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Abstract. In data security, the main objectives one tries to achieve are
privacy, data integrity and authentication. In a public-key setting, privacy
is reached through asymmetric encryption and both data integrity and au-
thentication through signature. Meeting all the security objectives for data
exchange requires to use a concatenation of those primitives in an encrypt-
then-sign or sign-then-encrypt fashion. Signcryption aims at providing all
the security requirements in one single primitive at a lower cost than using
encryption and signature together. Most existing signcryption schemes are
using ElGamal-based or pairing-based techniques and thus rely on the de-
cisional Diffie-Hellman assumption. With the current growth of a quantum
threat, we seek for post-quantum counterparts to a vast majority of public-
key primitives. In this work, we propose a signcryption scheme based on
the GLP signature inspired from a construction of Malone-Lee. It comes
in two flavors, one integrating the usual lattice-based key exchange into
GLP and the other merging the signature scheme with a RLWE encryp-
tion, which is more efficient, but outputs a larger signcryptext. Using the
same set of operations as in existing constructions, our scheme can be imple-
mented efficiently on various platforms, reusing optimized pieces of software
or hardware presented in previous works.

Keywords: Post-quantum Signcryption Lattice GLP Signature Key ex-
change Key encapsulation

1 Introduction

Enabling secure communication between two parties over a public channel is the
most natural task one can ask from cryptography. Nevertheless, it is not necessar-
ily obvious what is meant by secure. Since the channel is public, the first difficulty
to overcome is to prevent unauthorized people from accessing the transiting data,
that is to say, ensuring privacy of data. Privacy is enabled by using an encryption
scheme. This scheme transforms a plaintext m in an encrypted message c called
ciphertext. Using a secret key, the authorized receiver will be able to reverse this
transformation but no polynomial time adversary should be able to retrieve any
meaningful information on m given only c. Having data secretly transmitted is
clearly a milestone in securing communication but cannot be seen as the final an-
swer. While answering all the real-life security threats of a communication system
seems unfortunately not possible relying solely on mathematics, two common is-
sues in practice are impersonation and data corruption. Hence, data integrity (data
were not modified) and authentication (sender is actually the one they claim to be)



should be guaranteed. In a public-key setting, these properties are both ensured by
digital signatures which allow a signer to create a signature σ(m) on a message m,
verifiable by anyone knowing its public key.
Those cryptographic primitives have been developed somewhat independently and
can be used separately, depending on the context. If the adversary is passive, i.e
they can only read the channel but not write on it, encryption can be enough. If
the secrecy of the message is not important, signature can be enough. Yet, in a
situation in which an active adversary is present during a sensitive communica-
tion, privacy, data integrity and authentication must all be guaranteed at the same
time. It is clearly possible to use encryption and signature together but it implies
accepting the overhead of using two building blocks and forces a careful security
analysis since concatenating two cryptographic primitives in a naive way can be
dangerous.
In private-key cryptography, a lot of effort has been put toward the development
of authenticated encryption schemes. The idea is to merge a symmetric encryption
scheme with a message authentication code in a single block providing all the secu-
rity properties listed above. This work gave rise to a dedicated workshop (DIAC)
and a (currently ongoing) competition to establish a portfolio called CAESAR.
On the public-key side, the equivalent primitive is called signcryption. The goal of
a signcryption scheme is to provide the security properties of both encryption and
signature at a lower cost than concatenating them. The (academic) story started
at CRYPTO in 1997 with the original paper of Zheng [26]. In this work, the au-
thor used a clever combination of ElGamal encryption and signature to create an
efficient scheme leading a line of research aiming at formalizing, studying security
and enhancing signcryption [9].
Unfortunately, the techniques used were based on the Diffie-Hellman (or RSA)
assumption and their security would be invalided in case of the emergence of a
large quantum computing power. Now, even though it is not clear when or even
if a large enough quantum computer will be built, the importance of ensuring the
security of communication in today’s world is so critical that no risks can be taken
and cryptography should be able to answer at the right moment. Designing and
analyzing new cryptosystems takes time and trust can only be developed in the
long run when the research community has put a huge amount of effort over the
years to break it. Furthermore, the quantum threat could also be already present
now if an adversary is currently recording long-term confidential encrypted data in
order to decrypt it in the future. For those reasons, the post-quantum community
is trying to push, as soon as possible, for a development, both on theoretical and
practical side, of quantum-resistant cryptography.

Our contribution. In this paper, we introduce a construction of a signcryption
scheme based on the GLP signature [12]. It is inspired from a Schnorr-like variant
of the original work of Zheng [26] proposed by Malone-Lee [20]. We provide two
versions of the scheme, both relying on the concept of sharing a key while signing
and forwarding a symmetric encryption of the message under this key. The first one
uses a usual lattice-based key exchange while the second one encrypts the key in a
KEM fashion. Those two flavors of the schemes provide a tradeoff between efficiency
and storage. The key exchange version is slower but uses less memory/bandwidth.
Even though the idea of the construction could be translated to other Fiat-Shamir
lattice signatures, the interesting aspect of using GLP is that the transformation
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works out of the box, without adjusting the parameters.

Previous work. Signcryption has not been extensively studied in the post-quantum
world yet. Some works on lattice-based schemes exist [15,24,25,17], however, they
are all based on trapdoors and do not enable practical instantiations.

Organization of the paper. Section 2 formalizes signcryption and recalls basic
tools needed in the construction. Section 3 presents the two versions of our sign-
cryption scheme and points out their differences. Section 4 and 5 argue the security,
correctness and efficiency of the schemes and section 6 concludes.

2 Preliminaries

2.1 Notations

Let us first explain which notations will be used through the paper. For the sake of
simplicity and readability, they are similar to what is commonly used in the recent
literature on the topic. We write polynomials with bold lower cases, e.g. a ∈ Z[X].

