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Abstract

Since the celebrated work of Impagliazzo and Rudich (STOC 1989), a number of black-box
impossibility results have been established. However, these works only ruled out classical black-
box reductions among cryptographic primitives. Therefore it may be possible to overcome these
impossibility results by using quantum reductions. To exclude such a possibility, we have to
extend these impossibility results to the quantum setting.

In this paper, we initiate the study of black-box impossibility in the quantum setting. We
first formalize a quantum counterpart of fully-black-box reduction following the formalization
by Reingold, Trevisan and Vadhan (TCC 2004). Then we prove that there is no quantum
fully-black-box reduction from collision-resistant hash function to one-way permutation (or
even trapdoor permutation). This is an extension to the quantum setting of the work of Simon
(Eurocrypt 1998) who showed a similar result in the classical setting.

keywords post-quantum cryptography, one-way permutation, one-way trapdoor permuta-
tion, collision resistant hash function, fully black-box reduction, quantum reduction, impossi-
bility



1 Introduction

1.1 Background

Black-box impossibility. Reductions among cryptographic primitives are fundamental in cryp-
tography. For example, we know reductions from pseudorandom generator, pseudorandom func-
tion, symmetric key encryption, and digital signatures to one-way function (OWF). On the other
hand, there are some important cryptographic primitives including collision-resistant hash func-
tion (CRH), key-exchange, public key encryption (PKE), oblivious transfer, and non-interactive
zero-knowledge proofs, for which there are no known reductions to OWF. Given this situation,
we want to ask if it is impossible to reduce these primitives to OWF. We remark that under the
widely believed assumption that these primitives exist, OWF “implies” these primitives (i.e., these
primitives are “reduced” to OWF) in a trivial sense. Therefore to make the question meaningful,
we have to somehow restrict types of reductions.

For this purpose, Impagliazzo and Rudich [IR89] introduced the notion of black-box reductions.
Roughly speaking, a black-box reduction is a reduction that uses an underlying primitive and an
adversary in a black-box manner (i.e., use them just as oracles).1 They proved that there does not
exist a black-box reduction from key-exchange protocol (and especially PKE) to one-way permu-
tation (OWP). They also observed that most existing reductions between cryptographic primitives
are black-box. Thus their result can be interpreted as an evidence that we cannot construct key-
exchange protocol based on OWP based on commonly used techniques. After their seminal work,
there have been numerous impossibility results of black-box reductions (See Section 1.3 for details).
Post-quantum and quantum cryptography. In 1994. Shor [Sho94] showed that we can effi-
ciently compute integer factorization and discrete logarithm, whose hardness are bases of widely
used cryptographic systems, by using a quantum computer. After that, post-quantum cryptogra-
phy, which treats classically computable cryptographic schemes that resist quantum attacks, has
been intensively studied (e.g., [McE78, Ajt96, Reg05, JF11]). Indeed, NIST has recently started
a standardization of post-quantum cryptography [NIST]. We refer more detailed survey of post-
quantum cryptography to [BL17].

As another direction to use quantum computer in cryptography, there have been study of
quantum cryptography, in which even honest algorithms also use quantum computers. They
include quantum key distribution [BB84], quantum encryption [ABF+16, AGM18], quantum (fully)
homomorphic encryption [BJ15, Mah18, Bra18], quantum digital signatures [GC01], quantum
money [Wie83, AC12, Zha17], quantum copy-protection [Aar09] etc. We refer more detailed survey
of quantum cryptography to [BS16].
Our motivation: black-box impossibility in a quantum world. In this paper, we consider
black-box impossibility in a quantum setting where primitives and adversaries are quantum, and
a reduction accesses to them quantumly.

Quantum reductions are recognized to be more powerful than classical reductions. For example,
Regev [Reg05] gave a quantum reduction from the learning with errors (LWE) problem to the
decision version of the shortest vector problem (GapSVP) or the shortest independent vectors
problem (SIVP). We note that there are some follow-up works that give classical reduction between
these problems in some parameter settings [Pei09, BLP+13], we still do not know any classical
reduction that works in the same parameter setting as the quantum one by Regev. This example
illustrates that quantum reductions are often more powerful than classical reductions even if all

1This is an explanation for fully-black-box reduction using the terminology of Reingold, Trevisan, and Vadhan
[RTV04]. Since we only consider fully-black-box reductions in this paper, in this introduction, we just say black-box
reduction to mean fully-black-box reduction.
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problem instances are classical. Therefore it may be possible to overcome black-box impossibility
results shown in the classical setting by using quantum reductions.

We observe that most existing black-box impossibility results crucially rely on the fact that
a reduction only classically calls underlying primitives and adversaries, and cannot be simply
extended to the quantum case. (We will discuss this issue in more detail for the case considered
in this paper in Section 2.) Hence if we also want to rule out quantum black-box reductions, we
have to give impossibility results considering quantum setting with a new technique. Especially,
in this paper, we focus on the impossibility of quantum black-box reductions from CRH to one-
way permutation (OWP), which was originally shown by Simon [Sim98] in the classical setting,
and revisited in some follow-up works [HR04, HHRS07, AS15]. Since both CRH and OWP are
fundamental cryptographic primitives, it is a theoretically important problem to study the relation
of them in the quantum setting.

1.2 Our Results

First, we formally define the notion of quantum black-box reduction based on the work by Rein-
gold, Trevisan and Vadhan [RTV04], which gave a formal framework for the notion of black-box
reductions in the classical setting. Then we prove the following theorem.

Theorem 1.1 (informal). There does not exist a quantum black-box reduction from CRH to OWP.

We note that though we do not know any candidate of OWP that resists quantum attacks, the
above theorem is still meaningful since it also rules out quantum black-box reductions from CRH
to OWF (since OWP is also OWF).

We also extend the result to obtain the following theorem.

Theorem 1.2 (informal). There does not exist a quantum black-box reduction from CRH to trap-
door permutation (TDP).

At high-level, we rely on the two-oracle technique introduced by Hsiao and Reyzin [HR04] to
obtain the above theorems though there are many difficulties to deal with quantum reductions.
See Sections 5 and 6.1 for more details of our techniques.

1.3 Related Work

Black-box impossibility. Here, we review existing works on black-box impossibility in the
classical setting. We refer more details of these works to [Fis12]. Reingold, Trevisan and Vadhan
[RTV04] introduced several notions of black-box reductions (later revisited by Baecher, Brzuska
and Fischlin [BBF13]). We only consider fully-black-box reductions using their terminology.

Impagliazzo and Rudich [IR89] ruled out black-box reductions from key-exchange to OWP by
using the relativizing technique. In this technique, we construct an oracle O such that there exists
a primitive P relative to O but does not exist Q relative to O. If such an oracle exists, then there
does not exist black-box reduction from P to Q.2 The relativizing technique can also be found in
[Sim98, Rud92, Hof11] etc.

Hsiao and Reyzin [HR04] proposed an extension of the relativizing technique called the two-
oracle technique. In this technique, we construct an oracle O1 that gives an “ideal” implementation
of a primitive P and another oracle O2 that trivially breaks any implementation of a primitive Q,

2In fact, they ruled out relativizing reduction which is a more general type of reductions than fully-black-box
reduction.
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and prove that the security of P implemented by O1 still holds even if an adversary is given access
to the oracle O2 in addition to O1. If we prove this, then there does not exist black-box reduction
from P to Q.3 The two-oracle technique can also be found in [DOP05, FLR+10, FS12, AS15] etc.

Boneh and Venkatesan [BV98] introduced another technique to rule out black-box reductions
called meta-reduction. In this technique, we construct a trivial inefficient adversary A against
a primitive P and a simulator S which is computationally indistinguishable from A via oracle
accesses by a polynomial-time algorithm. Then a reduction algorithm from P to Q works well
even if it accesses to the simulator S instead of the adversary A. This means that we can break
the security of Q in polynomial-time. Therefore such a reduction does not exist as long as Q is
secure. Meta-reductions can also be found in [Cor02, Pas11, GW11] etc.

Recently, Rotem and Segev [RS18] showed a limitation of black-box impossibility by giving
an example that overcomes the black-box impossibility result by Rudich [Rud88] by using a non-
black-box reduction. Nonetheless, black-box impossibility results are still meaningful since we
know very limited number of non-black-box techniques. Indeed, they left it as an open problem
to overcome the black-box separation of CRH and OWP shown by Simon [Sim98].
CRH from strong OWF. Recently, Holmgren and Lombardi [HL18] gave a construction of CRH
based on a stronger variant of OWF which they call one-way product function (OWPF). However,
since they do not give a construction of OWPF from OWF (or OWP) even with exponential
security, their result does not overcome the impossibility result by Simon [Sim98].
Impossibility of quantum reduction from OWP to NP hardness. Recently, Chia, Hallgren,
and Song [CHS18] considered the problem of separating OWP from NP hardness in the quantum
setting. They ruled out a special type of quantum reductions called locally random reductions
under a certain complexity theoretic assumption. We note that in our work, we do not put any
restriction on a type of a reduction as long as it is quantum fully-black-box, and we do not assume
any unproven assumption. Also, they focus on the separation of OWP from NP hardness, and do
not give a general definition of black-box reduction in the quantum setting. Thus their work is
incomparable to ours.
Quantum Generic Attacks. Grover [Gro96] developed the famous database-search algorithm
that, given black-box access to a function f : {0, 1}n → {0, 1}, finds an element x such that
f(x) = 1 with O(2n/2) quantum queries (if such x exists). Brassard, Boyer, Høyer, and Tapp
developed a generalized version of the Grover search, which can be used to find a preimage of an
n-bit random permutation with O(2n/2) queries [BBHT98]. In particular, any n-bit (trapdoor)
permutations can be inverted with O(2n/2) queries. They also showed that O(2n/2) is the tight
bound for the database-search problem. Brassrad, Høyer, and Tapp [BHT98] developed a quantum
collision-finding algorithm that finds a collision of a 2-to-1 function with O(2n/3) queries. Actually
their algorithm can be used to find collisions of random functions, and Zhandry [Zha15] showed
that O(2n/3) is the tight bound to find collisions of random functions in the quantum setting.

1.4 Future Direction

Here, we give two possible future directions. The first is to strengthen the black-box separation
for CRH from other cryptographic primitives. In the classical setting, Asharov and Segev [AS15]
proved that there does not exist a black-box reduction from CRH to OWP (or TDP) and indistin-
guishability obfuscation (IO) [GGH+13].4 Since IO and OWP implies many strong cryptographic

3We note that this technique only rules out fully-black-box reduction unlike the relativizing technique.
4Since a certain type of non-black-box construction is inherent in many IO-based constructions, they actually

also ruled out reductions using “commonly used” non-black-box techniques.
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primitives including functional encryption [GGH+13], witness encryption [GGSW13], deniable en-
cryption [SW14] etc., their result means that it is difficult to construct CRH from these primitives.
Though it would be nice if we obtain a similar result in the quantum setting, it is not clear how
we can define IO and “black-box access” to it in the quantum setting. Thus we consider simpler
cases to separate CRH from OWP (or TDP) as a first step. We leave it as an interesting open
problem to extend our result to separate CRH from OWP (or TDP) and IO.

The second is to give quantum analogues of black-box impossibility results shown in the clas-
sical setting. As seen in Section 1.3, there are many known black-box impossibility results shown
in the classical setting. However, we observe that many of them crucially relies on the fact that
all algorithms are classical, and it seems not easy to extend them to ones in the quantum setting.
Especially, a theoretically important question is if we can rule out a quantum black-box reduction
from classical-communication key-exchange to OWP (or OWF) in the quantum setting. (If quan-
tum communications are allowed, then the protocol in [BB84] is unconditionally secure. Therefore
we only consider the case of classical-communication for making the question meaningful.) We note
that this can be done if we prove that there does not exist a classical-communication key-exchange
protocol (with super-polynomial security) in the quantum random oracle model (QROM). In the
classical setting, a similar statement was proven by Impagliazzo and Rudich [IR89], followed by
Barak and Mahmoody [BMG09] who gave the optimal security bound. On the other hand, in the
quantum setting, we do not know any non-trivial security bound. We note that though Brassard et
al. [BHK+11] gave a classical-communication key-exchange protocol in the QROM that is secure
against adversary making q5/3 queries to the random oracle where q is the number of queries by
honest parties, they did not show their protocol is optimal in regard to security.

2 Technical Overview

This section gives a technical overview of this paper. In Section 2.1 we review technical backgrounds
and previous works in the classical setting. In particular, we explain how to show the separation of
CRH from OWP in the classical setting, following the formalization by Asharov and Segev [AS15].
In Section 2.2 we review our results and techniques in the quantum setting.

2.1 Previous Works in the Classical Setting

Primitives. In the classical setting, a primitive P is defined as a pair of a set of algorithms FP
and a relation RP over pairs 〈I,A〉, where I ∈ FP and A is an algorithm. Each element of FP
is called an implementation of P, and we say that A P-breaks I if 〈I,A〉 ∈ RP . For example,
one-way permutations, or shortly OWP, is defined as follows: FOWP is the set of algorithms that
compute permutations, and for I ∈ FOWP and an algorithm A, A OWP-breaks I if and only if A
inverts the permutation implemented by I. An implementation I is called a secure implementation
if there exists no efficient algorithm A such that A P-breaks I.
Black-Box Reductions. In the classical setting, black-box reductions are defined as follows.
Note that, in this paper we treat only so called fully-black-box reductions [RTV04, Def. 2.3]. A
primitive P is (fully-black-box) reduced toQ if and only if there exists a pair of efficient oracle-aided
algorithms (G,S) such that:

1. For each implementation I of Q, GI is an implementation of P.

2. For each implementation I of Q and an algorithm A that P-breaks GI , SA,I Q-breaks I.
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Intuitively, the first condition says that there is an implementation of P that accesses to an
implementation of Q in a black-box manner, and the second condition says that the security
reduction can be done in a black-box manner.
The Two Oracle Technique. To show impossibility of black-box reductions from a primitive P
to another primitive Q, we can use the two oracle technique developed by Hsiao and Reyzin [HR04].
Suppose that there exist oracles Φ and ΨΦ that satisfy the following conditions.

1. (Existence of Q, informal.) There exists an efficient oracle-aided algorithm J0 such that J Φ
0

implements Q, and for any efficient oracle-aided algorithm B, BΦ,ΨΦ
does not Q-breaks J Φ

0 .

2. (Non-existence of P, informal.) For any efficient oracle-aided algorithm I such that IΦ

implements P, there exists an efficient oracle-aided algorithm AI such that AΨΦ

I P-breaks
IΦ.

Then we can show that there exists no black-box reduction from P to Q.

2.1.1 Separation of CRH from OWP in the Classical Setting.

In what follows, we review how to show impossibility of black-box reductions from CRH to OWP
with the two oracle technique. First we set Φ as a random permutation f . Technical efforts are
mainly devoted to constructing a suitable oracle ΨΦ = Ψf that satisfies the two conditions (i.e.,
the condition that CRH does not exist relative to Ψf but OWP exists relative to Φ = f and Ψf ),
and proving that in fact Ψf satisfies them. In the classical setting, the oracle ColFinderf is used
as Ψf , which was originally defined by Simon [Sim98] and generalized by Haitner et al. [HHRS07]
and Asharov and Segev [AS15] to separate CRH from OWP (and additional primitives). Next we
review the definition of the oracle ColFinderf , following the formalization by Asharov and Segev.
The Oracle ColFinder. First, each input to ColFinderf is an oracle-aided circuit C that computes
a function F fC : {0, 1}m → {0, 1}` relative to the oracle of a permutation f ∈ Perm({0, 1}n). Here,
Perm({0, 1}n) is the set of permutations on the set {0, 1}n, and m and ` are independent of f .
Before an algorithm A runs relative to ColFinderf , two permutations π1

C , π
2
C ∈ Perm({0, 1}m) are

chosen uniformly at random for each circuit C. Let Π = {π1
C , π

2
C}C denote the set of randomly

chosen permutations. On each input C, ColFinderf runs the following procedures:

1. Set w1
Cf
← π1

C(0m).

2. Compute u = F fC(w1
Cf

) by running the circuit C relative to f on the input w1
Cf

.

3. Find the minimum t such that F fC(π2
C(t)) = u by running the circuit C relative to f on the

input π2
C(i) and checking whether F fC(π2

C(i)) = u holds for i = 0, 1, 2 . . . , in a sequential
order (here we identify integers 0 ≤ i ≤ 2m − 1 and elements in {0, 1}m). Set w2

Cf
← π2

C(t).

4. Return (w1
Cf
, w2

Cf
, u).

Since π1
C and π2

C are chosen uniformly at random, w1
Cf

is uniformly distributed on {0, 1}m, and

w2
Cf

is uniformly distributed on (F fC)−1(F fC(w1
Cf

)). In particular, if m > `, the oracle ColFinderf

will find a collision of F fC with a high probability.
The Technically Hardest Part. If f and ColFinderf satisfy the conditions of the two oracle
technique, it follows that there does not exist black-box reductions from P = CRH to Q = OWP.
The second condition, i.e., non-existence of CRH, follows by definition of ColFinder. For the first
part of the first condition (existence of an implementation of OWP), J0 is constructed in such a
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way that, given an input x, J0 queries it to f to compute f(x), and just returns f(x). Since f is a

random permutation, J f0 obviously implements OWP. What is technically hardest to prove is the
latter part of the first condition, which follows from the proposition below. (In fact Asharov and
Segev also showed a similar proposition [AS15, Thm. 3.20].)

Proposition 2.1 (Informal). Let A be a q(n)-query oracle-aided algorithm. Suppose that there is
a function η(n) such that, for each circuit C that An queries to ColFinder, C makes at most η(n)
queries. If

Pr
f,y,Π

[
x← Af,ColFinder

f

(y) : f(x) = y
]
≥ ε(n) > 0 (1)

holds for infinitely many n, then there exists positive constants c1 and c2, where c2 ≥ 1, such that

max{q(n), η(n)} > c1 · ε(n) · c2
√

2n

holds for infinitely many n.

The above proposition guarantees that, if B is an efficient algorithm and q is a polynomial in n,
then ε(n) is negligible, which implies existence of Q = OWP relative to f and ColFinderf . Showing
such a proposition is the technical core for proving separation of CRH from OWP. For simplicity,
below we consider the case that q(n) = η(n).

In brief, what we want to show is that random permutations are hard to invert even if additional
information (i.e., additional oracle ColFinder) is available to adversaries. There exists a technique to
prove such claims in which we construct an information theoretic encoding scheme to compress the
truth tables of permutations. In the classical setting, it is used to show that random permutation
is hard to invert even if the oracle ColFinderf is available [HHRS07, AS15] or adversaries are
non-uniform [GT00, DTT10], for example.

