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Abstract. OCB2 is a widely standardized mode of operation of a blockcipher that aims at pro-
viding authenticated encryption. A recent report by Inoue and Minematsu (IACR EPRINT report
2018/1040) indicates that OCB2 does not meet this goal. Concretely, by describing simple forging
attacks the authors evidence that the (sub)goal of authenticity is not reached. The report does not
question the confidentiality offered by OCB2.

In this note we show how the attacks of Inoue and Minematsu can be extended to also break
the confidentiality of OCB2. We do this by constructing an IND-CCA adversary and a couple of
plaintext recovering adversaries, all of which require minimal resources and achieve overwhelming
success rates.

1 Introduction

In symmetric-key cryptography, a primitive providing authenticated encryption (AE) is one that allows
for encrypting messages into ciphertexts, and decrypting ciphertexts into messages, such that both the
confidentiality and the integrity of the messages are protected. A classic approach towards achieving this
is through the hybrid encrypt-then-mac construction [1], but a line of research that started about two
decades ago [4] and is now more active than ever [9] put forward several integrated AE modes that jointly
achieve the two security goals in a more efficient way. As of today, authenticated encryption (possibly
enriched with the option to take into account an associated-data string when performing the encryption
and decryption operations; this variant is commonly referred to as AEAD) is a core component of many
real-world cryptographic constructions.

While AES-GCM [5] has likely been the most widely used AE scheme for the last decade, a family of
independent constructions is known by the name of OCB [6]. The three members of this family (OCB1,
OCB2, OCB3) are blockcipher-based designs and effectively get along with a single blockcipher invocation
per message block (‘rate-1’). While OCB1 is a plain AE mode, OCB2 and OCB3 are AEAD modes, and
all three modes are among the most efficient (generic blockcipher based) designs that the market has to
offer.1

In their recent report [3], Inoue and Minematsu (IM) showed that the OCB2 authenticated encryption
scheme does not achieve the promised goal of authenticity. More precisely, the authors give four different
attacks on OCB2 that allow for forging ciphertexts that validly decrypt to unauthentic messages without
flagging an error. All four attacks succeed with overwhelming probability, they require minimal time and
memory resources, and some of them allow for a specific level of control over the message to which a
forged ciphertext will decrypt. The only realistic conclusion that one can draw from this seems to be
that the authenticity of OCB2 is fully broken.2

Contribution. In this light it seems natural to ask whether the IM attacks on authenticity also have
implications on the confidentiality of OCB2. In the abstract of their report, IM indicate that their
attacks “do not break the privacy of OCB2” [3]. In the current article we thus provide a fresh IM-
inspired assessment of the confidentiality of OCB2, and our main result is that the findings of IM indeed
1 All versions of OCB were, and some still are, covered by intellectual property claims. This likely contributes
to the clear real-world dominance of (the royalty-free) AES-GCM. The performance of AES-GCM could catch
up with that of OCB only when CPU manufacturers started incorporating hardware support for certain GCM
operations into their products (e.g., the PCLMULQDQ instruction in Westmere).

2 As IM point out, it seems that fixing OCB2 is not too complicated. However, as ciphertexts of the original
and the fixed version are not compatible with each other, implementers likely will, instead of applying the fix,
take the opportunity to switch to AES-GCM in the first place.



can be leveraged to yield effective message distinguishing attacks (in the IND-CCA sense) as well as
powerful plaintext recovery attacks. We show this by giving concrete attacks that, just like the ones
of IM, consume minimal resources and have an overwhelming success rate. As a by-product we further
show that OCB2 is indeed universally forgeable. Our conclusion is that the confidentiality of OCB2 is
as broken as its authenticity.

2 Preliminaries

2.1 Notation

Symbols. If A is a set we write a←$ A for the operation of picking an element of A uniformly at random
and assigning it to the variable a. If B,B′ are sets we write B ∪← B′ shorthand for B ← B ∪ B′. For
fixed-length strings C1, C2 ∈ {0, 1}n we write C ← C1 q C2 for their concatenation to a single (2n-long)
string C. Such a string C can again be split up into its components C1, C2 with the n← operator. For
example C ← C1 q C2 q C3 followed by C ′1 q C ′2 q C ′3

n← C yields C ′1 = C1, C ′2 = C2, C ′3 = C3. As
further detailed in Section 2.3, we write + for the xor operation. In program code we might use the
if-then-else ternary operator ? : known from programming languages like C and Java: If C is a
Boolean condition, the expression C ? a : b evaluates to a if C is true; otherwise, it evaluates to b.