When a value v is sampled from a distribution χ, we use the notation v
r←− χ.

This notation is extended in a natural way to polynomials (of a given degree),

v
r←− χ means that the coefficients of v are all sampled independently from χ. The

uniform distribution over a set S is written U(S). We use v
r←− S as a shorthand

for v
r←− U(S). For an odd q, we use the representative in

[
−(q−1)

2 , q−12

]
to identify

cosets of Zq.

2.2 Signcryption

A signcryption scheme is a cryptographic primitive aiming to act at the same time
as encryption and signature on some data. The usual situation is that of a sender
(a.k.a Alice) willing to send a message m to a receiver (a.k.a Bob) while ensuring
at the same time privacy, integrity and authentication. It is the public-key analog
of authenticated encryption.

Definition 1. Formally, a signcryption scheme with message space M and sign-
cryptext space C is a tuple ΓM,C = (ParamGen, KeyGenSender, KeyGenReceiver,
Signcrypt, Unsigncrypt) composed of the five following algorithms:

– ParamGen(λ): a randomized algorithm taking as input the security parameter
λ and outputting the parameters params of the system. We consider params

as an implicit input of all the algorithms.
– KeyGenSender(): a randomized algorithm generating a key pair (ska, pka) for

the sender (Alice). We will call ska the secret signing key and pka the public
verification key.

– KeyGenReceiver(): a randomized algorithm generating a key pair (skb, pkb) for
the receiver (Bob). We will call skb the secret decryption key and pkb the public
encryption key.

– Signcrypt(ska, pkb,m): a randomized algorithm taking as input Alice’s secret
signing key ska, Bob’s public encryption key pkb, a message m ∈ M and
outputting a signcryptext C ∈ C.
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– Unsigncrypt(pka, skb, C): a deterministic algorithm taking as input Alice’s
public verification key pka, Bob’s secret decryption key skb, a signcryptext
C ∈ C and outputting a either a message m ∈M if the signcryptext is valid or
a failure symbol ⊥.

It should be noted that, for efficiency and simplicity reasons, the two key genera-
tion algorithms can be merged in a single KeyGen algorithm outputting a key pair
(sk, pk) in which sk act simultaneously as decryption and signing key and pk as
verification and encryption key.
The natural correctness property is that, for every valid m,

Unsigncrypt(pka, skb, Signcrypt(ska, pkb,m)) = m

with an overwhelming probability.

Non-repudiation. There is no settled answer to the question of non-repudiation
for a signcryption scheme. Indeed, since we want privacy of the message, it is not
clear if a public verification mechanism is required. But if Alice can later repudiate
the message in front of a judge, can we really call it a signature? The consensus is
to set up a mechanism allowing Bob to generate a signature from the signcryptext
at the price of revealing the message. Hence, if at some point Alice tries to be
dishonest, he can create a publicly verifiable signature and present it to the judge.
Hence, we extend the signcryption scheme with two optional algorithms:

– SignExtract(pka, skb, C): a deterministic algorithm taking the same inputs as
Unsigncrypt and outputting a publicly verifiable signature σ(m).

– PublicVerif(pka, σ(m)): a deterministic algorithm taking as input the param-
eters of the system, the public key of Alice and a signature on m and outputting
1 if σ(m) is a valid signature on m, 0 otherwise.

In practice, the SignExtract algorithm can be merged with Unsigncrypt to output
at the same time m together with its signature σ(m).

2.3 Security model for signcryption

We naturally extent the security games of encryption and signature to the case
of signcryption. As an example, here follow the usual IND-CPA and sUF-CMA
games:

Definition 2. The signcryption scheme is said to be IND-CPA secure if the prob-
ability of an adversary (having a set of two PPT algorithms A,A′) winning the
following game is negligibly close to 1

2

1. The challenger first runs the ParamGen algorithm and outputs public parame-
ters params. After that, the challenger generates Alice’s key pair (pka, ska)←
KeyGenReceiver() and Bob’s key pair (pkb, skb)← KeyGenReceiver().

2. The adversary runsA on input (pka, pkb). It has access to a Signcrypt(ska, pkb,m)
and an Unsigncrypt(pka, skb, C) oracle. The algorithm finishes by outputting
two messages m0 and m1.

3. The challenger chooses a bit b
r←− {0, 1} and outputs Ĉ ← Signcrypt(ska, pkb,mb)

4. The adversary then runs A′ on input (Ĉ, pka, ska) and finishes by outputting
a bit b′.
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The adversary wins the IND-CPA game if b′ = b.

Definition 3. The signcryption scheme is said to be sUF-CMA secure if the prob-
ability of the adversary (having a PPT algorithm A) winning the following game
is negligible.

1. The challenger first runs the ParamGen algorithm and outputs public parame-
ters params. After that, the challenger generates Alice’s key pair (pka, ska)←
KeyGenReceiver() and Bob’s key pair (pkb, skb)← KeyGenReceiver().

2. The adversary runsA on input (pka, pkb). It has access to a Signcrypt(ska, pkb,m)
and an Unsigncrypt(pka, skb, C) oracle. The algorithm finishes by outputting
a signcryptext Ĉ.

The adversary wins the sUF-CMA game if Ĉ has not been output by the Signcrypt
oracle and Unsigncrypt(pka, skb, Ĉ) 6= ⊥.

Finding the right security model for signcryption seems to be a bit more com-
plex than for other basic primitives. Indeed, since for every communication each
participant plays a dual role using at the same time is own secret and the public
value of the other one, it is unclear what power we should give to the adversary.
To clarify the situation, signcryption schemes security is defined according to two
notions, insider security and outsider security.