A Proof technique: Encoding and Compressing Permutations. Proofs that use the tech-
nique proceed as follows. Suppose that an adversary A can invert a permutation f ∈ Perm({0, 1}n)
with a probability ε(n) > 0 if f is chosen uniformly at random, and A is given access to additional
information (e.g., an additional oracle Of that leak some information of the random permutation
f), for infinitely many n. By increasing the number of queries by c/ε(n) times for a sufficiently large
constant c, we can assume that a Q-query algorithm Â (Q = cq/ε) can invert permutations with at
least a constant probability p0, for infinitely many n. Below we consider this algorithm Â instead of
A. Then we can show that there exists a (relatively large) set of permutations X ⊂ Perm({0, 1}n)
that satisfies the following conditions: (i) |X| is lower bounded as |X| ≥ p1|Perm({0, 1}n)| = p12n!
for a constant p1, and (ii) for each f ∈ X, there exists a set I ⊂ {0, 1}n such that, given the
additional information, Â can invert y in f with a constant probability (e.g., at least 2/3) for all
y ∈ I. We construct an encoder E : X → Y that compresses the truth tables of permutations
f ∈ X to output compressed truth tables described as elements of a set Y , and decoder D : Y → X
that recovers the original truth table from a compressed truth table by using Â as follows.

Encoder E.

1. Take a permutation f ∈ X as input.

2. Choose a subset G ⊂ I(⊂ {0, 1}n) and “forget” values f(x) for x ∈ G. Let f̃ be the
resulting partial, incomplete truth table of f which has no information about the pairs
(x, f(x)) for x ∈ G. Set G̃ := f(G).

3. Return (f̃ , G̃). (The set Y is defined to be the set of all elements of this form.)
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Decoder D.

1. Take a pair (f̃ , G̃) as an input, where f̃ is a partially defined permutation on {0, 1}n
and G̃ is a subset of {0, 1}n such that G̃ ∪ (Image of f̃) = {0, 1}n holds. (The goal of
D is to recover the complete truth table of a permutation f .)

2. Define f(x) := f̃(x) for each x in the domain of f̃ .

3. For each y ∈ G̃, recover x = f−1(y) by running A. Here, D simulates oracle f (and
possibly additional oracle Of ) and answers to oracle queries made by A with only the
partial truth table f̃ and the set G̃.

If the encoder E and the decoder D work well, e.g., D(E(f)) = f holds with a high probability, we
can deduce that |Y | cannot be much smaller than |X| by general information theoretic arguments.
(|Y | will be lower bounded as |Y | ≥ p · |X| for a constant p.) How much E can compress data will
depend on the number of queries Q made by Â (in addition to n), and we will get an inequality
γ(n,Q) ≥ |Y | for a function γ. From this, and the inequalities γ(n,Q) ≥ |Y | and |X| ≥ p12n!, we
will obtain an inequality γ(n,Q) ≥ p · p1 · 2n!, from which we will obtain a lower bound of Q such
that Q(n) ≥ β(n) for a suitable function β. Since Q = cq/ε, finally we will obtain a lower bound
q ≥ ε/c · β(n).

Whether we can obtain a good lower bound of Q (and q) depends on how well we can construct
encoder E and decoder D. In particular, if Â has an access to the additional oracle Of , it is highly
non-trivial even in the classical setting how to construct a good simulator of f and Of in the third
step of decoder D.
The decoder of Asharov and Segev. Here we review the idea by Asharov and Segev [AS15]
to construct a decoder under the condition that the ColFinderf oracle is available to Â, in the
classical setting. To construct a decoder, we have to avoid or deal with the following situations.

1. To the oracle f , Â queries x such that D does not know the value f(x).

2. To the oracle ColFinderf , Â queries a circuit C such that D cannot compute the value
ColFinderf (C) = (w1

Cf
, w2

Cf
, u) with only the data that D knows.

To deal with the second situation, Asharov and Segev defined bad circuits: A circuit C is called
bad if, on the inputs w1

Cf
or w2

Cf
, C queries x such that D does not know the value f(x). If a

circuit is not bad, then it is called a good circuit.
If a circuit C is good, then D can compute the value ColFinderf (C) = (w1

Cf
, w2

Cf
, u) with only

the incomplete truth table f̃ and the set G̃ (Here we assume that suitable permutations π1
C and

π2
C are fixed for each circuit C): First, it is trivial that D can compute w1

Cf
= π1

C(0m). Since C is
a good circuit, on the input w1

Cf
it does not query x such that D does not know the value f(x),

thus D can compute u = F fC(w1
Cf

). Next, D has to compute w2
Cf

= π2
C(t), where t is the minimum

number such that F fC(π2
C(t)) = u. To find the minimum number t, D computes F fC(π2

C(i)) by
running the circuit C on the input π2

C(i) and checks whether it is equal to u, for i = 0, 1, 2, . . . in
a sequential order. If C queries x such that D does not know the value f(x), D skips the number
i and move to the next number (i + 1). Since C is a good circuit, on the input w2

Cf
= π2

C(t) it
does not query x such that D does not know the value f(x). Thus D can find t and compute w2

Cf
.

In the above argument, we used the fact that, while D is searching for the minimum number t,

D can detect the event that C makes a query x such that D does not know the value f(x),

which is crucial to construct a decoder D in the classical setting.
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Asharov and Segev showed that for each algorithm Â that can invert random permutation f
given oracle access to f and ColFinderf , there exists another algorithm B such that (1) the ability
of B to invert f is almost the same as that of Â, and (2) B never queries a bad circuit to ColFinderf .
This is how they dealt with the second situation.

Moreover, they showed that the first situation can be avoided for B by ingeniously arranging
the elements of G̃ so that D can recover f−1(yi+1) for the (i + 1)-th element yi+1 ∈ G̃ with only
(f̃ , G̃), which is the input to D, in addition to the data (f−1(y1), y1), . . . , (f−1(yi), yi). Here they
make full use of the fact that, without loss of generality, B can be assumed to be a deterministic
algorithm, by choosing a suitable random coin of B.

2.2 Our Impossibility Results in the Quantum Setting

Next we overview our techniques in the quantum setting. We define quantum counterparts of
primitive, black-box reductions, and the two oracle technique (see Section 4 for details and formal
descriptions). The goal of this paper is to show impossibility of black-box reductions from CRH
to OWP (resp., TDP) in the quantum setting. The technically most difficult part in the quantum
setting is again showing (the quantum version of) Proposition 2.1. We use the technique of
encoding (compressing) schemes also in the quantum setting. See Section 5 for more details. This
section reviews only the proof idea for separation of CRH from OWP. See Sections 6 and A for an
extension to trapdoor permutations.

The idea of Asharov and Segev is ingenious, but we cannot make our encoder and decoder
based on their idea since our decoder has to run quantum algorithms and simulating quantum
oracles, while their decoder make full use of properties of classical algorithms and classical oracles.
Instead, we construct our encoder and decoder based on the idea by Nayebi et al. [NABT15], who
showed that random permutations are hard to invert for quantum query algorithms even if they
are given classical advice depending on the permutation before making queries.
Nayebi et al.’s Encoder and Decoder. Below we briefly review the core idea by Nayebi
et al., for the simplest case that no additional classical advice is available. (That is, below we
explain just an idea of how to prove that a random permutation is hard to invert for quantum
query adversaries.) Unlike that the compressing scheme by Asharov and Segev is a deterministic
compressing scheme, one by Nayebi et al. is a randomized compressing scheme. The idea of using
randomized compressing scheme originally comes from the work by De et al [DTT10].

Here we intuitively explain the notion of quantum query magnitude and the swapping lemma,
which are our basic technical tools to prove “quantum” properties. Let A be an oracle-aided
quantum algorithm, and f be a quantum oracle. The query magnitude of A to f at z on input x
is, intuitively, defined as the “total probability (in a quantum meaning)” that A queries z to the
oracle f while running, when we run A on input x relative to the oracle f . See Definition 3.5 for a
formal description. Let g be another oracle and ∆(f, g) denote the set of z such that f(z) 6= g(z).
The swapping lemma is the lemma that guarantees our intuition that, if query magnitude of A to
f at z ∈ ∆(f, g) on an input x is sufficiently small, then A cannot notice whether f is replaced
with g, while A is running on the input x, which implies that the output distributions of Af and
Ag (on input x) will be the almost same. The lemma is formalized by Vazirani [Vaz98, Lem. 3.1],
and proved by using the hybrid argument which was developed by Bennet et al [BBBV97]. See
Lemma 3.3 for more details and formal descriptions.

In the second step of their encoder E, they first take a subset R ⊂ {0, 1}n randomly (this R
will be the randomness of E), and then take G as the set of x ∈ I ⊂ {0, 1}n that satisfies (a)
x ∈ R, and (b) the query magnitude of Â to f at z ∈ R \ {x} is small. Here, I is the set such
that Â inverts y in f with a constant probability for all y ∈ I. In the third step in D, to recover
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f−1(y) for each y ∈ G̃, D simulates f as follows: D defines a function hy by hy(x) := f(x) if D
knows the value f(x), and hy(x) = y if D does not know the value f(x). If Â makes a query to
f , D answers by using hy. The value hy(x) may differ from the original value f(x) for x ∈ G.
However, due to the condition (b), Â cannot distinguish whether it is given the original oracle f
or the simulator hy by the swapping lemma, and D can easily simulate f without knowing f(x)
for x ∈ G. Therefore the Âhy(y) outputs x = f−1(y) with a high probability, which implies that
D can recover x.

It would be good if we could prove our proposition just by replacing the classical advice in
Nayebi et al.’s proof with our oracle ColFinderf , but we cannot: Adversaries are given only classical
advice before making queries in Nayebi et al.’s setting. On the other hand, we consider the situation
that an adversary Â has oracle access to the additional oracle ColFinderf , and Â makes quantum
superposition queries to ColFinderf adaptively. What makes things complicated is that inputs
to ColFinderf are also quantum circuits which may make queries to f . Hence more complicated
techniques are required to prove the quantum version of Proposition 2.1.
Our Encoder and Decoder. Below we explain our idea of how to construct suitable encoder
and decoder in such a complicated situation. First we explain how to construct our encoder E. In
what follows, we fix a suitable set of permutations Π = {π1

C , π
2
C}C such that Âf,ColFinderf inverts

f with respect to this fixed Π when f is randomly chosen. Based on the strategy of Nayebi et al.
introduced above, we randomly choose additional subset R′ ⊂ {0, 1}n, in addition to R. We define
a set badC(R′, x) of which elements are “bad” inputs (oracle-aided quantum circuits) to ColFinderf ,
and construct G ⊂ I as the set of elements x ∈ I ⊂ {0, 1}n that satisfies (A) x ∈ R ∩ R′, (B) the
query magnitude of Â to f at z ∈ R \ {x} on input f(x) is small, and (C) the query magnitude
of Â to ColFinderf at C ∈ badC(R′, x) on input f(x) is small. We postpone explanation of how to
define badC(R′, x), since it is closely related to the problem of how to construct our decoder D.

Next we explain how to construct our decoder D. To simulate f in the third phase of D, we
use the same hy as Nayebi et al.’s. The most difficult point is how to construct a simulator that
simulates ColFinderf , which we denote by SimCFhy .

Here, we briefly review how the oracle ColFinderf works. Note that now permutations π1
C , π

2
C ∈

Perm({0, 1}m) are fixed for each oracle-aided circuit C which may query to f , where {0, 1}m is the
domain of F . Given an input C, ColFinderf computes π1

C(0m), which is denoted by w1
Cf

. Next,

ColFinderf searches the minimum t such that F fC(w1
Cf

) = F fC(π2
C(t)) by checking if F fC(w1

Cf
) =

F fC(π2
C(i)) for i = 0, 1, 2, . . . in a sequential order. Finally ColFinderf outputs (w1

Cf
, w2

Cf
:=

π2
C(t), F fC(w1

Cf
)).

The reason that D cannot correctly compute ColFinderf is that D cannot evaluate the function
F fC for each input C. Thus, in the third step of D, we construct a subroutine CalCy that approx-

imately computes F fC(w) for each input C (oracle-query circuit) to ColFinderf and each w, with
only a partial truth table of f . Roughly speaking, our oracle SimCFhy will be defined to be the
same as ColFinderf , except that each evaluation of F fC(w) will be replaced with that of CalCy(C,w).

Now the problems that we have to solve are summarized as follows.

1. How should we construct the subroutine CalCy?

2. How should we define the set of “bad” circuits badC(R, x)?

Below we explain our idea of how to solve these problems.

The First Problem: Construction of CalCy. First, we want SimCFhy to compute the correct
value ColFinderf (C) on each input circuit C which are good. This is because, if SimCFhy has such
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a property, then ∆(ColFinderf ,SimCFhy) becomes a subset of the set of bad circuits, and we can
prove that Â cannot distinguish the simulator SimCFhy from ColFinderf by using the swapping
lemma and the condition (C) that the query magnitude of Â to ColFinder is small at bad circuits.

To make SimCFhy have such a property, we informally require CalCy to satisfy the following
conditions:

1. CalCy(C,w
1
Cf

) = F fC(w1
Cf

) and CalCy(C,w
2
Cf

) = F fC(w2
Cf

) for each circuit C which are good.

2. If CalCy cannot compute the correct value F fC(w) on an input (C,w), CalCy outputs ⊥. In
other words, CalCy never outputs incorrect guess.

The first condition is obviously necessary to enable SimCFhy to output correct values on good
input circuits. Here we explain why the second condition is necessary. If it is not satisfied,
F fC(w1

Cf
) = CalCy(C, π

2
C(t′)) may hold even though F fC(w1

Cf
) 6= F fC(π2

C(t′)), for some t′ which is

less than the correct minimum value t that satisfies F fC(w1
Cf

) = F fC(π2
C(t)). This will lead to

misjudgement by SimCFhy that “the minimum value is t′ but not t”. Thus the second condition
is also necessary. In the classical proof by Asharov and Segev, they avoid such misjudgement by
making use of the fact that D can detect the event that C makes a query x such that D does not
know the value f(x): If C makes such a query and their D detects the event while checking if

F fC(w1
Cf

) = F fC(π2
C(i)) holds, then D just skips the unsuitable number i and move to the (i+ 1)-th

procedure that checks whether F fC(w1
Cf

) = F fC(π2
C(i+ 1)) holds. However, in the quantum setting,

we cannot use such a property since measuring what C queries breaks quantum states. Moreover,
there is a possibility that t becomes exponential in n. Hence it is highly non-trivial how to avoid
such misjudgement, and this is the technically most difficult part in this paper.

To satisfy the second condition, our function CalCy takes a very conservative strategy: When
SimCFhy feed CalCy with (C,w) as an input, CalCy first computes the value F h

′
(w) for all candidate

permutations h′ of f such that h′(x) = hy(x) holds for {0, 1}n \ G, by calculating the output
distribution of Ch

′
F on input w. If there exists a value u such that F h

′
(w) = u for all candidate h′,

CalCy outputs CalCy(C,w) = u, and otherwise output ⊥. By doing so, since the correct f itself is
one of the candidates of f , CalCy can avoid misjudgement and output a value u 6=⊥ if and only if

F fC(x) = u holds (it is formally shown as a part of Lemma 5.3).

The Second Problem: Definition of “bad” Circuits. Here we explain how to define
“Bad” circuits. To enable CalCy to satisfy the first condition that CalCy(C,w

1
Cf

) = F fC(w1
Cf

)

and CalCy(C,w
2
Cf

) = F fC(w2
Cf

) for each circuit C which are good, while keeping the conservative
strategy described above, we define that C is bad if and only if the query magnitude of C to f at
z ∈ R′ \ {f−1(x)} on inputs w1

Cf
or w2

Cf
is large .

If we define bad and good circuits as above, for all candidate permutation h′ such that h′(x) =
hy(x) for x ∈ {0, 1}n \G ⊃ {0, 1}n \R′, a good circuit C cannot notice whether or not f is replaced
with h′ during computations on inputs w1

Cf
and w2

Cf
by the swapping lemma. Hence the outputs of

Ch
′

F on the inputs w1
Cf

and w2
Cf

always match those of Cf for all candidate permutation h′, which

implies that CalCy satisfies the first condition that CalCy(C,w
1
Cf

) = F fC(w1
Cf

) and CalCy(C,w
2
Cf

) =

F fC(w2
Cf

) hold for a good circuit C (it is formally shown as a part of Lemma 5.3).
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3 Preliminaries

A classical algorithm is a classical Turing machine, and an efficient classical algorithm is a proba-
bilistic efficient Turing machine. We denote the set of positive integers by N. We write A instead
of A⊗ I for short, for any linear operator A. For sets X and Y , let Func(X,Y ) denote the set of
functions from X to Y , and Perm(X) denote the set of permutations on X. Let ∆(f, g) denote the
set {x ∈ X|f(x) 6= g(x)} for any functions f, g ∈ Func(X,Y ). We say a that a function f : N→ R
is negligible if, for any positive integer c, f(n) ≤ n−c holds for all sufficiently large n, and we write
f(n) ≤ negl(n). Moreover, we say that f is non-negligible if, there exists a positive integer c such
that f(n) ≥ n−c for infinitely many n.

3.1 Quantum Algorithms

We refer basics of quantum computation to [NC10, KSV02]. In this paper, we use the compu-
tational model of quantum circuits. Let Q be the standard basis of quantum circuits [KSV02].
We assume that quantum circuits (without oracle) are constructed over the standard basis Q, and
define the size of a quantum circuit as the total number of elements in Q used to construct it.
Let |C| denote the size of each quantum circuit C. An oracle-aided quantum circuit is a quantum
circuit with oracle gates. When an oracle-aided quantum circuit is implemented relative to an
oracle O represented by a unitary operator UO, the oracle gates are replaced by UO. When there
are multiple oracles, each oracle gate should specify an index of an oracle. In this paper, we assume
that all oracles are stateless, that is, the behavior of the oracle is independent from a previous
history and the same for all queries. For a stateless quantum oracle O, we often identify the oracle
and a unitary operator that represents the oracle, and use the same notation O for both of them.
Note that each classical algorithm can be regarded as a quantum algorithm. We fix an encoding
E of (oracle-aided) quantum circuits to bit strings, and we identify E(C) with C. For a quantum
circuit C, we will denote the event that we measure an output z when we run C on an input x
and measure the final state by C(x) = z.

First, we define a quantum algorithm. We note that we only consider classical-input-output
quantum algorithms.

Definition 3.1 (Quantum algorithms). A quantum algorithm A is a family of quantum circuits
{An}n∈N that acts on a quantum system Hn = Hn,in ⊗ Hn,out ⊗ Hn,work for each n. When we
feed A with an input x ∈ {0, 1}n, A runs the circuit An on the initial state |x〉 |0〉 |0〉, measures
the final state with the computational basis, and outputs the measurement result of the register
which corresponds to Hn,out. We say that A is an efficient quantum algorithm if it is a family of
polynomial-size quantum circuits, i.e., there is a polynomial λ(n) such that |An| ≤ λ(n) for all
sufficiently large n.

