
Statistical Attacks on Cookie Masking for RC4

Kenneth G. Paterson1 and Jacob C.N. Schuldt2

1 Royal Holloway, University of London, UK
2 AIST, Japan

Abstract. Levillain et al. (AsiaCCS 2015) proposed two cookie mask-
ing methods, TLS Scramble and MCookies, to counter a class of attacks
on SSL/TLS in which the attacker is able to exploit its ability to obtain
many encryptions of a target HTTP cookie. In particular, the masking
methods potentially make it viable to continue to use the RC4 algorithm
in SSL/TLS. In this paper, we provide a detailed analysis of TLS Scram-
ble and MCookies when used in conjunction with RC4 in SSL/TLS. We
show that, in fact, both are vulnerable to variants of the known attacks
against RC4 in SSL/TLS exploiting the Mantin biases (Mantin, EURO-
CRYPT 2005):
– For the TLS Scramble mechanism, we provide a detailed statistical

analysis coupled with extensive simulations that show that about
237 encryptions of the cookie are sufficient to enable its recovery.

– For the MCookies mechanism, our analysis is made more complex by
the presence of a Base64 encoding step in the mechanism, which (un-
intentionally) acts like a classical block cipher S-box in the masking
process. Despite this, we are able to develop a maximum likelihood
analysis which provides a rigorous statistical procedure for estimat-
ing the unknown cookie. Based on simulations, we estimate that 245

encryptions of the cookie are sufficient to enable its recovery.
Taken together, our analyses show that the cookie masking mechanisms
as proposed by Levillain et al. only moderately increase the security of
RC4 in SSL/TLS.

Keywords: RC4 stream cipher; statistical analysis; masking.

1 Introduction

The RC4 stream cipher was designed by Rivest in the 1980s. Due to the scarcity
of good alternatives, its compact code size, and its good performance in software,
the algorithm was widely adopted in practice, including in WEP, WPA/TKIP
and SSL/TLS. Indeed, in mid 2013, AlFardan et al. [1] reported that RC4 was
used in roughly 50% of all SSL/TLS connections. Also in 2013, the first se-
rious cryptanalyses of RC4 in TLS were published [1, 7, 13], with the attacks
focussing on the recovery of often-repeated plaintext values in SSL/TLS con-
nections (for example HTTP session cookies or user passwords), using known
and newly discovered biases in the RC4 keystreams. Follow-up works [5, 21, 4]
substantially reduced the numbers of ciphertexts needed to recover passwords

and HTTP session cookies, by using more powerful biases and better statistical
techniques, with the result being that the IETF eventually deprecated the use
of RC4 in SSL/TLS [17]. Since the removal of RC4 in SSL/TLS from the main
web browsers beginning in early 2016, the amount of RC4-protected traffic for
this particular protocol has declined steeply. Attacks against the use of RC4 in
WPA/TKIP can be found in [15, 14, 21], and detailed mathematical treatments
of empirically discovered biases in RC4 can be found in [6, 19].

One significant effort at remediating attacks targeting HTTP session cookies
in SSL/TLS was made by Levillain et al. [10]. Their main idea was to mask the
HTTP session cookie s, roughly speaking sending a randomly generated mask
m immediately followed by the XOR of the mask with the HTTP session cookie
s⊕m in place of the raw HTTP session cookie. This masking step removes the
repeated plaintext needed for the known attacks against RC4 to succeed. In fact,
this repeated plaintext requirement is common to a number of attacks against
SSL/TLS, and the protection of RC4 was not the sole focus of [10]. Levillain et
al. proposed two separate masking mechanisms, TLS Scramble and MCookies.
These differ in the low-level implementation details but both follow the masking
principle. Details of the two methods are given in Section 3.

Given the widely-deployed base of RC4 software, and the long-standing at-
tractiveness of the algorithm to software developers, any attempt to resuscitate
the algorithm for use in SSL/TLS is deserving of a thorough analysis. Moreover,
the masking techniques of Levillain et al. are quite simple to understand and
would be relatively easy for software engineers to deploy in practice, possibly
easier than moving to a later version of TLS supporting more modern algo-
rithms (e.g. AES-GCM in TLS 1.2). There is anecdotal evidence that RC4 is
still in quite widespread use in legacy systems and data centres. In our opinion,
this makes the cookie masking methods of [10] worthy of detailed examination
when used in combination with RC4, even if RC4 is no longer considered a
legitimate option for SSL/TLS in modern web browsers.3

In this paper, we provide such a study of the two masking countermeasures
proposed by Levillain et al. [10]. We show that neither provides a great deal of
additional security compared to the previous generations of attack on RC4 .

In particular, we show that the TLS Scramble mechanism is vulnerable to
a variant of the attacks of [21, 4] exploiting the Mantin biases [11] in RC4. The
Mantin biases informally mean that patterns of the form ABSAB occur slightly
more frequently than expected in RC4 keystreams. Here, A and B are byte
values, while S denotes a byte string, and the strength of the bias depends
inversely on the length of S. Put another way, if one XORs an RC4 keystream
with itself at a particular shift of κ bytes, then the result in consecutive byte
positions is more likely to equal 0x00, 0x00 than any other pattern.

If we set κ to be the length of the mask m in the TLS Scramble mecha-
nism, and then consider the XOR of a ciphertext corresponding to the plaintext
m||s⊕m with itself at a shift of κ byte positions, we see that the mask m is can-

3 And even though the authors of [10] themselves recommend phasing out RC4 rather
than relying on their masking countermeasure.

celled out, while, because of the Mantin bias, so too is the keystream (at least,
statistically speaking). Thus we will be able to recover the original plaintext
value s. The actual attack on TLS Scramble is a little more involved than this,
because in reality in the attack, we recover candidate pairs of plaintext bytes in
consecutive positions (i, i+ 1), along with likelihood information for each candi-
date pair, and our task is to stitch together the overlapping pairs to create high
likelihood candidates for s over multiple byte positions. However, the techniques
introduced in [21, 4] are readily adapted to handle this task: these techniques use
dynamic programming (principally, the list Viterbi algorithm [20]) to produce
lists of candidates over multiple bytes given as inputs likelihood information for
pairs of candidates on pairs of positions.

We provide a statistical analysis of the main part of our attack on TLS
Scramble following the general approach introduced in [4]. This involves com-
puting a log-likelihood function for a plaintext parameter corresponding to a
pair of adjacent bytes from the cookie, and then showing how this likelihood
can be maximised by evaluating a simple counting function on corresponding
ciphertext bytes. We are able to approximate the distributions of the ciphertext
counts, and, using theory of order statistics, compute the median rank of the
log-likelihood of the true plaintext parameter as a function of the number of
available ciphertexts, N . This enables us to make a prediction about the value
of N needed for a successful attack in recovering each pair of cookie bytes. To
complete the picture, we then give an experimental analysis of our attack on
TLS Scramble when targeting complete HTTP cookies (rather than pairs of
cookie bytes). The upshot is that, for TLS Scramble, an HTTP session cookie
can be recovered using approximately 237 ciphertexts. This figure is not that
much greater than the 230 – 232 ciphertexts needed in previous attacks against
RC4 in SSL/TLS [21, 4].

Our attack for the MCookies mechanism is more complex, mainly because
this second mechanism involves an additional Base64 encoding step being applied
separately to the mask and the masked cookie prior to encryption with RC4. This
encoding step maps 6-bit blocks of raw binary data to 8-bit printable ASCII
values. Because of this extra encoding step, our XOR trick above no longer
works directly. However, we still wish to XOR ciphertexts with themselves at
fixed shifts to statistically remove the RC4 keystreams (recalling how the Mantin
bias effects this on our behalf). We are then forced to deal with the XOR-
differential properties of the Base64 encoding map. It transpires that the Base64
encoding negatively affects the statistical effectiveness of our attack and increases
its ciphertext requirements, but not too badly. At a high level, this is because
Base64 encoding, when considered as a 6-bit to 8-bit S-Box, has less than ideal
differential properties.

We are able to obtain a closed-form expression giving the log-likelihoods of
pairs of 6-bit plaintext values from the original cookie in terms of a scaled count
over ciphertext bytes, with the scale factors being derived from differential prop-
erties of the Base64 encoding. Maximising this expression immediately leads to
an efficient attack recovering adjacent pairs of 6-bit plaintexts. We are then able

to compute the approximate distribution of our log-likelihood statistic, and using
this, develop a thorough understanding of which cookie values are likely to be
difficult to recover in our attack, and why. In short, the difficult cookie values are
the ones for which the corresponding rows in the difference table for the Base64
encoding take on many small values. This cookie-dependent attack behaviour
is in contrast to previous attacks in the literature. Finally, we use an experi-
mental analysis to judge the effectiveness of our attacks. We find that around
245 ciphertexts are sufficient to recover the target cookie with good probability.
This is substantially greater than the numbers needed in previous attacks [21, 4]
and for our attack on the TLS Scramble mechanism, but much worse than the
security properties claimed for the MCookies mechanism in [10].

