
More Efficient Lattice PRFs from Keyed Pseudorandom

Synthesizers∗

Hart Montgomery
hmontgomery@us.fujitsu.com

Fujitsu Laboratories of America

November 5, 2018

Abstract

We develop new constructions of lattice-based PRFs using keyed pseudorandom synthe-
sizers. We generalize all of the known ‘basic’ parallel lattice-based PRFs–those of [BPR12],
[BLMR13], and [BP14]–to build highly parallel lattice-based PRFs with smaller modulus
(and thus better reductions from worst-case lattice problems) while still maintaining com-
putational efficiency asymptotically equal to the fastest known lattice-based PRFs at only
the cost of larger key sizes.

In particular, we build several parallel (in NC2) lattice-based PRFs with modulus inde-
pendent of the number of PRF input bits based on both standard LWE and ring LWE.
Our modulus for these PRFs is just O

(
mf(m)

)
for lattice dimension m and any function

f (m) ∈ ω (1). The only known parallel construction of a lattice-based PRF with such
a small modulus is a construction from Banerjee’s thesis [Ban15], and some of our paral-
lel PRFs with equivalently small modulus have smaller key sizes and are very slightly faster
(when using FFT multiplication). These PRFs also asymptotically match the computational
efficiency of the most efficient PRFs built from any LWE- or ring LWE-based assumptions
known1, respectively, and concretely require less computation per output than any known
parallel lattice-based PRFs (again when using FFT multiplication).

We additionally use our techniques to build other efficient PRFs with very low circuit com-
plexity (but higher modulus) which improve known results on highly parallel lattice PRFs.
For instance, for input length λ, we show that there exists a ring LWE-based PRF in NC1

with modulus proportional to mλc

for any c ∈ (0, 1). Constructions from lattices with this
circuit depth were only previously known from larger moduli.

1 Introduction

Pseudorandom functions, first defined by Goldreich, Goldwasser, and Micali [GGM84], are one
of the most fundamental building blocks in cryptography. They are used for a wide variety of
cryptographic applications, including encryption, message integrity, signatures, key derivation,
user authentication, and much more. PRFs are important in computational complexity as well
since they can be used to build lower bounds in learning theory.

In a nutshell, a PRF is a function that is indistinguisahble from a truly random function2.
The most efficient PRFs are built from block ciphers like AES and security is based on ad-hoc
interactive assumptions. It is a longstanding open problem to construct PRFs that are efficient

∗An edited version of this paper appears in Indocrypt 2018.
1At least, at the time of initial publication. We discuss concurrent work in the introduction.
2We give a precise definition in section 2.

1



as these block ciphers from offline assumptions like factoring or the decisional Diffie-Hellman
problem. The history of PRFs based on standard, offline assumptions is long and filled with
many interesting constructions [NR97]. For a full treatment of PRFs and their applications, we
highly recommend reading [BR17]. In this work, however, we specifically focus on lattice-based
PRFs.

While there are many desirable properties of good PRFs, three that immediately come to
mind are speed, parallelization, and cryptographic hardness. Speed speaks for itself: all other
things equal, faster PRFs are better. Parallelization is also another desired quality: it means that
PRFs can practically be computed more quickly and has interesting implications for complexity
theory [BFKL94]. Of course, PRFs that are harder to break are also more desirable. Throughout
this paper we will examine all of these PRF qualities.

Learning with Errors. In this work, we base our PRFs on the hardness of the learning with
errors (LWE) problem [Reg05], which is the most commonly used lattice problem in cryptog-
raphy3. Informally, the LWE problem is, for a uniformly random fixed key s ∈ Znq , random
samples ai ← Znq , and discrete Gaussian noise terms δi, to distinguish from random the distri-
bution consisting of samples of the form (ai,ai

ᵀ · s + δi mod q).
Regev [Reg05] showed that solving the LWE problem is as hard as finding approximate

solutions to certain worst-case lattice problems. The quality of the approximate solution (and
thus the hardness of the problem solved) was proportional to the ratio of the modulus q to the
width of the Gaussian noise terms. Most LWE-based cryptosystems today rely on the hardness
of an LWE instance with a small, polynomial Gaussian noise distribution, so the hardness of the
scheme is typically directly tied to the modulus q. Thus, decreasing the modulus of LWE-based
cryptosystems is an important goal across many areas of lattice cryptography4.