Remark 3.1. Though we use a Turing machine for a computational model of classical computa-
tion, we use a quantum circuit for a computational model of quantum computation. This is just
because quantum circuits are well-studied than quantum Turing machines [Yao88], and is easier to
treat. We remark that we do not intend to rule out reductions with full non-uniform techniques as
was done in [CLMP13].

Next, we define oracle-aided quantum algorithms, which are quantum algorithms that can
access to oracles.

Definition 3.2 (Oracle-aided quantum algorithms). An oracle-aided quantum algorithm A is a
family of oracle aided quantum circuits {An}n∈N that acts on a quantum system Hn = Hn,in ⊗
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Hn,out ⊗Hn,work for each n. Let O1 = {O1,i}i∈N, ..., Ot = {Ot,i}i∈N be families of quantum oracle
gates. When we feed A with an input x ∈ {0, 1}n relative to oracles (O1, ..., Ot), A runs the circuit

AO1,n,...,Ot,n
n on the initial state |x〉 |0〉 |0〉, measures the final state with the computational basis,

and outputs the measurement result of the register which corresponds to Hout,n. We note that

an oracle-aided quantum circuit AO1,n,...,Ot,n
n that makes q queries can be described by a unitary

operator

AO1,n,...,Ot,n
n =

q(n)∏
j=1

(Uj,t,nOt,n . . . Uj,1,nO1,n)

U0,n, (2)

where (U0,n, {Uj,1,n,. . . , Uj,t,n}j∈[q]) are some unitary operators.

Remark 3.2. We also often consider an oracle access to a quantum algorithm. This is interpreted
as an oracle access to a unitary operator that represents A.

Next, we define randomized quantum oracles, which are quantum oracles that flip classical
random coins before algorithms start.

Definition 3.3 (Randomized quantum oracles). Let Rn be a finite set for each n, and R :=∏∞
n=1Rn (note that each element r ∈ R is an infinite sequence (r1, r2, · · · )). A randomized quantum

oracle O := {Or}r∈R is a family of quantum oracles such that Or,n = Or′,n if rn = r′n. When we
feed A with an input x ∈ {0, 1}n relative to O, first rn is randomly chosen from the finite set Rn
(according to some distribution), and then A runs the circuit AOr,nn on the initial state |x〉 |0〉 |0〉.
We denote Or,n by Orn and {Orn}rn∈Rn by On, respectively, and identify O with {On}n∈N.

Similarly, when A is given oracle access to multiple randomized oracles (O1, . . . , Ot), we con-
sider that an oracle gate is randomly chosen and fixed for each of the t oracles before A starts.
The distributions of O1, . . . , Ot can be highly dependent.

Remark 3.3. Later we consider the situation that a quantum algorithm A has access to a random-
ized quantum oracle O, and another quantum algorithm B has access to AO. This is interpreted
as follows: Before B starts, rn ∈ Rn is chosen uniformly at random, and B is given an oracle
access to the unitary operator that represents AOrnn . In particular we do not change rn while B is
running.

Finally, we define what “a quantum algorithm computes a function” means.

Definition 3.4 (Functions computed by quantum algorithms). A quantum algorithm A computes
a function f : {0, 1}∗ → {0, 1}∗ if we have Pr[A(x) = f(x)] > 2/3 for all n ∈ N and x ∈ {0, 1}n.
An oracle-aided quantum algorithm A computes a function f : {0, 1}∗ → {0, 1}∗ relative to an
oracle Γ if we have Pr[AΓ(x) = f(x)] > 2/3 for all n ∈ N and x ∈ {0, 1}n.

3.2 Technical Lemmas

This section introduces some technical lemmas for later use. First, we use the following lemma as
a fact.

Lemma 3.1 ([ARU14], Lemma 36). trD(|ψ1〉 〈ψ1| , |ψ2〉 〈ψ2|) ≤ ‖ |ψ1〉 − |ψ2〉 ‖ holds for any pure
states |ψ1〉 and |ψ2〉, where trD denotes the trace distance function.

By applying the above claim, we can show the following lemma.
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Lemma 3.2. Let Γ = (f1, . . . , ft),Γ
′ = (f ′1, . . . , f

′
t) be sequences of oracles, and assume that A is

given oracle access to either Γ or Γ′. Then,∣∣∣Pr
[
AΓ(x) = z

]
− Pr

[
AΓ′(x) = z

]∣∣∣ ≤ ∥∥∥AΓ
n |x, 0, 0〉 − AΓ′

n |x, 0, 0〉
∥∥∥ (3)

holds for any input x ∈ {0, 1}n and output z.

Proof of Lemma 3.2. Let |φ〉 = AΓ
n |x, 0, 0〉 and |φ′〉 = AΓ′

n |x, 0, 0〉. In addition, let D,D′ be
(classical) distributions of outputs of AΓ and AΓ′ on input x ∈ {0, 1}n, respectively. Then the
left hand side of eq. (3) is upper bounded by TD(D,D′), where TD denotes the total variational
distance function, and TD(D,D′) ≤ trD(|φ〉 〈φ| , |φ′〉 〈φ′|) holds by the basic property of trace
distance (see Theorem 9.1 in [NC10], for example). From Lemma 3.1, trD(|φ〉 〈φ| , |φ′〉 〈φ′|) ≤
‖ |φ〉 − |φ′〉 ‖ follows, and the claim holds.

3.2.1 Swapping Lemma for Multiple Oracles.

Next we introduce a generalized version of the swapping lemma [Vaz98, Lem. 3.1] for multiple
oracles. The original swapping lemma formalizes our intuition that the measurement outcome of
oracle-aided algorithm will not be changed so much even if the output values of the oracles are
changed on a small fraction of inputs. Since this paper considers the situation that multiple oracles
are available to adversaries, we extend the original lemma to a generalized one so that we can treat
multiple oracles. To simplify notation, below often omit the parameter n when it is clear from
context (e.g., we write just q instead of q(n)). Here we introduce an important notion called query
magnitude.

Query Magnitude. Let Γ = (f1, . . . , fg) be a sequence of quantum oracles, where each fi is a
fixed oracle and not randomized. Let A be a q-query oracle-aided quantum algorithm relative to
the oracle Γ.

Fix an input x, and let |φfij 〉 be the quantum state of AΓ on input x ∈ {0, 1}n just before the
j-th query to fi. Without loss of generality, we consider that the unitary operator Ofi acts on the
first (mi(n) + `i(n))-qubits of the quantum system. (Here we assume that fi is a function from

{0, 1}mi(n) to {0, 1}`i(n).) Then |φfij 〉 =
∑

z∈{0,1}mi(n) αz |z〉⊗ |ψz〉 holds for some complex numbers

αz and quantum states |ψz〉. If we measure the first mi(n) qubits of the state |φfij 〉 with the

computational basis, we obtain z with probability |αz|2. Intuitively, this probability corresponds
the “probability” that z is sent to fi as the j-th quantum query by A.

Definition 3.5 (Query magnitude to fi).

1. The query magnitude of the j-th quantum query of A to fi at z on input x ∈ {0, 1}n is
defined by

µA,fiz,j (x) := |αz|2. (4)

2. The (total) query magnitude of A to fi at z on input x ∈ {0, 1}n is defined by

µA,fiz (x) :=
∑
j

µA,fiz,j (x). (5)

The following lemma can be proven in the same way as the original swapping lemma [Vaz98,
Lem. 3.1], using the hybrid argument introduced by Bennet et al. [BBBV97], but we give a proof
for completeness.
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Lemma 3.3 (Swapping lemma with multiple oracles). Let Γ = (f1, . . . , ft),Γ
′ = (f ′1, . . . , f

′
t) be

sequences of oracles, where each fi and f ′i are fixed oracles and not randomized. Assume that A
is given oracle access to either Γ or Γ′. Then∥∥∥AΓ

n |x, 0, 0〉 − AΓ′
n |x, 0, 0〉

∥∥∥ ≤ 2
∑

1≤i≤t

√
q(n)

∑
z∈∆(fi,f ′i)

µA,fiz (x) (6)

holds for x ∈ {0, 1}n

Proof. In this proof we write q instead of q(n), for simplicity. For 1 ≤ k ≤ q and 1 ≤ ` ≤ t, let Γ(k,`)

be an intermediate oracle between Γ and Γ′: When we run an oracle-aided quantum algorithm A
relative to Γ(k,`), first A queries to Γ until the k-th query to f`−1 (or the (k − 1)-th query to ft if
` = 1), and then A queries to Γ′ from the k-th query to f` until the last query to ft. Then, the

corresponding unitary operator AΓ(k,`)
n is described as

AΓ(k,`)
n =

 q∏
j=k+1

(
Uj,t,nOf ′t ,n . . . Uj,1,nOf ′1,n

)
· Uk,t,nOf ′t ,n · · ·Of ′`,nUk,`−1,nOf`−1,n · · ·Uk,1,nOf1,n

·

k−1∏
j=1

(Uj,t,nOft,n . . . Uj,1,nOf1,n)

U0,n. (7)

Let |φ(k,`)
(i,j) 〉 be the quantum state of A just before the i-th query to fj or f ′j , when we run A relative

to Γ(k,`) on input x ∈ {0, 1}n. By |φ(k,`)
(q+1,1)〉 we denote the final quantum state of A when we run

A relative to Γ(k,`) on input x ∈ {0, 1}n. Let Γ(q+1,1) denote Γ. Below we regard that ft+1 = f1,
f ′t+1 = f ′1, and (k, t+ 1) = (k + 1, 1), for simplicity. Then, since unitary operators preserve norms
of vectors, we have that∥∥∥AΓ

n |x, 0, 0〉 − AΓ′
n |x, 0, 0〉

∥∥∥ =
∥∥∥|φ(q+1,1)

(q+1,1)〉 − |φ
(1,1)
(q+1,1)〉

∥∥∥
≤
∑

1≤`≤t

∑
1≤k≤q

∥∥∥|φ(k,`+1)
(q+1,1)〉 − |φ

(k,`)
(q+1,1)〉

∥∥∥ (8)

and ∥∥∥|φ(k,`+1)
(q+1,1)〉 − |φ

(k,`)
(q+1,1)〉

∥∥∥ =
∥∥∥Of` |φ(k,`)

(k,`)〉 −Of ′` |φ
(k,`)
(k,`)〉

∥∥∥ (9)

hold. Let Π∆(f`,f
′
`)

be the projector onto the space spanned by the vectors that correspond to
elements of ∆(f`, f

′
`). Then we have∥∥∥Of` |φ(k,`)
(k,`)〉 −Of ′` |φ

(k,`)
(k,`)〉

∥∥∥ =
∥∥∥(Of` −Of ′`)Π∆(f`,f

′
`)
|φ(k,`)

(k,`)〉
∥∥∥

≤ 2 ·
∥∥∥Π∆(f`,f

′
`)
|φ(k,`)

(k,`)〉
∥∥∥ = 2

√ ∑
z∈∆(f`,f

′
`)

µA,f`z,k (x). (10)
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From inequalities (8), (9), and (10), it follows that∥∥∥AΓ
n |x, 0, 0〉 − AΓ′

n |x, 0, 0〉
∥∥∥ ≤ 2

∑
1≤`≤t

∑
1≤k≤q

√ ∑
z∈∆(f`,f

′
`)

µA,f`z,k (x)

≤ 2
∑

1≤`≤t

√
q
∑

1≤k≤q

∑
z∈∆(f`,f

′
`)

µA,f`z,k (x)

= 2
∑

1≤`≤t

√
q

∑
z∈∆(f`,f

′
`)

µA,f`z (x), (11)

where we used the concavity of the square root function for the second inequality.

4 Quantum Primitives and Black-Box Quantum Reductions

Here, we define quantum primitives, which is a quantum counterpart of a primitive [RTV04, Def.
2.1], in addition to the notion of fully-black-box reduction [RTV04, Def. 2.3] in quantum regime.

Definition 4.1 (Quantum primitives). A quantum primitive P is a pair 〈FP , RP〉, where FP is
a set of quantum algorithms I, and RP is a relation over pairs 〈I,A〉 of a quantum algorithms
I ∈ FP and A. A quantum algorithm I implements P or is an implementation of P if I ∈ FP . If
I ∈ FP is efficient, then I is an efficient implementation of P. A quantum algorithm A P-breaks
I ∈ FP if 〈I,A〉 ∈ RP . A secure implementation of P is an implementation I of P such that
no efficient quantum algorithm P-breaks I. The primitive P quantumly exists if there exists an
efficient and secure implementation of P.

Definition 4.2 (Quantum primitives relative to oracle). Let P = 〈FP , RP〉 be a quantum primitive,
and Γ = (O1, . . . , Ot) be a family of (possibly randomized) quantum oracles. An oracle-aided
quantum algorithm I implements P relative to Γ or is an implementation of P relative to Γ if
IΓ ∈ FP . If IΓ ∈ FP is efficient, then I is an efficient implementation of P relative to Γ. A
quantum algorithm A P-breaks I ∈ FP relative to Γ if 〈IΓ,AΓ〉 ∈ RP . A secure implementation of
P is an implementation I of P relative to Γ such that no efficient quantum algorithm P-breaks I
relative to Γ. The primitive P quantumly exists relative to Γ if there exists an efficient and secure
implementation of P relative to Γ.

Remark 4.1. In the above definition, IΓ and AΓ are considered to be a quantum algorithm (rather
than oracle-aided quantum algorithm) once an oracle Γ is fixed so that IΓ ∈ FP and 〈IΓ,AΓ〉 ∈ RP
are well-defined. This is possible since we assume that an oracle Γ is stateless. (If Γ is randomized,
we regard that the randomness of Γ as a part of the randomness of the quantum algorithms IΓ and
AΓ. See also Remark 3.3.)

Next we define quantum fully-black-box reductions, which is a quantum counterpart of fully-
black-box reductions [RTV04, Def. 2.3].

Definition 4.3 (Quantum fully-black-box reductions). A pair (G,S) of efficient oracle-aided quan-
tum algorithms is a quantum fully-black-box reduction from a quantum primitive P = 〈FP , RP〉 to
a quantum primitive Q = 〈FQ, RQ〉 if the following two conditions are satisfied:

1. For every implementation I ∈ FQ, we have GI ∈ FP .
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2. For every implementation I ∈ FQ and every quantum algorithm A, if A P-breaks GI , then
SA,I Q-breaks I.

Hsiao and Reyzin showed that if there exists an oracle (family) that separates primitives P and
Q, then there is no fully-black-box reduction from P to Q [HR04, Prop. 1]. The following lemma
guarantees that a similar claim holds in the quantum setting. Although we need no arguments
which is specific to the quantum setting, we give a proof for completeness.

Lemma 4.1 (Two oracle technique). There exists no quantum fully-black-box reduction from P to
Q if there exist families of quantum oracles Γ1 and Γ2 = {ΨΦ

λ }Φ∈Γ1,λ∈Λ, where Λ is a non-empty
set, and the following two conditions hold.

1. Existence of Q. There exists an efficient oracle-aided quantum algorithm J0 that satisfies the
following conditions:

1. J Φ
0 ∈ FQ holds for any Φ ∈ Γ1.

2. For any efficient oracle-aided algorithm B and any λ ∈ Λ, there exists Φ ∈ Γ1 such that
BΦ,ΨΦ

λ does not Q-break J Φ
0 .

2. Non-Existence of P. For any efficient oracle-aided quantum algorithm I such that IΦ ∈ FP
holds for any Φ ∈ Γ1, there exists an efficient oracle-aided quantum algorithm AI and λ ∈ Λ

such that AΨΦ
λ
I P-breaks IΦ for any Φ ∈ Γ1.

Proof. Suppose that there exists a quantum fully-black-box reduction (G,S) from P = 〈FP , RP〉
to Q = 〈FQ, RQ〉. Then, by the first property of quantum fully-black-box reduction and the first

condition of Lemma 4.1, GJ
Φ
0 ∈ FP holds for any Φ ∈ Γ1. Thus, if we set I0 := GJ0 , from

the second condition of Lemma 4.1, it follows that there exists an efficient oracle-aided quantum

algorithm A and λ ∈ Λ such that AΨΦ
λ
I0 P-breaks I0

Φ for any Φ ∈ Γ1. Therefore, from the

second property of quantum fully-black-box reduction, it follows that S
A

ΨΦ
λ
I0

,JΦ
0 Q-breaks J Φ

0 for
any Φ ∈ Γ1. Since G, AI0 , and J0 are all efficient, there exists an efficient oracle-aided quantum

algorithm B such that BΦ,ΨΦ
λ = S

A
ΨΦ
λ
I0

,JΦ
0 . Now we have that there exists an efficient oracle-aided

algorithm B and λ ∈ Λ such that BΦ,ΨΦ
λ Q-breaks J Φ

0 for any Φ ∈ Γ1. However, it contradicts the
second part of the first condition of Lemma 4.1, which completes the proof.

Remark 4.2. Remember that each fixed (resp., randomized) quantum oracle O is a family of
infinite unitary gates {On}n∈N (resp., O = {On}n∈N and On = {Orn}rn∈Rn, where Rn is the set of
random coins), where On is used when an oracle-aided algorithm runs relative to O on an input in
{0, 1}n. For example, (the quantum oracle of) a permutation f ∈ Perm({0, 1}∗) is represented as
a family {fn}n∈N, where fn = f |{0,1}n. We implicitly assume that ΨΦ

λ,n depends only on Φn and is
independent of Φm for m 6= n.

Later, to prove impossibility of quantum fully-black-box reductions from collision resistant hash
functions to one-way permutations, we will apply this lemma with the condition that Λ is the set
of all polynomials in n, Γ1 = Perm({0, 1}∗), and Γ2 = {ColFinderfλ}f∈Γ1,λ∈Λ. Here, ColFinderfλ is
a randomized oracle that takes, as inputs, oracle-aided quantum circuits that computes functions,
and returns collision of the functions. The number λ(n) denotes the maximum size of circuits that

ColFinderfλ,n takes as inputs for each n ∈ N.
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4.1 Concrete Primitives

This section defines concrete quantum primitives. Namely, we define one-way permutations, trap-
door permutations, and collision-resistant hash functions.

We define two quantum counterparts for each classical primitives. One is the classical-computable
primitive that can be implemented on classical computers, and the other is the quantum-computable
primitive that can be implemented on quantum computers but may not be implemented on classi-
cal computers. Here we note that, in this paper, all adversaries are quantum algorithms for both
classical-computable and quantum-computable primitives.

