99) we used the definition of ∆. This proves that systems HZ0 and HZ1
are computationally indistinguishable, that is, for any distinguisher D,

∆D(HZ0 ,H
Z
1) ≤ n2 · Adv

MOS
Ψ,ρ(D),

since ` ≤ n. ut

B.2 Proof of the Second Game-Hop

Proof (of Lemma 3Lemma 3). We need to provide a reduction ρ(·) so that winning AuthMIS
Ψ can be reduced

to distinguishing HZ1 from HZ2 . Let the system D be a distinguisher for HZ1 and HZ2 , and let
I := {i ∈ [n] | Mi /∈ Z} be the set of indexes of uncorrupted parties, with ` := |I|. Let also fix an
order over I, that is, fix some efficiently computable bijection ω : [`] → I as well as its efficiently
computable inverse map ω−1 : I → [`]. We construct an adversary A for winning AuthMIS

Ψ using
distinguisher D via a reduction ρ(·), denoted A := ρ(D).

The reduction works by first choosing an index t uniformly at random from [`], and then
computing the index S := ω(t), S ∈ [n], of a designated sender PS . In the following, let At

32 C. Badertscher and F. Banfi and U. Maurer

be the same as A but where the index t is fixed instead of uniformly randomly selected. For
a random variable T uniformly distributed over [`], this implies A = AT . Recall that when At
interacts with AuthMIS

Ψ , it receives a sender public key pk?S , which will be set as PS ’s receiver
public key. Upon registration, At stores for each user both a sender key-pair (generated using
GenS) and a receiver key-pair (generated using the oracle Gen provided by AuthMIS

Ψ), except that
for party PS only a receiver key-pair is generated (recall that for PS , At uses the sender public
key provided by AuthMIS

Ψ , whereas the corresponding sender secret key is “hard-coded” into the
provided signcryption oracle). Whenever reveal is input at interface Mi ∈ Z (i.e., i /∈ I), At
returns the two generated key-pairs to the distinguisher D (and ⊥ if Mi /∈ Z, i.e., i ∈ I). We now
describe the behavior of At on the remaining inputs.

On input (send,m, ID) at interface Pi: The reduction At retrieves IDPi and Pj from ID (recall
that i, j ∈ [n]), and if both parties have previously successfully registered, At performs the
following case distinction:

– If i /∈ I, then the message m is signcrypted into s using Pi’s sender private key and Pj ’s
receiver public key, and (s, IDPi , ID) is output at E.

– If i ∈ I, then the further case distinction is made:

• If ω−1(i) 6= t, then the message m is signcrypted into s using Pi’s sender private key
and Pj ’s receiver public key, and (s, IDPi , ID) is output at E.

• If ω−1(i) = t (that is, the party Pi is exactly the designated sender PS), then the message
m is signcrypted into s using the provided signcryption oracle, and (s, IDPi , ID) is then
output at E.

On input (inject, s, ID, ID′) at interface E: The reduction At retrieves IDPi from ID and Pj
from ID′ (recall that i, j ∈ [n]), and if both parties have previously successfully registered, At
performs the following case distinction:

– If i /∈ I, then the signcryptext s is unsigncrypted into m using Pj ’s receiver private key
and Pi’s sender public key, and (m, ID) is output at Pj .

– If i ∈ I, then the further case distinction is made:

• If ω−1(i) < t, then no output is generated at Pj .
• If ω−1(i) > t, then the signcryptext s is unsigncrypted intom using Pj ’s receiver private

key and Pi’s sender public key, and (m, ID) is output at Pj .
• If ω−1(i) = t (that is, the party Pi is exactly the designated sender PS), then the

signcryptext s is unsigncrypted into m using the provided unsigncryption oracle, and
(m, ID) is output at Pj .

Note that we can define further hybrid systems HZ1,t and HZ2,t, for t ∈ [`], such that HZ2,t and
HZ1,t+1 are exactly the system that At emulates to D, and in particular the flag win in AuthMIS

Ψ

is set if and only if it is set in such systems (the behavior of both hybrids is analogous to the one
described above for At, and thus we refrain from formally describing HZ1,t and HZ2,t). Towards a
standard hybrid argument, note that:

– Pr
[
DHZ1,1 = 1

]
= Pr

[
DHZ1 = 1

]
, that is, the view of distinguisher D when interacting with

HZ1,1 or HZ1 is the same.

