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Abstract. Cube-attack-like cryptanalysis was proposed by Dinur et al.
at EUROCRYPT 2015, which recovers the key of Keccak keyed modes in
a divide-and-conquer manner. In their attack, one selects cube variables
that are not multiplied with each other (denoted as linear-cube) with
the method of construction. The chosen cube variables are consecutive
bits in one lane and the key bits they multiply with are still too many,
which leads to that one can attack less rounds sometimes. In this paper,
we introduce a new MILP model to solve the above problem. Using
this new MILP tool, we find the optimal linear-cubes for Keccak-MAC
and Ketje that multiply with a minimum number of key bits in the
first round. For example, when the capacity is 256, we find a new 32-
dimension linear-cube for Keccak-MAC that only multiply with 18 key
bits instead of Dinur et al.’s 64 bits and the complexity of the 6-round
attack is reduced to 2*2 from 2°¢. More impressively, using this new tool,
we give the very first 7-round key-recovery attack on Keccak-MAC-512.
In addition, we get the best attacks on Ketje Major/Minor. For Ketje
Major, when nonce is 9 lanes, we could improve the best previous 6-round
attack to 7-round. We give the first 7-round attacks on Ketje Minor when
the nonce is reduced to 9 lanes. When comparing with Huang et al.’s
conditional cube attack, the MILP-aided cube-attack-like cryptanalysis
have larger effective range and get the best results on the Keccak keyed
variants with relatively smaller degrees of freedom.
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1 Introduction

As a countermeasure of the collision attacks on MD5 and SHA-1 by Wang et
al. [27,128], the U.S. National Institute of Standards and Technology (NIST)
announced a public contest in 2007 aiming at the selection of a new standard for
a cryptographic hash function (SHA-3). After 5 years of intensive scrutiny, in
2012 NIST selected Keccak as the winner of the SHA-3 competition. As one of
the most important cryptographic standards, Keccak attracts lots of attention
from the world wide researchers and engineers. Till now, many cryptanalysis
results |748l{15/16})20] and evaluation tools [6,/11}j19] have been proposed, including
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the recent impressive collision attacks [22//25]. Since the robust design of Keccak,
the cryptanalysis progress of Keccak is still limited.

At EUROCRYPT 2015, Dinur et al. [9] introduced a new cube-attack-like
cryptanalysis technique and gave the security evaluations of the Keccak keyed
modes for the first time. At CT-RSA 2015, Dobraunig et al. [12] evaluated the
security of Ascon |13] against the cube-attack-like cryptanalysis. Later, Dong et
al. [14] applied the cube-like method to Ketje Sr [3]. At EUROCRYPT 2017,
Huang et al. [17] introduced the conditional cube attack, which takes advantage
of the large state freedom of Keccak to find a so-called conditional cube variable
that do not multiply with all the other cube variables (called ordinary cube
variables) in the first round and second round of Keccak.

Recently, cryptographic communities found many classical cryptanalysis meth-
ods could be converted to mathematical optimization problems which aim to
achieve the minimal or maximal value of an objective function under certain
constraints. Mixed-integer Linear Programming (MILP) is the most widely s-
tudied technique to solve these optimization problems. One of the most suc-
cessful applications of MILP is to search differential and linear trails. Mouha et
al. [21] first applied MILP method to count active Sboxes of word-based block
ciphers. Then, at Asiacrypt 2014, by deriving some linear inequalities through
the H-Representation of the convex hull of all differential patterns of Sbox, Sun
et al. [26] extended this technique to search differential and linear trails. An-
other two important applications are to search integral distinguisher [29] and
impossible differentials [23] [5].

At Asiacrypt 2017, Li et al. [18] introduced a new MILP tool to improve
conditional cube attacks on Keccak keyed modes. They found that when the
conditional cube variable is given, to find enough ordinary cube variables is a
mathematical optimization problem. They gave the MILP model and improved
Huang et al.’s conditional cube attacks. And most recently, Song et al. [24] in-
troduced a new MILP model to find better/optimal choices of conditional cubes.
These works seem to exhibit a new way to research Keccak sponge function. S-
ince Keccak’s robust design, many classic cryptanalysis techniques become very
complex to implement on Keccak. However, by using MILP model, one may send
these tedious works to a MILP solver.

1.1 Owur Contributions

In this paper, we find Dinur et al.’s [9] cube-attack-like cryptanalysis technique
could also be converted to and improved by a MILP model. In Dinur et al.’s
attack, the key point is to select the public variables of the cube in such a way
that the superpolys depend only on a (relatively) small number of key bits. In
detail, at the first round of Keccak, the attacker finds a set of cube variables that
are not multiplied with each other (we denoted it as linear-cube), meanwhile,
these cube variables are not multiplied with some key bits. By taking advantage
of the CP-kernel, Dinur et al. find 32/64-dimension linear-cubes that are not
multiplied with 64 key bits in Keccak-MAC with capacity 256.
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In this paper, we propose a novel MILP model to search optimal linear-
cubes that multiply with a minimum number of key bits in the first round.
We model the so-called CP-like-kernel, model the way that the cube variables
are not multiplied with each other in the first round and model the way that
the cube variables are not multiplied with key bits, etc. We construct a linear
inequality system. The target object is the minimum number of key bits which
are multiplied with cube variables. Based on this new MILP tool, we find the
optimal cubes that are multiplied with fewest key bits for Keccak-MAC and
Ketje. All the results improve Dinur et al.’s attacks.

When comparing with Huang et al.’s conditional cube attack, the advantage
of the MILP-aided cube-attack-like cryptanalysis is that it has larger effective
range. The conditional cube attack becomes much weaker or invalid when the
of degrees of freedom are smalﬂ Hence, the conditional cube attack can only
applied to 6-round on Keccak-MAC-512. However, MILP-aided cube-attack-like
cryptanalysis could not only attack the same rounds with conditional cube attack
with the same degree of freedom, but also get best results on the Keccak keyed
variants with relatively smaller degree of freedom. The results are summarized
in Table [[] In addition, we list the source code of the new MILP tools and the
verification programs in a public domairﬁ to help researchers study Keccak. Our
main results achieved by the MILP tools are listed below.

1. When the capacity is 256, we find the optimal 32-dimension linear-cube for
Keccak-MAC that only multiply with 18 key bits instead of Dinur et al.’s 64
bits. By divide-and-conquer manner, the complexity of the 6-round attack
is only 242 instead of 2%¢. we find a new 64-dimension linear-cube that only
multiply with 30 key bits instead of Dinur et al.’s 64 bits. Based on it, the
complexity of 7-round cube-attack-like cryptanalysis is reduced by a factor
of 217. We could also improve Dinur et al.’s 5-round attack on Keccak-MAC
with capacity 576 to 7-round, and get 7-round cube-attack-like on Keccak-
MAC-384, but we omit these results due to page limit.

2. In Keccak sponge function, when the capacity reaches 1024, the degree of
freedom is so small that the cryptanalysis becomes quite hard. Actually,
the rounds of the collision attack and preimage attack on Keccak-512 are
only 3 and 4, respectively. For Keccak-MAC-512, the cryptanalysis results
are also the weakest. In fact, at EUROCRYPT 2015, Dinur et al. only give
cube-attack-like cryptanalysis when the capacity is smaller than 576. At
EUROCRYPT 2017, Huang et al. give the first 5-round key-recovery attack
on Keccak-MAC-512 using conditional cube attack. Then at Asiacrypt 2017,
Li et al. give a 6-round conditional cube attack. In this paper, using our new
MILP tool, we give the first 7-round key-recovery attack on Keccak-MAC-
512.

3. In addition, we also get the best attacks on Ketje Major/Minor with nonce
reduced settings. For Ketje Major, when nonce is 9-lane, we improve the

3 In Keccak-MAC, the capacity is larger, the degrees of freedom are smaller; in Ketje,
the nonce or size of state are smaller, the degrees of freedom are smaller.
* https://github.com/biwenquan/MILP-aided-Cube-attack-1like-cryptanalysis/
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best previous 6-round attack to 7-round. We give the first 7-round attacks
on Ketje Minor when the nonce is reduced to 288 bits, while the best previous
7-round attacks need 654-bit nonce.