In tandem, our two attacks indicate that the cookie masking mechanisms of
Levillain et al. [10] only moderately increase the security of RC4 in SSL/TLS.
We therefore do not recommend it for adoption.

1.1 Paper Organisation

In Section 2 we provide more background on the RC4 algorithm and the specific
Mantin biases that we will use in our attacks, while in Section 3 we describe the
two different masking techniques of [10], TLS Scramble and MCookies. Section 4
describes our attack on the TLS Scramble mechanism, while Section 5 develops
our attack on MCookies. In Section 6 we report our experimental results, and
in Section 7 we report our conclusions.

2 Background

2.1 The RC4 algorithm

RC4 allows for variable-length key sizes, anywhere from 40 to 256 bits, and
consists of two algorithms, namely, a key scheduling algorithm (KSA) and a
pseudo-random generation algorithm (PRGA). The KSA takes as input an l-
byte key and produces the initial internal state st0 = (i, j, S) for the PRGA; S
is the canonical representation of a permutation of the numbers from 0 to 255
where the permutation is a function of the l-byte key, and i and j are indices
for S. The KSA is specified in Algorithm 1 where K represents the l-byte key
array and S the 256-byte state array. Given the internal state str, the PRGA
will generate a keystream byte Zr+1 as specified in Algorithm 2.

For an overview of how RC4 is used in TLS, see [1, 5]. The salient points
for our analysis are as follows: in each TLS connection, RC4 is keyed with a
128-bit key that is effectively uniformly random; this key is used throughout the
lifetime of a TLS connection, with the single keystream of bytes that it produces
being split up into chunks as needed to encrypt plaintext records using a simple
byte-by-byte XOR operation.

Algorithm 1: RC4 key schedul-
ing (KSA)

input : key K of l bytes
output: initial internal state st0
begin

for i = 0 to 255 do
S[i]← i

j ← 0
for i = 0 to 255 do

j ← j + S[i] +K[i mod l]
swap(S[i],S[j])

i, j ← 0
st0 ← (i, j, S)
return st0

Algorithm 2: RC4 keystream
generator (PRGA)

input : internal state str
output: keystream byte Zr+1

updated state str+1

begin
parse (i, j, S)← str
i← i+ 1
j ← j + S[i]
swap(S[i], S[j])
Zr+1 ← S[S[i] + S[j]]
str+1 ← (i, j, S)
return (Zr+1, str+1)

Fig. 1: Algorithms implementing the RC4 stream cipher. All additions are per-
formed modulo 256.

2.2 The Mantin Biases

Many biases in the RC4 algorithm’s outputs have been discovered over the years.
Amongst the most powerful and useful for cryptanalysis are the Mantin bi-
ases [11], as exploited in [13, 21, 4].

The following result is a restatement of Theorem 1 of Mantin [11], concerning
the probability of occurrence of byte strings of the form ABSAB in RC4 outputs.
Here A and B represent bytes and S denotes an arbitrary byte string of a
particular length G.

Result 1 Let G ≥ 0 be a small integer and let

δG =
e(−4−8G)/256

256
.

Under the assumption that the RC4 state is a random permutation at step r,
then

Pr [(Zr, Zr+1) = (Zr+G+2, Zr+G+3)] = 2−16 (1 + δG) .

Notice that for small values of G, the value of δG is quite close to 2−8,
meaning that the probability in the above result is about 2−16(1 + 2−8), so that
the relative size of the bias is about 1/256. This is rather small but significant
for cryptanalysis when many ciphertexts are available.

Another way of thinking of the result is that it states that, for a shift of G+2
positions, the XOR of an RC4 keystream with itself in two consecutive positions
is equal to (0x00, 0x00) with frequency approximately 2−16 · δG larger than the
2−16 expected for a truly random sequence. This is under the assumption that
the RC4 state is well-approximated by a random permutation at step r.

The approximate correctness of the above result for RC4 with random keys
was experimentally confirmed in [11] for values of G up to 64 and for long

keystreams (i.e. large r values). Further confirmation for the same range of G and
for relatively short keystreams was provided in [16]. A more detailed investigation
of the Mantin biases was conducted in [4]. It was shown there that the biases are
absent for a small number of specific (A,B) byte pairs and stronger for other
pairs; however, when averaged over the possible (A,B) pairs, the bias was found
to arise with roughly the probability predicted by Result 1.

3 Cookie Masking Countermeasures for HTTPS

In [10], Levillain et al. proposed two mechanisms, TLS Scramble and MCookies,
for mitigating the known attacks against various versions of TLS. Both mecha-
nisms are described as providing defense-in-depth, and are based on the masking
principle. More specifically, Levillain et al. observed that a common prerequisite
of the known attacks against TLS is the attacker’s ability to obtain multiple
encryptions of the secret s the attack aims at recovering. Inspired by the coun-
termeasures against side-channel attacks, the authors proposed to mask s with
a randomly generated mask m, each time s is sent i.e. as opposed to sending
s, the pair (m, s ⊕m) is sent instead. This allows the receiver to easily recover
the original s while ensuring that the message (m, s⊕m) sent under the protec-
tion of TLS changes each time s is sent, thereby obstructing the attacks. In the
following, we describe the details of how the two mechanisms proposed in [10]
apply this principle.

3.1 TLS Scramble

The TLS Scramble mechanism, as the name suggests, is implemented at the
transport layer as an extension of TLS. Specifically, TLS Scramble makes clever
use of the support in TLS for compression of the data to be sent, and implements
masking as an alternative compression algorithm. The compression algorithm is
parameterized by a parameter κ denoting the length of the mask used, and is
specified in [10] as the following three-step procedure with input a plaintext P :

1. Generate a κ-byte random string m.
2. Repeat and possibly truncate m to create a new string M such that |M | =
|P | i.e. the length of M is equal to that of P .

3. Return the string X = m||(M ⊕ P), where || denotes concatenation. Note
that |X| = |P |+ κ.

The corresponding decompression algorithm is straightforward, and reverses the
above process by extracting the first κ bytes from the received string X, recon-
structing M from this, and finally obtaining the plaintext P by XORing the
|X| − κ last bytes of X with M . TLS allows a compression algorithm to return
a plaintext record that is at most 1024 bytes larger than the original plaintext,
which implies that κ ≤ 1024.

As TLS Scramble replaces the compression mechanism of TLS, protection
against the CRIME and TIME [18] attacks is trivially achieved. Note, however,

that attacks similar to CRIME and TIME might still be possible if compression
of the plaintext data is done in the application layer. Levillain et al. furthermore
claim that TLS Scramble provides protection against BEAST, Lucky 13 [2], RC4
biases [1, 7, 13, 5, 21, 4], and POODLE [12] attacks when using the recommended
parameter κ ≥ 8.

3.2 MCookies

The second mechanism from [10], MCookies, introduces masking in the applica-
tion layer by modifying how web servers handle secure HTTP cookies. Specif-
ically, the HTTP protocol allows a web server to define a cookie to be stored
by the client, which will then include the stored cookie on subsequent requests
to the same origin. This enables the web server to authenticate requests com-
ing from clients who have already authenticated themselves, e.g. by providing
the correct login credentials at the beginning of the HTTP session. In this case,
cookie recovery is a desirable goal for a potential attacker, as this would allow
him to impersonate clients. MCookies aims at strengthening the protection of
cookies when the HTTP session is protected by TLS (i.e. HTTPS) by addi-
tionally masking the cookies. Concretely, MCookies modifies the HTTP server
behaviour as follows:

Cookie definition When the web server receives a set-cookie request from a
web application, e.g. for cookie name SESSID and cookie value V , it gen-
erates a random mask M such that |M | = |V |, and constructs a masked
set-cookie header of the form Set-cookie:SESSID = M : M ⊕ V (as
opposed to the normal unmasked header Set-cookie:SESSID = V).

Cookie restitution and redefinition Upon receiving a request containing
SESSID = X : Y , the web server sends SESSID = X⊕Y to the web appli-
cation, which corresponds to the original, unmasked cookie. In its response
to the client, the web application will then either (1) redefine the cookie,
which corresponds to the cookie definition above, (2) erase the cookie, in
which case the web server will not have to take further action, or (3) leave
the cookie unchanged, in which case the web server redefines the cookie V
by generating a new mask M ′ such |M ′| = |V |, and sets the new cookie value
to M ′ : M ′ ⊕ V as in the cookie definition above.

For maximal compatibility, the characters used in cookies are typically restricted
to a subset of the printable ASCII character set. Base64 encoding [8] is recom-
mended for this purpose in RFC 6265 [3]. Since both the mask M and the masked
cookie M ⊕ V are (unless otherwise processed) raw binary values, the authors
of [10] indeed suggest to use a Base64 encoding of these values (see footnote 8,
page 231 of [10]). While this might seem like a technical detail less relevant to
security, it plays a significant role in the attack against MCookies presented in
Section 5.