Games. We define security notions via games played between a challenger and the adversary. Such games
are formalized with pseudo-code. The execution of a game stops when it runs into a ‘Stop’ instruction.
If the latter has an argument (e.g., ‘Stop with x’), then the argument is considered the output of the
game. For a game G we write Pr[G ⇒ 1] for the probability (over all random coins drawn by the game
and the adversary) that the game terminates by running into a ‘Stop with x’ instruction with x = 1.
We further use the instruction ‘Require C’, where C is a Boolean condition, as a shortcut for ‘If ¬C:
Stop with 0’. (This is usually used to penalize the adversary for posing ‘illegal queries’; note that all our
security definitions are such that such a penalty does not increase the formal attack advantage.)

2.2 Nonce-based AEAD

Syntax. We formalize a syntactical framework for authenticated encryption with associated data (AEAD).
A corresponding scheme specifies a key space K, a nonce space N , an associated-data space AD, a mes-
sage space M, a ciphertext space C, and the (deterministic) algorithms enc and dec. The encryption
algorithm enc takes a key K ∈ K, a nonce N ∈ N , an associated-data string AD ∈ AD, and a message
M ∈ M, and outputs a ciphertext C ∈ C. The decryption algorithm dec takes a key K ∈ K, a nonce
N ∈ N , an associated-data string AD ∈ AD, and a ciphertext C ∈ C, and outputs either a message
M ∈ M or the special symbol ⊥ /∈ M. If dec outputs a message, i.e., an element ofM, then we say it
accepts (the ciphertext C); otherwise, if it outputs ⊥, we say it rejects. For correctness we require that
if keys, nonces, and associated data are provided consistently to enc and dec, then messages encrypted
with enc are recovered by dec. Precisely, we require that for all K ∈ K, N ∈ N ,AD ∈ AD,M ∈ M we
have enc(K,N,AD,M) = C ⇒ dec(K,N,AD, C) = M .

Security. We consider two security notions for AEAD: one for authenticity and one for confidentiality.
While articles that aim at establishing the security of an AEAD candidate tend to do so using rather
strong notions (e.g., in the IND$ or SUF spirit), in this article we aim at analyzing the insecurity of an
AEAD scheme and thus deliberately focus on rather weak notions. This only strengthens our results: If
a scheme does not meet a weak notion, in particular it also does not meet any stronger notion. Note
that the security goals that we formalize below assume nonce-respecting adversaries (that use for each
encryption query a fresh nonce).

Our authenticity notion is formalized using the INT game from Figure 1 (left); the focus is on the
integrity protection of associated-data strings and messages. (In contrast to [3] our definition disregards
attacks that merely consist of manipulating nonces or ciphertexts.) We define the authenticity advantage
of an adversary A as per Advint(A) := Pr[INT(A)⇒ 1]. Intuitively, an AEAD scheme offers authenticity
if Advint(A) is negligible for all realistic adversaries A.

Our confidentiality notion is formalized using the INDb games from Figure 1 (right); note that this
is a classic left-or-right IND-CCA definition and thus captures a notion of confidentiality against active
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adversaries. (In contrast to [3] our definition does not require that ciphertexts look like random bit-
strings.) We define the confidentiality advantage of an adversary B as per Advind(B) := |Pr[IND1(B)⇒
1] − Pr[IND0(B) ⇒ 1]|. Intuitively, an AEAD scheme offers confidentiality (against active attacks) if
Advind(B) is negligible for all realistic adversaries B.

Game INT(A)
00 NS← ∅; ADM← ∅
01 K ←$ K
02 AE(·,·,·),D(·,·,·)

03 Stop with 0

Oracle E(N,AD,M)
04 Require N /∈ NS
05 C ← enc(K,N,AD,M)
06 NS ∪← {N}
07 ADM ∪← {(AD,M)}
08 Return C

Oracle D(N,AD, C)
09 M ← dec(K,N,AD, C)
10 If M = ⊥: Return ⊥
11 If (AD,M) /∈ ADM:
12 Stop with 1
13 Return M

Game INDb(B)
14 NS← ∅; NADC← ∅
15 K ←$ K
16 b′ ← BE(·,·,·,·),D(·,·,·)