Table 1: Summary of Key Recovery Attacks on Keccak Keyed Modes

Attacked

Variant Capacity Type Rounds Time|Memory| Source
Cube-attack-like 6 206 272 [9]
Conditional Cube Attack 6 210 - 117
o5 |Balanced Divide-and-Conquer| 6 215 | 213 [30]
MILP-aided Cube-attack-like 6 212 2° Sect.
Cube-attack-like 7 297 232 9]
Conditional Cube Attack 7 272 - 17
Keccal-MAC Balanced Divide-and-Conquer 7 284 267 }30}
MILP-aided Cube-attack-like | 7 2% | 2'% | Sect.[q]
Conditional Cube Attack 5 2% - 117]
1024 Conditional Cube Attack 6 2583 - [18]
Conditional Cube Attack 6 24 - 124]
MILP-aided Cube-attack-like 6 259 226 Sect.
MILP-aided Cube-attack-like 7 2112:61 947 | Sect. |6
Variant Nonce Type ARt:)i(;Ikdej Time|Memory| Source
654 Cube-attack-like 7 296 1 232 14
Ketje Minor | 654 Conditional Cube Attack 7 281 - 18
288 | MILP-aided Cube-attack-like| 7 2% 1 2% Sect 7.1
Ketje Major 576 Conditional Cube Attack 6 27 - [18}_|
576 | MILP-aided Cube-attack-like| 7 270 | 2% [Sect 7.2

1.2 Organization of the Paper

Sect. [2] gives some notations, and a brief description on Keccak-permutations,
Keccak-MAC and Ketje. Some related works are introduced in Sect. [3] Sect. []
introduces the idea of improvement of Dinur et al.’s attack. Sect. [5] describes the
MILP search model for cube-like-attack. Round-reduced key-recovery attacks
on Keccak-MAC-512 are introduced in Sect. [6} Sect. [7] gives the applications to
Ketje. Sect. [§ concludes this paper.
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2 Preliminaries

2.1 Notations

the intermediate state after i-round of Keccak-p, for example Sg 5
means the intermediate state before x in 1st round of Keccak-p

used in tables: for Keccak-MAC, the initial state; for Ketje, the state
after 771 of Keccak-p*

the 32/64-bit word indexed by [i, j, *] of state A,0<i<4,0<j<4
the bit indexed by [i, j, k] of state A

the ¢th cube variable

the ith auxiliary variable used in the attack procedure

128-bit key, for Keccak-MAC, K = kol||k1, both ko and k; are 64-bit;
for Ketje Major, K = ko||k1||k2, ko is 56-bit, k1 is 64-bit, ko is 8-bit;
for Ketje Minor, K = ko||k1||kz2||ks]||k4, ko is 24-bit, ki,ks and k3 are
32-bit, k4 is 8-bit

the jth bit of k;

0,2(1,2]22]3,2(4,2

0,3(1,3]23]3,3([4,3

z
y*/ state 0,4 |1,4]2,4(3,44,4

Fig.1: (a) The Keccak State [2], (b) State A In 2-dimension

2.2 The Keccak-p permutations

The Keccak-p permutations are derived from the Keccak-f permutations [2] and
have a tunable number of rounds. A Keccak-p permutation is defined by its width
b= 25 x 2!, with b € {25,50, 100, 200, 400, 800, 1600}, and its number of rounds
n,, denoted as Keccak-p[b]. The round function R consists of five operations:

S =3 o

R=toxomopol

Alz]ly] = Alz]ly] & Y j_o (Alz — 1][j] & (Alz + 1][j] < 1)).
Alz]ly] = Alz][y] < r[z,y].

: Alyl[2z + 3y] = Alz][y]

 Alr][y] = Alz][y] © ((~Az + 1][y]) A Alz + 2][y].

A[0][0] = A[0][0] ® RC
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128-bit key||message

<

b—

) — 128-bit tag
1600-2n bits—> bitrate .
Keccak internal

permutation

2n bits —> capacity N

Fig. 2: Construction of Keccak-MAC-n

Keccak-p[b] works on a state A of size b, which can be represented as 5 x 5
£-bit lanes, as depicted in Fig. 1} A[i][j] with i for the index of column and j
for the index of row. In what follows, indexes of i and j are in set {0, 1,2, 3,4}
and they are working in modulo 5 without other specification.

Table 2: Rotation constants r[z,y| in Keccak p operation.
x=0x=1x=2|x=3|x=4

y=0 0] 1 | 62| 28 | 27

y=1| 36 | 44 6 55 20

y=2| 3 10 43 25 39

y=3| 41| 45 15 21 8

y=4[ 18| 2 | 61 | 56 | 14

In Ketje v2, the twisted permutations, Keccak-p* [b]=mo Keccak-p[b]or 1, are

introduced to effectively re-order the bits in the state. #—! is the inverse of =
71 Alz + 3yl[2] = Al][y].

2.3 Keccak-MAC

A MAC mode of Keccak can be obtained by adding key as the prefix of mes-
sage/nonce. As depicted in Fig. [2] the input of Keccak-MAC-n is concatenation
of key and message and n is half of the capacity length.

2.4 Ketje

Ketje [3] is also one of the 16 candidates in the 3rd round CAESAR competition.
It is a sponge-like construction.

The structure of Ketje is an authenticated encryption mode MonkeyWrap,
shown Fig. [3l which is based on MonkeyDuplex [4]. It consists of four parts: the
initialization phase, Processing associated data, Processing the plaintext and
Finalization phase. The initialization takes the secret key K, the public nonce
N and some paddings as the initial state. Then ngtq+ = 12 rounds Keccak-p* is
applied. Our attack is applied to the initialization phase of Ketje.
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+00 +00 |+01

start |«——=
[step]

Fig. 3: Wrapping a Header and a Body with MonkeyWrap

In Ketje v2, four concrete instances are proposed, shown in Table Nstart =
12, ngep = 1 and ngprige = 6. For Ketje Minor and Major, the recommended
key length is 128-bit, so the maximal length of nonce is (800-128-18=)654 and
(1600-128-18=)1454 bits.

Table 3: Four Instances in Ketje v2
Name f p  Main use case
Ketje Jr Keccak-p*[200] 16 lightweight
Ketje Sr Keccak-p*[400] 32 lightweight
Ketje Minor Keccak-p*[800] 128 lightweight
Ketje Major Keccak-p*[1600] 256 high performance

3 Related Work

3.1 Cube Attack

At EUROCRYPT 2009, Dinur and Shamir introduced the cube attack , in
which the output bit of a symmetric cryptographic scheme can be regarded as
a polynomial f(ko, ..., kn—1,v0, .--;Um—1) over GF(2), kg, ..., k,—_1 are the secret
variables (the key bits), vg, ..., v;m—1 are the public variables (e.g. IV or nonce
bits).

Theorem 1. (Dinur, Shamir [10] ) Given a polynomial f: X" — {0,1} of
degree d, suppose that 0 < k < d and t is the monomial xg...xx_1. Write f as

f(@) =t P(x) + Q(x) (1)

where none of the terms in Q+ s divisible by t. Note that deg P, < d— k. Then the sum
of f over all values of the cube Cy (defined by t) is

> fa',2) = P(1,1, .1, g, tn1) (2)

z'=(x0,...,xk—1)ECt
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whose degree is at most d-k (or 1 if k = d —1),where Cy contains all binary vectors of
the length k.

The basic idea is to find good C; whose P is linear and not a constant. This
enables the key recovery through solving a system of linear equations.

3.2 Dinur et al.’s Cube-attack-like Attack

At EUROCRYPT 2015, Dinur et al. [9] launched a cube-attack-like cryptanalysis
on Keccak keyed modes. In the attack on 6-round reduced Keccak-MAC with
capacity 256, the 128-bit key is placed in the lane A[0,0] and A[1,0]. They
find if the cube variables are in A[2,2] and A[2, 3] which are equal in the same
column, shown in Fig. [4] after 6, p and 7, the cube variables are only multiplied
with 64-bit key in A[0, 0] after the first round. The cube sums after 6-round are
independent of the key bits in A[1,0].