– Pr
[
DHZ2,` = 1

]
= Pr

[
DHZ2 = 1

]
, that is, the view of distinguisher D when interacting with

HZ2,` or H
Z
2 is the same.

– Pr
[
DHZ2,t = 1

]
= Pr

[
DHZ1,t+1 = 1

]
, that is, the view of distinguisher D when interacting with

HZ2,t or HZ1,t+1 is the same.

A Constructive Perspective on Signcryption Security 33

We can now conclude the proof using the hybrid argument:

AdvMIS-Auth
Ψ,A =

∑̀
t=1

AdvMIS-Auth
Ψ,At · Pr[T = t] (10)

=
1

`

∑̀
t=1

Pr
[
AAuthMIS

Ψ
t ⇒ win

]
(11)

=
1

`

∑̀
t=1

Pr
[
DHZ2,t ⇒ bad2

]
(12)

≥ 1

`

∑̀
t=1

(
Pr
[
DHZ1,t = 1

]
− Pr

[
DHZ2,t = 1

])
(13)

=
1

`

∑̀
t=1

(
Pr
[
DHZ1,t = 1

]
− Pr

[
DHZ1,t+1 = 1

])
(14)

=
1

`

(
Pr
[
DHZ1,1 = 1

]
− Pr

[
DHZ1,`+1 = 1

])
(15)

=
1

`

(
Pr
[
DHZ1,1 = 1

]
− Pr

[
DHZ2,` = 1

])
(16)

=
1

`

(
Pr
[
DHZ1 = 1

]
− Pr

[
DHZ2 = 1

])
(17)

=
1

`
·∆D(HZ1 ,H

Z
2), (18)

where for (1010) we used A = AT and the law of total probability, for (1111) we used Pr[T = t] = 1
`

(for any t ∈ [`]) and the definition of the advantage of At when interacting with AuthMIS
Ψ , for (1212)

we used the fact that At perfectly simulates HZ2,t to D, for (1313) we used [2626, Theorem 1], for (1414),
(1616), and (1717) we used the three equalities outlined above, for (1515) we used the hybrid argument,
and for (1818) we used the definition of ∆. This proves that systems HZ1 and HZ2 are computationally
indistinguishable, that is, for any distinguisher D,

∆D(HZ1 ,H
Z
2) ≤ n · Adv

MIS-Auth
Ψ,ρ(D) ,

since ` ≤ n. ut

B.3 Proof of the Third Game-Hop

Proof (of Lemma 4Lemma 4). We need to provide a reduction ρ(·) so that distinguishing RealMIS-Conf
Ψ from

IdealMIS-Conf
Ψ can be reduced to distinguishing HZ2 from HZ3 . Let the system D be a distinguisher

for HZ2 and HZ3 , and let I := {i ∈ [n] | Mi /∈ Z} be the set of indexes of uncorrupted parties, with
` := |I|. Let also fix an order over I, that is, fix some efficiently computable bijection ω : [`] → I
as well as its efficiently computable inverse map ω−1 : I → [`]. We construct an adversary A for
distinguishing RealMIS-Conf

Ψ from IdealMIS-Conf
Ψ using distinguisher D via a reduction ρ(·), denoted

A := ρ(D).
The reduction works by first choosing an index t uniformly at random from [`], and then

computing the index R := ω(t), R ∈ [n], of a designated receiver PR. In the following, let At
be the same as A but where the index t is fixed instead of uniformly randomly selected. For
a random variable T uniformly distributed over [`], this implies A = AT . Recall that when At
interacts with RealMIS-Conf

Ψ or IdealMIS-Conf
Ψ , it receives a receiver public key pk?R, which will be

set as PR’s receiver public key. Upon registration, At stores for each user both a receiver key-
pair (generated using GenR) and a sender key-pair (generated using the oracle Gen provided by
either RealMIS-Conf

Ψ or IdealMIS-Conf
Ψ), except that for party PR only a sender key-pair is generated

(recall that for PR, At uses the receiver public key provided by either RealMIS-Conf
Ψ or IdealMIS-Conf

Ψ ,

34 C. Badertscher and F. Banfi and U. Maurer

whereas the corresponding receiver secret key is “hard-coded” into the provided unsigncryption
oracle). Whenever reveal is input at interface Mi ∈ Z (i.e., i /∈ I), At returns the two generated
key-pairs to the distinguisher D (and ⊥ if Mi /∈ Z, i.e., i ∈ I). We now describe the behavior of At
on the remaining inputs.