1.1 Lattice-Based PRFs

It has been known how to build completely sequential (and thus high depth) PRFs from LWE
by using generic constructions like [GGM84] since the original LWE result [Reg05] was pub-
lished. For instance, it is possible to build a very simple lattice-based PRF using the [GGM84]
construction by treating LWE as a PRG. This simple construction also has the added benefit of
a polynomially sized modulus q. However, these PRFs from generic constructions are maximally
sequential and very inefficient, since LWE noise (i.e. Gaussians) has to be sampled at every step
in the generic construction.

The study of PRFs based on lattice problems truly began in 2011, when Banerjee, Peikert,
and Rosen [BPR12] invented the learning with rounding (LWR) problem, reduced to it from
LWE, and showed that it could be used to build efficient and highly parallel PRFs. The authors
built three new PRFs using the new rounding technique: one using the GGM construction, one
using pseudorandom synthesizers, and one direct construction. The ring-based direct construc-
tion had the nice property that it could be implemented in NC1, even if it was slightly less
efficient than the generic constructions.

In a follow-up work, Boneh, Lewi, Montgomery, and Raghunathan [BLMR13] invented the
first key homomorphic PRF in the standard model (from any assumption) using lattices. While
their PRF was not extremely efficient, key homomorphic PRFs have a wide variety of applica-
tions, and their techniques (in particular, the use of LWE samples with low noise) turned out
to be useful in other applications.

3Please see section 2 for a comprehensive definition of and discussion on the LWE problem.
4For a full treatment of lattice and LWE complexity, we strongly recommend [MG12]

2



In a follow-up work, Banerjee and Peikert [BP14] developed a general family of key homo-
morphic PRFs that dramatically improved upon the PRFs in [BLMR13] and even were (for
certain choices of parameters) competitive with the non-key homomorphic PRFs of [BPR12] in
terms of performance. The authors used a clever tree structure and rigorous analysis to carefully
schedule ‘bit decomposition’ that allowed for good performance while still managing to retain
key homomorphism.

In his Ph.D. thesis, Banerjee [Ban15] further improved the pseudorandom synthesizer con-
struction technique from [BPR12], which allowed for tighter asymptotic constructions than pre-
viously known5. Around the same time, Döttling and Schröder [DS15] showed how to use their
general technique of on-the-fly adaptation to also build LWE-based PRFs with relatively small
moduli from low-depth circuits.

Concurrent Work. Very recently, and in a work concurrent with (and independent from)
ours, Jager, Kurek, and Pan [JKP18] introduce all-prefix universal hash functions and show
how to use these in conjunction with the augmented cascade construction [BMR10] to build
efficient lattice-based PRFs with slighty superpolynomial modulus. Their LWE-based PRF
can be thought of as a much more efficient version of [DS15]. We do not fully analyze this
construction here, but it is likely more efficient than ours (although it does not have quite as
small of a modulus as some of our constructions).

Application-Focused Lattice PRFs. Lattice PRFs have also been used for a number ap-
plication specific PRFs, including puncturable PRFs [GGM84], constrained PRFs [BW13]
[DKW16] (including key homomorphic constrained PRFs [BFP+15] [BV15]), PRFs secure
against related key attacks [LMR14], and PRFs that hide constraints or functions [CC17]
[BKM17] [BTVW17] [KW17] [PS17]. It is not known how to achieve many of these results
from standard, non-lattice assumptions. Moreover, many of these works utilize very strong ver-
sions of the LWE assumption. It is our hope that the techniques introduced in this paper can
be used to improve the efficiency and assumptions of some of these works.