Outsider security. In the outsider model, the sender and the receiver are both
honest and try to prevent an external adversary from retrieving information about
the message or modifying it without being detected. It is the model used in the
symmetric case of authenticated encryption where all the valid users are “the same”
in the sense that they all have the same power and are not associated to a pub-
lic identity. Here, the adversary only has access to the public-key of the different
users of the system and tries to break the IND-CPA or sUF-CMA property of the
scheme. A signcryption scheme insecure in the outsider model would be of no use.

Insider security. The insider security model is more complete but its usefulness in
practice is more debatable. Here, the receiver and the sender can be the adversary
(a more realistic view is that an adversary is given the private key of one of them).
Concerning the dishonest receiver, his goal is to forge a signcryptext (signcrypted
with his own public key) on a new message without knowing the sender’s secret key.
For the dishonest sender, her goal is to unsigncrypt a signcryptext created with her
private key. The pertinence of this model is quite context dependent. If Bob is the
only entity capable of verifying the authenticity of a message, his power of forging
a message for himself is irrelevant. Likewise, if Alice can decrypt signcryptext she
created with her signing key, we can consider she knows the message. The argument
against this claim is to try to protect past (or future) communication if Alice’s
private key is somehow compromised. In our case, we will not allow Bob to forge
a message because we want to enable non-repudiation, meaning that he is not the
only one capable verifying the signature anymore. On the other side, we allow
Alice to be able to recover a message from past signcryption and argue that it is
acceptable since the loss of a secret key often means a total break of the system.
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2.4 Ring Learning with Errors and Decisional Compact Knapsack

The ring learning with errors (RLWE) [19] problem is a variant of the learning with
errors problem offering higher efficiency, both in memory and computing power at
the price of a globally less understood security. It is parametrized by a positive
integer q, an irreducible polynomial p(X) of degree n defining the polynomial ring
R = Z[X]/〈p(X)〉 together with its “mod q version” Rq = R/qR and a narrow
error distribution χ of zero mean over Z. To enable efficient computation, we take
the usual well-known ring Rq = Zq[X]/〈Xn + 1〉 with q ≡ 1 mod 2n. Through
the paper, elements in Rq will be seen alternatively as polynomials or vectors in
Zq together with negacyclic convolution as multiplication. It should be clear from
context which view we use. To denote the set of elements with coefficients in the
range [−k, k] we write Rq,[k]. We define the following problems:

Definition 4. (Search-RLWE ) for a secretRq and a (polynomially bounded) num-

ber of samples ai · s + ei ∈ Rq with ai
r←− Rq and ei ∈ R with coefficients sampled

from χ, find s.

Definition 5. (Decisional-RLWE ) for a secret s ∈ Rq and a (polynomially bounded)
number of samples ti = ai ·s+ei ∈ Rq with ai and ei sampled as above, distinguish,
with non-negligible probability, the distribution of the ti’s from U(Rq)

Definition 6. (Decisional Compact Knapsack) In [12], the authors use a small
parameters version of decisional RLWE called the decisional Compact Knapsack
problem (DCK). In that version, the secret and error distributions are U({−1, 0, 1})
which means that the adversary receives tuples of the form (a,a · s + s′) with

a
r←− Rq and (s, s′)

r←− (Rq,[1] × Rq,[1]) and must distinguish them from samples
from U(Rq×Rq). One can also naturally define the corresponding search problem.

Those problems are all believed to be hard, even for an adversary in possession
of a large-scale quantum computer.

2.5 RLWE Encryption

It is possible to construct an ElGamal-like CPA-secure encryption from RLWE.
This ideal lattices version has been studied in the literature under the name RLWE
encryption [19,8,23,16] and can be found in Figure 1. This scheme is really similar
to ElGamal encryption, the difference lies in the fact that Bob will recover a noisy
version of the ring element representing the message. This is why an encoding and
a decoding algorithms are used. Basically the encoding function maps a bitstring to
a polynomial by encoding one bit per coefficient. The bit b in position i is encoded
as q−1

2 · b. A threshold decoder is applied to recover the message. If the coefficient
at position i is closer to b q2c than 0, we set the bit at the same position to 1,
else, we set it to 0. Hence, has long as no coefficients are modified by more than
q
4 , the decoding algorithm will recover the correct message. Since χ is a narrow
distribution of zero mean, this should happen with overwhelming probability.

2.6 Reconciliation mechanism

A common issue in learning with errors key exchanges [14,21,3,7,6] is that both par-
ties end up with two values that are close to each other but not exactly the same. It
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Decryption key: s
r←− χ

Encryption key: pk = a · s + e with e
r←− χ

RLWE Encrypt(pk,m):

1: y1,y2,y3
r←− χ

2: c1 ← a · y1 + y2

3: c2 ← pk · y1 + y3 + Encode(m)
4: return c1, c2

RLWE Decrypt(c1, c2, s):

1: m = c2 − c1 · s ≈ Encode(m)
2: m = Decode(m)
3: return m

Encode(m):

1: for i in 1...n
2: m[i] = m[i] · b q−1

2
c

3: return m

Decode(m):

1: for i in 1...n
2: if m[i] in

[
−d q

4
e, d q

4
e − 1

]
3: m[i] = 1
4: else
5: m[i] = 0
6: return m

Fig. 1. RLWE Encryption

is due to the fact that, as in the encryption scheme, it is often made of ElGamal-like
cryptography but with noisy elements. For example in the RLWE version, Alice
eventually computes ass′ + e′s while Bob has ass′ + es′ (this can really be seen
has them agreeing on a noisy version of gab in Diffie-Hellman). Obviously, the key
exchange cannot be considered successful if each party has a different value. The
solution is to use a reconciliation mechanism deriving a common value from noisy
data (a.k.a fuzzy extractor [10]). For example let assume we work in Zq with ele-
ments represented as values in [−(q−1)/2, ..., (q−1)/2]. Alice possesses a and Bob
b = a+e for a small e. They could map their values to, say, {0, 1} by partitioning Zq
in S0 = [−dq/4e, dq/4e − 1] and S1 = [dq/4e, (q − 1)/2] ∪ [−(q − 1)/2,−dq/4e − 1]
and outputting in which subset lies their value. This works well if a and b are
close to 0 or q/2 but can fail if they are close to q/4 or −q/4. To overcome that
possibility, Alice can send a reconciliation value v ∈ {0, 1} indicating if a is in
[0, dq/4e] ∪ [−(q − 1)/2, b−q/4c] or [dq/4e + 1, (q − 1)/2] ∪ [d−q/4e − 1,−1]. The
value v thus conveys no information about the partition in which a lies but helps
Bob to reconcile on the correct value using his knowledge of b. This approach has
been used by Peikert in [21], by applying the above technique separately on each
coefficients of an element of Rq (with a slight modification dealing with the fact
that an odd q cannot be split in two equal parts).