17 Stop with b′

Oracle E(N,AD,M0,M1)
18 Require N /∈ NS
19 Require |M0| = |M1|
20 C ← enc(K,N,AD,Mb)
21 NS ∪← {N}
22 NADC ∪← {(N,AD, C)}
23 Return C

Oracle D(N,AD, C)
24 Require (N,AD, C) /∈ NADC
25 M ← dec(K,N,AD, C)
26 If M = ⊥: Return ⊥
27 Return M

Fig. 1. Games INT, IND0, IND1 for modeling integrity (of messages) and indistinguishability (of messages, under
chosen-ciphertext attacks). Note how lines 04,06,18,21 enforce that the adversary be nonce-respecting.

2.3 Blockciphers that operate on finite fields

Blockciphers. For a key space K and a block length n, a blockcipher is a pair of functions E,D : K×
{0, 1}n → {0, 1}n such that for all K ∈ K and X,Y ∈ {0, 1}n we have D(K,E(K,X)) = X or,
equivalently, E(K,D(K,Y )) = Y .

Finite Fields. The domain {0, 1}n of a blockcipher can be identified with the set of elements of
the finite field GF(2n). More precisely, after fixing an irreducible degree-n polynomial P ∈ GF(2)[x]
(such a polynomial exists for all n), the elements of the field GF(2n) := GF(2)[x]/(P ) have a canonic
representation as bitstrings of length n. We write + and · for the field operations (where + coincides
with the xor operation). In the context of OCB2, the reduction polynomial P is chosen such that the
field element x (the degree-1 monomial) is primitive in GF(2n), that is, the sequence x1, x2, x3, . . . ranges
over 2n − 1 different values.

2.4 Specification of OCB2

We reproduce details of the OCB2 nonce-based AEAD scheme from [7,8]. The scheme is based on a
blockcipher (typically AES) and parameterized by a tag length τ (which kind of serves as a security
parameter). In the following we actually do not give the full specification of OCB2; rather, in order to
simplify the exposition, we remove some of its functionality (see upcoming paragraph). Note that any
attack that is successful against the restricted scheme also applies to the full scheme. This holds in par-
ticular for the Inoue–Minematsu authenticity attacks from [3] as well as for the attack on confidentiality
presented in the current article.

Assume a blockcipher (E,D) with key spaceK and block length n, and understand the cipher’s domain
{0, 1}n as representing the elements of a finite field as suggested in Section 2.3. Then the algorithms of
OCB2 are specified in Figure 2. The scheme has key space K, nonce space {0, 1}n, and uses {0, 1}∗
as associated-data space, message space, and ciphertext space. As announced above, our specification
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of OCB2 only covers a specific sub-case, namely the one where (a) the tag length coincides with the
cipher’s block length (this allows for disregarding the tag truncation step), (b) the associated-data input
is always the empty string (this allows for removing the description of the auxiliary PMAC component),
and (c) the length of considered messages and ciphertexts is always a multiple of the cipher’s block length
(this allows for neglecting padding operations). Note that the specifications of the enc and dec algorithms
assume a length-encoding function len : {0, 1}≤n → {0, 1}n.3

Algorithm encτ (K,N,AD,M)
00 Require τ = n ∧AD = ε ∧ n | |M |
01 L← E(N)
02 M [1] q . . . qM [m] n←M
03 For i← 1 to m− 1:
04 C[i]← xiL+ E(xiL+M [i])
05 C[m]←M [m] + E(xmL+ len(0n))
06 Σ ←M [1] + . . .+M [m]
07 T ← E(xm(x + 1)L+Σ)
08 C ← C[1] q . . . q C[m] q T
09 Return C

Algorithm decτ (K,N,AD, C)
10 Require τ = n ∧AD = ε ∧ n | |C|
11 L← E(N)
12 C[1] q . . . q C[m] q T n← C
13 For i← 1 to m− 1:
14 M [i]← xiL+D(xiL+ C[i])
15 M [m]← C[m] + E(xmL+ len(0n))
16 Σ ←M [1] + . . .+M [m]
17 T ∗ ← E(xm(x + 1)L+Σ)
18 M ←M [1] q . . . qM [m]
19 Return (T = T ∗) ? M : ⊥

Fig. 2. Specification of OCB2 (for the sub-case enforced by lines 00,10). For compactness we abbreviate E(K, ·)
with E(·) and D(K, ·) with D(·).