The MCookies mechanism described above only modifies the server behaviour.
Hence, an active attacker capable of either preventing messages from the client

from reaching the server or otherwise ensuring that the server will not respond
e.g. by causing a server-side error, will still be able to make the client repeatedly
send the same cookie value over and over again, and thereby sidestep the counter
measure implemented by MCookies. To address this, Levillain et al. propose an
extension of MCookies which modifies the behaviour of clients as well. The ex-
tension is made possible by introducing a new cookie attribute, masked, which
the server can use to indicate to the client that the corresponding cookie should
be treated as a masked cookie. Upon receiving a cookie with attribute masked,
a compatible client will respond by masking the cookie as described above i.e.
it will generate a mask M and set the cookie value to M : M ⊕ V , and include
the masked cookie in a new header field Masked-Cookie in the response to the
server. Hence, when no changes are made to the cookie, the server will not have
to include the masked cookie when responding to a client request, and can rely
on the client to mask the cookie using a new random mask for each new request.
For non-compatible clients, the server would have to resort to the MCookies
mechanism described above, which does not require the client to be aware of the
masking.

Both MCookies and the client-side extension are claimed to provide protec-
tion against BEAST, RC4 biases [1, 7, 13, 5, 21, 4], and POODLE [12], whereas
the client-side extension is claimed to additionally provide protection against
Lucky 13 [2].

4 Attack on TLS Scramble

4.1 Setting for the Attacks

In this section and the next, we will present attacks against the TLS Scramble
and MCookies mechanisms when used in combination with SSL/TLS and when
the RC4 algorithm is used for encryption in SSL/TLS. We begin by describing
the setting for both attacks, before focussing in the remainder of this section on
TLS Scramble.

Both attacks are in the broadcast setting i.e. it is assumed that the attacker
has access to multiple encryptions of the target plaintext. In our setting, this
target is an HTTP cookie. This assumption holds in practice because of the at-
tacker’s ability to inject code (e.g. Javascript) into the client’s browser. This code
starts SSL/TLS connections to the server, into which the browser automatically
places the target cookie.

Furthermore, we assume that the position of the targeted cookie and the
surrounding plaintext bytes are known. This is true in our setting because of
the highly structured and predictable nature of the initial messages in HTTP
connections into which the target cookie is placed.

Finally, it is sufficient for an attack to output a list of candidate values for
the cookie, since at the end of the attack, many candidates can be tried in turn
to see if they are accepted by the server as the correct value. For example, in [4],
lists containing up to 218 queries are used, while in [21], lists of size 223 were

used in the most powerful attack. This assumption means that an attack can
be considered successful whenever the correct cookie is contained in the output
list. This makes it significantly easier to obtain a high success rate compared to
attacks which are judged successful only if they output a single cookie candidate
that is correct.

These attack assumptions are entirely realistic for SSL/TLS-protected HTTP
sessions – see [1, 21, 4] for a more detailed discussion.

The attacks are based on using the Mantin bias which, recall, can be phrased
as follows: Let zi denote the ith keystream byte generated using RC4 with a
randomly chosen key and let

δG =
e(−4−8G)/256

256
.

Then Pr[(zi, zi+1) = (zi+2+G, zi+3+G)] = 2−16(1 + δG). In other words, the
chance of a keystream byte pair repeating has a relative bias of δG, where G
denotes the number of keystream bytes (or gap) between the pairs.

4.2 Recovering Two Cookie Bytes with a Single Ciphertext

For the remainder of this section, we focus on TLS Scramble.
Recall that TLS Scramble masks the entire plaintext with a mask M con-

structed by repeated concatenation (and possible truncation) of a randomly
chosen κ-byte mask m. Let m = m1 · · ·mκ, where each mi corresponds to a byte
value.

Consider first a single encryption of a byte pair from a target cookie at
location i, (vi, vi+1), and let (ci, ci+1) denote the corresponding ciphertext byte
pair. For notational convenience, we will assume that the mask m is exactly
aligned with (vi, vi+1) i.e. vi will be masked with m1 and vi+1 will be masked
with m2 (the attack will work equally well when this is not the case). We can
now express (ci, ci+1) as

(ci, ci+1) = (vi ⊕m1 ⊕ zi, vi+1 ⊕m2 ⊕ zi+1)

where zj is the jth RC4 keystream byte. Furthermore, we may assume that the
plaintext byte pair (vi−κ, vi+1−κ) at location i−κ is known. The ciphertext byte
pair (ci−κ, ci+1−κ) corresponding to the encryption of (vi−κ, vi+1−κ) can then
be expressed as:

(ci−κ, ci+1−κ) = (vi−κ ⊕m1 ⊕ zi−κ, vi+1−κ ⊕m2 ⊕ zi+1−κ).

Note that due to the distance of exactly κ between the byte pairs (vi, vi+1) and
(vi−κ, vi+1−κ), the same bytes, m1 and m2, are used in the masking. Hence, by
XORing the two ciphertext byte pairs and the known plaintext byte pair, we
obtain the byte pair

(xi, xi+1) = (ci, ci+1)⊕ (ci−κ, ci+1−κ)⊕ (vi−κ, vi+1−κ) (1)

= (vi ⊕ zi ⊕ zi−κ, vi+1 ⊕ zi+1 ⊕ zi+1−κ)

Note that if (zi, zi+1) = (zi−κ, zi+1−κ), we have that (xi, xi+1) = (vi, vi+1). Fur-
thermore, due to the Mantin bias, we know that the probability that (zi, zi+1) =
(zi−κ, zi+1−κ) occurs has a relative bias of δκ−2. In other words, (xi, xi+1) will
take on the value of the target cookie byte pair (vi, vi+1) slightly more often
than any other value. This makes it possible to recover (vi, vi+1) in the attack.

More formally, let X denote the random variable taking on values (xi, xi+1)
computed as in equation (1) for encryptions using a random RC4 key. Further-
more, let θ = (vi, vi+1) be a parameter specifying the target cookie byte pair.
Then, from the Mantin bias, it follows that

Pr[X = (xi, xi+1) | θ] ≈

{
2−16(1 + δκ−2) if θ = (xi, xi+1),

2−16 otherwise

assuming the absence of other biases. This implies that, given the observation
(xi, xi+1), the likelihood of the parameter θ is given by

L[θ ; (xi, xi+1)] = Pr[X = (xi, xi+1) | θ] ≈

{
2−16(1 + δκ−2) if θ = (xi, xi+1),

2−16 otherwise.

Applying the method of maximum likelihood estimation would immediately
suggest setting θ̂, the maximum likelihood estimator for θ, to (xi, xi+1) as com-
puted in equation (1).

4.3 Recovering Two Cookie Bytes with Many Ciphertexts

The above analysis only considers a single ciphertext. However, it is assumed
that multiple encryptions of the target cookie (and known plaintext in offset
positions) are available to the attacker, and we wish to make use of all of these
ciphertexts in a likelihood analysis.

Let N denote the number of ciphertexts available and let

Xi =
(

(x
(1)
i , x

(1)
i+1), . . . , (x

(N)
i , x

(N)
i+1)

)
denote the vector of byte pairs obtained from these as shown in equation (1).
Furthermore, let

S(θ;Xi) = |{(x(j)i , x
(j)
i+1) = θ | 1 ≤ j ≤ N}|

That is, S(θ;Xi) counts the number of byte pairs (x
(j)
i , x

(j)
i+1) from Xi which

are equal to the parameter θ. Extending the above likelihood expression to take
into account N ciphertexts instead of a single one, we obtain:

L[θ ; Xi] = Pr[Xi | θ] =
∏
j

Pr[Xj = (x
(j)
i , x

(j)
i+1) | θ] ≈ 2−16N (1 + δκ−2)S(θ;Xi)

where the last equality follows by noting that, for the N −S(θ;Xi) cases where

(x
(j)
i , x

(j)
i+1) 6= θ, the probability Pr[Xj = (x

(j)
i , x

(j)
i+1) | θ] is approximately equal

to 2−16, while for the S(θ;Xi) cases where (x
(j)
i , x

(j)
i+1) = θ, the probability

Pr[Xj = (x
(j)
i , x

(j)
i+1) | θ] is given by 2−16(1 + δκ−2).

Now applying the method of maximum likelihood estimation suggests using
as a maximum likelihood estimate θ̂ for the unknown cookie byte pair (vi, vi+1)
the value maximising the above likelihood expression. Since maximising an ex-
pression is equivalent to maximising its logarithm (to any base, but we work

with base 2 throughout), we see that we should set θ̂ to the value maximising
the log-likelihood:

L[θ ; Xi] := S(θ;Xi) log(1 + δκ−2)− 16N. (2)

Since the term−16N and the scale factor log(1+δκ−2) here are the same for every

candidate value, we see that it is sufficient to pick θ̂ that maximises S(θ;Xi),

that is, θ̂ should be set to be the two-byte value that occurs most often in Xi.
Hence, a simple attack targeting a single cookie byte pair only, can be im-

plemented by computing the counts S(θ;Xi) for all 216 possible values of the
parameter θ, and simply returning the value of θ having the highest count.

4.4 Evaluation of the Attack Recovering Two Cookie Bytes with
Many Ciphertexts

It is intuitively clear that, for large enough N , this procedure will produce the
correct result, since the target cookie byte pair will eventually have the highest
count with overwhelming probability. In this subsection, we adapt the analy-
sis of [4] to obtain a closed form expression for the success probability of the
preceding two-byte recovery attack as a function of N and κ.