Clearly, any reconciliation technique has an error tolerance threshold over which
agreement cannot be reached. To increase the threshold, a possibility is to use
multiple values to agree on a common bit. The motivation is that polynomials used
in RWLE-based are often of size 512 or 1024 to ensure the security of the underlying
lattice problem while symmetric secrets of bit-size 256 appears to be enough, even
in a post-quantum world. Hence we should use mappings from Znq to {0, 1}256 with
n ∈ {512, 1024}. Of course mappings for higher n or larger symmetric keys can
be used but in practice, those parameters are good enough. For the key exchange
version of our construction, we borrow the notations from NewHope [3]. In their
paper, they show how to agree on a n bit key from either a polynomial of degree
2n or 4n. The description of their whole reconciliation mechanism is quite tedious
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and takes a lot of space. Hence we redirect the interested reader to their paper for
a full explanation and analysis. By borrowing their notations, we mean that we
will use two algorithms HelpRec(x) and Rec(x′,hr) (as defined below) but that
the scheme is unaffected by how those functions work under the hood, they could
implement any reconciliation mechanism.

– HelpRec(x) taking as input a ring element and outputting a reconciliation
vector hr

– Rec(x′,hr) taking as input a ring element and a reconciliation vector and out-
putting a symmetric key K

If x and x′ are close to each other (the distance between their coefficients is small),
the output of Rec(x,hr) and Rec(x′,hr) are the same.

3 Lattice-based Signcryption Schemes

Hereunder, we describe both versions of our scheme. The discussion in section 5
will only be made for the second version for the sake of brevity but the analysis is
basically the same.

3.1 KEX-Signcryption

First we describe how to integrate encryption into GLP, following the steps of the
ElGamal modification of Zheng. From a high-level point of view, the idea of the
original signcryption scheme is to sign a message with an ElGamal signature and to
realize a non-interactive Diffie-Hellman ephemeral key exchange at the same time
reusing the“commit” value of the signature. The gain in efficiency comes from the
fact that the same operation is used in both primitives. Subsequently, the message
is symmetrically encrypted with the key derived from the exchange and forwarded
to the receiver. While the first scheme of Zheng was not directly translatable in a
lattice version, one of its derivative due to Malone-Lee [20] caught our attention.
Indeed, even though its primary advantage over Zheng in pre-quantum cryptog-
raphy was to enable non-interactive non-repudiation, namely that Bob alone can
create a valid signature from a signcryptext, the second difference is that it is based
on Schnorr signature. The lattice-based signatures schemes coming from identifi-
cation schemes through Fiat-Shamir transform being Schnorr-like [18,4,11,1], this
is where post-quantum can meet signcryption. We use the GLP signature scheme
as a base because, aside from its own advantages (mainly efficient implementations
and easy sampling), it fits the most our construction with its original parameters.

Algorithm 1 Key generation

Input: Public parameter a
Output: Key pair pk, sk

1: s, s′ ← Rq,[1]

2: return pk = a · s + s′, sk = (s, s′)

Key generation. (Algorithm 1) As in GLP, the key generation is simple and
straightforward. It uses a public parameter a shared among all users and output a
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RLWE sample pk together with its two secrets s, s′. The error and secret distribu-
tions are the same and output a polynomial with uniform coefficients in {−1, 0, 1}.
Note that in the context of signcryption, both Alice and Bob will run the key
generation procedure to retrieve their keys since two key pairs are used in the full
signcrypt/unsigncrypt procedure. We use subscripts (e.g. pka = a · sa + s′a ) to
differentiate them.

Algorithm 2 KEX-Signcrypt

Input: Public parameter a, Bob’s public key pkb, Alice’s key (sa, s
′
a,pka), a message m,

hash function H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = 32}, symmetric encryption algorithm E
Output: a signcryptext of m: C = (z1, z2, c, E , r)

1: y3
r←− Rq,[k]

2: do
3: y1, y2

r←− Rq,[k]

4: v← pkb · y1 + y3

5: r← HelpRec(v)
6: K ← Rec(v, r)
7: c← H(a · y1 + y2,m,K,pka,pkb)
8: z1 ← sa · c + y1, z2 ← s′a · c + y2

9: while not z1 and z2 in Rq,[k−32]