On input (send,m, ID) at interface Pi: The reduction At retrieves IDPi and Pj from ID (recall
that i, j ∈ [n]), and if both parties have previously successfully registered, At performs the
following case distinction:

– If j /∈ I, then the message m is signcrypted into s using Pi’s sender private key and Pj ’s
receiver public key, and (s, IDPi , ID) is output at E.

– If j ∈ I, then the further case distinction is made:

• If ω−1(j) < t, then the message m is replaced by a uniform message m∗ of the same
length which is signcrypted into s using Pi’s sender private key and Pj ’s receiver public
key, and (s, IDPi , ID) is output at E.

• If ω−1(j) > t, then the message m is signcrypted into s using Pi’s sender private key
and Pj ’s receiver public key, and (s, IDPi , ID) is output at E.

• If ω−1(j) = t (that is, the party Pj is exactly the designated receiver PR), then the
message m is signcrypted into s using the provided signcryption oracle, by providing
as input the key-pair of the sender Pi and the receiver public key pk?R. (s, IDPi , ID) is
then output at E. Moreover, in this case the mapping (s 7→ m) is stored into table M .

On input (inject, s, ID, ID′) at interface E: The reduction At retrieves IDPi from ID and Pj
from ID′ (recall that i, j ∈ [n]), and if both parties have previously successfully registered, At
performs the following case distinction:

– If j /∈ I, then the signcryptext s is unsigncrypted into m using Pj ’s receiver private key
and Pi’s sender public key, and (m, ID) is output at Pj .

– If j ∈ I, then the further case distinction is made:

• If ω−1(j) 6= t, then the signcryptext s is unsigncrypted into m using Pj ’s receiver
private key and Pi’s sender public key, and (m, ID) is output at Pj .

• If ω−1(j) = t (that is, the party Pj is exactly the designated receiver PR), then if
possible m is retrieved from M [s], otherwise the signcryptext s is unsigncrypted into
m using the provided unsigncryption oracle, and (m, ID) is output at Pj .

Towards a standard hybrid argument, note that:

– Pr
[
ARealMIS-Conf

Ψ
1 = 1

]
= Pr

[
DHZ2 = 1

]
, that is, if the reduction adversary is connected to real

oracles, and it sets R as the first index in I according to the ordering induced by ω, then for
the distinguisher D the view is the same as if it was connected to the real world resource HZ2 ,
since all parties with index after t as well as Pt act as real users.

– Pr
[
AIdealMIS-Conf

Ψ

` = 1
]
= Pr

[
DHZ3 = 1

]
, that is, if the reduction adversary is connected to ideal

oracles, and it sets R as the last index in I according to the ordering induced by ω, then for
the distinguisher D the view is the same as if it was connected to the ideal world resource HZ3 ,
since all parties with index before R as well as PR act as ideal users.

– Pr
[
AIdealMIS-Conf

Ψ
t = 1

]
= Pr

[
ARealMIS-Conf

Ψ
t+1 = 1

]
, that is, if the reduction adversary At is connected

to ideal oracles, then for the distinguisher D the view is the same as if it was being used by
the reduction adversary At+1 when connected to real oracles.