1.2 Pseudorandom Synthesizers and Lattices

Pseudorandom synthesizers were first invented by Naor and Reingold in their famous work [NR95]
as a way to construct PRFs with low circuit depth. The first synthesizer PRF constructions
from lattices were introduced in [BPR12].

It can be cumbersome to define synthesizer PRFs in a way that is immediately understand-
able, so we present an 8-bit version of the synthesizer PRF from [BPR12]. Let the matrices
Si,b ∈ Zm×mq for i ∈ [1, ..., 8] and b ∈ {0, 1} be sampled uniformly at random. The origi-
nal lattice-based synthesizer construction of [BPR12] had the following form on an 8-bit input
x = x1...x8:⌊⌊

bS1,x1 · S2,x2ep2 · bS3,x3 · S4,x4ep2
⌉
p1
·
⌊
bS5,x5 · S6,x6ep2 · bS7,x7 · S8,x8ep2

⌉
p1

⌉
p0

Note that this construction has the unfortunate requirement that q >> p2 >> p1 >> p0. In his
thesis [Ban15], Banerjee showed how to eliminate this ‘tower of moduli’ requirement from this
synthesizer construction by using rectangular matrices. To illustrate this, suppose we set our
modulus q and our rounding parameter p such that q = p2. Let the matrices Si,b for i ∈ [1, ..., 4]

5To our knowledge this result has not been formally published in conference proceedings.

3



and b ∈ {0, 1} now be defined such that Si,b ∈ Zm×2m
q . We can take the product of the transpose

of one of these matrices with another and round in the following way: Si,bi
ᵀ

 · [ Si+1,bi+1

]
p

= T ∈ Z2m×2m
p

for some matrix T that will be indistinguishable from random by the hardness of LWR. In
addition, note that T has enough entropy to produce a new, uniformly random matrix S′ ∈
Zm×2m
q . In fact, we can just set

S′ = T ·
[

Im
qIm

]
to trivially extract this randomness. Suppose we now consider a 4-bit input x = x1...x4: if
we put this all together, we can present a four-bit version of the PRF based on the improved
synthesizer from [Ban15] in the following way:


 S1,x1

ᵀ

 · [ S2,x2

]
p

·
[

Im
qIm

] ·

 S3,x3

ᵀ

 · [ S4,x4

]
p

·
[

Im
qIm

]
ᵀ

p

·
[

Im
qIm

]

This new synthesizer construction from [Ban15] was the first lattice-based PRF construction
where the modulus q was independent of the input length λ of the PRF.

1.3 Our Contributions

In this paper, we introduce a new, general technique that we use to build new lattice-based
PRFs by applying a pseudorandom synthesizer structure [NR95] to the three main generic
PRF constructions of [BPR12], [BLMR13], and [BP14]. While our constructions are not key
homomorphic, they are either as efficient or more efficient and have as small or smaller modulus
(and thus better reductions to worst-case lattice problems) than existing lattice-based PRFs.
For lattice-based PRFs with any degree of parallelism, only the synthesizer-based PRF from
Banerjee’s thesis [Ban15] matches the most efficient of our constructions asymptotically, and
our constructions are (slightly) more efficient in practice assuming we use fast Fourier transform
multiplication6.

In order to illustrate our construction technique, we will start by considering the [BLMR13]
PRF FBLMR. Recall that FBLMR uses two public matrices A0,A1 ∈ Zm×m2 where the entries
of these matrices are sampled uniformly at random from {0, 1} such that A0 and A1 are full-
rank. The dimension m is derived from the security parameter, and the key for the PRF is a
single vector k ∈ Zmq and its input domain is {0, 1}λ. We also need an integer modulus q and a

rounding parameter p. The PRF at the point x = x1 · · ·xλ ∈ {0, 1}λ is defined as

FBLMR(k, x) =

⌈
λ∏
i=1

Axi · k

⌋
p

(1.1)

6See [Fat06] and especially [KSN+04] for a discussion of integer multiplication algorithms.