10: E ← EK(m)
11: return z1, z2, c, E , r

KEX-Signcrypt. (Algorithm 2) The signcrypt procedure contains three inter-
leaved parts: signature, key exchange and encryption. The signature follows from
[12] as a Fiat-Shamir signature from a Σ protocol. First, a commitment consisting
of a RLWE sample using two masking polynomials y1,y2 ∈ Rq,[k] is computed.
Then, an unpredictable challenge c is retrieved by simulating a verifier with a hash
function H taking inputs depending on the commitment. Finally, the response
consists of two polynomials of the form z = s · c + y. Note that for a signcryption
scheme, the hash function should take as input a symmetric key K and both public
identities. If the key was not included in the input, the adversary could easily dis-
tinguish between two messages m0,m1 by computing both H(.,mi, ., .) and verify
the equality with c. Having the public identities in the hash is a common practice
in signcryption schemes to prove security in advanced models [9].
The key exchange part is performed by deriving a secret value K from a noisy ver-
sion of a · sb · y1. Alice cannot find the exact value since it means she would know
Bob’s secret key but she can find an approximate value from Bob’s secret key by
computing pkb ·y1 = a ·sb ·y1+s′b ·y1 ≈ a ·sb ·y1. This is exactly the technique em-
ployed in lattice-based key exchanges such as NewHope. The efficiency gain comes
from the fact that Bob will later on be able to retrieve an approximation version of
a · y1 without sending him any other ring element than the polynomials computed
in the signature (c, z1, z2). As in [7,3], Alice gets a symmetric key by applying a
reconciliation procedure on the noisy shared value.
The last part is straightforward, now that a key is available, a symmetric cipher E
is used to encrypt the data.
Finally, Alice outputs the signature z1, z2, c, the symmetric ciphertext E and a
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small reconciliation vector r. It means that the message was at the same time en-
crypted and authenticated in an asymmetric manner with only the overhead of
sending a symmetric ciphertext (obviously we need to send something at least as
long as the message for encryption) and a small reconciliation vector on the top of
the signature.

Algorithm 3 KEX-Unsigncrypt

Input: Public parameter a, Bob’s key (sb, s
′
b,pkb), Alice’s public key pka, a signcryptext

C = (z1, z2, c, E , r), hash function H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = 32}, symmetric
encryption algorithm E
Output: A message m or failure symbol ⊥
1: v← a · z1 + z2 − pka · c
2: K ← Rec(v · sb, r)
3: m← E−1

K (E)
4: return m if c = H(v,m,K,pka,pkb) and z1, z2 ∈ Rq,[k−32] else ⊥

KEX-Unsigncrypt. (Algorithm 3) The goal of this algorithm is to allow Bob to
find the secret key to decrypt the symmetric cipher and at the same, to provide
authentication of the message through a signature.
Exactly as in GLP, Bob will recover the commitment part of the signature v =
a · y1 + y2 by computing a · z1 + z2 − pka · c. The difference with the original
signature scheme is that Bob must now find the key K and the message in order
to verify the hash value. To recover it, he shall use the reconciliation vector r with
an approximate version of a · sb · y1. Such a value can be found by computing the
product v · sb = a · sb ·y1 + y2 · sb. Once the message is decrypted, Bob verifies the
signature by checking the size of z1, z2 and the hash value. He outputs the message
if everything is correct and a failure symbol otherwise.

KEX-SignExtract. This scheme also inherits the capability to perform a signa-
ture extraction from the signcryption of Malone-Lee. It is a simple transformation
of the unsigncrypt procedure and can be found in Appendix B.

3.2 KEM-Signcryption

We describe now the second version of the scheme based on key encapsulation in-
stead of direct key exchange. The approach is similar to the one used in NewHope-
Simple [2] or Kyber [5]. The high level perspective is now to perform a noisy ElGa-
mal encryption of a chosen key during signature instead of noisy Diffie-Hellman.
While in NewHope-Simple the goal of the new approach is to make the protocol
simpler by getting rid of the reconciliation mechanism but not really to enhance the
scheme, here, using an encryption based method leads to better performances and
can enable parallelism. We also apply a small modification in the way the message
is hashed. This modification is irrelevant in the random oracle model but could
potentially make a difference in practice.
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Algorithm 4 KEM-Signcrypt

Input: Public parameter a, Bob’s public key pkb, Alice’s key (sa, s
′
a,pka), a message m,

hash function H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = 32}, symmetric encryption algorithm E
Output: a signcryptext of m: C = (z1, z2, c,x, E)

1: K
r←− {0, 1}256

2: f ← H(m,K,pka,pkb)
3: do
4: y1, y2

r←− Rq,[k]

5: c← H(a · y1 + y2, f)
6: z1 ← sa · c + y1, z2 ← s′a · c + y2

7: while not z1 and z2 in Rq,[k−32]

8: y3
r←− Rq,[k]

9: x← pkb · y1 + y3 + Encode(K)
10: E ← EK(m)
11: return z1, z2, c,x, E

KEM-Signcrypt. (Algorithm 4) In the same way as before, one can find three
phases: signature, key encapsulation and symmetric encryption. The signature is
now almost exactly GLP, the small difference is that the hash function (as in the
KEX version) takes as input the hash of the message, the symmetric decryption
key and the public identities.
The key encapsulation part is a RLWE encryption of a randomly sampled key K.
Such an encryption consists of two ciphertexts c1 = a·y1+y2 and c2 = pkb ·y1+y3.
Basically, c2 is the message masked with a ring element depending on the public-key
looking random under the decisional-RLWE assumption and c1 is a value allowing
the owner of skb to remove the mask without conveying any (computable) informa-
tion on y1 under the search-RLWE assumption. Here we gain efficiency by having
the value a · y1 + y2 acting at the same time as the commitment of the signature
and the c1 part of the encryption scheme.
We see two advantages in using encryption instead of key exchange:
First, we gain efficiency by only having one polynomial multiplication instead of
two in the rejection sampling loop and we can now parallelize the symmetric en-
cryption algorithm. Indeed, in the KEX version, the key depends on y1 and was
not known until the end of the rejection sampling procedure, hence, everything
had to be sequential and a multiplication with pkb had to be done at each itera-
tion. Now, the symmetric encryption can start at the same time as the rejection
sampling. It is fair to say that in general symmetric operations are lightweight in
comparison to polynomial multiplication. Nevertheless, if a really large message
has to be encrypted, say such that EK(m) takes as long as the do...while loop,
the saving becomes non-negligible. Obviously, this argument only makes sense if
the rejection sampling procedure itself is not affected by the size of the message.
That is why we decided to pre-hash the message before signing. Actually this issue
is not specific to signcryption, all the signature schemes using rejection sampling
would be badly affected by a really long message if the hash function cannot restart
from its previous sate. Hence, in this case, hashing the message once before would
save some computation. This small modification could be done in the KEX version
as well as in existing Fiat-Shamir lattice-based signatures.
Second, depending on the parameters, reconciliation can be a real issue and hav-
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ing the key encoded as a polynomial with coefficients in {0, q−12 } is optimal for
the reconciliation since they are at“maximum distance” in Zq. Also, because the
symmetric key needed being often smaller than the encoding polynomial, having
control over the value eases the process of embedding an error-correcting code in
the extra space.