Definition 4.4 (One-way permutation). Quantum-computable (resp., classical-computable) quantum-
secure one-way permutation QC-qOWP(resp., CC-qOWP) is a quantum primitive defined as fol-
lows: Implementation of QC-qOWP (resp., CC-qOWP) is an efficient quantum (resp., classical)
algorithm Eval that computes a function f : {0, 1}∗ → {0, 1}∗ such that fn := f |{0,1}n is a permu-
tation over {0, 1}n. For an implementation I of QC-qOWP (resp., CC-qOWP) that computes f
and a quantum algorithm A, we say that A QC-qOWP-breaks I (resp., CC-qOWP-breaks I) if and
only if

Pr
[
x

$←− {0, 1}n; y ← fn(x);x′ ← A(y) : x′ = x
]

(12)

is non-negligible.

Remark 4.3. Since there is no function generation algorithm Gen in the above definition, this
captures “public-coin” one-way permutations. This makes the definition of one-way permutations
stronger, and thus makes our negative result stronger.

Definition 4.5 (Trapdoor permutation). Quantum-computable (resp., classical-computable) quantum-
secure trapdoor permutation QC-qTDP(resp., CC-qTDP) is a quantum primitive defined as follows:
Implementation of QC-qTDP (resp., CC-qTDP) is a triplet of efficient quantum (resp., classical)
algorithms (Gen,Eval, Inv). In addition, we require (Gen,Eval, Inv) to satisfy the following:

1. For any (pk, td) generated by Gen(1n), Eval(pk, ·) computes a permutation fpk,n{0, 1}n →
{0, 1}n.

2. For any (pk, td) generated by Gen(1n) and any x ∈ {0, 1}n, we have Pr[Inv(td, fpk,n(x)) =
x] > 2/3 (i.e., Inv(td, ·) computes f−1

pk,n(·)).

For an implementation I = (Gen,Eval, Inv) of QC-qTDP (resp., CC-qTDP) and a quantum algo-
rithm A, we say that A QC-qTDP-breaks I (resp., CC-qTDP-breaks I) if and only if

Pr
[
(pk, td)← Gen(1n);x

$←− {0, 1}n; y ← fpk,n(x);x′ ← A(pk, y) : x′ = x
]

(13)

is non-negligible.

Definition 4.6 (Collision-resistant hash function). Quantum-computable (resp., classical-computable)
quantum-collision-resistant hash function QC-qCRH(resp., CC-qCRH) is a quantum primitive de-
fined as follows: Implementation of QC-qCRH (resp., CC-qCRH) is a pair of efficient quantum
(resp., classical) algorithms (Gen,Eval).

Gen(1n): This algorithm is given 1n as input, and outputs a function index σ.

Eval(σ, x): This algorithm is given a function index σ and x ∈ {0, 1}m(n) as input, and outputs
y ∈ {0, 1}`(n).
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In addition, we require (Gen,Eval) to satisfy the following:

1. We have m(n) > `(n) for all sufficiently large n ∈ N.

2. For any σ generated by Gen(1n), Eval(σ, ·) computes a function Hσ : {0, 1}m(n) → {0, 1}`(n).

For an implementation I = (Gen,Eval) of QC-qCRH (resp., CC-qCRH) and a quantum algorithm
A, we say that A QC-qCRH-breaks I (resp., CC-qCRH-breaks I) if and only if

Pr
[
σ ← Gen(1n); (x, x′)← A(σ) : Hσ(x) = Hσ(x′)

]
(14)

is non-negligible.

Remark 4.4. Though trapdoor permutations and collision-resistant hash functions are defined to
be a tuple of algorithms, we can capture them as quantum primitives as defined in Definition 4.1 by
considering a unified quantum algorithm that runs either of these algorithms depending on prefix
of its input. We also remark that any classical algorithm can be seen as a special case of quantum
computation, and thus classical-computable variants are also captured as quantum primitives.

5 Impossibility of Reduction from QC-qCRH to CC-qOWP

The goal of this section is to show the following theorem.

Theorem 5.1. There exists no quantum fully-black-box reduction from QC-qCRH to CC-qOWP.

To show this theorem, we define two (families of) oracles that separate QC-qCRH from CC-qOWP.
That is, we define an oracle that implements CC-qOWP, in addition to an oracle that finds colli-
sions of functions, and then apply the two oracle technique (Lemma 4.1). Our oracles are quantum
analogues of those in previous works on impossibility results [Sim98, HHRS07, AS15] in the clas-
sical setting. Roughly speaking, we simply use random permutations f to implement one-way
permutations. As for an oracle that finds collisions of functions, we use a randomized oracle
ColFinder.

Remark 5.1. The statement of Theorem 5.1 is the strongest result among possible quantum (fully-
black-box) separations of CRH from OWP, since it also excludes reductions from CC-qCRH to
CC-qOWP, reductions from QC-qCRH to QC-qOWP, and reductions from CC-qCRH to QC-qOWP.

5.0.1 Oracle ColFinder.

Intuitive Idea. Intuitively, our oracle ColFinderf works as follows for each fixed permutation f .
As an input, ColFinderf takes an oracle-aided quantum circuit C. We say that C is a valid input

if it computes a function F f
′

C : {0, 1}m → {0, 1}` relative to the oracle f ′, for each permutation f ′

(here we assume that m and ` are independent of the permutation f ′). We say that C is invalid if
it is not valid. Given the input C, first ColFinderf checks whether C is invalid, and return ⊥ if it
is. Second, ColFinderf chooses w1

Cf
∈ {0, 1}m uniformly at random, and compute y = F fC(w1

Cf
) by

running the circuit C on input w1
Cf

relative to f . Third, ColFinderf chooses w2
Cf

from (F fC)−1(y)

uniformly at random. Finally ColFinderf returns (w1
Cf
, w2

Cf
, y). If F fC : {0, 1}m → {0, 1}` has many

collisions (for example, if m > `), ColFinderf returns a collision of F fC with a high probability. The
idea of the above oracle ColFinder originally comes from the seminal work by Simon [Sim98]. Below
we give a formal description of ColFinder, following the formalization of Asharov and Segev [AS15].
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Formal Description. Here we give a formal description of ColFinder. Let valid and invalid
denote the set of valid and invalid circuits, respectively. Let λ : N → R≥0 be a function, and
Circ(λ(n)) denote the set of oracle-aided quantum circuits C of which size is less than or equal to
λ(n). Note that Circ(λ(n)) is a finite set for each n. Let Πn = {π1

C , π
2
C}C∈Circ(λ(n))∩valid be a set

of permutations, where π1
C and π2

C are permutations on {0, 1}m, which is the domain of FC that
the circuit C computes. It can be regarded that Πn assigns each circuit in Circ(λ(n)) ∩ valid two
permutations. Let Rλ,n be the set of all possible such assignments Πn, and Rλ be the product set∏∞
n=1Rλ,n.

For each fixed permutation f and a function λ, we define a randomized quantum oracle
ColFinderfλ = {ColFinderfλ,Π}Π∈Rλ , where ColFinderfλ,Π = {ColFinderfλ,Π,n}n∈N is a fixed quantum

oracle for each Π. When we feed an algorithm A with an input x ∈ {0, 1}n relative to ColFinderfλ,
first Πn ∈ Rλ,n is chosen uniformly at random (i.e., two permutations π1

C , π
2
C are chosen uniformly

at random for each oracle-aided quantum circuit C ∈ Circ(λ(n)) ∩ valid), and then A runs the

circuit A
ColFinderfλ,Π,n
n on the initial state |x〉 |0〉 |0〉. For each fixed n and Πn, the deterministic

function ColFinderfλ,Π,n is defined by the following procedures:

1. Take an input C, where C is an oracle-aided quantum circuit.

2. Check if C is a valid input by checking whether there exists y ∈ {0, 1}` such that Pr[Cf
′
n(x)

= y] > 2/3 holds for any f ′n ∈ Perm({0, 1}n) and x ∈ {0, 1}m, and whether the size of C is
less than or equal to λ(n). If C is an invalid input, return ⊥.

3. Compute w1
Cf

:= π1
C(0m).

4. Compute F fC(w1
C). That is, compute the output distribution of Cf on input w1

Cf
, find the

element y such that Pr[Cf (w1
Cf

) = y] > 2/3, and set u← y.

5. Search for the minimum t ∈ {0, 1}m such that F fC(π2
C(t)) = u by checking whether

Pr
[
Cf
(
F fC
(
π2
C (i)

))
= u

]
> 2/3

holds for i = 0, 1, 2, . . . in a sequential order, and set w2
Cf
← π2

C(t).

6. Return (w1
Cf
, w2

Cf
, u).

Later we will apply Lemma 4.1 with Γ1 := Perm({0, 1}∗) and Γ2 := {ColFinderfλ}f∈Γ1,λ∈Λ, where
Λ is the set of polynomials in n.

5.0.2 Proof of Theorem 5.1.

It can be proven that Theorem 5.1 follows from the following proposition. Note that the oracle

gate ColFinderfλ,Π,n is (and thus the circuit A
fn,ColFinder

f
λ,Π,n

n is) fixed once fn and Πn are fixed, since

the output values of ColFinderfλ,Π,n are independent of fm and Πm for m 6= n.

Proposition 5.1. Let λ, q, ε be functions such that 0 ≤ λ(n), q(n) and 0 < ε(n) ≤ 1. Let A be a
q-query oracle-aided quantum algorithm. Suppose that there is a function η(n) ≤ λ(n) such that,
for each circuit C that An queries to ColFinder, C makes at most η(n) queries. If

Pr
fn,Πn

y←{0,1}n

[
x← A

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
≥ ε(n) (15)
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holds for infinitely many n, then there exists a constant const such that

max{q(n), η(n)} ≥ const · ε(n) · 2n/7 (16)

holds for infinitely many n.

Now we show that Theorem 5.1 follows from Proposition 5.1.

Proof of Theorem 5.1. Let Γ1 := Perm({0, 1}∗) and Γ2 := {ColFinderfλ}f∈Γ1,λ∈Λ, where Λ is the set

of all polynomials in n. (If λ(n) ≤ 0 for some n, we assume that ColFinderfλ,n does not take any
inputs.) Below we show that the two conditions of Lemma 4.1 are satisfied.

For the first condition of Lemma 4.1, we define an oracle-aided quantum algorithm J0 as follows:
When we feed J0 with an input x relative to a permutation f , J0 queries x to f and obtains the
output f(x). Then J0 returns f(x) as its output. We show that this algorithm J0 satisfies the

first condition of Lemma 4.1 (existence of CC-qOWP). It is obvious that J f0 ∈ FCC-qOWP for any
permutation f , by definition of J0. Let B be an efficient oracle-aided quantum algorithm, and λ
be a polynomial in n. Now we show the following claim.

Claim 5.1. For any efficient oracle-aided quantum algorithm B and for any polynomial λ, there
exists a permutation f : {0, 1}∗ → {0, 1}∗ such that

Pr
y←{0,1}n

[
x← Bf,ColFinder

f
λ(y) : f(x) = y

]
< 2−n/8 (17)

holds for all sufficiently large n.

Proof of Claim. It suffices to show the claim in the case that η(n) = λ(n) = |Bn|, since the ability
of adversaries to invert permutations increase as η(n) becomes large, but the size of quantum
circuits which Bn can query to ColFinder does not exceed |Bn|. Hence, below we consider the case
that η(n) = λ(n) = |Bn|. Note that B can be regarded as a λ-query algorithm in this case, since
Bn cannot make more than λ(n) queries.

Since B is an efficient algorithm, it follows that

Pr
fn,Πn

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
< 2−n/8 (18)

for all sufficiently large n, from Proposition 5.1. Thus, for all sufficiently large n, there exists a
permutation f ′n on {0, 1}n such that

Pr
Πn

y←{0,1}n

[
x← B

f ′n,ColFinder
f ′
λ,Π,n

n (y) : f ′n(x) = y

]
< 2−n/8 (19)

holds. Now, define a permutation f ′ : {0, 1}∗ → {0, 1}∗ by f ′|{0,1}n = f ′n. Then

Pr
y←{0,1}n

[
x← Bf ′,ColFinder

f̃ ′
λ (y) : f(x) = y

]
< 2−n/8 (20)

holds for all sufficiently large n.
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From the above claim, it follows that, for any efficient oracle-aided quantum algorithm B and
any λ ∈ Λ, there exists a permutation f such that

Pr
y←{0,1}n

[
x← Bf,ColFinder

f
λ(y) : f(x) = y

]
< negl(n) (21)

holds, which implies that Bf,ColFinder
f
λ does not CC-qOWP-break J f0 relative to (f,ColFinderfλ).

Hence the first condition (existence of CC-qOWP) of Lemma 4.1 is satisfied.
Next, we show that the second condition (non-existence of QC-qCRH) of Lemma 4.1 is satis-

fied. For any efficient oracle-aided quantum algorithm I = (Gen,Eval) such that If ∈ FCC-qCRH

holds for any permutation f , let λ be a polynomial such that λ(n) > |In| for all n. We define
a family of oracle-aided quantum algorithms AI as: Given an input σ which is generated by
Gen(1n), AI queries the oracle-aided quantum circuit Evaln(σ, ·) to ColFinderfλ, obtains an answer

(w1, w2, Hσ(w1)), and finally output (w1, w2). When AColFinderfλ
I is given an input σ, the output

will be (w1, w2), where w1 is uniformly distributed over the domain of Hσ : {0, 1}m(n) → {0, 1}`(n)

and w2 is uniformly distributed over the set H−1
σ (Hσ(w1)). Since m(n) > `(n) holds by defini-

tion of implementations of QC-qCRH, the probability that w1 6= w2, which implies that (w1, w2)
is a collision of Hσ, is at least 1/4. Thus it follows that there exists AI and λ ∈ Λ such that

AColFinderfλ
I CC-qCRH-breaks If for any permutation f . Hence the second condition of Lemma 4.1

is satisfied.

Remark 5.2. In this paper we formally treat only efficient reductions such that the circuit sizes of
reduction algorithms are polynomial in n. However, the statement of Proposition 5.1 also excludes
sub-exponential reductions from CRH to OWP in the quantum setting.

5.1 Proof of Proposition 5.1

This subsection proves Proposition 5.1. See Section 2.2 for an intuitive overview of our proof idea.
We begin with describing some technical preparations.

5.1.1 Preparations.

Without loss of generality we can assume that q(n), η(n), λ(n) ≥ 1 holds, since increasing these
numbers does not decrease the ability of A to invert f . We construct another algorithm Â that
iteratively runs A to increase the success probability, and then apply the encoding technique to Â.

Let c be a positive integer. Let Bc be an oracle-aided quantum algorithm that runs as follows,
relative to the oracles f and ColFinderfλ.

1. Take an input y. Set guess←⊥.

2. For i = 1, . . . , cd1/ε(n)e do:

3. Run Af,ColFinder
f
λ on the input y. Let x denote the output.

4. Query x to f . If f(x) = y, then set guess← x.

5. End For

6. Return guess.
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Let Q(n) := cd1/ε(n)e(max{q(n), η(n)} + 1). Then Bc can be regarded as a Q-query algorithm,

and for each quantum circuit C that Bc queries to ColFinderfλ,n, C makes at most Q(n) queries.

Remark 5.3. The randomness Πn of ColFinderfλ is chosen before Bc starts, and unchanged while
Bc is running (see Remark 3.3).

Lemma 5.1. Let p1, p2 be any positive constant values such that 0 < p1, p2 < 1. For a sufficiently
large integer c, the following condition is satisfied for infinitely many n:
Condition. There exist X ⊂ Perm({0, 1}n) and Πn such that |X| ≥ p1 · |Perm({0, 1}n)| and

Pr
y←{0,1}n

[
Pr

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2/3

]
≥ p2 (22)

for all fn ∈ X.

Proof. Let p0 := p1 + (2
3 + 1

3p2)(1 − p1), and c be an integer that satisfies e−c ≤ 1 − p0. In what
follows, we show that this c satisfies the condition.

First, for each n such that

Pr
fn,Πn

y←{0,1}n

[
x← A

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
≥ ε(n) (23)

holds, there exists Πn such that

Pr
fn

y←{0,1}n

[
x← A

fn,ColFinder
f
λ,Π,n

n (y) : fn(x) = y

]
≥ ε(n) (24)

holds. Below we fix Πn that satisfies inequality (24) for each n such that inequality (23) holds.
Now we have that

Pr
fn

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 1− (1− ε(n))

c
ε(n)

= 1− ((1− ε(n))
− 1
ε(n) )−c (25)

holds. If ε(n) = 1, the right hand side of inequality (25) becomes 1, which is larger than p0. If
ε(n) < 1, the right hand side of inequality (25) is lower bounded by 1 − e−c ≥ p0, here we used

the fact that (1− x)−
1
x ≥ e holds for 0 < x < 1. Therefore we have that

Pr
fn

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ p0 (26)

holds.
Here it follows that

Pr
fn

[
Pr

y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2

3
+

1

3
p2

]
≥ p1 (27)

from inequality (26). In other words, there existsX ⊂ Perm({0, 1}n) such that |X| ≥ p1|Perm({0, 1}n)|
and

Pr
y←{0,1}n

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2

3
+

1

3
p2 (28)
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holds for all fn ∈ X. Now, from inequality (28), it follows that

Pr
y←{0,1}n

[
Pr

[
x← B

fn,ColFinder
f
λ,Π,n

c,n (y) : fn(x) = y

]
≥ 2/3

]
≥ p2 (29)

for all fn ∈ X.

In what follows, we fix constants p1, p2 such that 0 < p1, p2 < 1 arbitrarily. Then, from the
above lemma, it follows that there exists a constant c that satisfies the condition in Lemma 5.1
for infinitely many n. Let us denote Bc by Â. We use the encoding technique to this Q-query
algorithm Â, here Q(n) = cd1/ε(n)e(max{q(n), η(n)} + 1). Below we fix a sufficiently large n in
addition to Πn and X such that the condition in Lemma 5.1 is satisfied. For simplicity, we write
Q, q, ε, η, f , and ColFinderf instead of Q(n), q(n), ε(n), η(n), fn, and ColFinderfλ,Π,n respectively,
for simplicity.

5.1.2 An Information Theoretic Property of Randomized Compressing Schemes.

Here we introduce an information theoretic property of a randomized compressing scheme (Er :
X → Y ∪ {⊥}, Dr : Y → X ∪ {⊥}), where r is chosen according to a distribution R. Generally, if
the encoding and decoding success with a constant probability p, then |Y | cannot be much smaller
than |X|:

Lemma 5.2 ([DTT10], Fact 10.1). If there exists a constant 0 ≤ p ≤ 1 such that Prr∼R[Dr(Er(x)) =
x] ≥ p holds for all x ∈ X, then |Y | ≥ p · |X| holds.