A Constructive Perspective on Signcryption Security 35

We can now conclude the proof using the hybrid argument:

AdvMIS-Conf
Ψ,A =

∑̀
t=1

AdvMIS-Conf
Ψ,At · Pr[T = t] (19)

=
1

`

∑̀
t=1

(
Pr
[
ARealMIS-Conf

Ψ
t = 1

]
− Pr

[
AIdealMIS-Conf

Ψ
t = 1

])
(20)

=
1

`

∑̀
t=1

(
Pr
[
ARealMIS-Conf

Ψ
t = 1

]
− Pr

[
ARealMIS-Conf

Ψ
t+1 = 1

])
(21)

=
1

`

(
Pr
[
ARealMIS-Conf

Ψ
1 = 1

]
− Pr

[
ARealMIS-Conf

Ψ

`+1 = 1
])

(22)

=
1

`

(
Pr
[
ARealMIS-Conf

Ψ
1 = 1

]
− Pr

[
AIdealMIS-Conf

Ψ

` = 1
])

(23)

=
1

`

(
Pr
[
DHZ2 = 1

]
− Pr

[
DHZ3 = 1

])
(24)

=
1

`
·∆D(HZ2 ,H

Z
3), (25)

where for (1919) we used A = AT and the law of total probability, for (2020) we used Pr[T = t] = 1
`

(for any t ∈ [`]), for (2121), (2323), and (2424) we used the three equalities outlined above, for (2222) we
used the hybrid argument, and for (2525) we used the definition of ∆. This proves that systems HZ2
and HZ3 are computationally indistinguishable, that is, for any distinguisher D,

∆D(HZ2 ,H
Z
3) ≤ n · Adv

MIS-Conf
Ψ,ρ(D) ,

since ` ≤ n. ut

C Formal Specification of the Hybrid Systems

On the following pages, we provide the formal specifications underlying our game-hopping argu-
ment.

On the notation. In the title of each box that depicts two hybrids at once, there are typically
two names surrounded by solid or dashed boxes such as HZ0 and HZ1 . This means that all code
specifically surrounded by a dashed line is executed in HZ0 , but not HZ1 . Similarly, all code specif-
ically surrounded by a solid line is executed in HZ1 , but not in HZ0 . All remaining code is executed
in both systems.

In cases where the box represents just one hybrid system, we might draw boxes to highlight
certain parts of the code. The descriptions of the hybrid systems are given on the following pages.

36 C. Badertscher and F. Banfi and U. Maurer

Resource HZ0

Initialization
Jca, Jnet, S ← ∅
Ica1 , Ica2 , Inet1 , Inet2 , T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR
if ID 6∈ Jca then

Jca ← Jca ∪ {ID}
Ica1 [Pi]← ID
Ica2 [ID]← Pi
T [ID]← (pkS , pkR)
if ID 6∈ Jnet ∧ I1[Pi] = ⊥ then

Jnet ← Jnet ∪ {ID}
Inet1 [Pi]← ID

Inet2 [ID]← Pi
IDPi

← ID
valPi ← [skS , pkS , skR, pkR]

if Mi 6∈ Z then
S ← S ∪ {ID}

output Success at Pi
else

output Fail at Pi
else

output Fail at Pi

Input: (send,m, ID)
if IDPi

6= ⊥ then
Let valPi = [skS , pkS , skR, pkR]
if T [ID] 6= ⊥ then

Parse T [ID] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

s← Signcrypt(skS , pk
′
R,m)

L[s, IDPi
, ID]← m

output (s, IDPi
, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)
if IDr ∈ Jnet then

Pi ← Inet2 [IDr]
Let valPi = [skS , pkS , skR, pkR]
if T [IDs] 6= ⊥ then

Parse T [IDs] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if (IDs, IDr) ∈ S × S then
bad1 ← (m 6= ⊥ ∧

L[s, IDs, IDr] = ⊥)

if (IDs, IDr) ∈ S × (Jnet \ S) then
bad2 ← (m 6= ⊥ ∧

L[s, IDs, IDr] = ⊥)
if m 6= ⊥ then

output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID 6∈ J then

T [ID]← val
Jca ← Jca ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi 6∈ Z
Input: reveal

output ⊥ at Mi

Fig. 15. The first hybrid system represents a concise description of the real world, i.e., the behavior when
the converters are attached at the respective interfaces of the assumed resources. The boxed statements
already introduce some further notation that does not affect the behavior of this system.