Algorithm 5 KEM-Unsigncrypt

Input: Public parameter a, Bob’s key (sb, s
′
b,pkb), Alice’s public key pka, a signcryptext

C = (z1, z2, c,x, E , r), hash function H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = 32}, symmetric
encryption algorithm E
Output: A message m or failure symbol ⊥
1: v← a · z1 + z2 − pka · c
2: K ← Decode(x− v · sb)
3: m← E−1(E)
4: return m if c = H(v, H(m,K,pka,pkb)) and z1, z2 ∈ Rq,[k−32] else ⊥

KEM-Unsigncrypt. (Algorithm 5) The unsigncrypt algorithm follows in the ob-
vious manner. Bob retrieves the c1 part of the RLWE encryption from the signature
and run the decryption algorithm to find the key. Then, he decrypts the symmetric
ciphertext and verifies the signature.

4 Security arguments

The security aspects of interest for signcryption are unforgeability and privacy. The
construction combining both a signature scheme using the Fiat-Shamir heuristic
and a public key encryption scheme, we argue the security using the forking lemma
[22] and a standard hybrid argument.

4.1 Unforgeability

The underlying signature of the signcryption scheme is the GLP signature which
is itself a derivative of the original proposal of Lyubashevsky [18]. The security
argument is somewhat split over both papers but the idea is to use the forking
lemma to get two different signatures that would allow to solve the DCK problem.
We use the adversary to get two forgeries z1, z2, c and z′1, z

′
2, c
′ for different random

oracles but the same random tape (hence the same y1,y2). We have a · z1 + z2 −
pka · c = a · z′1 + z′2 − pka · c′ = a · y1 + y2 and thus, with pka = a · sa + s′a,
a · (z1 − z′1 − sa · c + sa · c′) + (z2 − z′2 − s′a · c + s′a · c′) = 0. As pointed in [12], (if
z1 − z′1 − sa · c + sa · c′ and z2 − z′2 − s′a · c + s′a · c′ are non-zero) we have found
a solution to the DCK problem through the reduction in [18]. This argument still
holds for the signcryption scheme.

4.2 Confidentiality

We argue the confidentiality of the scheme with a sequence of games showing
semantic security under the DCK problem. We model the adversary as a tuple of
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two algorithms A = (A1,A2), the first choosing messages for the game according to
the public keys and the second trying to guess which one was signcrypted. Both the
hash function and the encryption scheme are seen as ideal primitives. The sequence
of games for the KEM version can be found in Figure 2. Games for the KEX version
are really similar and can be found in Appendix A.

Game 0:

1: (m0,m1)← A1(pka,pkb)
2: b← {0, 1}
3: K ← {0, 1}256
4: f ← H(mb)
5: do
6: y1, y2

r←− Rq,[k]

7: c← H(a · y1 + y2, f,K,pka,pkb)
8: z1 ← sa · c + y1, z2 ← s′a · c + y2

9: while not z1 and z2 in Rq,[k−32]

10: y3
r←− Rq,[k]

11: x← pkb · y1 + y3 + Encode(K)
12: E ← EK(mb)
13: b̂← A2(z1, z2, c,x, E , r)
14: return b̂

Game 1:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: K

r←− {0, 1}256
4: f ← H(mb)
5: y1, y2

r←− Rq,[k]

6: c← H(a · y1 + y2, f,K,pka,pkb)
7: z1, z2 ←Rq,[k−32]

8: with probability P goto step 5
9: y3

r←− Rq,[k]

10: x← pkb · y1 + y3 + Encode(K)
11: E ← EK(m)
12: b̂← A2(z1, z2, c,x, E , r)
13: return b̂

Game 2:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: K

r←− {0, 1}256
4: f ← H(mb)
5: y1, y2

r←− Rq,[k]

6: c← H(a · y1 + y2, f,K,pka,pkb)
7: z1, z2

r←− Rq,[k−32]

8: with probability P goto step 5
9: y3

r←− Rq,[k]

10: a′
r←− Rq

11: x← a′ · y1 + y3 + Encode(K)
12: E ← EK(m)
13: b̂← A2(z1, z2, c,x, E , r)
14: return b̂

Game 3:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: K

r←− {0, 1}256
4: f ← H(mb)
5: y1, y2

r←− Rq,[k]

6: c← H(a · y1 + y2, f,K,pka,pkb)
7: z1, z2

r←− Rq,[k−32]

8: with probability P goto step 5
9: y3

r←− Rq,[k]

10: x
r←− Rq,[k]

11: E ← EK(m)
12: b̂← A2(z1, z2, c,x, E , r)
13: return b̂

Fig. 2. Sequence of games. P = 1−
(

1− 64
2k+1

)2n
is the probability of z1 or z2 not

belonging to Rq,[k−32] (see [12], footnote 5)

Game 0: Game 0 is the usual CPA game against the signcryption scheme, the ad-
versary chooses two messages m0,m1 and tries to guess which one was signcrypted.