0,0 ({1,0]2,0(3,0(4,0 0,0 1,0]2,0(3,0(4,0 0,0|1,1| ¢ [33[44

0,1 |L,1[21 (3141 0,11, 1[21([31([41 3,0(4,1(0,2(1,3(2,4

0,2(L,2] ¢ [32]42 0,2|1L,2| ¢ [32]|42 1,012,1|32|4,3]|0,4

0,3|L3| c [33[43 0,3[L,3| ¢ [33[43 4,010,112 Cc |34

0,4|1,4(2,4(3,4(4,4 0,4(1,4(2,4(3,4(4,4 2,0(3,1(42(0,3(1,4

D secret dependent variables cube variables

Fig. 4: Dinur et al.’s Work

In addition, Dinur et al. introduce 32 bits auxiliary variables which are as-
sumed to be equal to key bits in A[0,0] in the same column. Hence, half of
A[0,0] (32-bit key) and auxiliary variables are in CP-kernel, which makes that
cube variables do not multiply with those key bits and auxiliary variables in the
first round. So only 32 key bits will multiply with the cube variables after the
first round, which means only 32 key bits will affect the cube sums of the output
after 6-round.

The whole 6-round attack is as follows. In preprocessing phase, the attacker
calculates the cube sums for each of 32-bit keys which multiply with cube vari-
ables and store them in a list L. In the online phase, for 232 values of auxiliary
variables, the attacker calculates the cube sums for the output bits and search
them in L, for each match in L return the corresponding 32-bit key as a candi-
date. Similar attack is applied to 7-round Keccak-MAC. For more details, please
refer to [9].
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4 An Improvement of Dinur et al.’s Idea

In Dinur et al.’s divide-and-conquer strategy, the cube was chosen by hand and
not optimal. If we choose the cube variables more precisely, the number of secret
key bits, which multiply with the cube variables in the first round, will decrease
and the complexity would be reduced as well so that we could attack more
rounds even. We call these secret key bits related key bits (and other secret key
bits which do not multiply with cube variables in the first round called unrelated
key bits). This problem has been studied by Ye et al. , now we describe this
idea as follows.

| TEIEE

0111|213 1]41

0,21,2(22([3,2]4,2

0,311,3]2,3(33[43

0,4(1,4(2,413,4]4,4

Fig. 5: The diffusion of key bits and cube variables in one round

As shown in Fig. [5] for example, we set the 128-bit secret key in A[0][0] = ko
and A[1][0] = k; for 1600-bit-state Keccak-MAC. If we select 32-dimension cube
variables as follows:

A[2][0][3 - 1] = vi,
A[2[2][3 - 1] = vis1e, fori=0,1..15 (3)
A[Q] [3] [3 . Z] = V; + Vit+16

Firstly, we explore how the cube variables multiply with key bits in the lane-
size. After 0 operation, these lanes in red are diffused by kg and the lanes in blue
are diffused by k1, while the cube variables in green is just added by the key k1,
not multiplied with them. After p and 7 operation, we could see that only three
lanes diffused by k¢ will multiply with cube variables (in green), other lanes
especially the k; would do not multiply with cube variables in the first round.

p un

Fig. 6: The offset of key bits and cube variables in one round



10 Wenquan Bi et al.

Secondly, we explore how many bits in kg (only in 3 lanes) would multiply
with these cube variables. As the p operation rotates a different offset (Table
for different lane, we use the number in each lane denote the rotated offset
compared with the initial state, as shown in Fig. [6} In the x operation, the cube
variables in A[2][0] (in the initial state A[2][0]) would multiply with the key bits
ko[3 - i+ 62 — 2] (mod 64) for 0 < ¢ < 15, the cube variables in A[2][2] would
multiply with the key bits ko[3-i 443 —44] (mod64) for 0 < ¢ < 15, and the cube
variables in A[2][3] would multiply with the key bits ko[3 - ¢ 4+ 15 — 10] (mod64)
for 0 < i < 15, we list the key bits they multiplied in Table {4 for each lane. We
can see that the key bits are repeated greatly with each other for different lane.

Table 4: The key bits multiplied with the 32-dimension cube variable

Lane Key bits
a1 o RolBT. Ro 8], RolT1], Ko 14T, ho[L7], ko[20], Ko 23],
2100} 0 126, ko [29], Ko [321, Ko [351, ko [38], ko411, ko[60], ko[63]
%o 2], ko[B], Fo[S], ko[11], ko[14], ko[17], ko[20], ko[23],
o [26], ko[29], ko[32], ko[35), ko[38], ko[41], ko[44], ko[63]
Fo[5], ko[S], Fo[L1], ko[14], Fo[17], ko[20], ko [23], ko 261,
Fo[29]. ko [32], Ko [35], ko[38], ko[41], ko[44], ko[A7], ko [50]

Af2][2

Al2][3

As a result, the new 32-dimension linear cube just multiplies with only 19-bit
key bits instead of Dinur et al.’s 64 key bits. However, this linear cube is found
by hand and is not an optimal cube that multiplied with minimum key bits.
Obviously, it is hard to find such optimal 32 or 64 dimension linear cube by
hand. In this paper, we introduce the novel MILP method to solve the above op-
timization problem and then improve cube-attack-like cryptanalysis on Keccak
keyed modes a lot.

5 MILP Modeling Search Strategy

In this section, we present how to model our search strategy using the MILP
method. For any bit A[z][y][z] in the Keccak-p initial state, we define A[z][y][z] =
1 when it is a cube variable or a related key bit.

Since we need linear cubes in the first round, we need constraints to make the
cube variables do not multiply in the first round, and the following inequalities
are sufficient to model this:

Alz][yr][z1] + Alze][y2][22] <1 (4)

which means if there are two bits A[x1]{y1][z1] and Alxa][y2][22] multiply with
each other, we only keep at most one of them as cube variables.

In order to control the diffusion of the cube variables and make the most of
freedom variables, we make use of the CP-like-kernel which was formalized by
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Guo et al. [16] and studied by the related work [18]. We keep the sum of the
variables within the same column is constant (usually zero) which makes the
following € be identity, hence the diffusion of the variables is reduced largely. As
the number of cube variables in a column is at least 2, the following inequalities
are sufficient to model the CP-like-kernel:

;}A[x] [yllz] = 2d[z][z] = 0 5)

dlz][z] — Alz][i][z] >0 0<i<4
where the auxiliary variable d[z][z] records whether the column [z][z] contain

4
cube variables as illustrated above. The [z][z] column can provide Y Alx][y][z]—
y=0
d[z][z] independent cube variables. As we need enough cube variables for our
attack, for example, 64 cube variables for 7-round Keccak-MAC, we sum up the

the state with freedom for cube variables and make it equal to 64. That is,

S Alalyllz] - S dlalz] = 277, (6)

T,Y,z

i.e. the number of cube variables in the freedom state.

When a cube variable multiplies with a key bit A[z][y][z], we name this key bit
as a related key bit, and set A[z][y][z] = 1. If one key bit A[x1][y1][z1] multiplies
with a cube variable Alxzs][ys][22], we need the following inequality to constraint
a related key bit:

Alan][y1][z1] = Ala][ya][z2] = 0 (7)

Since we would like to get the minimum of the related key bits when the
round number is given, We set the objective function as:

MinYy  Al][y][z]- ®)

Z,Y,z

Now we have the objective function and all the inequalities above as constrain-
s, thus we get a complete MILP model which could be solved by the openly
available software Gurobi [1].