4



where d·cp denotes the standard rounding operation7. FBLMR is both key homomorphic and

massively parallelizable (in NC2) which is quite desirable. However the construction is quite
inefficient, and the modulus q required for the PRF to be secure is enormous (log q scales linearly
with the input length λ), meaning that the worst-case lattice problems that we can reduce to
the PRF require quite strong assumptions. The work of [BP14] aims to alleviate some of these
problems by cleverly inserting some ‘bit decomposition’ operations into the evaluation of the
PRF, getting an overall tree structure that results in more efficient PRFs with better modulus.

Many years ago, the cascade construction [BCK96] and the augmented cascade construc-
tion [BMR10] were used to build more efficient PRFs by adding ‘key material’ at every layer of
the PRF. This generally increased the key size of the resulting PRFs, but increased efficiency
and (sometimes) allowed for weaker assumptions. To this point, no such ideas have been applied
to PRFs based on lattice assumptions. While we cannot directly utilize these constructions for
lattices, we can apply their core idea–add ‘key material’ at every layer of the construction–to
build more efficient PRFs.

To this end, suppose we view FBLMR in tree form and add an additional secret key at every
layer of the tree (up to log λ total). In order to do this efficiently, we use a pseudorandom
synthesizer construction [NR95]. Pseudorandom synthesizers, which we define in section 3, are
efficient ways to construct parallelizable PRFs.

In our work, we construct a keyed synthesizer S` which has a square matrix S ∈ Zm×mq

with entries sampled uniformly at random over Zq as a key. Our synthesizer is parameterized
by a parallelization factor ` and uses ` ‘lists’ of binary random matrices Ai,xi ∈ Zm×m2 , where
i ∈ [1, `] is the list indicator and xi ∈ [1, ki] is the index of a particular matrix Ai,xi in the list
i. Each output block of our synthesizer S` looks like the following:

S` (x1, ...x`)
def
=

⌈[∏̀
i=1

Ai,xi

]
S

⌋
p

S` looks very much like FBLMR with input length `, although there are some key differences that
we need in order for the synthesizer construction to efficiently work. We rigorously define and
prove the security of this synthesiser S` later in the paper, and show how the pseudorandom syn-
thesizer construction of [NR95] can be used to turn various versions of this synthesizer into PRFs.
The proof of security borrows elements from the proofs of [BLMR13] and especially [BP14].

Now suppose that we set our rounding parameter p = 2. This will turn out to be a practical
parameter choice. We next select binary matrices Ai,b ∈ Zm×m2 uniformly at random for i ∈
[1, ..., 8] and b ∈ {0, 1} and keys S1,S2,S3 ∈ Zm×mq uniformly at random. Our synthesizer S2

can be used to build what we call the PRF F 2 which, on 8-bit input x = x1...x8, gives us the
following construction:⌊⌊

bA1,x1A2,x2S1e2 · bA3,x3A4,x4S1e2 S2

⌉
2
· (1.2)⌊

bA5,x5A6,x6S1e2 · bA7,x7A8,x8S1e2 S2

⌉
2
S3

⌉
2

Note that each rounded subset product (i.e. bA1,x1A2,x2S1e2) evaluates to a new random-looking
matrix over Zm×m2 (assuming the nonuniform LWE assumption from [BLMR13]), so after one
stage of (parallel) evaluation, the above 8-bit PRF looks like the following:⌊⌊

Ãx1,x2Ãx3,x4S2

⌉
2
·
⌊
Ãx5,x6Ãx7,x8S2

⌉
2
S3

⌉
2

7d·cp : Zq → Zp as dxcp = i, where i · bq/pc is the largest multiple of bq/pc that does not exceed x