Game 1: By virtue of the rejection sampling performed during signcryption, the
output distribution of the zi should be exactly the same as a uniform overRq,[k−32].
Hence, we can replace z1 and z2 by random elements over this range without
modifying the view of the adversary.
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Game 2: Using the DCK assumption, we can replace the public key of Bob by a
random element in Rq without being detected by the polynomial time adversary.

Game 3: In game 3, we use the same argument again to replace the ciphertext of
the KEM by a random value.

In conclusion, using the fact that both H(.) and E(.) are modeled as ideal prim-
itives and that H takes one random unknown value uncorrelated to the message,
they do not reveal anything about their inputs. Hence, the values given to A2 looks
all random and independent from the messages. Thus, the adversary cannot guess
which message was signcrypted.

5 Analysis

In the analysis of the scheme, we are going to use the set of parameters proposed
in the original paper of Güneysu, Lyubashevsky and Pöppelmann. Even though
we think that crafting parameters to fit the signcryption scheme is interesting, the
point of reusing the previous set is to show that we gain something solely by con-
struction while keeping the underlying signature intact. The efficient/lower security
set proposed in [12] is the following:

Set I: n = 512, q = 8383489, k = 214

5.1 Failure probability

The main bottleneck of the signcryption scheme is the correctness regarding de-
cryption. Indeed, as in a lot of RLWE-based protocols, the two parties end up with
two ring elements close to each other but not exactly the same. In our case, the dif-
ference between the value of Alice and the value of Bob is ∆ab = s′b ·y1−sb ·y2+y3.
While in those schemes the parameters are chosen in order to get correctness with
overwhelming probability together with strong security, we face here another strong
constraint which is that the parameters should also be compatible with the signa-
ture scheme. For example, one strategy to reduce the norm of ∆ab is to reduce k.
This would give better results for correctness but at the same time decrease the
speed of the scheme since the rejection sampling loop would have a harder time to
find small enough zi. Hence, even though having existing parameters such as Set I
working reasonably well is a nice feature, tailoring parameters and distributions for
an optimal trade-off between performances and correctness would be interesting.

We now provide an analysis of the failure probability for the KEM-version.
The KEM-Unsigncrypt algorithm recovers the correct key if ‖∆ab‖∞ < b q4c. In the
following, we write (p)i, to denote the i-th coefficient of a polynomial p.
We start by bounding the magnitude of one coefficient (∆′ab)i = (s′b · y1 − sb · y2)i.
Since the polynomial product is computed modulo 〈Xn + 1〉 and all distributions
are symmetric, one such coefficient is the result of a sum of 2n products between a
coefficient of a polynomial in Rq,[1] and a polynomial in Rq,[k].
Let S ∼ U ({−1, 0, 1}) and Y ∼ U ([−k, k]) be random variables, we denote their
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product SY . Each coefficient of ∆′ab is the sum of n samples from SY , hence

(∆′ab)i ∼
∑2n
i=1(SY )i. Fortunately, computing the exact distribution SY is easy:

P [SY = 0] =
2k + 3

6k + 3

and

P [SY = z | z ∈ [−k, k]\{0}] =
2

6k + 3

Since the value of k is reasonable, to find the distribution of ∆′ab, one could hope to
compute log(n) time the convolution of the distribution with itself. Unfortunately,
this approach failed to give accurate enough results because of numerical stability
issues. Instead, as in [3], we use the Chernoff-Cramer inequality to bound the sum
of the random variables.

Chernoff-Cramer inequality Let χ be a distribution over R and let X1, . . . , X2n

be i.i.d. symmetric random variables of law χ. Then, for any t such that Mχ(t) =
E[etX ] <∞ it holds that

P

[∣∣∣∣∣
2n∑
i=1

xi

∣∣∣∣∣ > α

]
< 2e−αt+2n log(Mχ(t)).

Using the above inequality with

MSY (t) =
2k + 3

6k + 3
+

2

6k + 3
·
(
et(k+1) − 1

et − 1
+
e−t(k+1) − 1

e−t − 1
− 2

)
and setting α = b q4c − k, t ≈ 3.54 · 10−4, n = 512 and k = 214 (Set I), we find
that P

[
(∆′ab)i > b

q
4c
]
≈ 2−50. By applying union bound on the 512 coefficients, we

get that the failure probability is ≈ 2−41. We should note that in reality only the
256 first coefficients encode the key and that the probability can also be lowered
by using a multiple coefficients per bit encoding instead of padding with zeroes.

5.2 Compression

To decrease the size of the signature, the authors of [12] proposed a compression
technique highly reducing the entropy of z2. They send z′2 = Compress(a · z1 − t ·
c, z2, p, k − 32) instead of z2. The idea is that z′2 will be a polynomial with (most
of its) coefficients in {−(k− 32), 0, k− 32} such that v(1) = ba·z1+z2−t·c

2(k−32)+1 c = v′(1) =

ba·z1+z′
2−t·c

2(k−32)+1 c (see the original paper for a full analysis of the algorithm). Alice will

use v(1) and Bob v′(1) as input to the hash function.
Such a technique would also work with signcryption, when receiving the signature,
Bob would compute a·z1+z′2−t·c which is a·y1+y′2 with y′2 = y2+ε and carry on
with the algorithm. What happens now is that the difference between the value of
Alice and the value of Bob before reconciliation is∆compress

ab = s′b·y1−sb·(y2+ε)+y3

with ε depending on the compression (but with ‖ε‖∞ < k). In conclusion the
scheme still works but the correctness is lowered. However a tradeoff can be done
by compressing less aggressively the coefficients of y2.
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5.3 Performances

To assess the efficiency, we implemented the KEM version of the scheme by mod-
ifying the software implementation of GLP by Güneysu, Oder, Pöppelmann, and
Schwabe [13]1. We run the software on an Intel Core i7-4600M. Results can be
found in Table 1. As expected, the KEX version is slower to signcrypt a message.
We also made a comparison with GLP to assess the overhead. Again, the experi-
ments confirm the intuition, the KEM version induces a small penalty due to the
extra polynomial multiplication and longer input to the hash function while the
KEX version is sensibly heavier. The choice of the symmetric encryption scheme
being orthogonal to the rest of the scheme, it was not taken into account (we ap-
plied a one-time pad with the key).
Regarding storage and bandwidth usage, the KEM version produces signcryptext
of 2656 bytes (21248 bits) to which we should add the symmetric ciphertext size.
Compression to reduce the size of z2 was used. The KEX version using the recon-
ciliation mechanism of NewHope would output signcryptext of around 1308 bytes
(10464 bits).