Let θ∗ denote the true value of the plaintext parameter θ. The random vari-
able S(θ∗;Xi) is approximately distributed as Bin(N, 2−16(1 + δκ−2)), while for
values θ 6= θ∗, S(θ;Xi) is approximately distributed as Bin(N, 2−16). For the
attack to be successful in a given instance, it is required that the realisation of
the single random variable S(θ∗;Xi) should exceed realisations of the 216 − 1
other random variables S(θ;Xi).

If we write µ = N2−16, then E(S(θ∗;Xi)) = 2−16N(1 + δκ−2) = µ(1 + δκ−2)
and E(S(θ;Xi)) = 2−16N = µ for θ 6= θ∗, with Var(S(θ;Xi)) ≈ 2−16N = µ for
all θ (to a very good approximation).

For the values of N and hence µ = 2−16N of interest to us, these binomial
random variables are very well-approximated by normal random variables, and
we essentially have

S(θ∗;Xi) ∼ N(µ(1 + δκ−2), µ)
and S(θ;Xi) ∼ N(µ, µ) [θ 6= θ∗]

where N(µ, σ2) denotes a Normal distribution with mean µ and standard devi-
ation σ. We will treat the 216 random variables S(θ;Xi) as being independent,
but of course they are not, since they must sum to N .

It is now convenient to consider the scaling

J(θ;Xi) = µ−
1
2 (S(θ;Xi)− µ) .

Since J(θ;Xi) is an affine transformation of the original log-likelihood function,
it follows that the value of θ which maximises J(θ;Xi) is also the maximum

likelihood estimate θ̂ of the parameter θ given the known data Xi.
It is easy to see that J(θ;Xi) has a Normal distribution with unit variance

in both cases (θ = θ∗ and θ 6= θ∗). In fact we have:

J(θ∗;Xi) ∼ N
(
µ

1
2 δκ−2, 1

)
and J(θ;Xi) ∼ N (0, 1) for θ 6= θ∗.

Furthermore, we may essentially regard all of these random variables J(θ;Xi)
as being independent since the random variables S(θ;Xi) are close to being
independent.

Thus maximising the function J(θ;Xi) (which is equivalent to maximising
S(θ;Xi)) will be successful in giving the true plaintext parameter θ∗ if a a real-

isation of a normal N(µ
1
2 δκ−2, 1) random variable (corresponding to J(θ∗;Xi))

exceeds every member of a set R = {J(θ;Xi) | θ 6= θ∗} of realisations of
216 − 1 = 65535 independent standard normal N(0, 1) random variables.

At this point, the analysis of [4, Section 4.3] using order statistics applies
directly, with the norm |δ| replaced by scalar δκ−2. This analysis provides the
distribution function of Rk(θ∗), the expected rank of the log-likelihood of θ∗

amongst the 216 log-likelihoods obtained from all possible two-byte values θ. In
particular it shows that the median of Rk(θ∗) is given by:

Median (Rk(θ∗)) = 216Φ
(
−2−8N

1
2 δκ−2

)
where Φ denotes the distribution function of a standard normal N(0, 1) random
variable.

Taking κ = 9, which is the value we will use in our experiments in Section 6
and larger than the minimum value of 8 suggested in [10], gives δκ−2 = δ7 =
0.791 · 2−8. Hence

Median (Rk(θ∗)) = 216Φ
(
−0.791 · 2−16N 1

2

)
.

From this expression, the expected value of the median rank of θ∗ can be com-
puted for any number of ciphertexts N . Table 1 shows some values of interest.
For example, the last two entries show that N = 237 ciphertexts should be
sufficient to ensure that the log-likelihood of θ∗ is the largest amongst the 216

possible values, and therefore that the correct pair of plaintext bytes is recovered
in the attack.

The number of ciphertexts required for a successful attack here can be con-
trasted with the corresponding 2-byte recovery attack of [4]; there, low values
for the expected median rank could already be achieved with around 232 cipher-
texts. The difference is attributable to the attack of [4] being able to use multiple
Mantin biases in concert, whereas our attack can only make use of one, at a gap
of G = κ− 2.

N 232 233 234 235 236 237 238

Median (Rk(θ∗)) 14055 8627 3727 828 51 < 1 � 1

Table 1: Median rank of maximum likelihood estimate of plaintext parameter
for κ = 9.

4.5 Recovering Full Cookies

The above attack can be repeated for adjacent cookie byte pairs, assuming the
relevant plaintext bytes are known, to recover a longer cookie value i.e. assum-
ing plaintext bytes vi−κ, . . . , vi+α−1−κ are known, the α target cookie bytes
vi, . . . , vi+α−1 can be correctly recovered with high probability for sufficiently
large N by repeatedly running the above attack for each of the non-overlapping
cookie byte pairs (vi, vi+1), (vi+2, vi+3), . . . , (vi+α−2, vi+α−1) (here we assume α
is even). However, a more effective attack is possible, and one which can output
a list of high likelihood candidates for the complete cookie.

The attack is still based on identifying the candidate with the highest likeli-
hood estimate, but now we will consider the entire cookie byte string vi · · · vi+α−1.
Specifically, consider the parameter θ = vi · · · vi+α−1 corresponding to a byte
string of length α, and let θj = (vj , vj+1), i ≤ j ≤ i + α − 2, be the byte pair
of θ starting at position j. Furthermore, let Lj [θj ; Xj] be the log-likelihood
estimate for θj = (vj , vj+1) as defined in equation (2) and let X = (Xj)

i+α−2
j=i .

We can estimate the log-likelihood of the entire string θ = vi · · · vi+α−1 as

L[θ ; X] ≈
i+α−2∑
j=i

Lj [θj ; Xj] .

In other words, the attack should identify the byte string θ̂ = v̂i · · · v̂i+α−1
corresponding to the chain of overlapping byte pairs

(v̂i, v̂i+1), (v̂i+1, v̂i+2), . . . , (v̂i+α−2, v̂i+α−1)

for which the sum of the log-likelihoods for the individual byte pairs is the
greatest. A formal justification for selecting this summation formula can be found
in [4], but it is intuitively the right metric, and we omit the details here.

While the number of possible chains grows exponentially in the length of the
chain, the above problem can be solved efficiently using dynamic programming
techniques, such as the Viterbi algorithm. This will produce a single candidate
for the length α cookie. Using the list Viterbi algorithm [20] instead, we can find
the L largest candidates, with L being a parameter of the algorithm that largely
dictates its efficiency. See Section 6 for discussion of our experimental results
using this approach.

Lastly, it should be noted that the attack still works if the known plaintext
bytes start at position i− t · κ or i+ t · κ, for any t ≥ 1. This allows the attack
to recover cookies of length greater than κ. However, as t increases, the success

probability of the attack decreases for a fixed number N of ciphertexts, as the
relative Mantin bias δt·κ−2 becomes weaker. An alternative approach would be to
use known plaintext to recover the first κ cookie bytes, then use those recovered
bytes as known plaintext to recover the next group of κ cookie bytes, and so on.

5 Attack on MCookies

In MCookies, only the cookie itself is masked. More specifically, a cookie value
V is replaced with a string M:V ⊕M where M is a randomly generated mask
of length |V |. If this string was directly encrypted using TLS/RC4, the TLS
Scramble attack described above would work equally well for MCookies. How-
ever, as highlighted in Section 3.2, since M , and therefore V ⊕M , are binary
strings, these are Base64 encoded to ensure that a “web-safe” character set is
used for the replaced cookie value. Recall that Base64 encoding will encode a
binary string using the following fixed array of 64 ASCII characters:

base64[] = [A,B,C,D,E, F,G,H, I, J,K,L,M,N,O, P,Q,R,

S, T, U, V,W,X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l,

m, n, o, p, q, r, s, t, u, v, w, x, y, z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+, /]

Concretely, a binary string s = s1 · · · sα, where si represents a 6-bit substring4,
is encoded as ŝ = ŝ1 · · · ŝα, where ŝi = base64[si] and si is interpreted as an
array index (i.e. integer 0 ≤ s < 64). Note that while s is a (6 · α)-bit string, ŝ
is an (8 · α)-bit string, as each ASCII character in base64 is represented by its
byte value.