6 Applications to round-reduced Keccak-MAC

6.1 Attack on 6/7-round Keccak-MAC-128

For Keccak-MAC-128 with 1600-bit state, rate occupies 1344 bits, and capacity
256 bits. As Fig. [7| shows us, 128-bit key (ko, k1) locates at the first two yellow
lanes, then the white bits represent nonce or message bits, all of which can be
selected as cube variables, while the grey ones are initialized with all zero.
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Fig. 7: The Initial State of Keccak-MAC-128(left) and Keccak-MAC-512(right)

According to the modeling search strategy illustrated in Section [5 we search
for the minimize number of related key bits. The objective function is

> Alz][y][z],

y=0,2€{0,1},2€{0,1...63}

To model the CP-like-kernel, apply the equations in Section ?? to all the
freedom initial state to get the corresponding constrains. The input state is
initialized with key k, possible cube variables v; (placed in bit position [x;][y:][z:])
and zero padding. After the first round, the state is in the algebraic symbolic
form of the initial state bits. If any v;v; exists, the bit corresponding to i, j,
constraint Alz;]y;][z:] + Alz;][y;][#;] < 1 is added. The above constraints avoid
any multiplication in the first round among cube variables. Additionally, if any
k;v; exists, the bit corresponding to i, j, constraint Alx;][y;][z:] —Alz;][y;][z;] > 0
is added which makes sure that the key bit A[z;][y:][z:] is a related key bit if
Alz;]ly;][#;] is chosen as a cube variable.

With the help of Gurobi , the objective function is optimized under all the
above constraints, the minimum of related key bits is 18 for 32-dimension linear
cube and 30 for 64-dimension linear cube. The cube variables and related bits
are listed in Table Bl and Table [6l

Attack on 6-round Keccak-MAC-128. The attack includes preprocessing
phase and online phase. The related key bits in the Table [5] are multiplied with
the cube variables in the first round, and the cube variables are not multiplies
with other secret key bits, which means that the other secret key bits have no
influence on the cube sums of the 232 different messages. Among these 18 related
key bits, we guess the 9 guessed key bits in Table [5|in the preprocessing phase,
and for the other related key bits except the guessed key bits, we set auxiliary
variables in the same column for each key bit. When the auxiliary variables are
equal to the key bits in the same column, these bits act as CP-kernel and the
diffusion of these key bits is reduced and not multiplied with cube variables so
that the cube sums do not depend on these key bits. We choose the auxiliary
variables precisely either and examine that their related key bits matched (in the
same column) do not multiply with the cube variables in the first round when
the auxiliary variables equal to their matched related key bits El We present the
attack procedure as follows:

® https://github.com/biwenquan/MILP-aided-Cube-attack-1like-cryptanalysis/
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Table 5: Parameters set for attack on 6-round Keccak-MAC-128
Cube Variables

A2][2)[9]=A[2][3][9]=vo,A[2][0][12]=v1, A[2][2][12] =v2, A[2][3][12] =v1 + v2,

A[2][0][15]=wv3,A[2][2][15]=v4,A[2][3][15]=v5 4 va,A[2][0][18]=vs,A[2][2][18]=v,
A[2][3][18]=vs + vs,A[2][0][21]=v7,4A[2][2][21]=vs,A[2][3][2 1]—1)7 + vs,A[2][0][24]=vo,
A2][2][24]=v10,A[2][3][24]=ve + v10,A[2][0][27]=v11,A[2][2][27]=012,

A[2][3][27]=v11 + v12,A[2][0][30]=v13,A[2][2][30]=v14,A[2][3][30]=v15 + via,
A[2][0][33]=wv15,A[2][2][33]=v16,A[2][3][33]=v15 + v16,A[2][0][36]=v17,A[2][2][36]=v1s,
A[2][3][36]=v17 + v15,A[2][0][39]=v19,A[2][2][39]=v20,A[2][3][39]=v19 + v20,
A[2][0][42]=v21,A[2][2][42]=v22,A[2][3][42]=v21 + v22,A[2][0][45]=v23,A[2][2][45] =24,
A[2][3][45]=v23 + v24,A[2][0][48]=v25,A[2][2][48]=v26,A[2] [3][48] =v25 + V26,
A[2][0][51]=v27,A[2][2][51]=v2s,A[2][3][1]=var + v2s,A[2][0][54]=A[2][2][54]=v29,
A[2][0][57]=vs30,A[2][2][57]=v31,4[2][3][57]=v30 + v31

Related Key Bits

ko[8],ko[11],ko[14],ko[17],k0[20], ko[23],k0[26],k0[29],k0[32],k0[35],k0[38],ko[41],ko[44],
ko [47],ko[50],ko[53],ko[56],k0[62]

Guessed Key bits

ko[35],ko[38],ko0[41],ko[44], ko[47],k0[50],k0[53],k0[56],k0[62]

Auxiliary Variables
A[0][1)[8]=a0,A[0][1][11]=a1,A[0] [1][14]=az, A[0][1][17]=as,A[0] [1][20]=ax,
Al0][1][23]=as, A[0][1][26]=as, A[0][1)[29)=ar, A[0][1] 32] =as

Preprocessing Phase.

— Set all the state bits except the cube variables to zero (or any other arbitrary
constant).

— For each possible value of 9 guessed key bits in Table calculate the cube
sums after 6 rounds for all the output bits according to the 32-dimension
cube variables in Table Bl Store the cube sums in a sorted list L with the
value of 9-bit guessed key.

232

In preprocessing phase we calculate 2° cube sums for 32-dimension cube
variables, so there needs 2° x 232 = 24! g-round Keccak-MAC, and the memory
complexity is 2°.

Online Phase.

— For each possible value of 9-bit auxiliary variables list in Table 5| request
the outputs of 232 messages that make up the 32-dimension cube variables.

— Calculate the cube sums for the output bits and search them in list L. For
each match in L, regard the 9-bit guessed key and 9-bit auxiliary variables
as the candidate for the 18-bit related key in the Table

Once the value of the 9-bit auxiliary variables equal to the 9-bit other related
key bits except the 9-bit guessed key bits, these 9-bit related key with auxiliary
variables would have no influence on the cube sums as they are not multiply
with the 32-dimension cube variables any more in the first round. Then only the
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9-bit guessed key affects on the cube sums. The memory complexity is 2%, the
data complexity is 232, and total computation of this attack is 27 x 232 x 2 = 242
which is less than Dinur et al.’s 26,

Table 6: Parameters set for attack on 7-round Keccak-MAC-128
Cube Variables

A[0][1][4]=A[0][3][4]=vo, A[0][1][13] A[0][3][13]=v1,A[0][1][17]=A[0][2][17]=v2,

A[0][2][18]=A[0] [3][18]=vs, A[0][1][22] A[0][3][22]=v4,A[0][2][24]=A[0][3] [24]=v
A[0][1][26]=Al[0][2][26]=vs, A[0][1][32] A[0][2][32]=v7,A[0][1][35]=A[0][2][35]=v.
A[0][1][38]=A[0][2][38]=v9 A[ 12][39]=A[0][3][39]= —on0, A[0][1][41]=A[0][2][41]= vu,
A[0][1][44]=A[0] [3][44]=v12,A[0] [2][48]=A[0][3][48] =v13,A[0][1][50] = A[0][3][50] =v1a4,
A[0][1][59]=A[0][3][59]=v15,A[0][1][61]=A[0] [2][61]=v16,A[2] [0][0]=A[2][2][0] =v1s,
A[2][3][0]=v17 + v18,A[2][0][1]=v10,A[2][2][1]=v20,A[2][3][1]=v19 + v20,
A[2][0][3]=A[2][3][3]=v21,A[2][0][4] = A[2][2] [4]=v22,A[2][0][7]=A[2][2][7] =024,
A[2][3][7]=vas + vaa,A[2][0][9]=A[2] [2][9]=v26,A[2] [3][9]=v25 + v26,
A[2][0][12]=A[2][3][12]=v27,A[2][2][15]=A[2][3][15]=v2s,A[2][0][16]=A[2][3][16]=v29,
A[2][0][18]=vs0,A[2][2][18]=vs1,A[2][3][18]=vs30 + vs1,A[2][2][20]=A[2][3][20]=vs2,
A[2][0][21]=A[2][2] [21]=vss,A[2][0] [24]=A[2] [2][24]=v34,A[2] [0][25]=A[2][3][25] =vs5,
A[2][0][29]=A[2][3][29]=vs6,A[2][0] [34] = A[2][3][34]=vs7,A[2][2][35]=A[2][3][35] =vss,
A[2][0][38]=A[2] [3][38]=vs9,A[2] [2][40]=A[2][3][40] =va0, A[2][2][41] = A[2][3] [41]=van,
A[2][0][43]=A[2][3] [43]=va2,A[2][0] [44]=vas, A[2][2] [44] =v4a, A[2][3] [44]=va3 + vaa,
A[2][2][46]=A[2][3][46]=v45,A[2][0][47]=v4s,A[2][2][47]=va7,A[2][3][47]=va6 + va7,
A[2][0][49]=vas, A[2][2][49]=va0, A[2][3][49]=vas + va0,A[2][0][50]=A[2][2][50]=vs0,
A[2][0][52]=vs1,A[2][2][52]=vs2,A[2][3][52] =vs1 + vs2,A[2][0][53]=vss,
A2][2][53]=vsa, A[2][3][53]=vss + vs4,A[2][0][55]=vs5,A[2][2][55]=vss,
A2)[3][55)=vss + vss, A[2][0][56]=A[2][3][56]=vs7, A[2][0][58] =vss, A[2][2][58]=vso,
A[2]3][58]=vss + vso, A[2][2][59]=A[2](3][59]=ve0,A[2][0][61]=A[2][2][61] =ve1,
A[2][0][62]=ve2,A[2][2][62]=ves, A[2][3][62]=ve2 + ve3,
Related Key Bits