5



for random-looking matrices Ãxi,xi+1 ∈ Zm×m2 that depend on the bits xi and xi+1. We can also
generalize and pick higher values of `, some of which will have interesting ramifications. Below
we show a (abbreviated) 16-bit construction of a PRF F 4 using S4:⌊

bA1,x1A2,x2A3,x3A4,x4S1e2 · bA5,x5A6,x6A7,x7A8,x8S1e2 · b·e2 · b·e2 · S2

⌉
2

The inputs to each layer of our PRFs are new, random-looking binary matrices, which allows our
synthesizer to compose nicely. Right away, it should be obvious that our synthesizer offers some
advantages over the basic synthesizer construction of [BPR12]. Most obviously, our rounding
parameter and modulus can be independent of the PRF length. However, some of the compar-
isons are a bit more nuanced. While we can build PRFs from (almost) any choice of `–including
PRFs that include synthesizers with different choices of `–we examine one particular choice in
section 5 which we briefly discuss here.

PRF F 2 from Synthesizer S2. Our PRF F 2, which we showed for 8 bits in equation 1.2,
is one of the simplest PRFs we can build, but also one of the most efficient. F 2 has modulus
O
(
mω(1)

)
8 which is currently the (asymptotically) smallest known modulus for any lattice PRF

that uses rounding. We note that this modulus is independent of the input length λ of the
PRF. F 2 is as asymptotically efficient in terms of output per work as the naive pseudorandom
synthesizer of [BPR12], which is currently the most efficient known PRF in this regard from
standard lattices. Additionally, F 2 can be computed (practically, even) in circuit class NC2,
meaning that it is highly parallelizable. The only drawback of F 2 is the relatively large key size.

F 2 is the second (after that in [Ban15]) known lattice PRF with modulus mω(1) independent
of the number of input bits of the PRF with any sublinear circuit depth and also happens to
also be one of the most efficient known lattice PRF (from standard lattices) in terms of output
per work.

Synthesizing [BPR12]. We can also apply pseudorandom synthesizers to other lattice PRF
constructions. The logical place to continue is, of course, the original lattice PRF construc-
tion: [BPR12]. There are substantial differences between [BLMR13] and [BPR12], the largest of
which is that FBLMR uses a LWE sample subset-product structure while the direct PRF FBPR
from [BPR12] uses a key subset-product structure. However, it turns out we can still build
interesting PRFs by synthesizing FBPR with a few minor tricks.

In this vein, we next construct a keyed synthesizer K` inspired by (and almost identical
to) FBPR which has a square matrix A ∈ Zm×mq with entries sampled uniformly at random
over Zq as a key. K` is parameterized by a parallelization factor ` and uses ` ‘lists’ of random
matrices Si,xi ∈ Zm×mp for some superpolynomially large p, where i ∈ [1, `] is the list indicator
and xi ∈ [1, ki] is the index of a particular matrix Si,xi in the list i. Each output block of K`

looks like the following:

K` (x1, ...x`)
def
=

⌈
A

[∏̀
i=1

Si,xi

]⌋
p

(1.3)

We chose to make the keys uniformly random in order to make the synthesizer compose prop-
erly when used to construct PRFs9. Of course, proving synthesizer security requires that LWE
problem is hard with superpolynomially large uniform key and noise, but this is a very straight-
forward (and probably known in folklore) result. We prove this as a part of our analysis. In

8We use this as shorthand for O
(
mf(m)

)
for any function f (m) ∈ ω (1). This is technically incorrect, but a

nice convenience and is common in LWR literature.
9There are other choices available for the key distribution here–perhaps even more efficient ones.

6



the meantime, we again demonstrate how such a synthesizer would look by spelling out an 8-bit
version of K`.