Hence, given a random mask M = m1 · · ·mα and a cookie V = v1 · · · vα
(where mi and vi represent 6-bit strings), the MCookies encoding scheme will
result in the plaintext string:

base64[m1] · · · base64[mα] : base64[v1 ⊕m1] · · · base64[vα ⊕mα]

consisting of 2α+ 1 bytes.
Let c1 · · · c2α+1 denote the TLS/RC4 encryption of this string, where each ci

corresponds to a ciphertext byte (here we begin our indices at 1 for notational
convenience, but the encryption of the encoded cookie need not begin at byte
position 1 of the RC4 keystream and all indices can be adjusted accordingly).
Similarly to the TLS Scramble attack, we will for 1 ≤ i < α consider the byte
pair

(xi, xi+1) = (ci, ci+1)⊕ (ci+α+1, ci+α+2)

formed by XORing pairs of adjacent bytes in the ciphertext at a shift of α + 1
positions (note the additional ‘:’ character between M and V adds one to the
shift). To ease the notation, we will in the following set

Xb64[vj ,mj] := base64[vj ⊕mj]⊕ base64[mj]

4 For simplicity, we assume the bit-length of s is divisible by 6. If this is not the case,
padding rules apply, see [8].

formed by XORing pairs of adjacent bytes in the output of the MCookies encod-
ing scheme at a shift of α + 1 positions. We will sometimes leave out the mask
mj when Xb64[vj ,mj] appears in probability expressions involving a randomly
chosen mj . Using this notation, we have that

(xi, xi+1) = (Xb64[vi,mi]⊕ zi ⊕ zi+α+1, Xb64[vi+1,mi+1]⊕ zi+1 ⊕ zi+α+2).

Hence if (zi, zi+1) = (zi+α+1, zi+α+2) occurs (as is the case for the Mantin bias),
then we simply have

(xi, xi+1) = (Xb64[vi,mi], Xb64[vi+1,mi+1]).

Thus we might hope to be able to recover the two 6-bit values (vi, vi+1) from
the cookie in the same way as we did for the TLS Scramble mechanism, by
analysing many ciphertexts and selecting as (vi, vi+1) the pair maximising an
appropriate count of occurrences derived from a likelihood estimate.

Unfortunately, the value Xb64[v,m] is not unique for a fixed cookie value
v 6= 0 when randomly choosing a mask m, so this idea does not work directly.
However, the distribution of Xb64[v,m] when considering all choices of m is
highly dependent on v. This dependence is illustrated in Figure 2, which shows
the distribution of Xb64[v,m] for all possible 6-bit values v, with the colouring
indicating the number of times a given 8-bit output arises over the 6-bit values
m. (Note that the byte values of all characters in the array base64[] are less
than 123, and hence all outputs of Xb64[v,m] will be less than 128.)

Hence, given sufficient samples of Xb64[v,m] for a fixed v and randomly
chosen m, an attacker would be able to identify v with high probability, by
appropriately matching the observed distribution with the known distribution
of Xb64[v,m] for random m.

In our situation, we have many observations (xi, xi+1), which in turn yield
pairs (Xb64[vi,mi], Xb64[vi+1,mi+1]) whenever the Mantin bias holds (for gap
G = α − 1 with relative bias 2−16δα−1), but which are otherwise essentially
randomised. Thus in our attack, we effectively obtain a very noisy version of the
distribution of (Xb64[vi,mi], Xb64[vi+1,mi+1]) over random (mi,mi+1). From
this, we can hope to infer (vi, vi+1), given sufficiently many ciphertexts.

We now turn to formally describing a maximum likelihood analysis for the
problem of selecting (vi, vi+1) given a collection of ciphertexts and corresponding
observations of (xi, xi+1). This will lead to a concrete procedure for selecting
pairs (vi, vi+1) (along with a likelihood estimate for each such pair).

5.1 Likelihood Analysis of MCookies for a Single Ciphertext

In the following we derive the likelihood of values θ = (vi, vi+1) given observed
data (xi, xi+1) coming from a single ciphertext. We later extend this to the
consideration of multiple ciphertexts. We will let capital letters denote value
pairs (i.e. Xi = (xi, xi+1) and Zi = (zi, zi+1)), and use the natural extension

Fig. 2: Heatmap illustrating the distribution of Xb64[v,m] (horizontal axis) for all
possible 6-bit values v (vertical axis), with the colouring indicating the number
of times a given 8-bit output arises over the 6-bit values m.

Xb64[θ] = (Xb64[vi], Xb64[vi+1]) (here, omitting the masks (mi,mi+1) as done in
the probability expressions below). We have:

L[θ ; Xi] = Pr[Xi | θ]
= Pr[Xb64[θ]⊕ Zi ⊕ Zi+α+1 = Xi | θ]

=
∑

Y ∈({0,1}8)2
Pr[(Xb64[θ] = Y) ∧ (Zi ⊕ Zi+α+1 ⊕ Y = Xi) | θ] (3)

=
∑

Y ∈({0,1}8)2
Pr[Xb64[θ] = Y | θ] · Pr[Zi ⊕ Zi+α+1 ⊕ Y = Xi | θ] (4)

≈ Pr[Xb64[θ] = Xi | θ] · 2−16(1 + δα−1)

+ (1− Pr[Xb64[θ] = Xi | θ]) · 2−16 (5)

= 2−16 · (1 + Pr[Xb64[θ] = Xi | θ] · δα−1) (6)

In the above, equation (3) introduces an auxiliary variable Y , while equation
(4) follows from the independence of the choice of mask and the RC4 keystream
generation. Equation (5) follows from splitting the sum over Y into two cases:
where Y = Xi and where Y 6= Xi. In the former case, we have

Pr[Zi ⊕ Zi+α+1 ⊕ Y = Xi | θ] = Pr[Zi ⊕ Zi+α+1 = (0x00, 0x00) | θ],

which, from the Mantin bias, is equal to 2−16(1 + δα−1). In the latter case, we
have

Pr[Zi ⊕ Zi+α+1 ⊕ Y = Xi | θ] = Pr[Zi ⊕ Zi+α+1 = W | θ]

where W 6= (0x00, 0x00). Here, the probability is approximately 2−16 (in the
assumed absence of any keystream bias). Finally, equation (6) follows from some
simple algebraic manipulation.

Thus we arrive at:

L[θ ; Xi] ≈ 2−16 · (1 + Pr[Xb64[θ] = Xi | θ] · δα−1)

as an expression for the likelihood of parameter θ (which, recall, is a possible
value of the 6-bit pair of values (vi, vi+1) from the cookie).

So, given a single ciphertext, the maximum likelihood method would simply
dictate selecting as θ̂, the maximum likelihood estimator for θ, the value that
maximises the probability Pr[Xb64[θ] = Xi]. Note that there may be several
values θ attaining the same value, because the map Xb64[·] is not injective.

5.2 Likelihood Analysis of MCookies for Multiple Ciphertexts

We now consider a vector of N values Xi = (X
(1)
i , . . . , X

(N)
i) derived from

the ciphertexts of N encryptions of the target cookie. This cookie is originally
encoded as 6α bits, which are mapped to α bytes by Base64 encoding and thence
to 2α + 1 bytes by the MCookies mechanism. We still focus on the recovery of
two consecutive 6-bit portions (vi, vi+1) of the target cookie V = v1 . . . vα. We
let θ denote this value, regarded as a parameter.

We let
S(Y ;Xi) = |{X(j)

i = Y | 1 ≤ j ≤ N}|,
i.e. S(Y ;Xi) is the count of Xi values equalling a given Y . Extending the pre-
viously derived likelihood expression to take into account Xi as opposed to just
a single pair Xi, we obtain

L[θ ; Xi] ≈ 2−16N ·
∏

Y ∈({0,1}8)2
(1 + Pr[Xb64[θ] = Y | θ] · δα−1)S(Y ;Xi)

yielding a log-likelihood expression:

L[θ;Xi] ≈ −16N +
∑

Y ∈({0,1}8)2
S(Y ;Xi) · log(1 + Pr[Xb64[θ] = Y | θ] · δα−1)

≈ −16N +
∑

Y ∈({0,1}8)2
S(Y ;Xi) · Pr[Xb64[θ] = Y | θ] · δα−1.

Since, for each choice of θ, the additive term −16N and the multiplicative
factor δα−1 are the same, we see that in order to determine the maximum like-
lihood estimator θ̂ we can instead maximise the scaled log-likelihood:

SL[θ;Xi] ≈
∑

Y ∈({0,1}8)2
S(Y ;Xi) · Pr[Xb64[θ] = Y | θ]. (7)

This analysis leads directly to an attack recovering two 6-bit values (vi, vi+1)
from the cookie: simply compute the above sum for each candidate θ = (vi, vi+1)

and output the value θ̂ having the highest value.

5.3 Analysis of the Scaled Log-likelihood

The expression for SL[θ;Xi] in equation (7) can be interpreted as saying that,
in order to evaluate the (scaled) log-likelihood of a given θ, we take a scaled
sum of the 216 counts S(Y ;Xi) with the scale factors being the probabilities
Pr[Xb64[θ] = Y] (where the probability is taken over the suppressed mask value
M). Note that the majority of the scale factors will be zero, because the output
tables of the function Xb64 are quite sparse (cf. Figure 2, showing the output
behaviour for a single 6-bit input value, whereas we are now considering pairs
of 6-bit input values θ).