ko[0],ko[3],ko[5],k0[6],k0[8],k0[12],ko[14],k0[17],k0[19], ko[20],k0[21],k0[23],k0[25],

0[8
ko[30],ko[34],ko[39],k0[40], ko[43],ko[45],ko[46],k0[48],k0[49],ko[51],k0[52],k0[54],
ko[57],ko[58],ko[60],ko[61],k0[63]

Guessed Key bits
ko[17],ko[40],ko[43],ko[45],ko0[46],k0[48],k0[49],k0[51],k0[52], ko[54],ko[57],k0[58],
ko[60],ko[61],k0[63],

Auxiliary Variables

A[0][1][0]=ao, A[0][1][3]=a1,A[0][1][5]=az2,A[0][1][6]=as,A[0][1][8]=aa,
A[0][1][12]=as,A[0][1][14]=as, A[0][1][1 ] =az,A[0][1][20]=as, A[0][1][21]=aq,
A[0][1][23]=a10,A[0][1][25]=a11,A[0][1][30]=a12, A[0][1][34]=a13,A[0][1][39]=a14

For 7-round Keccak-MAC-128, we find 30 related key bits with 64-
dimension cube variables which are listed in Table [f] as well as the guessed key
bits and auxiliary variables. The attack procedure is just like the 6-round attack.
In the preprocessing phase, we compute 254 cube sums for each value of 15-bit
guessed key bits and store them in list L. In the online phase, we compute the
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cube sums for each of the 15-bit auxiliary variables. The total time complexity
for 7-round attack is 2'° x 264 x 2 = 280 and the memory complexity is 21°.

6.2 Attack on 6/7-round Keccak-MAC-512

For Keccak-MAC-512 with 1600-bit state, rate occupies 576 bits, and capacity
1024 bits. As Fig. [7| shows us, 128-bit key (ko, k1) locates at the first two yellow
lanes, then the white bits represent nonce bits, but only white ones highlighted
by red thick lines can be selected as cube variables because the other white lanes
do not satisfy the 'CP-like-kernel’ and diffuse badly. In fact, we could found
enough cube variables in those lanes highlighted by red trick lines. the grey ones
are initialized with all zero.

Table 7: Parameters set for attack on 6-round KECcCAK-MAC-512
Cube Variables

A[2][0][2]=A[2][1][2]=vo, A[2][0][3]=A[2

1[Bl=v

] I[1][8]=v1 A[2][0][9] ARJ[1][9]=v
A[2][0][10]=A[2][1][10]=v5,A[2)[0][11]=A[2][1][11]=v4, A[2] [0][17]= [][1][17]
Ap2][0)[19]= A[2][1][19]ZUG,A[2][0][20]:A[2][1][20}—v7 Al2][0][26]=A[2][1][26]=v
A[2][0][28]=A[2][1][28]=v9, A[2] [0][29]=A[2][1][29] =v10,A[2][0][35] =A[2] 1] [35] =011,
A[2][0][36]=A[2][1][36]=v12,A[2][0][37]=A[2] [1][37]=v15,A[2][0][43]= A[2][1] [43] =v14,
A[2][0][45]=A[2][1][45]=v15,A[2][0][51]=A[2][1][51]=v16,A[2] [0][52]=A[2][1] [52]=v17,
A[2][0][58]=A[2][1][58]=v1s,A[2][0][59]=A[2][1][59]=v19,A[3] 0] [0]=A[3][1][0]=v20,
AR3J[0][7]=A[3][1][7]=v21,A[3][0][25]=A[3] [1][25]=v22,A[3][0][32] = A[3][1] [32]=v23,
A[3][0][40]=A[3][1][40]=v24, A[3] [0][41]=A[3][1][41]=v25,A[3][0][47]=A[3][1] [47]=v2s,
A[3][0][48]=A[3][1][48] =v27, A[3] [0][49]=A[3][1][49] =v2s,A[3] 0] [55]=A[3][1] [55] =20,
ABJ[0][57]=A[3][1][57]=v30,A[3][0][63] = A[3][1] [63] =v:1

Related Key Bits

ko[0],ko[5],ko[6],ko[7],k0[8],k0[13],ko[14],k0[15], ko[16],k0[22],k0[24],k0[25],k0[31],k0[32],
ko[33],ko[34],k0[39], ko[40],ko[41],ko[42],ko[47],k0[48],ko[50],k0[54],k0[55],k0[56], ko[57],
ko[62],k0[63],k1[0],k1[7],k1[8],k1[14],k1[15],k1[16], k1[18],k1[22],k1[24],k1[25],k1[30],
k1[31],k1[33],k1[34],k1[38], k1[40],k1[41],k1[42],k1[48],k1[50],k1[56],k1[57],k1[63]
Guessed Key bits

ko[57],ko[62],ko[63],k1[0],k1[7],k1[8],k1[14],k1[15],k1[16], k1[18],k1[22],k1[24],k1[25],
k1[30],k1[31],k1[33],k1[34],k1[38], k1[40],k1[41],k1[42],k1[48],k1[50],k1[56],k1[57],k1[63]
Auxiliary Variables

A[0][2][0]=a0,A[0] [2][5]=a1,A[0][2][6]=az2,A[0] [2][7]=as,A[0][2] [8]=a4,A[0][2][13]=as,

A[0][2][14]=as,A[0] 2 }[15] —ar A[O][2][16] —as, A[0][2][22]=a9, A[0][2][24]=a10,
A[0][2)[25]=a11,A[0][2][31]=ax,A[0] 2] 32| =a13, A[0][2][33]=ax, A[ 1[2][34]=a1s,
A[0][2][39]=a16,A[0] [2][40]=a17,A[0][2][41]=a1s,A[0] [2][42]=a1s, A[0][2][47]=az0,
A[0][2][48]=a21,A[0][2][50]=az22,A[0][2][54]=az3,A[0] [2][55] =az4, A[ ] [2][56]=azs

We use our MILP tools and find 32-dimension cube variables with 52 related
key bits and 64-dimension cube variables with 95 related key bits respectively.
The cube variables, related key bits, guessed key bits (for 7-round attack are
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Table 8: Parameters set for attack on 7-round KEcCAK-MAC-512