3 Attacks on OCB2

We first recall one of the recent attacks on OCB2’s authenticity by Inoue and Minematsu (IM) (Sec-
tion 3.1) and then show how the attack can be adapted to instead break the scheme’s confidentiality
(Section 3.2). We intentionally design the corresponding IND-CCA adversary as minimalistic as possible,
and the result leaves open whether also a plaintext recovery attack is feasible. Before we clarify on the
latter, in Section 3.3 we take a step back and develop a general OCB2-specific attack framework. The
techniques formalized in this section clearly borrow from those of Sections 3.1 and 3.2, and indeed we see
its contribution mainly in abstracting and concentrating our understanding of the OCB2 vulnerabilities
into two easy-to-use procedures. Finally, in Sections 3.4 and 3.5, we describe a universal forgery attack
and a couple of plaintext recovery attacks. These attacks are based on the abstractions developed in Sec-
tion 3.3 and can thus be described rather informally, in particular without touching any of the technical
details of OCB2.

3.1 Recap: Inoue–Minematsu attack on authenticity

We reproduce the most simple attack on the authenticity of OCB2 from [3]. The attack gets along with
a single encryption query and succeeds with finding a forgery with probability 1. (The delivery of the
forgery requires, of course, an additional decryption query.) The details of a corresponding adversary A
for the INT game from Figure 1 (left) are in Figure 3 (left). We trace the values of some variables

3 The details of is function are specified in the OCB2 standard, but they are not relevant for our analysis.
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throughout an execution of the adversary within the game:

M [1] = len(0n)
L0 = E(N0)

C[1] = x1L0 + E(x1L0 +M [1]) = x1L0 + E(x1L0 + len(0n))
C[2] = M [2] + E(x2L0 + len(0n))
Σ = M [1] +M [2] = len(0n) +M [2]
T = E(x2(x + 1)L0 +Σ) = E(x2(x + 1)L0 + len(0n) +M [2])

C ′[1] = C[1] + len(0n) = x1L0 + E(x1L0 + len(0n)) + len(0n)
T ′ = M [2] + C[2] = M [2] +M [2] + E(x2L0 + len(0n)) = E(x2L0 + len(0n))

M ′[1] = C ′[1] + E(x1L0 + len(0n)) = x1L0 + len(0n)
Σ′ = M ′[1] = x1L0 + len(0n)
T ∗ = E(x1(x + 1)L0 +Σ′) = E(x1(x + 1)L0 + x1L0 + len(0n)) = E(x2L0 + len(0n))
M ′ = M ′[1] = x1L0 + len(0n)

Note that by T ′ = T ∗ the decryption oracle accepts ciphertext C ′ and returns the message M ′ =
x1L0 + len(0n). As M ′ and M have different lengths we in particular have M ′ 6= M and the forgery
counts. Thus Advint(A) = 1, i.e., the adversary breaks authenticity with probability 1.

Adversary AE(·,·,·),D(·,·,·)

00 Step 1:
01 M [1]← len(0n)
02 Pick any M [2] ∈ {0, 1}n
03 M ←M [1] qM [2]
04 Pick any N0 ∈ {0, 1}n
05 Query C ← E(N0, ε,M)
06 Step 2:
07 C[1] q C[2] q T n← C
08 C′[1]← C[1] + len(0n)
09 T ′ ←M [2] + C[2]
10 C′ ← C′[1] q T ′
11 Query M ′ ← D(N0, ε, C

′)
12 Stop

Adversary BE(·,·,·,·),D(·,·,·)

13 Steps 1+2 as in the IM attack,
14 obtaining M ′ = x1L0 + len(0n)
15 Step 3:
16 L0 ← x−1(M ′ + len(0n))
17 Find pairs (Xi, Yi) ∈ E(K, ·)
18 Pick (N1, L1) ∈ E(K, ·) s.t. N1 6= N0
19 M0[1]← x1(x + 1)L1 +N0
20 Pick any M1[1] ∈ {0, 1}n \ {M0[1]}
21 M0 ←M0[1]; M1 ←M1[1]
22 Query C′′ ← E(N1, ε,M

0,M1)
23 C′′[1] q T ′′ n← C′′

24 b′ ← (T ′′ = L0) ? 0 : 1
25 Stop with b′

Fig. 3. Left: IM attack on authenticity [3, Sec. 4.1]. Right: Our new attack on confidentiality. See text for the
meaning of lines 17,18.