There are many pairs θ, θ′ for which the distributions Xb64[θ], Xb64[θ′] are
quite close and which therefore present “close” sets of scale factors when evalu-
ating the modified log-likelihood expression (7). Thus we can expect such pairs
θ, θ′ to lead to comparable likelihood values. Since the success of the attack
relies on the likelihood of θ∗, the true value of the parameter, exceeding the log-
likelihoods of all the other 212−1 values θ, it is clear that the attack performance
will now depend heavily on θ∗, with poorer performance in those cases where the
distribution of Xb64[θ∗] is close to the distribution for other values θ, and better
performance when it is not (equivalently, larger number of ciphertexts will be
needed in such cases to get a good success probability for the attack). This be-
haviour is in contrast to our previous attack on TLS Scramble, and indeed prior
attacks in the literature. Moreover, we can expect our maximum likelihood at-
tack on MCookies to require more ciphertexts than our attack on TLS Scramble
because of the presence of the Xb64 map, which effectively reduces the size of the
biases involved in making the attack work. Intuition for this can be gleaned from
looking just at the likelihood expressions based on a single ciphertext, where the
term 2−16(1 + δκ−2) is replaced by 2−16 · (1 + Pr[Xb64[θ] = Xi | θ] · δα−1).

We formalise the above intuitions in the remainder of this section. First, we
develop an understanding of the distribution of S(Y ;Xi); we then apply this
to compute the distribution of SL[θ∗;Xi], where θ∗ is the true value of the
plaintext parameter, and of SL[θ;Xi] for θ 6= θ∗.

First, we claim that

S(Y ;Xi) ∼ Bin(N, 2−16(1 + δα−1 · Pr[Xb64[θ∗] = Y])) .

To see why, recall that

(xi, xi+1) = (Xb64[vi,mi]⊕ zi ⊕ zi+α+1, Xb64[vi+1,mi+1]⊕ zi+1 ⊕ zi+α+2).
(8)

Here, (vi, vi+1) is the true pair of 6-bit cookie values, i.e. the value of θ∗. Alter-
natively, this can be written in our vector notation as:

Xi = Xb64[θ∗,M]⊕ Zi ⊕ Zi+α+1 . (9)

Hence, a specific value Y arises for Xi from a ciphertext if either Zi = Zi+α+1

(in which case we must have Xb64[θ∗,M] = Y for some M), or if Zi 6= Zi+α+1

(in which case we have Xb64[θ∗,M] = Y ′ for some M and some value of Y ′ 6= Y).

In the former case, we have an event with probability

2−16(1 + δα−1) Pr[Xb64[θ∗] = Y]

because of the Mantin bias. In the latter case, we have an event with probability
approximately

2−16(1− Pr[Xb64[θ∗] = Y]).

This can be seen by noting that with Xi fixed and Xb64[θ∗,M] also fixed to some
value Y ′ 6= Y , then given any fixed Zi, the probability that Zi+α+1 provides a
solution to equation (9) is approximately 2−16. Here we make the reasonable
assumption for RC4 keystreams that Zi+α+1 is still uniformly random when
conditioned on a fixed Zi and Zi+α+1 6= Zi.

These two events are exclusive. So, summing the above two probabilities and
simplifying, we obtain

Pr[Y = Xi] ≈ 2−16(1 + δα−1 · Pr[Xb64[θ∗] = Y]) .

Our preceding claim that

S(Y ;Xi) ∼ Bin(N, 2−16(1 + δα−1 · Pr[Xb64[θ∗] = Y]))

now follows directly from the definition of S(Y ;Xi) and the assumption that

the N different ciphertext byte pairs X
(j)
i behave independently.

We now use the usual Normal approximation to the binomial distribution
(which certainly holds well for the large N that we consider) to approximate the
distribution of S(Y ;Xi) by N(qθ∗,YN, 2

−16N) where

qθ∗,Y = 2−16(1 + δα−1 · Pr[Xb64[θ∗] = Y]).

Henceforth, we assume that the Normal distributions describing the random
variables S(Y ;Xi) are independent.

With this computation in hand, we can now evaluate the distribution of
SL[θ;Xi]. Specifically, we use standard results for the mean and variance of
scaled sums of independent Normal distributions to deduce that

SL[θ;Xi] ≈
∑

Y ∈({0,1}8)2
S(Y ;Xi) · Pr[Xb64[θ] = Y]

∼
∑

Y ∈({0,1}8)2
N(qθ∗,YN, 2

−16N) · Pr[Xb64[θ] = Y]

∼ N(µ, σ2)

where

µ =
∑

Y ∈({0,1}8)2
qθ∗,YN · Pr[Xb64[θ] = Y]

=
∑

Y ∈({0,1}8)2
2−16N(1 + δα−1 · Pr[Xb64[θ∗] = Y]) · Pr[Xb64[θ] = Y]

= 2−16N
∑

Y ∈({0,1}8)2
Pr[Xb64[θ] = Y]

+ 2−16Nδα−1
∑

Y ∈({0,1}8)2
Pr[Xb64[θ∗] = Y] · Pr[Xb64[θ] = Y]

= 2−16N + 2−16Nδα−1 ·Θ(θ∗, θ).

Here
Θ(θ∗, θ) :=

∑
Y ∈({0,1}8)2

Pr[Xb64[θ∗] = Y] · Pr[Xb64[θ] = Y]

and then

σ2 =
∑

Y ∈({0,1}8)2
2−16N · Pr[Xb64[θ] = Y]2

= 2−16N ·Θ(θ, θ).

In the above expressions for the mean and variance of the approximate distri-
bution for SL[θ;Xi], the quantity Θ(θ∗, θ) is formed as an inner product between
the two distributions Pr[Xb64[θ∗] = Y] and Pr[Xb64[θ] = Y]. One can also think
of it as a scaled version of the inner product between two rows of Xb64[·], the
difference map of the 12-bit to 16-bit S-box obtained from the Base64 encoding
map, and therefore as a measure of correlation between the two distributions or
table rows. Thus Θ(θ, θ) and Θ(θ∗, θ∗) are norms of these rows.

As a particular case of the above computations, where we substitute θ by θ∗

we have that
SL[θ∗;Xi] ∼ N(µ∗, (σ∗)2)

where

µ∗ = 2−16N + 2−16Nδα−1 ·Θ(θ∗, θ∗) and (σ∗)2 = 2−16N ·Θ(θ∗, θ∗).

We see that the difference in means for the distributions SL[θ∗;Xi] and SL[θ;Xi]
for arbitrary values of θ is proportional to ∆(θ∗, θ) := Θ(θ∗, θ∗) − Θ(θ∗, θ).
It follows that values θ for which the two distributions Pr[Xb64[θ∗] = Y] and
Pr[Xb64[θ] = Y] are highly correlated (so that ∆(θ∗, θ) is small) will be hard to
distinguish via the two likelihood functions SL[θ∗;Xi], SL[θ;Xi]: their means
will tend to be close, and it is therefore probable that SL[θ;Xi] will exceed
SL[θ∗;Xi], so that the maximum likelihood estimator will produce the wrong

output (i.e. θ̂ 6= θ∗).
Furthermore, if Θ(θ∗, θ∗) is small, then we might expect this effect to be

amplified: while the mean of SL[θ;Xi] will not exceed that of SL[θ∗;Xi], the

variance of SL[θ;Xi], being proportional to Θ(θ, θ), could significantly exceed
that of SL[θ∗;Xi] for some values of θ. Then there is a fair chance that SL[θ;Xi]
will exceed SL[θ∗;Xi] despite having a lower mean. Generally, Θ(θ∗, θ∗) is small
when the distribution Pr[Xb64[θ∗] = Y] takes many positive (and necessarily
small) values. This effect can be quite large: for example, when θ∗ consists
of 2 6-bit all-zero values, we have Pr[Xb64[θ∗] = (0x00, 0x00)] = 1 so that
Θ(θ∗, θ∗) = 1 (the largest possible value for Θ), but when θ∗ = (0x2d, 0x2d)
we have Θ(θ∗, θ∗) = 0.00494385, which is 202 times smaller than the maximum
value.

Recall also that the maximum likelihood approach succeeds only if SL[θ∗;Xi]
exceeds SL[θ;Xi] for every choice of θ 6= θ∗, and there are 212 − 1 such choices
where the procedure could fail. Thus the above effects are magnified by the large
number of θ values that need to be considered.

Finally, we note that the difference in means is equal to 2−16Nδα−1∆(θ∗, θ),
while the corresponding difference in means for our TLS Scramble attack is equal
to 2−16Nδκ−2. In general, δα−1 and δκ−2 will be different but of the same order
of magnitude. On the other hand, ∆(θ∗, θ) acts as a scaling factor in reducing
the difference of means when comparing our two attacks. This gives a heuristic
reason for why our MCookies attack will require more ciphertexts than our
attack on TLS Scramble: the log-likelihood measures are harder to distinguish
for MCookies because their means are closer together.

In summary, we have obtained approximations to the distribution of the
likelihood measures SL[θ;Xi]; their subsequent analysis suggests that certain
values for θ∗, the true plaintext parameter, will be difficult to recover with high
reliability. Such values correspond to distributions Pr[Xb64[θ∗] = Y] that are
highly correlated with other distributions Pr[Xb64[θ] = Y] and in particular for
which Θ(θ∗, θ∗), the norm of the relevant row in the Xb64[·] table, is small.

5.4 Recovering Full Cookies

Finally, we turn from consideration of adjacent pairs of cookie symbols to the
problem of recovering full cookies in an attack.