Cube Variables

A[2][0][1]=A[2][1][1]=vo,A[2][0][2]=A[2][1] [2]=v1,A[2][0] [8]=A[2][1] [8] =v
A2][0][9]=A[2][1][9]=vs,A[2][0][10]=A[2][1][10]=v4,A[2][0][11]=A []H[U] =vs,
A[2][0][12]=A[2] [1][12]=ve,A[2][0][13]=A[2][1][13]=v7,A[2][0] [14]=A[2] [1][14]=vs
A[2][0][20]=A[2][1][20]=v,A[2] [0][21]=A[2][1][21]=v10,A[2][0][22] = A[2][1] [22]= v,
A[2][0][23]= A[2][1][23}—v12 A[2][0][24]=A[2][1][24]=v13,A[2][0][25]=A[2][1][25]=v14,
A[2][0] [26]=A[2] [1][26]=v15,A[2] [0][33]=A[2][1][33]=v16,A[2][0)[34] = A[2][1] [34] =v17,
A[2][0][35]=A[2][1][35]=v1s,A[2][0] [36]=A[2] [1][36]=v19,A[2] [0][37]=A[2][1][37]=v20,
A[2][0][38]=A[2][1][38]=v21,A[2][0][41]=A[2][1][41]=v22,A[2][0][46]=A[2][1][46]=v2s,
A[2][0][47]=A[2] [1][47]=v24,A[2] [0][48]=A[2][1][48] =v25, A[2][0][49] = A[2][1] [49] =vas,
A[2][0][50]=A[2][1] [50]=v27,A[2][0] [53]=A[2] [1][53]=v2s, A[2] [0][54]=A[2][1][54] =v29,
A[2][0][59]=A[2][1][59]=vs0,A[2][0][60]=A[2][1][60]=v31,A[2][0][61]=A[2][1][61]=vs2,
A[2][0][62]=A2][1][62]=vs3,A[2][0][63]=A[2][1][63]=vs4,A[3][0][0]=A[3][1] [0]=vss,
A[3][0][1]=A[3][1][1]=vs6,A[3][0][7]=A[3][1][7]=vs7,A[3][0] [10] = A[3][1][10] =vss,
A3][0][11]=A[3][1][11]=vs0,A[3][0][12]=A[3][1][12]=v10,A[3][0][13]=A[3][1][13]=va1,
A[3][0][14]=A[3][1][14]=va2,A[3] [0][22]=A[3][1][22] =v43,A[3][0][23] = A[3][1] [23] =vaa,
A[3][0][24]=A[3][1] [24]=vas,A[3][0] [25]=A[3] [1][25] =vas, A[3] [0][26]=A[3][1][26] =va7,
A[3][0][34]=A[3][1][34]=v4s,A[3][0][35]=A[3][1][35] =vae, A[3][0][36]=A[3] [1][36]=vs0,
A[3][0][37]=A[3][1][37]=vs1,A[3] [0][38]=A[3][1][38] =vs2,A[3][0][39] = A[3][1] [39] =vss,
A[3][0][46]=A[3][1] [46]=vs4,A[3][0] [47]=A[3] [1][47]=vs5,A[3] [0][49]=A[3][1][49] =vs6,
A[3][0][50]=A[3][1][50]=vs7,A[3][0][51]=A[3][1][51]=vss,A[3][0][52]=A[3][1][52]=vs0,
A[3][0] [58]=A[3] [1][58]=veo0,A[3] [0][59]=A[3][1][59]=ve1,A[3][0][62] = A[3][1] [62] =ve2,
A[3][0][63]=A[3][1][63]=ves
Related Key Bits
Feo 0], o [1], o [2], o [3], o [4], ko 5], o [6] ko [7], o[8],ko[9], ko [10], ko [13], ko [14], ko[15)],
k0[16} ko[17),ko[18], ko[19],k0[20],ko[21],k0[22],k0[25],k0[26],k0[27],k0[28],k0[29],
Feo[30] o [31] o [32] o [33] o [34] o [37] o [38] o [39] o [40], o[41] ko[42] ko[43].
oo [44] o [45] o [46] o [49] o [50] o [51], ko[52],ko[53],ko[54], ko [55] o [56] ko 57].
ko[58],k0[59],ko0[61], ko[62],k1[0],k1[1],k1[2],k1[3],k1[4],k1[5],k1[6],k1[7],k1[13],k1[14],
Jox [15) Jex [16] Jex [17) Jex [18] e [19] e [25] e [26] e [ 27 [28], e [20] et [30] e [31],
k1[32],k1[38],k1[39],k1[40],k1[41],k1[42], k1[43],k1[44],k1[45],k1[46],k1[51],k1[52],

k1 [53],k1[54],k1[55], k1[56],k1[57],k1[58],k1[59]

Auxiliary Variables

A[0][1][0]=a0,A[0][1][1]=a1,A[0][1][2

=a6.A[0][1][7)=a, A[0][1][3

az,A[0][1][3]=as
as, A[0][1][9]=a

] A[O
Afo][1][6 ] 9,A4[0
A[0][1)[13]=a11,A[0)[1][14]=a12,A[0][1][15]=a13, A[0] [1][16]=
A[0][1][18]=a16,A[0][1][19]=a17,A[0] [1][20]=a1s,A[0][1][21]=
A[0][1][25]=az1,A[0][1] [26]=az22, A[0][1)[27] =a23, A[0][1][28]=
A[0][1)[30]=az6,A[0][1][31]=a27,A[0][1][32] =azs, A[0] [1][33] =
A[0][1][37]=az1,A[0][1][38]=as2,A[0][1][39]=az3,A[0][1][40]=
A[0][1][42]=azs,A[0][1] [43]=as7,A[0][1][44] =ass, A[0][1][45]=
A[0][1][49]=aa1,A[0][1][50]=a42,A[0][1][51]=a4s,A[0][1][52]=
A[0][1][54]=aa6,A[0][1][55]=a47

|[1][4]=a4,A[0][1][5]=a
1[1][10]=ao,

=ai4 A[O][l][l?]—a15,
a19,A[0][1][22]=azo,
az24,A[0][1][29]=azs,
agg,A[O] [1] [34] =aso
a34,A[0][1][41]=ass,
61,39714[0][].][46]261407
a44,A[0][1][53]:a45,
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listed in Table E[) and the auxiliary variables for 6/7-round attack are list in
Table [7] and [§] respectively.

The attack procedure is the same as the Keccak-MAC-128. We just discuss
the complexity here.

For 6-round Keccak-MAC-512, there are 52 related key bits in total and
26 guessed key bits guessed in the preprocessing phase. The auxiliary variables
are also 26-bit, then the time complexity is both 226 x 232 = 258 for preprocessing
phase and online phase, so the time complexity is 2°9 totally and the memory
complexity is 226.

For 7-round Keccak-MAC-512, there are 95 related key bits. We choose
47-bit as guessed key bits and find auxiliary variables for the other 48 bits. The
time complexity of 7-round attack on Keccak-MAC-512 is 247 x 264 1248 x 264 —

21126 and the memory complexity is 247.

Table 9: Guessed Key Bits for attack on 7-round KECCAK-MAC-512
Guessed Key Bits
ko[56],ko[57],k0[58],k0[59],k0[61], ko[62],k1[0],k1[1],k1[2],k1[3],k1[4],k1[5],k1[6],
K1 [7),k1 [13],k1 [14], K1[15],k1[16],k1[17],k1[18],k1[19] k1 [25],k1[26] k1 [27] k1 [28],
k1[29],k1[30],k1[31],k1[32],k1[38],k1[39],k1[40],k1 [41],k1[42], k1[43],k1[44],
k1 [A5] k1 [46] k1 [51] k1 [52] Jex [53], k1 [54] k1 [55], ki [56],k1 [57], k1 [58], k1 [59)]

7 Applications to round-reduced Initialization of Ketje

At 6 March 2017, the Keccak team announces the Ketje cryptanalysis prize to
encourage the cryptanalysis. In [18], Li et al. present the conditional cube attacks
on Ketje. Besides, they explore the resistance of Ketje against conditional cube
attack according to different lengths of nonce. For Ketje Major, they study how
short the length of nonce is, the conditional cube attacks work still. As a result,
they point out that one could attack 7-round Ketje Major when its nonce is
larger than 704 bits. While for Ketje Minor, it’s necessary for adversaries to
utilize (nearly) full length of nonce. In this section, we use MILP-aided cube-
like-attack to explore the degrees of freedom for Ketje. We should point out that
the MILP-aided cube-like-attack could work in the condition of smaller degrees
of freedom. We present our attacks on Ketje as follows.