We note that IM propose in their report a total of four different attacks on the authenticity of OCB2,
and in Figure 3 we reproduce just the most basic one. This version is actually a special case of a more
general attack that uses arbitrary-length messages. Also the more general attack is by IM [3], and for
completeness we reproduce it in Appendix A.

3.2 A basic distinguishing attack on confidentiality

The IM attack from Figure 3 (left) breaks OCB2 by coming up with an unauthentic yet valid cipher-
text C ′. Perhaps surprisingly, the message M ′ corresponding to this ciphertext does not play a role in
the attack; it is just discarded (line 11). In the following we show how the release of M ′ actually allows
for conducting an attack on the confidentiality of OCB2. More precisely, after first emulating the steps
of the IM attack to come up with ciphertext C ′, our confidentiality attacker uses the corresponding
message M ′ to craft two challenge messages M0,M1 that can be distinguished within our left-or-right
style security definition. In brief, the idea is to deduce from M ′ (and other public values) a set of ‘raw’
input-output pairs of E(K, ·).4 (Normal operation of OCB2 would discard unauthentic ciphertexts with
4 A step like this also appears in IM’s ‘Almost Universal Forgery, Variant 1’ attack [3, Sec 4.3].
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the consequence that such pairs would remain hidden.) From these input-output pairs a fresh nonce N1
and a message M0 are derived such that at least one of the internal blockcipher invocations of operation
enc(K,N1, ε,M

0) is on one of the known input values. This turns out to be sufficient for a distinguishing
attack.

In Figure 3 (right) we provide the details of an adversary B for the INDb games from Figure 1 (right).
Attack steps 1 and 2 are just the ones from Figure 3 (left), where of course the original E(N0, ε,M) query
(line 05) has to be replaced by the equivalent E(N0, ε,M,M) query. In particular adversary B obtains
the message M ′ = x1L0 + len(0n) from which it readily can derive value L0. From the identities

C[1] = x1L0 + E(x1L0 + len(0n))
C[2] = M [2] + E(x2L0 + len(0n))
T = E(x2(x + 1)L0 + len(0n) +M [2])

that we established in Section 3.1, combined with the fact that all coefficients appearing in these equations
are public values (with exception of the implicit blockcipher key K), we can derive three pairs (Xi, Yi) ∈
{0, 1}n×{0, 1}n such that E(K,Xi) = Yi.5 Let (N1, L1) = (Xi, Yi) be one such pair, and assume w.l.o.g.
that (N1, L1) 6= (N0, L0).6 Lines 17,18 in Figure 3 (right) implement these two steps. The remaining
steps of our attack identify a messageM0 such that ifM0 is encrypted under N1 then the tag-computing
blockcipher invocation (line 07 in Figure 2) will be on input N0, that is, the tag is arranged to be L0;
further, a second message M1 is identified for which this is not the case. To analyze the success rate of
our attack, observe that if B is executed in game IND0 then the internal variables Σ′′ and T ′′ of the
encryption query in line 22 evaluate to

Σ′′ = M0[1] = x1(x + 1)L1 +N0

T ′′ = E(x1(x + 1)L1 +Σ′′) = E(N0) = L0

and thus the adversary stops with output 0, while in game IND1, as E(K, ·) is a permutation, we have
T ′′ 6= L0 and the adversary stops with output 1. In any case the adversary is nonce-respecting and
outputs b′ = b, that is we have Advind(B) = 1 and the confidentiality of OCB2 is broken.

3.3 Raw access to the blockcipher

We describe two attacks on OCB2 that are more general in nature than ‘just’ breaking the authenticity
or confidentiality of the scheme: We show that an adversary with access to encryption and decryption
routines of a (keyed) OCB2 instance effectively can evaluate the underlying blockcipher E(K, ·) on points
of their choosing (here, key K is specific to the OCB2 instance and remains unknown to the adversary).
More formally, we show that oracle access to enc(K, ·, ·, ·) and dec(K, ·, ·, ·) allows for emulating an oracle
for E(K, ·). This powerful property allows us to propose in Sections 3.4 and 3.5 further attacks on the
authenticity and confidentiality of OCB2 that go far beyond those of Sections 3.1 and 3.2. In the following
we proceed in two steps: First we show how to obtain randomly distributed input-output pairs of E(K, ·),
then we show how to query the evaluation of E(K, ·) on specific inputs. Note that this two-step approach
is necessary as the second step relies on the first step to generate nonces.