Below we formally define an encoder E and a decoder D that compress elements (truth tables
of permutations) in X. In the encoder E, random coin r is chosen according to a distribution R.
On the other hand, we consider that D is deterministic rather than randomized, and regard r as
a part of inputs to D. Note that we do not care whether encoding and decoding can be efficiently
done, since Lemma 5.2 describes a purely information theoretic property.

5.1.3 Encoder E.

Let δ be a sufficiently small constant (δ = (1/8)4 suffices). When we feed E with f ∈ X as an
input, E first chooses subsets R,R′ ⊂ {0, 1}n by the following sampling: For each x ∈ {0, 1}n, x
is added to R with probability δ3/2/Q2, and independently added to R′ with probability δ5/2/Q4.
(The pair (R,R′) is the random coin of E.)

According to the choice of R′, “bad” inputs (oracle-aided quantum circuits) to ColFinderf are
defined for each x ∈ {0, 1}n as follows. Note that now π1

C and π2
C have been fixed for each C ∈ valid,

and thus the output ColFinderf (C) = (w1
Cf
, w2

Cf
, F fC(w1

Cf
)) is uniquely determined. Since C is an

oracle-aided quantum circuit, we can define query magnitude of C to f on input w1
Cf

and w2
Cf

at
z ∈ {0, 1}n (see Definition 3.5). We say that a quantum circuit C ∈ valid is bad relative to x if∑

z∈R′\{x}

µC,fz (w1
Cf ) >

δ

Q
(30)

or ∑
z∈R′\{x}

µC,fz (w2
Cf ) >

δ

Q
(31)
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hold, and otherwise we say that C is good relative to x. Let badC(R′, x) denote the set of bad
circuits relative to x for each R′ ⊂ {0, 1}n.

Next, E construct a set G ⊂ {0, 1}n depending on the input f . Let I ⊂ {0, 1}n be the set of

elements x such that Â successfully inverts f(x), i.e., I := {x | Pr[x′ ← Âf,ColFinderf (f(x)) : x′ =
x] ≥ 2/3. Then |I| ≥ p2 · 2n holds by definition of X (Remember that X is chosen in such a way
as to satisfy the condition in Lemma 5.1). Now, a set G is defined to be the set of elements x ∈ I
that satisfies the following conditions:

Condition for G.

(A) x ∈ R ∩R′.

(B)
∑

z∈R\{x} µ
Â,f
z (f(x)) ≤ δ/Q.

(C)
∑

C∈badC(R′,x) µ
Â,ColFinderf
C (f(x)) ≤ δ/Q.

Finally, E encodes f into (f |{0,1}n\G, f(G)) if |G| ≥ θ, where θ = (1 − 60
√
δ)δ4p22n/2Q6.

Otherwise E encodes f into ⊥.
In addition, here we formally define the set Y (the range of E) as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (32)

In fact E((R,R′), f) ∈ Y ∪ {⊥} holds for any choice of (R,R′) and any permutation f ∈ X.

5.1.4 Decoder D.

D takes (f̃ , G̃) as an input in addition to (R,R′), where G̃ ⊂ {0, 1}n and f̃ is a bijection from a
subset of {0, 1}n onto {0, 1}n \ G̃, and R,R′ are subsets of {0, 1}n. If {0, 1}n \ (the domain of f̃) 6⊂
R ∩ R′ holds, then D outputs ⊥. Otherwise, D decodes (f̃ , G̃) and reconstruct the truth table of
a permutation f ∈ Perm({0, 1}n) as follows.

For each x in the domain of f̃ , D infers the value f(x) as f(x) := f̃(x). For other elements
x ∈ {0, 1}n which is not contained in the domain of f̃ , what D now knows is only that f(x) is
contained in G̃. To determine the remaining part of the truth table of f , D tries to recover the
value f−1(y) for each y ∈ G̃ by using Â.

For each fixed y ∈ G̃, D could succeed to recover the value f−1(y) if D were able to determine
the output distribution of Â on input y relative to oracles f and ColFinderf . However, D cannot
determine the distribution even though D has no limitation on its running time, since f itself is
the permutation of which D wants to reconstruct the truth table, and the behavior of ColFinderf

depends on f . Thus D instead prepares oracles hy and SimCFhy which approximates f and

ColFinderf , respectively, and computes the output distribution of Âhy ,SimCFhy on input y. SimCFhy

uses a subroutine CalCy that takes (C,w) as an input (C is a valid oracle-aided circuit that may

make queries to f and computes F fC , and w is an element of the domain of F fC) and simulates an

evaluation of F fC(w). D finally infers that f−1(y) is the element which Âhy ,SimCFhy outputs with
probability greater than 1/2. (If there does not exist such an element, then D outputs ⊥.) Below
we describe hy, CalCy, and SimCFhy .

Oracle hy. The oracle (function) hy : {0, 1}n → {0, 1}n is defined by

hy(z) =

{
f̃(z) if z 6∈ R ∩R′,
y otherwise.

(33)
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Subroutine CalCy. Let Pcandidate := {h′ ∈ Perm({0, 1}n)) | ∆(h′, hy) ⊂ R∩R′}. CalCy is defined
as the following procedures.

1. Take an input (C,w), where C is an oracle-aided circuit and w is an element of the domain
of the function FC .

2. Compute the output distribution of the quantum circuit Ch
′

on input w for each h′ ∈
Pcandidate, and find the corresponding output u(C,w, h′) which has the highest probability
(i.e., u(C,w, h′) is the u that maximizes Pr[Ch

′
(w) = u]). If there are two or more candidates

of u(C,w, h′) for a fixed h′, set u(C,w, h′) :=⊥.

3. If u(C,w, h′) = u(C,w, h′′) 6=⊥ for all h′, h′′ ∈ Pcandidate, return the value u(C,w, h′). Oth-
erwise return ⊥.

Oracle SimCFhy . SimCFhy is defined as the following procedures:

1. Take an input C, where C is an oracle-aided quantum circuit.

2. Check if C is a valid input by checking whether there exists y ∈ {0, 1}` such that Pr[Cf
′
n(x) =

y] > 2/3 holds for any f ′n ∈ Perm({0, 1}n) and x ∈ {0, 1}m, and whether the size of C is less
than or equal to λ(n). If C is an invalid input, return ⊥.

3. Compute w̃1
Cf

:= π1
C(0m).

4. If CalCy(C, w̃
1
Cf

) =⊥, return ⊥.

5. Otherwise, search the minimum t ∈ {0, 1}m such that CalCy(C, w̃
1
Cf

) = CalCy(C, π
2
C(t)) by

checking whether CalCy(C, w̃
1
Cf

) = CalCy(C, π
2
C(i)) holds for i = 0, 1, 2, . . . in a sequential

order.

6. If the minimum number t is found, set w̃2
Cf

:= π2
C(t). Otherwise return ⊥.

7. Return (w̃1
Cf
, w̃2

Cf
,CalCy(C, w̃

1
Cf

)).

Note that D is an information theoretic decoder, and we do not care whether CalCy and SimCFhy

run efficiently.

5.1.5 Analyses.

The following lemma shows that hy, CalCy, and SimCFhy satisfy some suitable properties. Here
we consider the situation that D takes an input (f̃ , G̃) such that (f̃ , G̃) = E((R,R′), f) for some
subsets R,R′ ⊂ {0, 1}n and a permutation f ∈ {0, 1}n, and tries to recover the value f−1(y) for
some y ∈ G̃.

Lemma 5.3. hy, CalCy, and SimCFhy satisfy the following properties.

1. ∆(hy, f) = R ∩R′ \ {f−1(y)} holds.

2. CalCy(C,w) = F fC(w) or ⊥ holds for any C ∈ valid and w.

3. CalCy(C,w
1
Cf

) = F fC(w1
Cf

) and CalCy(C,w
2
Cf

) = F fC(w2
Cf

) hold for each circuit C ∈ valid
which is good relative to f−1(y).

25



4. SimCFhy(C) = ColFinderf (C) holds for each circuit C ∈ valid which is good relative to f−1(y).
In particular, ∆(ColFinderf ,SimCFhy) ⊂ badC(R′, f−1(y)) holds.

Proof. The first property is obviously satisfied by definition of hy.
For the second property, since f ∈ Pcandidate, if CalCy(C,w) 6=⊥ then we have CalCy(C,w) =

u(C,w, f) by definition of CalCy, and u(C,w, f) = F fC(w) always holds. Hence the second property
holds.

For the third property, for each h′ ∈ Pcandidate, from Lemma 3.2 we have

Pr
[
Ch
′
(w1

Cf ) = F fC(w1
Cf )
]
≥ Pr

[
Cf (w1

Cf ) = F fC(w1
Cf )
]

−
∥∥∥CfF |w1

Cf , 0, 0〉 − C
h′
F |w1

Cf , 0, 0〉
∥∥∥ . (34)

From the swapping lemma (Lemma 3.3) it follows that∥∥∥CfF |w1
Cf , 0, 0〉 − C

h′
F |w1

Cf , 0, 0〉
∥∥∥ ≤ 2

√
Q

∑
z∈∆(f,h′)

µC,fz (w1
Cf

). (35)

Since ∆(f, h′) ⊂ R ∩ R′ \ {f−1(y)} ⊂ R′ \ {f−1(y)} holds for all h′ ∈ Pcandidate, and C is a good
circuit relative to f−1(y), the right hand side of the above inequality is upper bounded by 2

√
δ

Thus, for a sufficiently small δ we have

Pr
[
Ch
′
(w1

Cf ) = F fC(w1
Cf )
]
≥ 2

3
− 2
√
δ >

1

2
, (36)

which implies that u(C,w1
Cf
, h′) = F fC(w1

Cf
) holds for every h′ ∈ Pcandidate. Thus CalCy(C,w

1
Cf

) =

F fC(w1
Cf

) holds if C is good relative to f−1(y). It can be shown that the corresponding property
also holds for w2

Cf
in the same way.

The fourth property follows from the definition of SimCFhy , the second property, and the third
property.

The following lemma shows that the decoding always succeeds if the encoding succeeds.

Lemma 5.4. If E((R,R′), f) 6=⊥, then D((R,R′), E((R,R′), f)) = f holds.

Proof of Lemma 5.4. Let f̃ := f |{0,1}n\G and G̃ := f(G). We show that D can correctly recover

x = f−1(y) for each y ∈ G̃.
We apply the swapping lemma (Lemma 3.3) to the oracle pairs (f,ColFinderf ) and (hy,SimCFhy).

Then we have∥∥∥Âf,ColFinderfn |f(x), 0, 0〉 − Âhy ,SimCFhy
n |f(x), 0, 0〉

∥∥∥
≤ 2

√
Q

∑
z∈∆(f,hy)

µÂ,fz (f(x)) + 2

√√√√Q
∑

C∈∆(ColFinderf ,SimCFhy )

µÂ,ColFinder
f

C (f(x)). (37)

Since ∆(f, hy) = R ∩ R′ \ {f−1(y)} ⊂ R \ {f−1(y)} = R \ {x} and ∆(ColFinderf ,SimCFhy) ⊂
badC(R′, f−1(y)) = badC(R′, x) from Lemma 5.3, the right hand side of inequality (37) is upper
bounded by

2

√
Q

∑
z∈R\{x}

µÂ,fz (f(x)) + 2

√
Q

∑
C∈badC(R′,x)

µÂ,ColFinder
f

C (f(x)). (38)
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Due to the conditions (B) and (C) (see p. 24), each term of the above expression is upper bounded
by 2
√
δ. Thus, eventually we have∥∥∥Âf,ColFinderfn |f(x), 0, 0〉 − Âhy ,SimCFhy

n |f(x), 0, 0〉
∥∥∥ ≤ 4

√
δ (39)

Finally, from Lemma 3.2, for sufficiently small δ it follows that

Pr
[
Âhy ,SimCFhy (f(x)) = x

]
≥ Pr

[
Âf,ColFinder

f

(f(x)) = x
]

−
∥∥∥Âf,ColFinderfn |f(x), 0, 0〉 − Ahy ,ColFinder

h

n |f(x), 0, 0〉
∥∥∥

≥ 2/3− 4
√
δ > 1/2, (40)

which implies that D correctly recovers x = f−1(y).

Next, we show the following lemma, which shows that our E and D work well with a constant
probability. Our analysis below is a generalization of an analysis by Nayebi et al [NABT15, Claim
8].

Lemma 5.5. If Q6 ≤ δ4p22n/32,

Pr
(R,R′)

[
D((R,R′), E((R,R′), f) = f

]
≥ 0.7 (41)

holds for each f ∈ X.

Proof of Lemma 5.5. If |G| ≥ θ holds, then it follows that E((R,R′), f) 6=⊥ by definition of
E, which leads to D((R,R′), E((R,R′), f) = f by Lemma 5.4. Therefore, in what follows, we
show that |G| ≥ θ holds with a high probability. Let H be the set defined as H := {x ∈ I |
x satisfies (A) }, J1 be the set defined as J1 := {x ∈ I | x satisfies (A) but does not satisfy (B) },
and J2 be the set defined as J2 := {x ∈ I | x satisfies (A) but does not satisfy (C)}. Then
|G| ≥ |H| − |J1| − |J2| holds.

First, we show that |H| becomes large with a high probability: Since ER,R′ [|H|] = δ4|I|/Q6,

Pr
R,R′

[
|H| ≥ 1

2
· δ

4|I|
Q6

]
≥ 1− exp

[
−1

8
· δ

4|I|
Q6

]
(42)

follows from the multiplicative Chernoff bound. Since |I| ≥ p22n holds by definition of I, and
Q6 ≤ δ4p22n/32 is assumed, we have

exp

[
−1

8
· δ

4|I|
Q6

]
≤ exp[−4] ≤ 0.1. (43)

Therefore

Pr
R,R′

[
|H| ≥ 1

2
· δ

4|I|
Q6

]
≥ 0.9 (44)

holds.
Second, we show that |J1| becomes large only with a small probability: For each x ∈ I, we

have that

ER

 ∑
z∈R\{x}

µÂ,fz (f(x))

 =
∑

z∈{0,1}n\{x}

δ3/2

Q2
µÂ,fz (f(x)) ≤ δ3/2

Q
(45)
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holds, where we used the property that
∑

z µ
Â,f
z (f(x)) ≤ Q holds since Â is a Q-query algorithm.

Hence

Pr
R

 ∑
z∈R\{x}

µÂ,fz (f(x)) ≥ δ

Q

 ≤ √δ (46)

follows from Markov’s inequality. Since the conditions (A) and (B) are independent (note that the
condition (B) does not depend on whether x ∈ R ∩R′),

Pr
R,R′

[x ∈ J1] = Pr
R,R′

[x satisfies (A)] · Pr
R,R′

[x does not satisfy (B)] ≤ (δ4/Q6) ·
√
δ =

δ9/2

Q6
(47)

holds for each x ∈ I. Now we can show the following claim.

Claim 5.2. It holds that
ER,R′ [|J1|] ≤ δ9/2|I|/Q6. (48)

Proof of Claim. Note that the set J1 is determined once R and R′ are fixed. Let J
(R,R′)
1 denote

the set J1 that corresponds to (R,R′). Let 2I be the set of subsets of I. For each x ∈ I, define a
function ξx : 2I → {0, 1} by ξx(J) = 1 if and only if x ∈ J . Then we have

ER,R′ [|J1|] = ER,R′

[∑
x∈I

ξx

(
J

(R,R′)
1

)]

=
∑
R0,R′0

(∑
x∈I

ξx

(
J

(R0,R′0)
1

))
· Pr
R0,R′0

[
(R,R′) = (R0, R

′
0)
]

=
∑
x∈I

 ∑
R0,R′0

ξx

(
J

(R0,R′0)
1

)
· Pr
R0,R′0

[
(R,R′) = (R0, R

′
0)
]

=
∑
x∈I

Pr
R,R0

[x ∈ J1] ≤ |I| · δ
9/2

Q6
, (49)

where the last inequality follows from inequality (47).

From the above claim and Markov’s inequality, it follows that

Pr
R,R′

[
|J1| ≥

10δ9/2|I|
Q6

]
≤ 0.1 (50)

holds.
Third, we show that |J2| becomes large only with a small probability: Remember that, for

each x ∈ I, a quantum circuit C ∈ valid becomes bad relative to x if and only if inequalities (30)
or (31) hold. Here, for any fixed C ∈ valid and w we have

ER′

 ∑
z∈R′\{x}

µC,fz (w)

 =
∑

z∈{0,1}n\{x}

δ5/2

Q4
µC,fz (w) ≤ δ5/2

Q3
, (51)
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where we used the property that
∑

z µ
C,f
z (w) ≤ Q holds since C makes at most Q queries. Thus,

the probability that a fixed C ∈ valid becomes bad relative to x is upper bounded as

Pr
R′

[
C ∈ badC(R′, x)

]
≤
∑
i=1,2

Pr
R′

 ∑
z∈R′\{x}

µC,fz (wiCf ) > δ/Q

 ≤ 2δ3/2

Q2
(52)

by Markov’s inequality. Since R′ is chosen independently of Â, we have

ER′

 ∑
C∈badC(R′,x)

µÂ,ColFinder
f

C (f(x))


=
∑
R0

∑
C∈badC(R0,x)

µÂ,ColFinder
f

C (f(x)) · Pr
R′

[
R′ = R0

]
=
∑
R0

∑
C

µÂ,ColFinder
f

C (f(x)) · XbadC(R0,x)(C) · Pr
R′

[
R′ = R0

]
=
∑
C

µÂ,ColFinder
f

C (f(x)) ·

∑
R0

XbadC(R0,x)(C) · Pr
R′

[
R′ = R0

]
=
∑
C

µÂ,ColFinder
f

C (f(x)) · Pr
R′

[
C ∈ badC(R′, x)

]
≤
∑
C

µÂ,ColFinder
f

C (f(x)) · (2δ3/2/Q2) ≤ 2δ3/2/Q, (53)

where XbadC(R0,x) is the boolean function such that XbadC(R0,x)(C) = 1 if and only if C ∈ badC(R0, x),

and we used the property that
∑

C µ
Â,ColFinderf
C (f(x)) ≤ Q holds since Â is a Q-query algorithm.

Therefore

Pr
R′

 ∑
C∈badC(R′,x)

µÂ,ColFinder
f

C (f(x)) > δ/Q

 ≤ 2
√
δ (54)

follows from Markov’s inequality. Since the conditions (A) and (C) are independent (note that the
condition (C) does not depend on whether x ∈ R ∩R′),

Pr
R,R′

[x ∈ J2] = Pr
R,R′

[x satisfies (A)] · Pr
R,R′

[x does not satisfy (C)] ≤ (δ4/Q6) · 2
√
δ =

2δ9/2

Q6
(55)

holds for each x ∈ I. Now we can show the following claim in the same way as we showed that
Claim 5.2 holds.