As in TLS Scramble, we can approximate the log-likelihood for the entire
cookie value θ = v1 · · · vα by the sum of the (approximate) log-likelihoods for
the overlapping 6-bit value pairs (v1, v2), (v2, v3), . . . (vα−1, vα), i.e.

L[θ ; X] ≈
α−1∑
j=1

Lj [θj ; Xj]

where

Lj [θj ; Xj] ≈ −16N +
∑

Y ∈({0,1}8)2
S(Y ;Xj) · Pr[Xb64[θj] = Y | θj] · δα−1.

and
X = (Xj)

α−1
j=1

is an array of size N × (α− 1) obtained from the available ciphertexts.
Of course, common terms (−16N) and scale-factors (δα−1) can be removed

from the expression for Lj when computing the summation over j values.

Our attack will then identify the cookie value θ̂ = v̂1 · · · v̂α which maximizes
L[θ ; X]. As in the TLS Scramble case, this can be done efficiently using dy-
namic programming techniques. Our experimental results for recovering cookies
protected with the MCookies method are presented in the next section.

6 Experimental Results

To validate the attacks presented in Sections 4 and 5 against TLS Scramble and
MCookies, respectively, we ran several experiments simulating the attacks, and
measured the obtained attack success rates. The details of the simulations as
well as the obtained results are described below.

6.1 TLS Scramble

Methodology For the attack against TLS Scramble, we used a mask length of
κ = 9 (Levillain et al. [10] recommends κ ≥ 8), and mainly focused on the re-
covery of 16 unknown bytes of a Base64 encoded cookie. The ten plaintext bytes
preceding and the ten plaintext bytes following the cookie bytes were assumed
to be known. This corresponds to a commonly encountered scenario for HTTP
cookies, and allows the attack to essentially consider an extended 18 byte cookie
with known first and last byte values. In this setting, we considered an attack
using the known plaintext bytes preceding the cookie to recover the first eight
bytes of the cookie, and the known plaintext bytes following the cookie to recover
the last eight bytes of the cookie, effectively running the attack “backwards”.
Note that the strength of the Mantin bias δk, and thereby the attack’s suc-
cess probability, decreases with the distance between the considered byte pairs
i.e. considering the closest possible pairs of known plaintext and target cookie
bytes is an advantage in the attack. Furthermore, we assumed the two halves
of the cookie are recovered independently in the attack. This allow us to derive
the success probability of recovering the entire 16-byte cookie from the success
probability of recovering the first or last 8-byte half of the cookie (note that,
when reordering the ciphertext bytes, it makes no difference whether the first
or the last half of the cookie is recovered in the attack, as the Mantin biases
are symmetric). Various optimisations of the attack in this setting are possible.
It would, for example, be possible to exploit both the preceding and following
known plaintext bytes simultaneously in the recovery of cookie bytes. We did
not consider these optimisations further.

For the attack, we used the list Viterbi algorithm based on the likelihood
estimate derived in Section 4.5 with a list size of L = 215. Due to the properties
of the algorithm, this allow us to derive the results for any L < 215. In the attack,
we consider the known byte immediately preceding the unknown cookie values
to be part of the cookie when constructing the XOR values (xi, xi+1) defined in

Fig. 3: Measured success rate of the attack against TLS Scramble (κ = 9) for
8-byte cookie values. The abbreviation b64 denotes an attack against a Base64
encoded cookie; full denotes an attack against a cookie consisting of byte values
taken from {0, 1}8; L denotes the list size of the list Viterbi algorithm.

Section 4.2, and not part of the known preceding plaintext bytes (vi−κ, vi−κ+1).
This ensures that the list Viterbi algorithm, which process the (xi, xi+1) byte
pairs can be initiated with a known first byte value. Note, however, that no
terminating byte value is known, as we target the recovery of half cookies.

To measure the success rate of the attack, we generated ciphertexts in sets
of size N = 234 and N = 235, and for each set stored the counts S(θ,Xi)
defined in Section 4.3 for all possible values of θ and for the relevant values of
i. These were then accumulated to create counts for progressively larger values
of N of the form N = x · 234 for x ∈ {2, 3, . . . , 9}. In turn these counts were
used in the attack simulation. We generated counts to simulate a total of 128
independent attacks. For completeness, we additionally simulated the attack for
binary cookies consisting of 16 randomly chosen bytes (as opposed to Base64
encoded cookies) using a list size of L = 210, which allowed us to additionally
derive the corresponding results for L = 1.

All computations needed for the simulations were done using a server equipped
with a four-core Intel i7 3.4GHz CPU.

Results Figure 3 shows the measured success rate of the attack for the recovery
of half of a 16-byte cookie for different values of N , whereas Figure 4 shows the
derived success rate for a full 16-byte cookie. The latter simply corresponds to
the expected success rate of the recovery of both halves of the cookie, based on

Fig. 4: Derived success rate of attack against TLS Scramble (κ = 9) for 16-byte
cookie values. The abbreviation b64 denotes an attack against a Base64 encoded
cookie; full denotes an attack against a cookie consisting of byte values taken
from {0, 1}8; L denotes the list size of the list Viterbi algorithm.

the measurements shown in Figure 3. Each curve represents an attack against
either a Base64 encoded cookie (denoted b64) or a cookie with byte values from
the full byte range {0, 1}8 (denoted full), as well as a list size of either L = 1,
L = 210, or L = 215.

As expected, Figure 4 shows, for a fixed N , a larger list size L increased
the success rate, with the success rate for the attack against a Base64 encoded
cookie with list size L = 215 reaching 1 at N = 5 ·234, whereas the corresponding
success rate for a list size L = 1 is 0.2. Likewise, in the case of a cookie with byte
values in the full byte range {0, 1}8, a success rate of 1 is reached for N = 9 · 234
and L = 210, whereas the corresponding success rate for L = 1 is 0.45.

In Section 4 we showed that, once about N = 237 ciphertexts are available,
we would expect the attack recovering 2-byte cookie values to succeed with high
probability (because the expected value of the median rank of the log-likelihood
of θ∗ is less than 1). However, our experiments target full cookie recovery while
the evaluation in Section 4 was for recovery of just 2 bytes from cookies. This
makes our full cookie recovery attack harder to perform with N = 237 than
the analysis of Section 4 would suggest. On the other hand, our use of a list
Viterbi algorithm for large L makes cookie recovery easier (in that we adjudge an
attack successful if the cookie appears anywhere in the output list). Despite these
differences, the results portrayed in Figures 3 and 4 are broadly consistent with
the analysis of Section 4, with good success rates being found in our simulations
across the board for N = 8 · 234 = 237.

Cookie Value (hex)

1 b4 14 4d 19 b0 49 40 72 ba d3 79

2 f9 bd b7 2d 02 fd e0 26 85 2d d8

3 f1 c7 80 cd 25 02 86 53 b4 0f cc

4 c6 b7 42 6f c2 af e5 13 19 2d 17

5 63 17 b3 68 3c a5 fb a8 d8 29 4c

6 0c 66 2c 90 e7 71 38 1a 3c c4 97

7 d2 c1 08 67 96 82 ac ef 51 f8 c3

8 ea 52 f2 b0 1c d0 e9 33 27 81 34

9 78 4d bb af da c7 13 09 03 29 06

10 32 bf 93 82 51 a7 e2 33 67 9e f3

11 1d e0 b1 d0 e3 1b 23 b8 ee 47 16

12 8a e5 15 2d ad b7 39 01 b9 e5 d4

13 2b 66 d7 13 d1 ae da 24 f7 4a 4e

14 30 69 0f 9a e6 19 09 07 7f f7 d3

15 16 41 fb 95 d5 9c 83 39 f0 c7 e0

16 62 19 30 f4 49 6b 5e 8a 8b 57 8b

Fig. 5: Cookie values used in the simulations of the attack on MCookies.

6.2 MCookies

Methodology For the attack against MCookies, we considered a cookie con-
sisting of 11 bytes. This corresponds to a 16-byte cookie value when masked and
Base64 encoded, including a single Base64 padding character ‘=’. It results in a
33-byte encoded value when considering the entire MCookies encoding process.

In this setting, a list Viterbi algorithm with known first and terminating
byte values can be used due to the HTTP cookie having a known character
preceding the mask/cookie value (the character ‘=’), the mask and the masked
cookie value being separated by a known character (the character ‘:’), and the
same padding character being used for both the mask and the masked cookie
i.e. in the construction of the Xi values described in Section 5.2, we considered
the XOR of the encrypted mask including the preceding character ‘=’, and the
encrypted masked cookie including the preceding character ‘:’. We used a list
size of L = 215, which allowed us to derived the corresponding results for L = 1
and L = 210.

Unlike the TLS Scramble attack, the success rate of the MCookies attack is
dependent on the cookie value being recovered (see discussion in Section 5). In
the attack simulations, we generated the used cookie values using AES in counter
mode. Specifically, we set each byte of the key to the value 0x02, and the IV
to a cookie number which was increased for each new cookie, starting with the
value 1. The generated keystream was used as the byte values of the cookie. The
generated cookie values used in our experiments are shown in Figure 5.