Extracting random blockcipher mappings. A central ingredient of our IND-CCA attack from
Section 3.2 was the derivation of three pairs (Xi, Yi) such that E(K,Xi) = Yi. Computing these pairs
was possible because the value returned by the decryption oracle on input a forged ciphertext leaked
the OCB2-internal value L, which allowed for working out the blockcipher input-output pairs from the
(known) message and ciphertext. Focusing on a minimal example we arranged that the forged ciphertext
would be as short as possible, leading to ‘only’ three such pairs (Xi, Yi).
5 Concretely, X1 = x1L0 + len(0n), Y1 = x1L0 + C[1], X2 = x2L0 + len(0n), Y2 = M [2] + C[2], X3 = x2(x +

1)L0 + len(0n) +M [2], Y3 = T .
6 Actually, formally showing that this step is w.l.o.g. seems to require an additional mild restriction, namely
that value M [2] is picked such that it is unequal to 0n (line 02 of Figure 3). With this restriction in place the
argument would be that L0 6= 0n ⇒ X1 6= X2 and L0 = 0n ⇒ X2 6= X3, and in both cases one of the values
X1, X2, X3 would be different from N0. As in practice we will always have L0 6= 0n anyway, and in this case
the M [2] 6= 0n condition is not relevant, for notational clarity we abstain from adding it to Figure 3.

6



In Figure 4 (left) we specify the SamplePairs procedure which mechanizes the input-output pair
extraction steps of our IND-CCA attack, simultaneously extending and simplifying them: It extends on
the relevant steps of Figure 3 (right) by extracting a larger number of input-output pairs in a single shot
(input parameter m ≥ 2 controls how many), and it simplifies on them by picking message blocks such
that computations are simplified as much as possible. The procedure is to be invoked relative to OCB2
encryption and decryption oracles E ,D, it assumes having access to a global variable E (of type ‘set’,
initially set to ∅), and each invocation of SamplePairs(m) is expected to add m + 1 fresh pairs (X,Y )
to E such that E(K,X) = Y .7 The argument for the correctness of the procedure is almost identical
with the arguments given in Sections 3.1 and 3.2 and in Appendix A, and we thus abstain from walking
the reader through the individual steps. (To be on the safe side we developed a C implementation of the
procedure; running it confirms that blockcipher pairs can be extracted as expected.)

Procedure SamplePairsE(·,·,·),D(·,·,·)(m)
00 Global variable: E
01 M [1, . . . ,m− 2,m]← 0n
02 M [m− 1]← len(0n)
03 M ←M [1] q . . . qM [m]
04 N ←$ {0, 1}n
05 C ← E(N, ε,M)
06 C[1] q . . . q C[m] q T n← C

07 C[m− 1] +← len(0n)
08 C′ ← C[1] q . . . q C[m]
09 M ′ ← D(N, ε, C′)
10 M ′[1] q . . . qM ′[m− 1] n←M ′

11 L← x−(m−1)(M ′[m− 1] + len(0n))
12 For i← 1 to m− 2:
13 (Xi, Yi)← (xiL, xiL+ C[i])
14 Xm−1 ← xm−1L+ len(0n)
15 Ym−1 ←M ′[m− 1] + C[m− 1]
16 XT ← xm−1(x + 1)L+M ′[m− 1]
17 YT ← C[m]
18 E ∪← {(N,L)}
19 E ∪← {(X1, Y1), . . . , (Xm−1, Ym−1)}
20 E ∪← {(XT , YT )}
21 Return

Procedure EncipherE(·,·,·)(X1, . . . , Xm)
22 Global variable: E
23 (N,L)←$ E
24 For i← 1 to m− 1:
25 M [i]← xiL+Xi
26 Σ ← xm(x + 1)L+Xm
27 M [m]←M [1] + . . .+M [m− 1] +Σ
28 M ←M [1] q . . . qM [m]
29 C ← E(N, ε,M)
30 C[1] q . . . q C[m] q T n← C
31 For i← 1 to m− 1:
32 Yi ← xiL+ C[i]
33 X ′ ← xmL+ len(0n)
34 Y ′ ←M [m] + C[m]
35 Ym ← T
36 E ∪← {(X1, Y1), . . . , (Xm, Ym)}
37 E ∪← {(X ′, Y ′)}
38 Return (Y1, . . . , Ym)

Fig. 4. Left: A procedure that generates a random collection of pairs (Xi, Yi) such that Yi = E(K,Xi) for all i.
Right: A procedure that finds Y1, . . . , Ym such that Yi = E(K,Xi) for all i. Both: The procedures share a
common set variable E that is assumed to initially be ∅.