A Constructive Perspective on Signcryption Security 37

Resource HZ0 and HZ1

Initialization
Jca, Jnet, S ← ∅
Ica1 , Ica2 , Inet1 , Inet2 , T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR
if ID 6∈ Jca then

Jca ← Jca ∪ {ID}
Ica1 [Pi]← ID
Ica2 [ID]← Pi
T [ID]← (pkS , pkR)
if ID 6∈ Jnet ∧ I1[Pi] = ⊥ then

Jnet ← Jnet ∪ {ID}
Inet1 [Pi]← ID

Inet2 [ID]← Pi
IDPi

← ID
valPi ← [skS , pkS , skR, pkR]
if Mi 6∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

else
output Fail at Pi

Input: (send,m, ID)
if IDPi

6= ⊥ then
Let valPi = [skS , pkS , skR, pkR]
if T [ID] 6= ⊥ then

Parse T [ID] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

if (IDPi
, ID) ∈ S × S then

m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)

s← Signcrypt(skS , pk
′
R,m)

L[s, IDPi
, ID]← m

output (s, IDPi
, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)
if IDr ∈ Jnet then

Pi ← Inet2 [IDr]
Let valPi = [skS , pkS , skR, pkR]
if T [IDs] 6= ⊥ then

Parse T [IDs] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if (IDs, IDr) ∈ S × S then
bad1 ← (m 6= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if (IDs, IDr) ∈ S × (Jnet \ S) then
bad2 ← (m 6= ⊥ ∧

L[s, IDs, IDr] = ⊥)
if m 6= ⊥ then

output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID 6∈ J then

T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi 6∈ Z
Input: reveal

output ⊥ at Mi

Fig. 16. The second hybrid system replaces encryptions of messages between honest parties by encryptions
of uniform random messages. In addition, a message between two honest users is only delivered if it was
recorded in L with the matching identities. The difference of these two hybrids can be bounded by the
real-or-random game of Signcryption in the outsider security model.

38 C. Badertscher and F. Banfi and U. Maurer

Resource HZ1 and HZ2

Initialization
Jca, Jnet, S ← ∅
Ica1 , Ica2 , Inet1 , Inet2 , T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR
if ID 6∈ Jca then

Jca ← Jca ∪ {ID}
Ica1 [Pi]← ID
Ica2 [ID]← Pi
T [ID]← (pkS , pkR)
if ID 6∈ Jnet ∧ I1[Pi] = ⊥ then

Jnet ← Jnet ∪ {ID}
Inet1 [Pi]← ID

Inet2 [ID]← Pi
IDPi

← ID
valPi ← [skS , pkS , skR, pkR]
if Mi 6∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

else
output Fail at Pi

Input: (send,m, ID)
if IDPi

6= ⊥ then
Let valPi = [skS , pkS , skR, pkR]
if T [ID] 6= ⊥ then

Parse T [ID] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

if (IDPi
, ID) ∈ S × S then

m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)
L[s, IDPi

, ID]← m
output (s, IDPi

, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)
if IDr ∈ Jnet then

Pi ← Inet2 [IDr]
Let valPi = [skS , pkS , skR, pkR]
if T [IDs] 6= ⊥ then

Parse T [IDs] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if (IDs, IDr) ∈ S × S then
bad1 ← (m 6= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if (IDs, IDr) ∈ S × (Jnet \ S) then
bad2 ← (m 6= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if m 6= ⊥ then
output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID 6∈ J then

T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi 6∈ Z
Input: reveal

output ⊥ at Mi

Fig. 17. The third hybrid system enforces that no message of an honest sender can be forged. This intu-
itively follows from insider security of signcryption.