7.1 Attacks on round-reduced Initialization of Ketje Minor

Since we would like to explore how smaller the degree of freedom could be
when the MILP-aided cube-like-attack works, we need to search for enough cube
variables (64 for 7-round attack) and minimize the related key bits at the same
time. The number of related key bits should be smaller than 128, on the other
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Table 10: Parameters set for attack on 7-round KETJE MINOR

Cube Variables

A[1][0][0]=A[1][3][0]=vo,A[1][0][1]=A[1][3][1]=v1,A[1][0][2] = A[1] [3] [2] =v2
A[1][0][3]=A[1][3][3]=vs,A[1][0][4]=A[1][3][4]=va,A[1][0][5]=A[1][3][5]=vs
A[1][0][6]=A[1][3][6]=ve, A[1][0][7]=A[1][3][7]=v7,A[1][0][8] = A[1][3] [8] =vs
A[1][0][9]=A[1][3][9]=v,A[1][0][10]=A[1][3][10]=v10,A[1][0][11]=A[1][3][11]=v11
A[1][0][12]=A[1][3][12]=v12,A[1][0][13]=A[1][3][13]=v13,A[1][0] [14]=A[1][3][14]=v14
A[1][0][15]=A[1][3][15]=v15,A[1][0][16]=A[1][3][16]=v16,A[1][0][17]=A[1][3][17]=v17,
A[1][0][18]=A[1][3][18]=v1s,A[1][0][19]=A[1][3][19]=v1e,A[1][0][20]=A[1] 3] [20]=vz20,
A[1][0][21]=A[1][3][21]=v21,A[1][0][22]=A[1][3][22]=v22,A[1][0][23]=A[1][3][23]=v2s,
A[1][0][24]=A[1][3][24]=v24,A[1][0][25]=A[1][3][25]=v25, A[1][0][26] = A[1][3][26] =v2s,
A[1][0][27]=A[1][3][27]=v27,A[1][0][28]=A[1][3] [28] =v2s, A[1] [0][29] = A[1][3][29] =v29
A[1][0][30]=A[1][3][30]=vs0,A[1][0][31]=A[1][3][31]=vs1,A[3][0] [0]=A[3][2][0]=vs2
A[3][0][1]=A[3][2][1]=vs3,A[3][0][2]=A[3][2][2] =vs4,A[3][0] [3]=A[3][2][3] =vs5,
A3][0][4]=A[3][2][4]=vss,A[3][0][5]=A[3] 2] [5]=vs7,A[3][0][6]=A[3][2][6]=vss,
A3][0][7]=A[3][2][7]=v30,A[3][0][8]=A[3][2][8] =v40,A[3][0][9] = A[3][2][9] =041,
A[3][0][10]=A[3][2][10]=va42, A[3][0][11]=A[3][2][11]=v43,A[3][0][12] = A[3][2][12] =vaa,
A[3][0][13]=A[3][2][13]=v45,A[3][0][14]=A[3][2][14] =vas, A[3][0][15]=A[3][2][15]=va7,
A[3][0][16]=A[3][2][16]=vas, A[3][0][17]=A[3][2][17]=v40,A[3][0][18]=A[3] [2][18]=wvs0,
A[3][0][19]=A[3][2][19]=vs1,A([3][0][20]=A[3][2][20]=v52,A[3][0][21]=A[3][2][21]=vss,
A[3][0][22]=A[3][2][22]=v54,A[3][0][23]=A[3][2][23] =vs5,A[3][0][24] = A[3] [2] [24]=vss,
A[3][0][25]=A[3][2][25]=vs7, A[3][0][26]=A[3][2][26]=vss,A[3] [0][27]=A[3] [2][27] =050,
A[3][0][28]=A[3] 2] [28]=ve0,A[3][0][29]=A[3][2][29]=ve1,A[3][0] [30] = A[3][2][30] =ve2,
A[3][0H31] A[3][2][31]=ves

elated Key Bits

8] 0[9],k0[10],k0[11],k0[12],ko[13], ko[14],k0[15],k0[16],k0[17],k0[18],k0[19],k0[20],
0[21],k0[22],k0[23],ko0[24],k0[25],k0[26],k0[27], ko[28],k0[29],k0[30],k0[31],k1[0],k1[1],
2] 1[3],k1[4],k1[5],k1[6],k1[7],k1(8], k1[9],k1[10],k1[11],k1[12],k1[13],k1[14],k1[15],
1[16],k1[17],k1[18],k1[19],k1[20],k1[21],k1[22], k1[23],k1[24],k1[25],k1[26],k1[27],

1(28], £1[29],k1[30],k1[31],k3[0] ks [1],ks[2],k3[3], ks[4] ks [5],ks[6],ks[T] ks [8],ks[9],
3[10], k3[11],k3[12],k3[13],k3[14],k3[15],k3[16],k3[17], k3[18],k3[19],k3[20],k3[21],
22} k3[23], ks[24],ks[25],k3[26],k3[27],k3[28],k3[29],k3[30], ks[31],k4[0],ka[1],k4[2],
k4[3] k4[4],k4[5],k4[6],k4[T7],

Guessed Key bits

Ko[8],k0[9],ko[10],ko[11],ko[12],ko[13], Ko[14],ko[15],ko[16],ko[17],ko[18],ko[19],k0[20],
ko [21],k0[22] ko [23] ko[24] ko [25] ko [26], ko [27], Ko[28],k0[29],k0[30],ko[31],k3[16],
ks[17], ks[18],k3[19],ks[20],k3[21],k3[22],ks[23], ks[24],k3[25],ks[26],k3[27] ks [28],
ks[29],k3[30], ks [31],ka[0],ka[1],ka[2) K [3] ka[4] ka]5),Ka[6] Ka[7],
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side, if the number of related key bits is smaller than 128, we would utilize the
smallest length of nonce as far as we can. As a result, for Ketje Minor, when the
length of nonce is reduced to 288-bit, we find 64-dimension linear cubes with 96
related key bits which are listed in Table as well as the auxiliary variables
and guessed key bits (listed in Table . With these variables, we could perform
cube-attack-like cryptanalysis just as before. In preprocessing phase, we compute
the cube sums over the 64 cube variables for each possible value of 48 guessed
key bits and store them, while in the online phase, we compute the cube sums
for each possible of 48 auxiliary variables, if the values of cube sums for these
two phase equal, we regard the combination of 96-bit related key as the right
key. The time complexity of this attack is 248 x 264 x 2 = 2113, and the memory
complexity is 248 for our 7-round key-recovery attack.

Table 11: Auxiliary Variables for attack on 7-round KETJE MINOR

Auxiliary Variables

A1][3][0]=ao + vo,A[1][3][1]=a1 + v1,A[1][3][2]=a2 + v2,A[1][3][3]=as + vs,
AQ][3][4]=a4 + va,A[1][3][5]=as + vs,A[1][3][6]=ac + ve,A[1][3][7T]=az + v7,

A[l][3] [8}:0,8 4+ ’Ug,A[l][gﬁ] [9]—0,9 +4 ’U9,A[1H3][10} =ai0 + U10,A[1][3”11}—a11 + v11,
A][3][12]=a12 + v12,A[1][3][13]=a15 + vi3,A[1][3][14]=a14 + v14,A[1][3][15]=a15 + v1s,
A[1][3][16]=a16 + vi6,A[1][3][17]=a17 + vi7,A[1][3][18]=a1s + v1s,A[1][3][19]=a19 + v19,
A[1][3][20]=az0 + va20,A[1][3][21]=a21 + va1,A[1][3][22]=a22 + va2,A[1][3][23]=a23 + va3,
A[1][3][24]=a24 + v24,A[1][3][25]=azs + v25,A[1][3][26]=az26 + va26,A[1][3][27]=az27 + va7,
A[1][3][28]=az2s + v2s,A[1][3][29]=a29 + v29,A[1][3][30]=a3z0 + v30,A[1][3][31]=az1 + vs1,
A[3][0][0]=as2 + v32,A[3][0][1]=as3 + v33,A[3][0][2]=as4 + v34,A[3][0][3]=as5 + v3s,
A3][0][4]=ase + v36,A[3][0][5]=as7 + vs7,A[3][0][6]=ass + vss,A[3][0][7]=as9 + vs9,
A[3][0][8]=a40 + va0,A[3][0][9]=a41 + va1,A[3][0][10]=a42 + va2,A[3][0][11]=a43 + va3,
A[3][0)[12]=a44 + v44,A[3][0][13]=a4s5 + v45,A[3][0][14]=0a46 + va6,A[3][0][15]=a47 + var