Extracting specific blockcipher mappings. We describe a procedure that takes an arbitrary vector
(X1, . . . , Xm) of blockcipher inputs and returns the vector (Y1, . . . , Ym) such that Yi = E(K,Xi) for all i.
The underlying idea is to use the SamplePairs procedure from above to generate a random input-output
pair (N,L), to use N as a (very likely fresh) nonce in an encryption query of a message M , and to
exploit the a priori knowledge of value L (that would normally remain hidden) to carefully prepare this
message such that the blockcipher invocations induced by the encryption process coincide exactly with
the points Xi. The corresponding values Yi can then be extracted from the ciphertext.

The specification of the corresponding Encipher procedure is in Figure 4 (right). The nonce generation
in line 23 assumes that set E was populated before by at least one invocation of procedure SamplePairs.
The likely most interesting detail of the procedure is that while the first m− 1 values Xi are embedded
directly into (the first m − 1 blocks of) the message M , the one remaining value Xm is only implicitly
7 We cannot prove that all these pairs are fresh (don’t coincide with other pairs from the current or prior
invocations of the procedure), meaning that the number of newly discovered pairs might be less than m + 1.
However, this case is extremely unlikely to happen.
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embedded: We carefully choose the last message block M [m] such that the sum Σ = M [1] + . . .+M [m]
used to derive the authentication tag is such that the tag is computed as per T = E(K,Xm). (That is,
value Ym coincides with the tag.) Verifying the correctness of the procedure is again straightforward. (But
also for this procedure we have a C implementation that confirms that everything works as expected.)

3.4 A universal forgery attack

We note that all four attacks on the authenticity of OCB2 reported by IM [3] impose certain restrictions
on the messages on which forgeries can be crafted. In contrast, the following attack on integrity is
absolutely universal: forged messages can have arbitrary length, can have arbitrary content, and can
come with an arbitrary associated-data string.

Given the results of Section 3.3, our attack is actually straightforward: For any combination of nonce,
associated-data string, and message of their choosing, the adversary simply computes the corresponding
ciphertext by simulating the regular OCB2 encryption algorithm from Figure 2, emulating all evaluations
of E(K, ·) via the Encipher procedure from Figure 4 (right). Note that by OCB2’s parallelizability each
such encryption simulation requires precisely one invocation of Encipher, and thus precisely one invocation
of the encryption oracle E .

3.5 Recovering plaintexts from ciphertexts

While in Section 3.2 we formally broke the indistinguishability, and thus privacy, of OCB2, an attack
allowing for plaintext recovery is still outstanding. We are not aware of any universal method to attain
this goal.8 We show here how plaintexts can be recovered in specific settings.

Recovering the final message block. A detail of OCB2 encryption (Figure 2) is that the last message
block M [m] is treated differently than the others: It is one-time-pad encrypted using a pad generated
from the overall message length. The decryption of this block happens by recomputing the pad and
xor-ing it into the ciphertext. Note that this step can be emulated via the Encipher procedure from
Section 3.3, so that the last (potentially partial) message block can be recovered with probability 1.

Recovering individual plaintext bytes. Assume a situation in which in one block of a (possibly
longer) message all but one bytes are known to the adversary, and the attack target is recovering this
one missing byte. We propose identifying its value, with probability 1, via trial encryption: The encryption
of the block is simulated a total of 256 times (using the technique from Section 3.4), each time with a
different candidate for the target byte patched in. If the resulting ciphertext block coincides with the
recorded one, the correct plaintext is found. Note that also this attack gets along with a single invocation
of the Encipher procedure.

Recovering a range of plaintext bytes. Assume a 16 digit password is embedded into a longer
message such that the only information not known to the adversary is the password.9 An attack in the
spirit of the just-described individual-byte approach will not work in this setting, simply as too many
bytes would have to be guessed simultaneously. However, if 16 encryptions of the embedded password
are available, each with a slightly different surrounding message, then the individual-byte technique can
be leveraged to fully recover the password.