Claim 5.3. It holds that
ER,R′ [|J2|] ≤ 2δ9/2|I|/Q6 (56)

From the above claim and Markov’s inequality, it follows that

Pr
R,R′

[
|J2| ≥

20δ9/2|I|
Q6

]
≤ 0.1 (57)

holds.

29



Finally, we show that |G| becomes large with a high probability: From inequalities (44), (50),
and (57) it follows that

Pr
R,R′

[
|H| < 1

2
· δ

4|I|
Q6
∨ |J1| ≥

10δ9/2|I|
Q6

∨ |J2| ≥
20δ9/2|I|
Q6

]
≤ 0.3. (58)

holds. Therefore, with a probability at least 1− 0.3 = 0.7 it holds that

|G| ≥ |H| − |J1| − |J2| ≥
δ4|I|
2Q6

− 10δ9/2|I|
Q6

− 20δ9/2|I|
Q6

=
δ4|I|
2Q6

(
1− 60

√
δ
)
≥ δ4(1− 60

√
δ)
p22n

2Q6
= θ. (59)

Thus we have that
Pr
R,R′

[|G| ≥ θ] ≥ 0.7, (60)

which completes the proof.

Finally, we show that Proposition 5.1 follows from the above lemmas.

Proof of Proposition 5.1. First, remember that the set Y is defined as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (61)

For each fixed positive integer θ ≤M ≤ 2n, the cardinality of the set

YM := {(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ∈ {0, 1}n, |G| = M} (62)

is equal to (2n −M)! ·
(

2n

M

)
= (2n)!/M !. Thus |Y | is upper bounded as

|Y | =
2n∑

M=dθe

(2n)!

M !
≤ 2n · (2n)!

(dθe)!
(63)

for sufficiently large n. Here we show the following claim.

Claim 5.4. If Q6 ≤ δ4p22n/32, there exists a constant const1 such that Q6 ≥ const1 · 2n/n holds.
We can choose const1 independently of n.

Proof of Claim. By definition of X, |X| ≥ p1(2n)! holds. In addition, from inequality (63), we

have |Y | ≤ 2n · (2n)!
(dθe)! . Moreover, since now we are assuming that Q6 ≤ δ4p22n/32 holds, it follows

that |Y | ≥ 0.7|X| from Lemma 5.2 and Lemma 5.5. Hence we have 2n · (2n)!
(dθe)! ≥ 0.7 · p1(2n)!, which

is equivalent to
2n

0.7p1
≥ dθe!. (64)

Since p1 is a constant and n! ≥ 2n holds for n ≥ 4, there exists a constant const2, which can be
taken independently of n, such that dconst2 ·ne! ≥ 2n/(0.7p1) holds. Now we have dconst2 ·ne ≥ dθe,
which implies that

const2 · n+ 1 ≥ θ = δ4
(

1− 60
√
δ
) p22n

2Q6
(65)

holds. Moreover, since δ and p2 are also constants, there exists a constant const1 that is independent
of n and

Q6 ≥ const1 · 2n/n (66)

holds, which completes the proof of the claim.
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Let const3 := min{δ4p2/32, const1}. Then, from the above Claim, it follows that

Q6 ≥ const3 · 2n/n (67)

holds. Since Q = c
⌈

1
ε

⌉
(max{q, η}+ 1) by definition of Q, we have

c6

⌈
1

ε

⌉6

(max{q, η}+ 1)6 ≥ const3 · 2n/n. (68)

Hence there exists a constant const such that

max{q, η} ≥ const · ε · 2n/6/n1/6 ≥ const · ε · 2n/7 (69)

holds for sufficiently large n, which completes the proof.

6 Impossibility of Reduction from QC-qCRH to CC-qTDP

The goal of this section is to show the following theorem.

Theorem 6.1. There exists no quantum fully-black-box reduction from QC-qCRH to CC-qTDP.

To show this theorem, we define two (families of) oracles that separate QC-qCRH from CC-qTDP.
That is, we define an oracle that implements trapdoor permutations, in addition to an oracle that
finds collisions of functions, and then apply the two oracle technique (Lemma 4.1).

Remark 6.1. The statement of Theorem 6.1 is the strongest result among possible quantum
(fully-black-box) separations of CRH from TDP, since it also excludes reductions from CC-qCRH to
CC-qTDP, reductions from QC-qCRH to QC-qTDP, and reductions from CC-qCRH to QC-qTDP.

6.0.1 Oracles that separates QC-qCRH from CC-qTDP.

Suppose, for each n, we have a permutation gn : {0, 1}n → {0, 1}n and a function fn : {0, 1}n ×
{0, 1}n → {0, 1}n for each n, where fn(z, ·) : {0, 1}n → {0, 1}n is a permutation for each z ∈
{0, 1}n. Define f inv

n : {0, 1}n × {0, 1}n → {0, 1}n by f inv
n (z, ·) := (fn(gn(z), ·))−1 for each z.

Let g := {gn}n∈N, f := {fn}n∈N, and f inv := {f inv
n }n∈N. Define efficient oracle-aided quantum

algorithms (Gen,Eval, Inv) relative to (g, f, f inv) as follows.

1. When we feed Geng with 1n as an input, first td ∈ {0, 1}n is chosen uniformly at random,
and then pk is set as pk := gn(td). Finally Geng outputs (pk, td).

2. Given an input (pk, x) ∈ {0, 1}n × {0, 1}n, Evalf queries (pk, x) to fn, and output fn(pk, x).

3. Given an input (td, x) ∈ {0, 1}n×{0, 1}n, Invf
inv

queries (td, x) to f inv
n , and output f inv

n (td, x).

(Gen,Eval, Inv) implements CC-qTDP relative to (g, f, f inv).

For each fixed g, f and a function λ, define the randomized oracle ColFinderg,f,f
inv

λ in the same

way as we defined ColFinder in Section 5. Note that now an input to ColFinderg,f,f
inv

λ is an oracle-
aided quantum circuit C of which circuit size is at most λ(n), and C may make queries to g, f ,

and f inv. We say that C is a valid input if it computes a function F g
′,f ′,f ′inv

C : {0, 1}m → {0, 1}`

relative to the oracles g′, f ′, and f ′inv, for each permutation g′ and function f ′ such that f ′n(z, ·) is
a permutation over {0, 1}n for each z ∈ {0, 1}n (here we assume that m and ` are independent of
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g′ and f ′). We say that C is invalid if it is not valid. Let valid and invalid denote the set of valid
and invalid circuits, respectively.

We can show that Theorem 6.1 follows from Proposition 6.1 below by applying the two oracle

technique (Lemma 4.1) with Γ1 := {(g, f, f inv)} and Γ2 := {ColFinderg,f,f
inv

λ }(g,f,f inv)∈Γ1,λ∈Λ, where
Λ is the set of polynomials in n, in the same way as Theorem 5.1 follows from Proposition 5.1.

Proposition 6.1. Let λ, q, ε be functions such that 0 ≤ λ(n), q(n) and 0 < ε(n) ≤ 1. Let A be a
q-query oracle-aided quantum algorithm. Suppose that there is a function η(n) ≤ λ(n) such that,
for each circuit C that An queries to ColFinder, C makes at most η(n) queries. If

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y

]
≥ ε(n) (70)

holds for infinitely many n, then there exists a constant const such that

max{q(n), η(n)} ≥ const · ε(n)3 · 2n/42 (71)

holds for infinitely many n. 5

Remark 6.2. In this paper we formally treat only efficient reductions such that the circuit sizes of
reduction algorithms are polynomial in n. However, the statement of Proposition 6.1 also excludes
sub-exponential reductions from CRH to TDP in the quantum setting.

6.0.2 Intuitive Overview of Proof Idea.

Here we explain an intuition of our proof idea. We consider three separate cases. In the first and
second cases, we can show that the claim Proposition 6.1 is reduced to Proposition 5.1. In the third
case, we again use the arguments about randomized compressing schemes to show permutations
are hard to invert.

The first case is the one that A queries td to f inv with a high probability (we denote this event
by TDHIT1). In this case, we can make an oracle-aided quantum query algorithm B1 that inverts
the permutation g. Given pk = g(td) as an input and oracle access to (g,ColFinderg), B1 runs A
simulating oracles f and f inv, and measures a query of A to f inv. Since A queries td to f inv with
a high probability, B1 can obtain td with a high probability, which implies that B1 can invert pk in
g. Thus the claim can be reduced to Proposition 5.1 in this case. From Proposition 5.1, it follows
that B1 has to make many queries, which implies that A also has to make many queries.

The second case is the one that A queries a trapdoor-hitting circuit C to ColFinderg,f,f
inv

with a high probability (we denote this event by TDHIT2). Intuitively, a circuit C ∈ valid is called
trapdoor-hitting if it queries td to f inv with a high probability on input w1

Cg,f,f inv or w2
Cg,f,f inv , where

(w1
Cg,f,f inv , w

2
Cg,f,f inv , u) is the output of ColFinderg,f,f

inv
on input C. In this case, again we can make

an oracle-aided quantum query algorithm B2 that inverts the permutation g. Given pk = g(td) as
an input and oracle access to (g,ColFinderg), B2 runs A simulating oracles f and f inv, and measures

5Strictly speaking, when we feed an input (pk, y) ∈ {0, 1}n×{0, 1}n, A should run a quantum circuit denoted by
A2n in our definition of quantum circuits (see Definition 3.1 and Definition 3.2). However, in this section we abuse
the notation An to denote A2n, for simplicity.
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a query of A to ColFinderg,f,f
inv

. Since A queries a trapdoor-hitting circuit C to ColFinderg,f,f
inv

with a high probability, B2 can obtain a trapdoor-hitting circuit C with a high probability. Once B2

obtains a trapdoor-hitting circuit C, B2 computes the value (w1
Cg,f,f inv , w

2
Cg,f,f inv , u) by simulating

f , f inv and making queries to its own oracle ColFinderg. Then B2 runs C relative to the oracles g,
f , and f inv on inputs w1

Cg,f,f inv and w2
Cg,f,f inv , simulating oracles f and f inv, and measures a query

of C to f inv. Since the trapdoor-hitting circuit C queries td to f inv with a high probability, B2

can obtain td with a high probability, which implies that B2 can invert pk in g. Thus the claim
can be reduced to Proposition 5.1 in this case as well.

The third case is the one that both of TDHIT1 and TDHIT2 do not occur (that is, the case that
¬(TDHIT1∨TDHIT2) occurs). In this case, intuitively, we can construct a randomized compressing
scheme that compresses the truth table of f(pk, ·) without the oracle f inv(td, ·) since the query
magnitude to f inv(td, ·) is almost always small if ¬(TDHIT1 ∨TDHIT2) occurs. In this section, we
only describe the difference between the proof for the third case and the proof in Section 5. The
complete proof of the third case can be found in Section A.

6.0.3 Formal Proof.

Below we give a formal proof. We begin with formally defining trapdoor-hitting circuits, and
the events TDHIT1 and TDHIT2. Let δ be a sufficiently small constant (δ = (1/8)4 suffices),
and c be a sufficiently large positive constant integer (actually c = 2 suffices.) Let Q(n) :=

c
⌈

12
ε(n)

⌉
(max{q(n), η(n)} + 1). (We will use δ, c, and Q(n) for the compressing technique in the

third case, in the almost same way as we did in Section 5.)

Definition of trapdoor-hitting Circuits. For each fixed n, Π, (g, f, f inv), and td, we say that
an oracle-aided quantum circuit C ∈ valid is trapdoor-hitting if∑

z∈{0,1}n
µC,f

inv

(td,z) (w1
Cg,f,f inv ) >

δ

Q(n)
or

∑
z∈{0,1}n

µC,f
inv

(td,z) (w2
Cg,f,f inv ) >

δ

Q(n)
(72)

holds. If C ∈ valid is not trapdoor-hitting, we say that it is a non-trapdoor-hitting circuit.

Definition of the events TDHIT1 and TDHIT2. For each n, we define TDHIT1 as the event
that ∑

z

µA,f
inv

(td,z) (pk, y) >
δ

Q(n)
(73)

occurs. In addition, for each n, we define TDHIT2 as the event that∑
C:trapdoor-hitting

µ
A,ColFinderg,f,f

inv

λ
C (pk, y) >

δ

Q(n)
(74)

occurs. Below we give a proof of Proposition 6.1.

Remark 6.3. Once g, f , td, y, and Πn are fixed, whether or not the events TDHIT1 and TDHIT2

occur is determined, since the left hand side of inequalities (73) and (74) are completely determined.

Proof of Proposition 6.1. Let E denote the event that A inverts the trapdoor permutation, i.e.,
fn(pk, x) = y holds. If Pr[E] ≥ ε(n) holds, then one of the three conditions holds: (1) TDHIT1

occurs with a high probability, i.e., Pr[E∧TDHIT1] ≥ ε(n)/3 holds, (2)TDHIT2 occurs with a high
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probability, i.e., Pr[E ∧ TDHIT2] ≥ ε(n)/3 holds, or (3)¬(TDHIT1 ∨ TDHIT2) occurs with a high
probability, i.e., Pr[E ∧ ¬(TDHIT1 ∨ TDHIT2)] ≥ ε(n)/3 holds. Below we show that the claim of
the proposition holds in each case.

6.0.4 Case 1: The Event TDHIT1 Occurs.

Here we consider the case that TDHIT1 occurs. That is, we consider the case that

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y ∧ TDHIT1

]
≥ ε(n)

3
(75)

holds for infinitely many n. In this case, for each n such that (75) holds, there exist y0 ∈ {0, 1}n
and f̂n such that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), x← A

gn,f̂n,f̂ inv
n ,ColFinderg,f̂,f̂

inv

λ,Π,n
n (pk, y0) :

fn(pk, x) = y0 ∧ TDHIT1

]
≥ ε(n)

3
. (76)

Under the condition that TDHIT1 occurs, we have that∑
z

µA,f̂
inv

(td,z),i0
(pk, y0) >

δ

q(n) ·Q(n)
≥ δ

Q(n)2
(77)

holds for some 1 ≤ i0 ≤ q(n). Below we construct an oracle-aided quantum algorithm B1 relative
to oracles g ∈ Perm({0, 1}n) and ColFindergλ′ (defined in Section 5), where λ′ is a function that
λ′(n) is sufficiently large for each n.

Before describing the algorithm B1, here we explain that we can simulate the oracles f̂ inv and

ColFinderg,f̂ ,f̂
inv

λ , given the truth table of f̂ and oracle access to g and ColFindergλ′ , with knowing
pk but without knowing td.

We begin with explaining how to simulate the oracle f̂ inv. Remember that f̂ inv(z, x) =
(f̂(g(z), ·))−1(x) holds. Thus we can evaluate f̂ inv once by using the truth table of f̂ and making
one query to g.

Next we explain how to simulate the oracle ColFinderg,f̂ ,f̂
inv

λ . Given an oracle-aided circuit C

which may make queries to g, f̂ , and f̂ inv, first we replace f̂ oracle gates in C with the concrete
quantum circuit that computes f̂ , by using the truth table of f̂ . (Note that here we do not care
whether calculations can be done efficiently, and we focus only on the number of queries.) Second,
we replace f̂ inv oracle gates in C with an oracle-aided quantum circuit that computes f̂ inv by using
the truth table of f̂ and making one query to g, in the same way as we simulate the f̂ inv oracle.

Let Cfill denote the resulting circuit. If C is an η-query circuit, then Cfill makes at most 2η-

queries. By definition of Cfill, obviously ColFindergλ′(Cfill) = ColFinderg,f̂ ,f̂
inv

λ (C) holds. Thus we

can simulate the oracles of f̂ inv and ColFinderg,f̂ ,f̂
inv

λ .
Next we give the description of B1.
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Algorithm B1.

1. B1 takes pk ∈ {0, 1}n as an input and is given oracle access to a permutation g ∈ Perm({0, 1}n).
The truth table of f̂ is hardcoded in the description of B1. Set guess←⊥.

2. Repeat the following procedures Q(n)2 times.

(a) Run the algorithm A on input y0 relative to the oracles g, f̂ , f̂ inv, and ColFinderg,f̂ ,f̂
inv

λ

before the i0-th query to f̂ inv, and measure the i0-th query. B1 simulates the oracles

g, f̂ , f̂ inv, and ColFinderg,f̂ ,f̂
inv

λ as we described above. Let (t̃d, z̃) ∈ {0, 1}n × {0, 1}n be
the measurement result.

(b) Query t̃d to g. If pk = g(t̃d) holds, set guess← t̃d.

3. Return guess.

Analysis of B1. The number of queries to each of g and ColFinderg made by B1 is at most
Q(n)2(q(n) + 1) ≤ 2Q(n)3. In addition, for each oracle aided circuit C that A queries to

ColFinderg,f,f̂
inv

λ , the number of queries to each oracle made by C is at most η(n), by assump-
tion. Hence, for each oracle aided circuit Cfill that B1 queries to ColFindergλ′ , the number of queries
to g made by Cfill is at most 2η(n).

From inequality (77), under the condition that TDHIT1 occurs, it follows that the probability
that B1 finds t̃d such that pk = g(t̃d) is at least 1− (1− δ/Q(n)2)Q(n)2 ≥ 1− e−δ. (Here we used

the fact that (1− x)−
1
x ≥ e for 0 < x < 1.) That is, we have that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
1,n (pk) : t̃d = td

∣∣∣∣TDHIT1

]
≥ 1− e−δ (78)

holds for the 2Q(n)3-query algorithm B1. From inequality (76), it follows that

Pr
gn,Πn,

td←{0,1}n
[TDHIT1] ≥ ε(n)

3
(79)

holds for infinitely many n. Therefore we have

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
1,n (pk) : t̃d = td

]
≥ (1− e−δ) · ε(n)

3
(80)

for infinitely many n.
Now we can show that there exists a constant const1 such that

max
{

2Q(n)3, 2η(n)
}
≥ const1 · ε(n) · 2n/7 (81)

holds for infinitely many n in the almost same way as we showed Proposition 5.1.

Moreover, since Q(n) = c
⌈

12
ε(n)

⌉
(max{q(n), η(n)}+ 1), we have that

2c3

⌈
12

ε(n)

⌉3

(max{q(n), η(n)}+ 1)3 ≥ const1 · ε(n) · 2n/7, (82)

which implies that there exists a constant const2 such that

max{q(n), η(n)} ≥ const2 · ε(n)2 · 2n/21 (83)

for infinitely many n. Therefore the claim holds in this case.
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6.0.5 Case 2: The Event TDHIT2 Occurs.