7.2 Attacks on round-reduced Initialization of Ketje Major

For Ketje Major, we search for 64 cube variables with 58 related key bits when
the length of nonce is reduced to 576 bits. We list the cube variables, related
key bits, guessed key bits as well as the auxiliary variables in Table We omit
the attack procedure here but present the complexity. In preprocessing phase,
we compute the cube sums over the 64 cube variables for each possible value of
29 guessed key bits and store them, while in the online phase, we compute the
cube sums for each possible of 29 auxiliary variables, if the values of cube sums
for these two phase equal, we regard the combination of 58-bit related key as
the right key. The time complexity of this attack is 229 x 264 x 2 = 2%, and the
memory complexity is 229 for our 7-round key-recovery attack.
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Table 12: Parameters set for attack on 7-round KETJE MAJOR

Cube Variables

A[3][0][1]=A[3][3][1]=v0,A[3][0][32]=A[3][3][32]=v1,A[3][0][58] = A[3][3][58] =v2,
A[3][0][59]=A[3][3][59]=vs3 A[ ][0][60]= [3][3][60] =v4,A[3][0][61]=A[3][3][61]=vs,
A[3][0][62]=A[3][3][62]=vs,A[3][0][63]=A[3][3][63]=v7,A[4] [1][24]=A[4][4][24]=vs
Al4])[1][25]=Al4][4][25]=ve,A[4][1][50]=A[4][4][50]=v10,A[4][1][51]=A[4][4][51]=v11,
A[4](1][52]=A[4][4][52]=v12 A[4H1H 3|=A[4][4][53]=v13,A[4][1][54]=A[4][4][54] =014,
A[4][1][55]=A[4][4][55]=v15,A[4][1][56]=A[4][4][56]=v16,A[4][1][57]=A[4][4][57]=v17,
Al4)[1][58]=A[4][4][58]=v1s,A[1][0][0]=A[1][3][0]=v10,A[1][0][2]=A[1] [3][2]=v20,
A[1][0][4]=A[1][3][4]=v21,A[1][0][6]=A[1][3][6]=v22,A[1][0] [10] = A[1][3][10] =vas,
A[1][0][13]=A[1][3][13]=v24,A[1][0][15]=A[1][3][15]=v25,A[1][0][17]=A[1] [3][17]=va2s,
A[1][0][18]=A[1][3][18]=v27, A[1][0][20]=A[1][3][20]=v2s,A[1][0][22]=A[1] [3][22] =020,
A[1]]0][23]=A[1][3][23]=v30,A[1][0][24]=A[1][3][24]=v31,4A[1][0][25]=A[1][3][25] =v32,
A[1][0][26]=A[1][3][26]=vs3,A[1][0][27]=A[1][3][27]=v34,A[1][0] [28] = A[1][3][28] =vs
A[1][0][29]=A[1][3][29]=vs6,A[1][0][30]=A[1][3][30]=vs7,A[1][0][31]= A[l][3][31]:’v
A[1][0][32]=A[1][3][32]=vs9,A[1][0][33]=A[1][3][33]=v40,A[1][0][34]=A[1][3][34] =va1
A[1][0][35]=A[1][3][35]=v42,A[1][0][37]=A[1][3][37]=vas, A[1][0] [38] = A[1][3][38] =v4a
A[1][0][39]=A[1][3][39]=va5,A[1][0][40]=A[1][3][40]=v46,A[1][0] [41]=A[1][3][41]=v47
A[1][0][42]=A[1][3][42]=vas,A[1][0][43]=A[1][3][43]=vao, A[1][0][44]=A[1][3] [44]=v50
A[1][0][45]=A[1][3][45]=v51,A[1][0][46]=A[1][3][46]=vs52,A[1][0] [48] = A[1][3][48]=vs3
A[1][0][50]=A[1][3][50]=vs4,A[1][0][51]=A[1][3][51]=vs5,A[1][0][52]=A[1][3][52] =vs6
A[1][0][53]=A[1][3][53]=vs7,A[1][0][55]=A[1][3][55]=vss, A[1][0][56]= A[l][3][56]—'vs9,
A[1][0][57]=A[1][3][57]=ve0,A[1][0][59]=A[1][3][59]=ve1,A[1][0][61]=A[1][3][61]=ve
A[1][0][63]=A[1][3][63]=ves3

Related Key Bits

ko[8],ko[38],k0[39],k1[0],k1[1],k1[2],k1[3], k1[4],k1[5],k1[6],k1[7],k1[8],k1[9],k1[10],

Jer [11] 1 [12] k1 [13],a [14], [21] k1 [22],

k1[23],k1[24] k1 [25] k1 [26],
k1[36],k1[37],k1[38],k1[39],
k1[51],k1[52], k1 [54] k1 [56],

k1 (8],

r[15] k1 [16] k1 [17], K [18] K1 [19] %1 [20] 1 ]
e [27) k1 [28], 1 [29], 1 [30], k1 [32] K1 [33] 1 [34] 1 [35],
kr [40] k1 [41], K1 [43],k1 [45] k1 [46], k1 [47] k1 [48] k1 [50),
ka[ |,k

58] k1 [59] k1 [61] k1 [63]

Guessed Key bits

ko[8],k0[38],k0[39],k1[29],k1[30],k1[32],k1[33],k1[34],k1[35], k1[36],k1[37],k1[38],
K [39], k1 [40] k1 [41], k1 [43], k1 [45], K1 [46] k1 [47) k1 [48] k1 [50], K1 [51]), k1 [52], k1 [54],
o1 [56], k1 [58] k1 [59] k1 [61] k1 [63]

Auxiliary Variables

A[1][3][0]=ao + vi9,A[1][3][1]=a1,A[1][3][2]=a2 + va20,A[1][3][3]=as
4]=aa + v21,A[1][3][5]=as,A[1][3][6]=as + v22,A[1][3][7]=ar,A[1][3][8]=as,
9)=ayg,A[1][3][10]=a10 + v23,A[1][3][11]=a11,A[1][3][13]=a13 + va4,
12] ai2 A[ ][ }[14] a14,A[1] [3][15]:a15 + U25,A[1] [3} [27]:a27 + v34,
17] =a17 + V26 A[ ][ }[18]20418 + U27,A[1] [3”19]20,19 A[ ][ }[20]20420 + vas,
21]=a21,A[1][3][22]=a22 + v29,A[1][3][23]=a2s + vs0,A[1][3][24]=a24 + vs1,
25|=ass + v32,A[1][3][26]=asz6 + vss, A[1][3][16]=a16,A[1][3][28]=ass + vss

(1](3]
A[1][3]
Af1[3]
A[1]3]
A[1])[3]
A[[3]
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8 Conclusion

In this paper, we give a new idea to improve Dinur et al.’s cube-attack-like
method. By using a new MILP tool, we find the optimal linear-cubes that are
multiplied with minimum key bits for Keccak-MAC and Ketje. Then, we give the
first 7-round key-recovery attack on Keccak-MAC-512. In Ketje Minor/Major,
we also get better results in aspect of complexity or attacked rounds with smaller
nonce.

When comparing with Huang et al.’s conditional cube attack, the advantage
of the MILP-aided cube-attack-like cryptanalysis is that it has larger effective
range. In variants with the same degrees of freedom, MILP-aided cube-attack-
like cryptanalysis and conditional cube attack could achieve the same attacked
rounds. In variants with relatively smaller degrees of freedom, MILP-aided cube-
attack-like cryptanalysis could get better results than conditional cube attack.

Currently, the cryptanalysis progress of symmetric-key ciphers heavily de-
pends on automated evaluation tools. Due to Keccak’s robust design, its crypt-
analysis is still hard and limited. In this paper, we provide a new MILP model
to study Keccak. As we put the tedious cryptanalysis work to the MILP solver,
the study of Keccak becomes easier.
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