For example, if P = P0 . . . P15 is the password and encryptions of the 16 messages Mi, 0 ≤ i ≤ 15,

Mi = 11024 q 08i q P q 0128−8i q 11024

are available, then by exploiting the block-based structure of OCB2 the individual bytes of the pass-
word can be recovered one by one. For concreteness, observe that in our example one of the blocks of
message M15 has the form 0120P0, and P0 can be recovered using the individual-byte recovery technique
8 Note that while in Section 3.3 we constructed an E(K, ·) oracle, universal decryption would rather benefit from
a D(K, ·) oracle; it is not clear how to emulate such an oracle using our techniques.

9 Session cookies embedded into (predictable) HTTP headers are a classic example for this.
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from above. Once P0 is found, the next target would be P1 as it appears in M14, namely in a block
of the form 0112P0P1. The last byte to be recovered would be P15, and it would be recovered from the
block P0 . . . P15 appearing in M0. We note that this iterated single-byte recovery technique is also used
by attacks in other cryptographic settings, e.g. by the BEAST attack against TLS [2].

4 Conclusion

We improve on recent results by Inoue and Minematsu [3] on OCB2 by (a) describing a universal forgery
attack against the scheme’s authenticity (that allows for the creation of valid ciphertexts on arbitrary
messages and associated-data strings), (b) showing that the scheme formally does not achieve the IND-
CCA notion of confidentiality, and (c) proposing a couple of plaintext recovery attacks. Our adversaries
require little resources and achieve high success rates. We consider all mentioned attacks (whether by
IM or us) rather severe. Given that OCB2 is crucially broken, all corresponding implementations should
be upgraded as soon as possible (e.g., to AES-GCM [5] or a winner of the CAESAR competition [9]).

We note that IM in [3] propose a fix for OCB2 that would rule out their attacks on authenticity. We
believe that any such fix would also resolve the confidentiality issues that we identified.
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Adversary AE(·,·,·),D(·,·,·)
m

00 Step 1:
01 For i← 1 to m− 2:
02 Pick any M [i] ∈ {0, 1}n
03 M [m− 1]← len(0n)
04 Pick any M [m] ∈ {0, 1}n
05 M ←M [1] q . . . qM [m]
06 Pick any N0 ∈ {0, 1}n
07 Query C ← E(N0, ε,M)
08 Step 2:
09 C[1] q . . . q C[m] q T n← C
10 For i← 1 to m− 2:
11 C′[i]← C[i]
12 C′[m− 1]←M [1] + . . .+M [m− 2] + C[m− 1] + len(0n)
13 T ′ ←M [m] + C[m]
14 C′ ← C′[1] q . . . q C′[m− 1] q T ′
15 Query M ′ ← D(N0, ε, C

′)
16 Stop

Fig. 5. Generalized IM attack on authenticity [3, Sec. 4.2].

We trace the values of some variables throughout an execution of adversary Am within game INT. Note
that we obtain T ′ = T ∗ and M ′ 6= M , so the attack is successful.

M [m− 1] = len(0n)
L0 = E(N0)
C[i] = xiL0 + E(xiL0 +M [i]) for 1 ≤ i ≤ m− 2

C[m− 1] = xm−1L0 + E(xm−1L0 +M [m− 1]) = xm−1L0 + E(xm−1L0 + len(0n))
C[m] = M [m] + E(xmL0 + len(0n))

Σ = M [1] + . . .+M [m]
T = E(xm(x + 1)L0 +Σ)

C ′[m− 1] = M [1] + . . .+M [m− 2] + xm−1L0 + E(xm−1L0 + len(0n)) + len(0n)
T ′ = M [m] + C[m] = M [m] +M [m] + E(xmL0 + len(0n)) = E(xmL0 + len(0n))

M ′[i] = M [i] for 1 ≤ i ≤ m− 2
M ′[m− 1] = C ′[m− 1] + E(xm−1L0 + len(0n)) = M [1] + . . .+M [m− 2] + xm−1L0 + len(0n)

Σ′ = M ′[1] + . . .+M ′[m− 1] = xm−1L0 + len(0n)
T ∗ = E(xm−1(x + 1)L0 +Σ′) = E(xm−1(x + 1)L0 + xm−1L0 + len(0n)) = E(xmL0 + len(0n))
M ′ = M [1] q . . . qM [m− 2] q (xm−1L0 + len(0n))
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