KEX-Signcryption KEM-Signcryption GLP

Signcrypt 850108 624607 564392

Unsigncrypt 92168 120607 52969

Table 1. Cycle counts and comparison with the signature scheme

6 Conclusion

In this work we provided a first look into signcryption in a post-quantum world.
Knowing that those schemes were originally based on Elgamal cryptography, the
translation toward lattices is natural. We finally chose a scheme of Malone-Lee
as a starting point and proposed two construction both using the GLP signature
at their cores. The first construction directly embeds a RLWE key exchange in
the signature exactly as in the classical signcryption scheme while the second one
uses RLWE encrypt as a key encapsulation mechanism, leading to a more efficient
scheme but larger signcryptext. These modifications of GLP work with the original
parameters of the signature scheme and hence do not induce any other overhead
than the construction. Nevertheless, the transformation is generic and could be
integrated in others similar signature schemes. Finally, some of the choices in the
parameters and the exact construction depend a lot on the context in which the
primitives is used. This is not a surprise since signcryption itself is already really
contextual.

1 https://cryptojedi.org/crypto/#lattisigns
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A Security games for the KEX version

Game 0:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: y3

r←− Rq,[k]

4: do
5: y1, y2

r←− Rq,[k]

6: v← pkb · y1 + y3

7: r← HelpRec(v)
8: K ← Rec(v, r)
9: c← H(a · y1 + y2,m,K,pka,pkb)

10: z1 ← sa · c + y1, z2 ← s′a · c + y2

11: while not z1 and z2 in Rq,[k−32]

12: E ← EK(m)
13: b̂← A2(z1, z2, c, E , r)
14: return b̂

Game 1:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: y3

r←− Rq,[k]

4: y1, y2
r←− Rq,[k]

5: v← pkb · y1 + y3

6: r← HelpRec(v)
7: K ← Rec(v, r)
8: c← H(a · y1 + y2,m,K,pka,pkb)
9: z1, z2

r←− Rq,[k−32]

10: with probability P, goto 4
11: E ← EK(m)
12: b̂← A2(z1, z2, c, E , r)
13: return b̂

Game 2:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: y3

r←− Rq,[k]

4: y1, y2
r←− Rq,[k]

5: a′ ←Rq

6: v← a′ · y1 + y3

7: r← HelpRec(v)
8: K ← Rec(v, r)
9: c← H(a · y1 + y2,m,K,pka,pkb)

10: z1, z2
r←− Rq,[k−32]

11: with probability P, goto 4
12: E ← EK(m)
13: b̂← A2(z1, z2, c, E , r)
14: return b̂

Game 3:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: y3

r←− Rq,[k]

4: y1, y2
r←− Rq,[k]

5: v←Rq

6: r← HelpRec(v)
7: K ← Rec(v, r)
8: c← H(a · y1 + y2,m,K,pka,pkb)
9: z1, z2

r←− Rq,[k−32]

10: with probability P, goto 4
11: E ← EK(m)
12: b̂← A2(z1, z2, c, E , r)
13: return b̂

Fig. 3. Sequence of games for the KEX version

Game 0 → Game 1: Rejection sampling
Game 1 → Game 2: Decisional Compact Knapsack
Game 2 → Game 3: Decisional Compact Knapsack
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B Publicly verifiable signature from signcryptext

An interesting feature of Malone-Lee’s signcryption scheme is that the receiver Bob
can himself create a fully valid publicly verifiable signature under Alice’s secret key
on the message he unsigncrypted. Even if we chose to start from this scheme for its
similarity with Schnorr’s signature (and thus, lattice-based signature), this really
helpful feature carries to our construction. Below are the algorithms for the KEX
version but the same technique can trivially be applied to the KEM version.

Algorithm 6 KEX-SignExtract

Input: Public parameter a, Bob’s keys (sb, s
′
b,pkb), Alice’s public key pka, a signcryp-

text C = (z1, z2, c, E), hash function H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = 32}, symmetric
encryption algorithm E
Output: A message m together with its signature σ(m)

1: v← a · z1 + z2 − pka · c
2: K ← Rec(v · sb, r)
3: m← E−1

K (E)
4: return m,σ(m) = (K, z1, z2, c)

KEX-SignExtract. (Algorithm 6) To extract a publicly verifiable signature σ(m)
from a signcryptext, Bob will use the fact that the output of KEX-Signcrypt is
equivalent to a GLP signature on m with a nonce depending on K,pka and pkb
inserted into the hash function. Since a verifier should obviously know the message
to validate the signature, the confidentiality of the key K is not required anymore.
Thus, KEX-SignExctract will output m and K together with the GLP signature
and anyone will be able to perform the verification.

Algorithm 7 PublicVerif

Input: Public parameter a, Alice’s public key pka, Bob’s public key pkb, a message m,
a signature σ(m) = (K, z1, z2, c), hash function H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = 32}
Output: A message m or failure symbol ⊥
1: v← a · z1 + z2 − pka · c
2: return 1 if z1, z2 ∈ Rq,[k−32] and c = H(v,m,K,pka,pkb) else 0

PublicVerif. (Algorithm 7) The public verification is the same as in GLP, except
that the hash function also takes as input K,pka and pkb.
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