Here we consider the case that TDHIT2 occurs. That is, we consider the case that

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y ∧ TDHIT2

]
≥ ε(n)

3
(84)

holds for infinitely many n. In this case, for each n such that inequality (84) holds, again there
exist y0 ∈ {0, 1}n and f̂n such that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), x← A

gn,f̂n,f̂ inv
n ,ColFinderg,f̂,f̂

inv

λ,Π,n
n (pk, y0) :

fn(pk, x) = y0 ∧ TDHIT2

]
≥ ε(n)

3
, (85)

and we can construct an adversary B that inverts random permutation gn. Under the condition
that TDHIT2 holds, we have that∑

C:trapdoor-hitting

µ
A,ColFinderg,f,f

inv

λ
C,i0

(td, y) >
δ

Q(n) · q(n)
≥ δ

Q(n)2
(86)

holds for some 1 ≤ i0 ≤ q(n). In addition, for each trapdoor-hitting circuit C we have that∑
z∈{0,1}n

µC,f
inv

(td,z),j0
(w1

Cg,f,f inv ) >
δ

(Q(n))2
or

∑
z∈{0,1}n

µC,f
inv

(td,z),j0
(w2

Cg,f,f inv ) >
δ

(Q(n))2
(87)

for some 1 ≤ j0 ≤ η(n), by definition of trapdoor-hitting circuits and since η(n) ≤ Q(n).
Below we construct an oracle-aided quantum algorithm B2 relative to oracles g ∈ Perm({0, 1}n)

and ColFindergλ′ (defined in Section 5), where λ′ is a function that λ′(n) is sufficiently large for
each n. In what follows, without loss of generality we assume that each circuit C that A queries
to ColFinder makes η(n) queries.

Algorithm B2.

1. B2 takes pk ∈ {0, 1}n as an input and is given oracle access to a permutation g ∈ Perm({0, 1}n)
and ColFindergλ′ . The truth table of f̂ is hardcoded in the description of B2. Set guess←⊥.

2. Repeat the following procedures Q(n)2 times.

(a) Run the algorithm A on input y0 relative to the oracles g, f̂ , f̂ inv, and ColFinderg,f̂ ,f̂
inv

λ

before the i0-th query to ColFinderg,f̂ ,f̂
inv

λ , and measure the i0-th query. B2 simulates

the oracles g, f̂ , f̂ inv, and ColFinderg,f̂ ,f̂
inv

λ as we described in the proof of case 1. Let C
be the measurement result.

(b) Query Cfill to ColFindergλ′ to compute ColFinderg,f̂ ,f̂
inv

λ (C) = (w1

C
(g,f̂,f̂ inv)
F

, w2

C
(g,f̂,f̂ inv)
F

, y)

(see p. 34 for the definition of Cfill).
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(c) For 1 ≤ i ≤ η(n), do:

i. Repeat the following procedures (Q(n))2 times.

A. Run the circuit C on the input w1

C
(g,f̂,f̂ inv)
F

relative to g, f̂ , f̂ inv before the i-th

query to f̂ inv, and measure the i-th query. B2 simulates the oracles (g, f̂ , f̂ inv)
as we described in the proof of case 1. Let (t̃d, z) ∈ {0, 1}n × {0, 1}n be the
measurement result.

B. Query t̃d to g. If pk = g(t̃d) holds, set guess← t̃d.

C. Do Steps A and B by using w2

C
(g,f̂,f̂ inv)
F

instead of w1

C
(g,f̂,f̂ inv)
F

.

3. Return guess.

Analysis of B2. First we analyze the number of queries made by B2. Steps (a) and (b) require
at most i0 ≤ q(n) and 1 queries to each oracle, respectively, and the maximum number of queries
made by each circuit Cfill that B2 queries to ColFindergλ′ is at most 2η(n).

In Step A, C makes at most η(n) queries to each oracle. Since B2 has to make one query to g
in order to simulate one evaluation of f̂ inv, B2 makes at most 2η(n) queries in Step A. In Step B,
B2 makes 1 query. Thus, in Step (c), B2 makes at most η(n) · (Q(n))2 · 2 · (2η(n) + 1) ≤ 6Q(n)4

queries.
Therefore B2 makes at most Q(n)2 ·(6Q(n)4 +(q(n)+1)) ≤ 23Q(n)6 queries, and the maximum

number of queries made by each circuit Cfill that B2 queries to ColFindergλ′ is at most 2η(n).
Second we analyze success probability of B2. Since inequality (86) holds, under the condition

that TDHIT2 occurs, the probability that B2 obtains a trapdoor-hitting circuit C in Step 2-(a)
at least once while B2 is running (below we call this event succ1) is lower bounded by 1 − (1 −
δ/Q(n)2)Q(n)2 ≥ 1 − e−δ. Since inequality (87) holds for each trapdoor-hitting circuit, under the
condition that succ1 occurs, the probability that B2 obtains t̃d such that pk = g(t̃d) in Step 2-
(c)-i at least once while B2 is running under the condition that succ1 occurs is lower bounded by
1− (1− δ/(Q(n))2)(Q(n))2 ≥ 1− e−δ. Hence it follows that B2 finds t̃d such that pk = g(t̃d) with
a probability at least (1− e−δ)2, under the condition that TDHIT2 occurs.

Now we have that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
2,n (pk) : t̃d = td

∣∣∣∣TDHIT2

]
≥ (1− e−δ)2 (88)

holds for a 23Q6-query quantum algorithm B2. Moreover, from inequality (85), it follows that

Pr
gn,Πn,

td←{0,1}n
[TDHIT2] >

ε(n)

3
(89)

holds for infinitely many n. Therefore we have that

Pr
gn,Πn

td←{0,1}n

[
pk← gn(td), t̃d← B

gn,ColFinder
g

λ′,Π,n
2,n (pk) : t̃d = td

]
≥ (1− e−δ)2 · ε(n)

3
(90)

holds for infinitely many n. Thus we can show that there exists a constant const1 such that

max
{

23Q(n)6, 2η(n)
}
≥ const1 · ε(n) · 2n/7 (91)
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holds for infinitely many n, in the almost same way as we showed Proposition 5.1.

Moreover, since Q(n) = c
⌈

12
ε(n)

⌉
(max{q(n), η(n)}+ 1), we have that

23c6

⌈
12

ε(n)

⌉6

(max{q(n), η(n)}+ 1)6 ≥ const1 · ε(n) · 2n/7, (92)

which implies that there exists a constant const2 such that

max{q(n), η(n)} ≥ const2 · ε(n)2 · 2n/42 (93)

for infinitely many n. Therefore the claim also holds in this case.

6.0.6 Case 3: The Event ¬(TDHIT1 ∨ TDHIT2) Occurs.

Here we consider the case that ¬(TDHIT1 ∨ TDHIT2) occurs. That is, we consider the case that

Pr
gn,fn,Πn

y,td←{0,1}n

[
pk← gn(td), x← A

gn,fn,f inv
n ,ColFinderg,f,f

inv

λ,Π,n
n (pk, y) :

fn(pk, x) = y ∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
(94)

holds for infinitely many n. In this case, for each n such that inequality (94) holds, there exist
an n-bit string td0 ∈ {0, 1}n, a permutation ĝn ∈ Perm({0, 1}n), and a family of permutations
{f̂(pk, ·)}pk6=pk0

such that

Pr
f̂n(pk0,·),Πn
y←{0,1}n

[
pk0 ← ĝn(td0), x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (pk0, y) :

f̂n(pk0, x) = y ∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
, (95)

Here we can construct a randomized compressing scheme (E,D) that compresses the truth table
of f̂(pk0, ·), and can show that

max{q(n), η(n)} ≥ const · ε(n)3 · 2n/7 (96)

for infinitely many n, which implies that the claim also holds in this case.
The compressing scheme is an analogue of that in Section 5. Below we describe only the

difference between the randomized compressing scheme here and that in Section 5. See Appendix A
for a complete proof.

Difference from the Proof in Section 5. The constructions of E and D are almost the same
as that of Section 5, except that in this section D uses the dummy oracle that always returns ⊥
to simulate the oracle f̂ inv(td0, ·).

The main difference between from the proof in Section 5 is that we take X (the domain of
encoder E) and G (subset of {0, 1}n on which E “forgets” values of permutation f ∈ X) in such
a way that, for any f = f̂(pk0, ·) ∈ X and x ∈ G, (i) Â inverts f(x) in f with probability at least
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2/3 and (ii) the event ¬(TDHIT1 ∨TDHIT2) always occurs with respect to Â, y, and f = f̂(pk0, ·).
We use ε(n)/6 and ε(n)/12, which may not be constants, instead of constants p1 and p2 so that
the condition (ii) will hold. Hence we have to change Lemma 5.1.

Accordingly, the statement of Lemma 5.3 and Lemma 5.4 will be slightly changed: In Lemma 5.3,
it is claimed that CalCy satisfies some suitable properties for good circuits, but in this section CalCy
satisfies the corresponding properties for good and non-trapdoor-hitting circuits. For Lemma 5.4,
the statement will not be changed in this section, but we will make full use of the condition (ii)
above in the proof.

Moreover, since we use ε(n)/6 and ε(n)/12 instead of constants p1 and p2, the factor ε(n)3,
instead of ε(n), appears in the final bound (96).
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A A Complete Proof for the Case 3 of Proposition 6.1.

The goal of this section is to show the following proposition.

Proposition A.1. Suppose that, for infinitely many n, there exist an n-bit string td0 ∈ {0, 1}n, a
permutation ĝn ∈ Perm({0, 1}n), and a family of permutations {f̂n(pk, ·)}pk 6=pk0

such that

Pr
f̂n(pk0,·),Πn
y←{0,1}n

[
pk0 ← ĝn(td0), x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (pk0, y) :

fn(pk0, x) = y ∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
, (97)

holds. Then there exists a constant const such that

max{q(n), η(n)} ≥ const · ε(n)3 · 2n/7 (98)

holds for infinitely many n.
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A.0.1 Preparations.

Here we describe some technical preparations before using the encoding technique. Without loss
of generality we can assume that q(n), η(n), λ(n) ≥ 1 holds, since increasing these numbers does
not decrease the ability of A to invert f . In a similar way as we did in Section 5, we construct
another algorithm Â that iteratively runs A to increase the success probability, and then apply
the encoding technique to Â.

Remember that c is a sufficiently large positive integer in Section 6. Let Bc be an oracle-aided

quantum algorithm that runs as follows, relative to the oracles ĝ, f̂ , f̂ inv, ColFinderĝ,f̂ ,f̂
inv

λ .

1. Take an input y. Set guess←⊥.

2. For i = 1, . . . , cd12/ε(n)e do:

3. Run Aĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂
inv

λ on the input (pk0, y). Let x be the output.

4. Query x to f . If f(x) = y, then set guess← x.

5. End For

6. Return guess.

Remember that Q(n) is defined as cd12/ε(n)e(max{q(n), η(n)}+1) in Section 6. Bc can be regarded

as aQ-query algorithm, and for each quantum circuit C that Bc queries to ColFinderĝ,f̂ ,f̂
inv

λ,n , C makes
at most Q(n) queries.

The following lemma corresponds to Lemma 5.1 in Section 5. The main difference between
Lemma A.1 and Lemma 5.1 is that Lemma A.1 uses ε(n)/6 and ε(n)/12, which may not be
constants, instead of constants p1 and p2, respectively. We use ε(n)/6 and ε(n)/12 since, for y ∈ G
(G is the set we will use in our encoder and decoder) and f = f̂(pk0, ·) ∈ X, so that Bc inverts y
in f = f(pk0, ·) and the event ¬(TDHIT1 ∨ TDHIT2) occurs with respect to Bc, y, and f .

Lemma A.1. For a sufficiently large positive integer c, the following condition is satisfied for
infinitely many n:
Condition. There exist X ⊂ Perm({0, 1}n) and Πn such that |X| ≥ ε(n)

6 · |Perm({0, 1}n)| and

Pr
y←{0,1}n

[
Pr

[
x← B

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
c,n (y) : f̂n(pk0, x) = y

]
≥ 2/3

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

12
(99)

for all f̂n(pk0, ·) ∈ X, where the events TDHIT1 and TDHIT2 are defined with respect to the
algorithm Bc. (Note that whether or not the event ¬(TDHIT1∨TDHIT2) occurs is determined once
y, f̂n(pk0, ·) ĝ, {f̂n(z, ·)}z 6=pk0

, td0, pk0, and Πn are all fixed.)

Proof. Let c be an integer that satisfies e−c ≤ 1/3. In what follows, we show that this c satisfies
the condition.
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First, for each n such that

Pr
f̂n(pk0,·),Πn
y←{0,1}n

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
(100)

holds, there exists Πn such that

Pr
f̂n(pk0,·),
y←{0,1}n

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

3
(101)

holds. Below we fix Πn that satisfies inequality (101) for each n such that inequality (100) holds.
Now we have that

Pr
f̂n(pk0,·)

[
Pr

y←{0,1}n

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

6

]
≥ ε(n)

6
(102)

from inequality (101). In other words, there exists X ⊂ Perm({0, 1}n) such that |X| is lower

bounded by ε(n)
6 |Perm({0, 1}n)| and

Pr
y←{0,1}n

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

6
(103)

holds for all f̂n(pk0, ·) ∈ X. Hence, for each f̂n(pk0, ·) ∈ X, from inequality (103) it follows that

Pr
y←{0,1}n

[
Pr

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y]

≥ ε(n)

12
∧ ¬(TDHIT1 ∨ TDHIT2)

]
≥ ε(n)

12
(104)

For each pair (f(pk0, ·), y) ∈ X × {0, 1}n such that

Pr

[
x← A

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
n (y) : f̂n(pk0, x) = y

]
≥ ε(n)

12

∧ ¬(TDHIT1 ∨ TDHIT2), (105)
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we have that

Pr

[
x← B

ĝn,f̂n,f̂ inv
n ,ColFinderĝ,f̂ ,f̂

inv

λ,Π,n
c,n (y) : f̂n(pk0, x) = y

]
≥ 1−

(
1− ε(n)

12

) 12c
ε(n)

= 1−

((
1− ε(n)

12

)− 1
ε(n)
12

)−c
. (106)

The right hand side of inequality (106) is equal to 1 if ε(n) = 1, and lower bounded by 1− e−c ≥ 2
3

if ε(n) < 1 (here we used the fact that (1 − x)−
1
x ≥ e holds for 0 < x < 1). Therefore the claim

holds.

Then, from the above lemma, it follows that there exists a constant c that satisfies the condition
in Lemma A.1 for infinitely many n. Let us denote Bc by Â. We use the encoding technique to this
Q-query algorithm Â, here Q(n) = cd12/ε(n)e(max{q(n), λ(n)} + 1). Below we fix a sufficiently
large n in addition to Πn andX such that the condition in Lemma A.1 is satisfied. For simplicity, we

write Q, ε, ĝ, f̂ , f̂ inv, and ColFinderĝ,f̂ ,f̂
inv

instead of Q(n), ε(n), ĝn, f̂n, f̂ inv
n , and ColFinderĝ,f̂ ,f̂

inv

λ,Π,n ,

respectively, for simplicity. Moreover, sometimes we write f instead of f̂(pk0, ·).
Below we describe an encoder E and a decoder D that compress elements (truth tables of

permutations) in X. The encoder in this section has to deal with more oracles than the encoder
in Section 5 does, but there is no essential difference between them. The decoder in this section
has to simulate the oracle f̂ inv(td0, ·) = (f̂(pk0, ·))−1 since Â may make queries to it. However,
f̂(pk0, ·) itself is the permutation that our decoder want to invert. Thus we use a dummy oracle
that returns ⊥ for any input instead of f inv(td0, ·). Since the sets X and G will be constructed in
such a way that the event ¬(TDHIT1 ∨TDHIT2) occurs with respect to Â, f = f̂(pk0, ·) ∈ X, and
y ∈ G, Â will not be able to distinguish the dummy oracle and f inv(td0, ·).

A.0.2 Encoder E.

When we feed E with f = f̂(pk0, ·) ∈ X as an input, E first chooses subsets R,R′ ⊂ {0, 1}n
by the following sampling: For each x ∈ {0, 1}n, x is added to R with probability δ3/2/Q2, and
independently added to R′ with probability δ5/2/Q4. (The pair (R,R′) is the random coin of E.)

According to the choice of R′, “bad” inputs (oracle-aided quantum circuits) to ColFinderĝ,f̂ ,f̂
inv

are defined for each x ∈ {0, 1}n as follows. Note that now π1
C and π2

C have been fixed for each C ∈
valid, and the output ColFinderĝ,f̂ ,f̂

inv
(C) = (w1

C ĝ,f̂ ,f̂ inv , w
2
C ĝ,f̂ ,f̂ inv , F

ĝ,f̂ ,f̂ inv

C (w1
C ĝ,f̂ ,f̂ inv )) is uniquely

determined. Since C is an oracle-aided quantum circuit, we can define query magnitude of C
to f = f̂(pk0, ·) on input w1

C ĝ,f̂ ,f̂ inv and w2
C ĝ,f̂ ,f̂ inv at z ∈ {0, 1}n (see Definition 3.5). We say a

quantum circuit C ∈ valid is bad relative to x if∑
z∈R′\{x}

µ
C,f̂(pk0,·)
z (w1

C ĝ,f̂ ,f̂ inv ) >
δ

Q
(107)

or ∑
z∈R′\{x}

µ
C,f̂(pk0,·)
z (w2

C ĝ,f̂ ,f̂ inv ) >
δ

Q
(108)

hold, and otherwise we say C is good relative to x. Let badC(R′, x) denote the set of bad circuits
relative to x for each R′ ⊂ {0, 1}n.
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Next, E construct a set G ⊂ {0, 1}n depending on the input f = f̂(pk0, ·). Let I ⊂ {0, 1}n
be the set of elements x such that Â successfully inverts f(x) = f̂(pk0, x), i.e., I := {x | Pr[x′ ←
Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂

inv

(f̂(pk0, x)) : x′ = x] ≥ 2/3. Then |I| ≥ ε
12 · 2

n holds by definition of X
(Remember that X is chosen in such a way as to satisfy the condition in Lemma A.1). Now, a set
G is defined to be the set of elements x ∈ I that satisfies the following conditions:

Condition for G.

(A) x ∈ R ∩R′.

(B)
∑

z∈R\{x} µ
Â,f̂(pk0,·)
z (f̂(pk0, x)) ≤ δ/Q.

(C)
∑

C∈badC(R′,x) µ
Â,ColFinderĝ,f̂ ,f̂

inv

C (f̂(pk0, x)) ≤ δ/Q.

Finally, E encodes f = f̂(pk0, ·) into (f |{0,1}n\G, f(G)) if |G| ≥ θ, where θ = (1 − 60
√
δ)δ4 ·

( ε
12) · 2n/2Q6. Otherwise E encodes f = f̂(pk0, ·) into ⊥.

In addition, here we formally define the set Y (the range of E) as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (109)

In fact E((R,R′), f) ∈ Y ∪ {⊥} holds for any choice of (R,R′) and any permutation f ∈ X.