A Constructive Perspective on Signcryption Security 39

Resource HZ2 and HZ3

Initialization
Jca, Jnet, S ← ∅
Ica1 , Ica2 , Inet1 , Inet2 , T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR
if ID 6∈ Jca then

Jca ← Jca ∪ {ID}
Ica1 [Pi]← ID
Ica2 [ID]← Pi
T [ID]← (pkS , pkR)
if ID 6∈ Jnet ∧ I1[Pi] = ⊥ then

Jnet ← Jnet ∪ {ID}
Inet1 [Pi]← ID

Inet2 [ID]← Pi
IDPi

← ID
valPi ← [skS , pkS , skR, pkR]
if Mi 6∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

else
output Fail at Pi

Input: (send,m, ID)
if IDPi

6= ⊥ then
Let valPi = [skS , pkS , skR, pkR]
if T [ID] 6= ⊥ then

Parse T [ID] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

if (IDPi
, ID) ∈ S × S then

m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)

else if (IDPi
, ID) ∈ (Jnet × S) then

m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)

else
m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)
L[s, IDPi

, ID]← m
output (s, IDPi

, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)
if IDr ∈ Jnet then

Pi ← Inet2 [IDr]
Let valPi = [skS , pkS , skR, pkR]
if T [IDs] 6= ⊥ then

Parse T [IDs] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if (IDs, IDr) ∈ S × S then
bad1 ← (m 6= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if (IDs, IDr) ∈ S × (Jnet \ S) then
bad2 ← (m 6= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if m 6= ⊥ then
output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID 6∈ J then

T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi 6∈ Z
Input: reveal

output ⊥ at Mi

Fig. 18. The fourth hybrid ensures that no information about a message to an honest receiver is leaked to
the adversary. This follows intuitively from the insider security model of signcryption.

40 C. Badertscher and F. Banfi and U. Maurer

Resource HZ3 and HZ4

Initialization

Jca, Jnet, S ← ∅
Ica1 , Ica2 , Inet1 , Inet2 , T, L← empty tables

Jca, Jnet, S ← ∅
I1, I2, T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR
if ID 6∈ Jca then

Jca ← Jca ∪ {ID}
Ica1 [Pi]← ID
Ica2 [ID]← Pi

T [ID]← (pkS , pkR)
if ID 6∈ Jnet ∧ I1[Pi] = ⊥ then

Jnet ← Jnet ∪ {ID}
Inet1 [Pi]← ID

Inet2 [ID]← Pi

I1[Pi]← ID
I2[ID]← Pi

IDPi
← ID

valPi ← [skS , pkS , skR, pkR]
if Mi 6∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

else
output Fail at Pi

Input: (send,m, ID)
if IDPi

6= ⊥ then
Let valPi = [skS , pkS , skR, pkR]
if T [ID] 6= ⊥ then

Parse T [ID] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

if (IDPi
, ID) ∈ S × S then

m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)
else if (IDPi

, ID) ∈ (Jnet × S) then
m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)

if ID ∈ S then
m∗ �M
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)

L[s, IDPi
, ID]← m

output (s, IDPi
, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)
if IDr ∈ Jnet then

Pi ← Inet2 [IDr]

Pi ← I2[IDr]

Let valPi = [skS , pkS , skR, pkR]
if T [IDs] 6= ⊥ then

Parse T [IDs] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if (IDs, IDr) ∈ S × S then
bad1 ← (m 6= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if (IDs, IDr) ∈ S × (Jnet \ S) then
bad2 ← (m 6= ⊥ ∧

L[s, IDs, IDr] = ⊥)
m← L[s, IDs, IDr]

if IDs ∈ S then
m← L[s, IDs, IDr]

if m 6= ⊥ then
output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID 6∈ J then

T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi 6∈ Z
Input: reveal

output ⊥ at Mi

Fig. 19. The fifth hybrid system is equivalent to the fourth. Only syntactic manipulations are made that
do not affect the behavior.

A Constructive Perspective on Signcryption Security 41

Resource HZ4 and HZ5

Initialization
Jca, Jnet, S ← ∅
I1, I2, T, L← empty tables

Interface Pi
Input: (register, ID)

if IDPi
= ⊥ ID 6∈ Jca ∧ I1[Pi] = ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR

if ID 6∈ Jca or true then
Jca ← Jca ∪ {ID}
T [ID]← (pkS , pkR)

if ID 6∈ Jnet ∧ I1[Pi] = ⊥ or true then

Jnet ← Jnet ∪ {ID}
I1[Pi]← ID
I2[ID]← Pi

IDPi
← ID

valPi ← [skS , pkS , skR, pkR]
if Mi 6∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

else
output Fail at Pi

Input: (send,m, ID)