For each cookie value, we generated ciphertexts in sets of size N = 235,
stored the counts S(Y ;Xi) defined in Section 5.2 for all possible values Y and
the positions i ∈ {0, . . . , 15} corresponding to the length of the encoded masked
cookie including the known preceding character. These counts were accumulated

Fig. 6: Measured success rate of attack against MCookies for 16-byte (11-byte
unencoded) cookie values. L denotes the list size of the list Viterbi algorithm.

to construct counts for progressively larger N , but as the biases in the case
of MCookies are significantly weaker than in the case of TLS Scramble, we
considered N of the form x · 242 for x ∈ {2, . . . , 8}. Furthermore, due to the
large amount of computational resources required, we were able to generate data
sufficient to simulate only 16 independent attacks, each for a different cookie
value. This corresponds to data derived from a total of 249 ciphertexts.

The generation of ciphertext data to simulate the attack for the first four
cookies was done on a server equipped with two 14-core Intel Xeon 2.6GHz
CPUs, whereas the generation of ciphertext data for the remaining cookies was
carried out using Amazon Web Services (AWS) computing infrastructure. In
total, the generation of ciphertext data required the equivalent of approximately
73,000 core-hours of computation on AWS; for the AWS computations, we used
the largest available compute-optimized instances denoted c4.8xlarge. The part
of the attack corresponding to running the list Viterbi algorithm was done on a
server equipped with two 8-core Intel Xeon 3.3GHz CPUs.

Results Figure 6 shows the measured success rate of the attack for different
values of N . Each curve corresponds to an attack using the list Viterbi algorithm
with a list size of either L = 1, L = 210, or L = 215. We note that even for L = 215

and N = 8 · 242, two out of the 16 considered cookies were not recovered. Both
of these cookies contain 6-bit substrings leading to some of the smallest values
in the table for Pr[Xb64[θ] = Y] (these values are 0x2c, 0x2e, and 0x39; see
Figure 2 for a visual representation of the biases for these values). The poorer

performance of our attack in these cases is consistent with our discussion in
Section 5.3. We are confident that with additional ciphertexts, these cookies
would be recovered as well.

Generally, the recovery pattern is similar to the TLS Scramble attack, albeit
higher values of N are required; the attacks using L = 215 and L = 210 perform
significantly better than the attack for L = 1, while the difference between the
performances for two larger values for L is less significant. Note that since only
16 attacks were simulated, the results shown in Figure 2 represent a more noisy
measurement of the attack performance than the corresponding measurements
for TLS Scramble, which was based on 128 independent attack simulations.

7 Conclusions

We have presented a comprehensive analysis of the two cookie masking methods
of [10] when used in conjunction with RC4. We used the method of maximum
likelihood estimation to develop statistically rigorous attacks, coupled with ex-
tensive simulations to estimate their performance. In the case of TLS Scramble,
we were able to adapt the techniques developed in [4] to perform a theoretical
evaluation of the number of ciphertexts needed to guarantee that the attack is
successful with high probability. In both cases, we make use of the list Viterbi
algorithm to extend our basic attacks recovering adjacent pairs of cookie sym-
bols to full attacks recovering complete cookies. Our analysis indicates that the
cookie masking methods presented in [10] do enhance the security of RC4 in
SSL/TLS when it is used to protect HTTP cookies, but not sufficiently to war-
rant deploying the mechanisms as they stand.

It is interesting that, while the Base64 encoding of the masked cookie in
MCookies was presumably not intended as a security measure, the presence of
this encoding step means that our attack against MCookies becomes significantly
harder to mount in practice compared to our attack on TLS Scramble. More
precisely, the cost of the attack rises from around 237 ciphertexts to around 245.

For our MCookies analysis, it would be useful to develop a better under-
standing of the distributional properties of the simplified log-likelihood function
given in equation (7), and use this to perform an extended analysis (possibly us-
ing order statistics) to make predictions about the number of ciphertexts needed
to recover θ∗ correctly. It would also be interesting to extend our analysis to
handle masking mechanisms using multiple masks, as hinted at in [10] as being
a possible extension of MCookies. In particular, it would be useful to evaluate
how much extra security would be obtained by involving additional masks.

Acknowledgements

This research was supported by a generous donation of computing resources by
Amazon Web Services.

Paterson was supported in part by a research programme funded by Huawei
Technologies and delivered through the Institute for Cyber Security Innovation

at Royal Holloway, University of London. Schuldt was supported in part by JSPS
KAKENHI Grant Number 15K16006.

References

1. Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poet-
tering, and Jacob C. N. Schuldt. On the Security of RC4 in TLS. In Proceedings of
the 22nd USENIX Conference on Security, SEC’13, pages 305–320, Berkeley, CA,
USA, 2013. USENIX Association.

2. Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS
and DTLS record protocols. In 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 526–540. IEEE Computer
Society, 2013.

3. Adam Barth. HTTP State Management Mechanism. RFC 6265 (Proposed Stan-
dard), April 2011.

4. Remi Bricout, Sean Murphy, Kenneth G. Paterson, and Thyla van der Merwe.
Analysing and exploiting the Mantin biases in RC4. IACR Cryptology ePrint
Archive, 2016:63, 2016.

5. Christina Garman, Kenneth G. Paterson, and Thyla van der Merwe. Attacks only
get better: Password recovery attacks against RC4 in TLS. In Jung and Holz [9],
pages 113–128.

6. Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu Sarkar. (non-
)random sequences from (non-)random permutations - analysis of RC4 stream
cipher. J. Cryptology, 27(1):67–108, 2014.

7. Takanori Isobe, Toshihiro Ohigashi, Yuhei Watanabe, and Masakatu Morii. Full
plaintext recovery attack on broadcast RC4. In Shiho Moriai, editor, Fast Software
Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13,
2013. Revised Selected Papers, volume 8424 of Lecture Notes in Computer Science,
pages 179–202. Springer, 2013.

8. Simon Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648
(Proposed Standard), October 2006.

9. Jaeyeon Jung and Thorsten Holz, editors. 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14, 2015. USENIX As-
sociation, 2015.

10. Olivier Levillain, Baptiste Gourdin, and Hervé Debar. TLS Record Protocol: Se-
curity Analysis and Defense-in-depth Countermeasures for HTTPS. In Feng Bao,
Steven Miller, Jianying Zhou, and Gail-Joon Ahn, editors, Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security, ASIA
CCS ’15, Singapore, April 14-17, 2015, pages 225–236. ACM, 2015.

11. Itsik Mantin. Predicting and distinguishing attacks on RC4 keystream genera-
tor. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in
Computer Science, pages 491–506. Springer, 2005.

12. Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE bites: Exploit-
ing the SSL 3.0 fallback, September 2014.

13. Toshihiro Ohigashi, Takanori Isobe, Yuhei Watanabe, and Masakatu Morii. How to
recover any byte of plaintext on RC4. In Tanja Lange, Kristin E. Lauter, and Petr
Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers,
volume 8282 of Lecture Notes in Computer Science, pages 155–173. Springer, 2013.

14. Kenneth G. Paterson, Bertram Poettering, and Jacob C. N. Schuldt. Big bias
hunting in Amazonia: Large-scale computation and exploitation of RC4 biases (in-
vited paper). In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology -
ASIACRYPT 2014 - 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-
11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science,
pages 398–419. Springer, 2014.

15. Kenneth G. Paterson, Bertram Poettering, and Jacob C. N. Schuldt. Plaintext
recovery attacks against WPA/TKIP. In Carlos Cid and Christian Rechberger,
editors, Fast Software Encryption - 21st International Workshop, FSE 2014, Lon-
don, UK, March 3-5, 2014. Revised Selected Papers, volume 8540 of Lecture Notes
in Computer Science, pages 325–349. Springer, 2014.

16. Kenneth G. Paterson and Mario Strefler. A practical attack against the use of
RC4 in the HIVE hidden volume encryption system. In Feng Bao, Steven Miller,
Jianying Zhou, and Gail-Joon Ahn, editors, Proceedings of the 10th ACM Sympo-
sium on Information, Computer and Communications Security, ASIA CCS ’15,
Singapore, April 14-17, 2015, pages 475–482. ACM, 2015.

17. Andrei Popov. Prohibiting RC4 Ciphersuites. RFC 7465, February 2015.
18. Pratik Guha Sarkar and Shawn Fitzgerald. Attacks on SSL – a comprehensive

study of BEAST, CRIME, TIME, BREACH, Lucky 13 and RC4 biases, August
2013.

19. Santanu Sarkar, Sourav Sen Gupta, Goutam Paul, and Subhamoy Maitra. Proving
tls-attack related open biases of RC4. Des. Codes Cryptography, 77(1):231–253,
2015.

20. Nambi Seshadri and Carl-Erik W. Sundberg. List Viterbi decoding algorithms with
applications. IEEE Transactions on Communications, 42(234):313–323, 1994.

21. Mathy Vanhoef and Frank Piessens. All your biases belong to us: Breaking RC4
in WPA-TKIP and TLS. In Jung and Holz [9], pages 97–112.