A.0.3 Decoder D.

D takes (f̃ , G̃) as input in addition to (R,R′), where G̃ ⊂ {0, 1}n and f̃ is a bijection from a subset
of {0, 1}n onto {0, 1}n \ G̃, and R,R′ are subsets of {0, 1}n. If {0, 1}n \ (the domain of f̃) 6⊂ R∩R′
holds, then D outputs ⊥. Otherwise, D decodes (f̃ , G̃) and reconstruct the truth table of a
permutation f = f̂(pk0, ·) ∈ Perm({0, 1}n) as follows.

For each x in the domain of f̃ , D infers the value f(x) = f̂(pk0, x) as f(x) := f̃(x). For other
elements x ∈ {0, 1}n which is not contained in the domain of f̃ , what D now knows is only that
f(x) is contained in G̃. To determine the remaining part of the truth table of f = f̂(pk0, ·), D
tries to recover the value f−1(y), which is equal to (f̂(pk0, ·))−1(y) = f̂ inv(td0, y), for each y ∈ G̃
by using Â and without the oracle f̂ inv(td0, ·).

In a similar way as we did in Section 5, D prepares oracles hy and SimCFhy which ap-

proximates f(pk0, ·) and ColFinderĝ,f̂ ,f̂
inv

, respectively, and computes the output distribution of

Âĝ,(hy ,f̂pk 6=pk0
),(⊥,f̂ inv

td 6=td0
),SimCFhy

on input y. Here, (hy, f̂pk 6=pk0
) is the oracle that returns hy(x) on

input (pk0, x), and returns f̂(z, x) on input (z, x) such that z 6= pk0. (⊥, f̂ inv
td6=td0

) is the oracle that

returns ⊥ on input (td0, x) and returns f̂ inv(z, x) on input (z, x) such that z 6= td0.
SimCFhy uses a subroutine CalCy that takes (C,w) as an input (C is a valid oracle-aided circuit

that may make queries to ĝ, f̂ , f̂ inv and computes a function F ĝ,f̂ ,f̂
inv

C , and w is an element of

the domain of F ĝ,f̂ ,f̂
inv

C ) and simulates the evaluation of F ĝ,f̂ ,f̂
inv

C (w). D finally infers that f−1(y),

which is equal to (f(pk0, ·))−1(y) = f inv(td0, y), is the element which Âĝ,(hy ,f̂pk 6=pk0
),(⊥,f̂ inv

td 6=td0
),SimCFhy

outputs with probability greater than 1/2. (If there does not exist such an element, then D outputs
⊥.) Below we describe hy, CalCy, and SimCFhy .
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Oracle hy. The oracle (function) hy : {0, 1}n → {0, 1}n is defined by

hy(z) =

{
f̃(z) if z 6∈ R ∩R′,
y otherwise.

(110)

Subroutine CalCy. Let Pcandidate := {h′ ∈ Perm({0, 1}n)) | ∆(h′, hy) ⊂ R∩R′}. CalCy is defined

as the following procedures. For h′ ∈ Pcandidate, let (h′−1, f̂ inv
td 6=td0

) denote the oracle that returns

h′−1(x) on input (td0, x) and returns f̂ inv(z, x) on input (z, x) such that z 6= td0.

1. Take an input (C,w), where C is a valid oracle-aided circuit and w is an element of the
domain of the function FC ,

2. Compute the output distribution of the quantum circuit C
ĝ,(h′,f̂pk 6=pk0

),(h′−1,f̂ inv
td 6=td0

)
on input w

for each h′ ∈ Pcandidate, and find the corresponding output u(C,w, h′) which has the highest

probability (i.e., u(C,w, h′) is the u that maximizes Pr
[
C
ĝ,(h′,f̂pk6=pk0

),(h′−1,f̂ inv
td6=td0

)
(w) = u

]
).

If there are two or more candidates of u(C,w, h′) for h′, set u(C,w, h′) :=⊥.

3. If u(C,w, h′) = u(C,w, h′′) 6=⊥ for all h′, h′′ ∈ Pcandidate, return the value u(C,w, h′). Oth-
erwise return ⊥.

Oracle SimCFhy . SimCFhy is defined as the following procedures:

1. Take an input C, where C is an oracle-aided quantum circuit.

2. Check if C is a valid input by checking whether there exists y ∈ {0, 1}` such that Pr[Cg
′
n,f
′
n,f
′
n

inv

|x, 0, 0〉 = y] > 2/3 holds for any g′n ∈ Perm({0, 1}n), f ′n : {0, 1}n × {0, 1}n → {0, 1}n such
that f ′(z, ·) is a permutation for all z ∈ {0, 1}n, and x ∈ {0, 1}m, and whether the size of C
is less than or equal to λ(n). If C is an invalid input, return ⊥.

3. Compute w̃1
C ĝ,f̂ ,f̂ inv := π1

C(0m).

4. If CalCy(C, w̃
1
C ĝ,f̂ ,f̂ inv ) =⊥, return ⊥.

5. Otherwise, search the minimum t ∈ {0, 1}m such that CalCy(C, w̃
1
C ĝ,f̂ ,f̂ inv ) = CalCy(C, π

2
C(t))

by checking whether CalCy(C, w̃
1
C ĝ,f̂ ,f̂ inv ) = CalCy(C, π

2
C(i)) holds for i = 0, 1, 2, . . . in a

sequential order.

6. If the minimum number t is found, set w̃2
C ĝ,f̂ ,f̂ inv := π2

C(t). Otherwise return ⊥.

7. Return (w̃1
C ĝ,f̂ ,f̂ inv , w̃

2
C ĝ,f̂ ,f̂ inv ,CalCy(C, w̃

1
C ĝ,f̂ ,f̂ inv )).

Note that D is an information theoretic decoder, and we do not care whether CalCy and SimCFhy

run efficiently.
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A.0.4 Analyses.

The following lemma, which corresponds to Lemma A.2 in Section 5, shows that hy, CalCy, and
SimCFhy satisfy some suitable properties. Here we consider the situation that D takes an input
(f̃ , G̃) such that (f̃ , G̃) = E((R,R′), f) for some subsets R,R′ ⊂ {0, 1}n and a permutation f =
f̂(pk0, ·) ∈ {0, 1}n, and tries to recover the value f−1(y) for some y ∈ G̃.

In Lemma 5.3, some suitable properties are satisfied for good circuits. On the other hand,
in Lemma A.2, to satisfy the corresponding suitable properties, a circuit have to be good and
non-trapdoor-hitting (see (72)). This is the main difference between Lemma 5.3 and Lemma A.2.

Lemma A.2. hy, CalCy, and SimCFhy satisfy the following properties.

1. ∆(hy, f) = R ∩R′ \ {f−1(y)} holds.

2. CalCy(C,w) = F ĝ,f̂ ,f̂
inv

C (w) or ⊥ holds for any C ∈ valid and w.

3. For each circuit C ∈ valid which is good relative to f−1(y) and non-trapdoor-hitting, CalCy(C,

w1
C ĝ,f̂ ,f̂ inv ) = F ĝ,f̂ ,f̂

inv

C (w1
C ĝ,f̂ ,f̂ inv ) and CalCy(C,w

2
C ĝ,f̂ ,f̂ inv ) = F ĝ,f̂ ,f̂

inv

C (w2
C ĝ,f̂ ,f̂ inv ) hold.

4. SimCFhy(C) = ColFinderĝ,f̂ ,f̂
inv

(C) holds for each circuit C ∈ valid which is good relative

to f−1(y) and non-trapdoor-hitting. In particular, ∆(ColFinderĝ,f̂ ,f̂
inv
, SimCFhy) ⊂ badC(

R′, f−1(y))∪hitC holds, where hitC is the set of trapdoor-hitting circuits.

Proof. The first property is obviously satisfied by definition of hy.

For the second property, since f = f̂(pk0, ·) ∈ Pcandidate, if CalCy(C,w) 6=⊥ then we have

CalCy(C,w) = u(C,w, f) by definition of CalCy, and u(C,w, f) = F ĝ,f̂ ,f̂
inv

C (w) always holds. Hence
the second property holds.

For the third property, for each h′ ∈ Pcandidate, from Lemma 3.2 we have

Pr
[
C
ĝ,(h′,f̂pk6=pk0

),(h′−1,f̂ inv
td 6=td0

)
(w1

C ĝ,f̂ ,f̂ inv ) = F ĝ,f̂ ,f̂
inv

C (w1
C ĝ,f̂ ,f̂ inv )

]
≥ Pr

[
C ĝ,f̂ ,f̂

inv
(w1

C ĝ,f̂ ,f̂ inv ) = F ĝ,f̂ ,f̂
inv

C (w1
C ĝ,f̂ ,f̂ inv )

]
−
∥∥∥C ĝ,f̂ ,f̂ inv |w1

C ĝ,f̂ ,f̂ inv , 0, 0〉 − C ĝ,(h
′,f̂pk6=pk0

),(h′−1,f̂ inv
td6=td0

) |w1
C ĝ,f̂ ,f̂ inv , 0, 0〉

∥∥∥ . (111)

From the swapping lemma (Lemma 3.3) it follows that∥∥∥C ĝ,f̂ ,f̂ inv |w1
C ĝ,f̂ ,f̂ inv , 0, 0〉 − C ĝ,(h

′,f̂pk 6=pk0
),(h′−1,f̂ inv

td 6=td0
) |w1

C ĝ,f̂ ,f̂ inv , 0, 0〉
∥∥∥

≤ 2

√
Q

∑
z∈∆(f(pk0,·),h′)

µ
C,f̂(pk0,·)
z (w1

C ĝ,f̂ ,f̂ inv )

+2

√
Q

∑
z∈{0,1}n

µ
C,f̂ inv(td0,·)
z (w1

C ĝ,f̂ ,f̂
inv ). (112)

Since ∆(f(pk0, ·), h′) = ∆(f, h′) ⊂ R∩R′\{f−1(y)} ⊂ R′\{f−1(y)} holds for all h′ ∈ Pcandidate, and
C is good relative to f−1(y) and non-trapdoor-hitting, the right hand side of the above inequality
is upper bounded by 2

√
δ + 2

√
δ = 4

√
δ Thus, for a sufficiently small δ we have

Pr
[
C
ĝ,(h′,f̂pk 6=pk0

),(h′−1,f̂ inv
td 6=td0

)
(w1

C ĝ,f̂ ,f̂ inv ) = F ĝ,f̂ ,f̂
inv

C (w1
C ĝ,f̂ ,f̂ inv )

]
≥ 2

3
− 4
√
δ >

1

2
, (113)
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which implies that u(C,w1
C ĝ,f̂ ,f̂ inv , h

′) = F ĝ,f̂ ,f̂
inv

C (w1
C ĝ,f̂ ,f̂ inv ) holds for every h′ ∈ Pcandidate. Thus

CalCy(C,w
1
C ĝ,f̂ ,f̂ inv ) = F ĝ,f̂ ,f̂

inv

C (w1
C ĝ,f̂ ,f̂ inv ) holds if C is good relative to f−1(y) and non-trapdoor-

hitting. It can be shown that the corresponding property also holds for w2
C ĝ,f̂ ,f̂ inv in the same

way.
The fourth property follows from the definition of SimCFhy , the second property, and the third

property.

The following lemma shows that the decoding always succeeds if the encoding succeeds. In the
proof below, we make full use of the condition that the sets X and G are constructed in such a
way that the event ¬(TDHIT1 ∨TDHIT2) occurs with respect to Â, f = f̂(pk0, ·) ∈ X, and y ∈ G.

Lemma A.3. If E((R,R′), f) 6=⊥, then D((R,R′), E((R,R′), f)) = f holds for each f = f̂(pk0, ·) ∈
X.

Proof of Lemma 5.4. Let f̃ := f |{0,1}n\G and G̃ := f(G). We show that D can correctly recover

x = f−1(y) for each y ∈ G̃.

We apply the swapping lemma (Lemma 3.3) to the oracle tuples (ĝ, f̂ , f̂ inv,ColFinderĝ,f̂ ,f̂
inv

)
and (ĝ, (hy, f̂pk 6=pk0

), (⊥, f̂ inv
td 6=td0

),SimCFhy). Then we have∥∥∥∥Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂
inv

n |f(x), 0, 0〉 − Â
ĝ,(hy ,f̂pk6=pk0

),(⊥,f̂ inv
td6=td0

),SimCFhy

n |f(x), 0, 0〉
∥∥∥∥

≤ 2

√√√√Q
∑

z∈∆(f̂(pk0,·),hy)

µ
Â,f̂(pk0,·)
z (f(x)) + 2

√
Q

∑
z∈{0,1}n

µ
Â,f̂ inv(td0,·)
z (f(x))

+ 2

√√√√Q
∑

C∈∆(ColFinderĝ,f̂ ,f̂
inv
,SimCFhy )

µÂ,ColFinder
ĝ,f̂ ,f̂ inv

C (f(x)). (114)

Since ∆(f̂(pk0, ·), hy) = ∆(f, hy) = R ∩R′ \ {f−1(y)} ⊂ R \ {f−1(y)} = R \ {x} hold, the first
term of the right hand side of inequality (114) is upper bounded by

2

√
Q

∑
z∈R\{x}

µ
Â,f̂(pk0,·)
z (f(x)), (115)

which is upper bounded by 2
√
δ due to the condition (B) (see p. 47)

In addition, since TDHIT1 does not occur for f = f̂(pk0, ·) ∈ X and y ∈ G̃ by definition of X
and G̃, the second term of the right hand side of inequality (114) is also upper bounded by 2

√
δ.

Moreover, since ∆(ColFinderĝ,f̂ ,f̂
inv
, SimCFhy) ⊂ badC(R′, f−1(y)) ∪ hitC = badC(R′, x) ∪ hitC

holds from Lemma A.2, it follows that∑
C∈∆(ColFinderĝ,f̂ ,f̂

inv
,SimCFhy )

µÂ,ColFinder
ĝ,f̂ ,f̂ inv

C (f(x))

≤
∑

C∈badC(R′,x)

µÂ,ColFinder
ĝ,f̂ ,f̂ inv

C (f(x)) +
∑

C∈hitC
µÂ,ColFinder

ĝ,f̂ ,f̂ inv

C (f(x))

≤ δ

Q
+
δ

Q
, (116)
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here we used the condition (C) (see p. 47) and that TDHIT2 does not occur for f = f̂(pk0, ·) ∈ X
and x ∈ G by definition of X and G for the last inequality. Hence the third term of the right hand
side of eq. (114) is upper bounded by 8

√
δ.

Thus, eventually we have∥∥∥∥Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂
inv

n |f(x), 0, 0〉

−Â
ĝ,(hy ,f̂pk 6=pk0

),(⊥,f̂ inv
td 6=td0

),SimCFhy

n |f(x), 0, 0〉
∥∥∥∥ ≤ 8

√
δ. (117)

Finally, from Lemma 3.2, for sufficiently small δ it follows that

Pr
[
Âĝ,(hy ,f̂pk6=pk0

),(⊥,f̂ inv
td 6=td0

),SimCFhy
(f(x)) = x

]
≥ Pr

[
Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂

inv

(f(x)) = x

]
−
∥∥∥∥Âĝ,f̂ ,f̂ inv,ColFinderĝ,f̂ ,f̂

inv

n |f(x), 0, 0〉

−Â
ĝ,(hy ,f̂pk6=pk0

),(⊥,f̂ inv
td 6=td0

),SimCFhy

n |f(x), 0, 0〉
∥∥∥∥

≥ 2/3− 8
√
δ > 1/2, (118)

which implies that D correctly recovers x = f−1(y).

The following lemma shows that our E and D works well with a constant probability.

Lemma A.4. If Q6 ≤ δ4 · ε12 · 2
n/32,

Pr
(R,R′)

[
D((R,R′), E((R,R′), f) = f

]
≥ 0.7 (119)

holds for each f = f̂(pk0, ·) ∈ X.

Since it can be proven in the almost same way as Lemma 5.5 is proven (by replacing ε(n)
6 and

ε(n)
12 with p1 and p2, respectively), here we omit the proof of Lemma A.4.

Finally, we show that Proposition A.1 follows from the above lemmas.

Proof of Proposition A.1. First, remember that the set Y is defined as

Y :=
{

(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ⊂ {0, 1}n, |G| ≥ θ
}
. (120)

For each fixed positive integer θ ≤M ≤ 2n, the cardinality of the set

YM := {(f |{0,1}n\G, f(G)) | f ∈ Perm({0, 1}n), G ∈ {0, 1}n, |G| = M} (121)

is equal to (2n −M)! ·
(

2n

M

)
= (2n)!/M !. Thus |Y | is upper bounded as

|Y | =
2n∑

M=dθe

(2n)!

M !
≤ 2n · (2n)!

(dθe)!
(122)

for sufficiently large n. Here we show the following claim.
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Claim A.1. If Q6 ≤ δ4 · ε12 · 2
n/32, there exists a constant const1 such that Q6 ≥ const1 · ε2 · 2n/n

holds. We can choose const1 independently of n.

Proof of Claim. By definition of X, |X| ≥ ε
6 · (2

n)! holds. In addition, from inequality (122), we

have |Y | ≤ 2n · (2n)!
(dθe)! . Moreover, since now we are assuming that Q6 ≤ δ4 · ε12 ·2

n/32 holds, it follows

that |Y | ≥ 0.7|X| from Lemma 5.2 and Lemma A.4. Hence we have 2n · (2n)!
(dθe)! ≥ 0.7 · ε6 · (2

n)!, which
is equivalent to

6 · 2n

0.7 · ε
≥ dθe!. (123)

Since n! ≥ 2n holds for n ≥ 4, we have that⌈
6 · n

0.7 · ε

⌉
! ≥ 6 · 2n

0.7 · ε
(124)

for sufficiently large n. Hence we have d 6·n
0.7·εe ≥ dθe, which implies that

6n

0.7 · ε
+ 1 ≥ θ = δ4

(
1− 60

√
δ
)
· ε

12
· 2n

2Q6
(125)

holds. Moreover, since δ is a constant, there exists a constant const1 that is independent of n and

Q6 ≥ const1 · ε2 · 2n/n (126)

holds, which completes the proof of the claim.

From the above claim, it follows that there exists a constant const2 such that

Q6 ≥ min
{
δ4 · ε

12
· 2n/32, const1 · ε2 · 2n/n

}
≥ const2 · ε22n/n (127)

holds.
Since Q = c

⌈
12
ε

⌉
(max{q, η}+ 1) by definition of Q and 1

ε ≥ 1, we have

c6

⌈
12

ε

⌉6

(max{q, s}+ 1)6 ≥ const2 · ε2 · 2n/n. (128)

Hence there exists a constant const such that

max{q, η} ≥ const · ε3 · 2n/7 (129)

holds for sufficiently large n, which completes the proof.
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