IDPi
← I1[Pi]

if IDPi
6= ⊥ then

Let valPi = [skS , pkS , skR, pkR]

if T [ID] 6= ⊥ ID ∈ Jca then

Let valPi = [skS , pkS , skR, pkR]

Parse T [ID] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

if ID ∈ S then
m∗ �M

Let ` := |m|
m∗ � {0, 1}`

s← Signcrypt(skS , pk
′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)
L[s, IDPi

, ID]← m
output (s, IDPi

, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)

Pi ← I2[IDr]

if IDr ∈ Jnet Pi 6= ⊥ then

Pi ← I2[IDr]

Let valPi = [skS , pkS , skR, pkR]

if T [IDs] 6= ⊥ IDs ∈ Jca then

Let valPi = [skS , pkS , skR, pkR]

Parse T [IDs] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

m← Unsigncrypt(skR, pk
′
S , s)

if IDs ∈ S then
m← L[s, IDs, IDr]

if m 6= ⊥ then
output (m, IDs) at Pi

if m 6= ⊥ then
output (m, IDs) at Pi

if IDs 6∈ S then
m← Unsigncrypt(skR, pk

′
S , s)

if m 6= ⊥ then
output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID 6∈ J then

T [ID]← val
J ← J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

output valPi at Mi

Interface Mi 6∈ Z
Input: reveal

output ⊥ at Mi

Fig. 20. The sixth hybrid system is equivalent to the fifth.

42 C. Badertscher and F. Banfi and U. Maurer

Resource HZ5 and HZ6

Initialization

Jca, J, Jnet, S ← ∅ j ← 0

I1, I2, T, L , Lsim, Lres ← empty tables

(r11 , r
2
1)||(r

1
2 , r

2
2)|| . . . ||(r

1
n, r

2
n) � {0, 1}n·(2κ) . Common randomness

Interface Pi
Input: (register, ID)

if ID 6∈ Jca J ∧ I1[Pi] = ⊥ then

(skS , pkS)← GenS
(skR, pkR)← GenR

Jca J ← Jca J ∪ {ID}

T [ID]← (pkS , pkR)

I1[Pi]← ID
I2[ID]← Pi

valPi ← [skS , pkS , skR, pkR]

if Mi 6∈ Z then
S ← S ∪ {ID}

output Success at Pi
else

output Fail at Pi

Input: (send,m, ID)
IDPi

← I1[Pi]
if IDPi

6= ⊥ then
if ID ∈ Jca J then

for each ID ∈ J do
if I2[ID] 6= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk 6∈ Z then

(r1k, r
2
k) � {0, 1}2κ

(skS , pkS)← GenS(r
1
k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

Parse valPi as [skS , pkS , skR, pkR]

Parse T [ID] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

if ID ∈ S then
Let ` := |m|
m∗ � {0, 1}`
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)

L[s, IDPi
, ID]← m

Lsim[c, IDPi
, ID]← j

Lres[j]← (m, IDPi
, ID)

j ← j + 1

output (s, IDPi
, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)

for each ID ∈ J do
if I2[ID] 6= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk 6∈ Z then (r1k, r

2
k) � {0, 1}2κ

(skS , pkS)← GenS(r
1
k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

Pi ← I2[IDr]
if Pi 6= ⊥ then

if IDs ∈ Jca J then
Let valPi = [skS , pkS , skR, pkR]

Parse T [IDs] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

if IDs ∈ S then
m← L[s, IDs, IDr]
if m 6= ⊥ then

output (m, IDs) at Pi

if ∃j : Lsim[c, IDs, IDr] = j} then
j ← Lsim[c, IDs, IDr]
Parse Lres[j] as (m, IDs, IDr)
output (m, IDs) at Pi

if IDs 6∈ S then
m← Unsigncrypt(skR, pk

′
S , s)

if m 6= ⊥ then
output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)
if ID 6∈ J then

T [ID]← val

Jca J ← Jca J ∪ {ID}
output Success at E

else
output Fail at E

Input: fetchAll

for each ID ∈ J do
if I2[ID] 6= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk 6∈ Z then

(r1k, r
2
k) � {0, 1}2κ

(skS , pkS)← GenS(r
1
k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

if I1[Pi] 6= ⊥ and valPi = ⊥ then
(skS , pkS)← GenS(r

1
i)

(skR, pkR)← GenR(r2i)
valPi ← [skS , pkS , skR, pkR]

output valPi at Mi

Interface Mi 6∈ Z
Input: reveal

output ⊥ at Mi

Fig. 21. The seventh hybrid system is equivalent to the sixth.

A Constructive Perspective on Signcryption Security 43

Resource HZ6

Initialization

J, S ← ∅ j ← 0

I1, I2, Lres, T, Lsim ← empty tables

(r11 , r
2
1)||(r

1
2 , r

2
2)|| . . . ||(r

1
n, r

2
n) � {0, 1}n·(2κ) . Common randomness

Interface Pi
Input: (register, ID)

if ID 6∈ J ∧ I1[Pi] = ⊥ then
J ← J ∪ {ID}
I1[Pi]← ID
I2[ID]← Pi
if Mi 6∈ Z then

S ← S ∪ {ID}
output Success at Pi

else
output Fail at Pi

Input: (send,m, ID)

IDPi
← I1[Pi]

if IDPi
6= ⊥ then

if ID ∈ J then

for each ID ∈ J do
if I2[ID] 6= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk 6∈ Z then

(r1k, r
2
k) � {0, 1}2κ

(skS , pkS)← GenS(r
1
k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

Parse valPi as [skS , pkS , skR, pkR]

Parse T [ID] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

if ID ∈ S then

Let ` := |m|

m∗ � {0, 1}`
s← Signcrypt(skS , pk

′
R,m

∗)
else

m∗ ← m
s← Signcrypt(skS , pk

′
R,m

∗)
Lsim[c, IDPi

, ID]← j

Lres[j]← (m, IDPi
, ID)

j ← j + 1
output (s, IDPi

, ID) at E

Interface E of Net

Input: (inject, s, IDs, IDr)

for each ID ∈ J do
if I2[ID] 6= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk 6∈ Z then (r1k, r

2
k) � {0, 1}2κ

(skS , pkS)← GenS(r
1
k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

Pi ← I2[IDr]
if Pi 6= ⊥ then

if IDs ∈ J then

Let valPi = [skS , pkS , skR, pkR]

Parse T [IDs] as (pk ′S , pk
′
R)

if (pk ′S , pk
′
R) 6= (⊥,⊥) then

if IDs ∈ S then

if ∃j : Lsim[c, IDs, IDr] = j} then
j ← Lsim[c, IDs, IDr]

Parse Lres[j] as (m, IDs, IDr)
output (m, IDs) at Pi

if IDs 6∈ S then

m← Unsigncrypt(skR, pk
′
S , s)

if m 6= ⊥ then

output (m, IDs) at Pi

Interface E of CA

Input: (register, ID, val)

if ID 6∈ J then

T [ID]← val

J ← J ∪ {ID}

output Success at E

else

output Fail at E

Input: fetchAll

for each ID ∈ J do
if I2[ID] 6= ⊥ ∧ T [ID] = ⊥ then

Let Pk ← I2[ID]
if Mk 6∈ Z then

(r1k, r
2
k) � {0, 1}2κ

(skS , pkS)← GenS(r
1
k)

(skR, pkR)← GenR(r2k)
T [ID]← (pkS , pkR)
valPk ← [skS , pkS , skR, pkR]

output (J, T) at E

Interface Mi ∈ Z
Input: reveal

if I1[Pi] 6= ⊥ and valPi = ⊥ then

(skS , pkS)← GenS(r
1
i)

(skR, pkR)← GenR(r2i)
valPi ← [skS , pkS , skR, pkR]

output valPi at Mi

Interface Mi 6∈ Z
Input: reveal

output ⊥ at Mi

Fig. 22. Illustration that HZ
6 is equivalent to the ideal world. Dashed/Green: code of secure network;

Solid/Blue: code of simulators.

	A Constructive Perspective on Signcryption Security