Suppose we select ‘public samples’ A1,A2,A3 ∈ Zm×mq uniformly at random and ‘secret’
matrices Si,b ∈ Zm×mp uniformly at random for i ∈ [1, ..., 8] and b ∈ {0, 1}. K2 can be used to
build a PRF that we refer to as P 2, which, on 8-bit input x = x1...x8, gives us the following
construction (where all computations are performed mod q):⌊

A1

⌊
A2 bA3S1,x1S2,x2ep · bA3S3,x3S4,x4ep

⌉
p
· (1.4)

⌊
A2 bA3S5,x5S6,x6ep · bA3S7,x7S8,x8ep

⌉
p

⌉
p

As is evident from the equations, one can view K` as a sort of key-sample flip-flop with S`. How-
ever, this relationship is not exact, since the hardness results of LWE with different distributions
of keys and samples are not equivalent.

Moving to Rings. While PRFs derived from K` (which we will call P `) are a little bit more
complicated and slightly less efficient than those built from S` (although this doesn’t show up
asymptotically under Õ (·) notation), they have one huge advantage over constructions from
S`: they admit ring instantiations. As in [BPR12], we can almost immediately derive a ring
form of K`, which we call KR,`, and a corresponding PRF PR,`. These ring PRFs allow us to
match the efficiency of all previously known ring LWE-based PRFs while mainaining a slightly
superpolynomial modulus at the cost of only more key size.

PRFs P 2 and PR,2 from Synthesizers K2 and KR,2. Our PRF P 2, which we showed for
8 bits in equation 1.4, turns out to have parameters almost exactly asymptotically equivalent
to F 2, including modulus O

(
mω(1)

)
. The only difference is that P 2 has large secret keys, while

F 2 has large public parameters.
We see substantial improvements when we move to rings. The PRF PR,2 is the second (after

that in [Ban15]) known PRF based on the hardness of ring LWE with modulus mω(1) (where m
is now the degree of the polynomial of the ring R) with any sublinear circuit depth. In addition,
PR,2 matches the most efficient known ring LWE-based PRFs (like those of [BP14]) in terms of
asymptotic computational efficiency. Again, the only drawback is larger key sizes.

Synthesizing [BP14]. We can also build what we call tree-based synthesizers, which are
based on and look almost identical to the PRFs from [BP14]. We call these synthesizers T`
and TR,` for the standard and ring-based versions, respectively. While the tree constructions
are a bit too complicated to explain here, we note that we can get parameters asymptotically
equivalent to what we have achieved earlier for simple PRFs based on T2 and TR,2 (which we
call B2 and BR,2, respectively).

The main advantage of these tree-based synthesizers is that we can potentially build many
more interesting PRFs than we otherwise could with the simpler synthesizers. We have yet
to fully explore the potential of these synthesizers, but we think that there might be many
interesting applications.

Moving to Higher `. In our PRF constructions, ` essentially acts as a parallelization parameter–
it can be thought of as a ‘locality’ parameter for the synthesizer. While we do not seem to gain
anything in the integer lattice setting from setting ` to be anything higher than a constant (other

7



than the case where ` = λ and we gain key homomorphic properties for certain PRFs), we can
achieve some theoretically interesting results from a higher ` in the ring setting.

In [BPR12], the authors showed how to construct a PRF in NC1 using ring LWE. We
generalize this PRF with our synthesizer KR,` and show two interesting choices of PRF to

examine with higher `. We first consider the PRF PR,λ
1√
log λ

which is built using the synthesizer

K
R,λ

1√
log λ

. This PRF has modulus m
ω(1)

(
λ

1√
log λ

)
, which is clearly large but is still smaller

than mλc for any constant c. The synthesizer construction tree of this PRF also has depth√
log n, so we can build this PRF in overall circuit depth of O

(
(log n)

3
2

)
, giving us a PRF in

the unorthodox class NC1.5.
We finally consider the PRF PR,λ

λc

for some constant c ∈ (0, 1) which is based upon the
synthesizer KR,λλc . This PRF has modulus mω(1)λc and synthesizer construction with constant
depth, meaning that it can be built in NC1. This PRF is interesting because it is the PRF with
the smallest modulus that we can build in NC1 using our techniques. This lets us build lattice
PRFs in NC1 with any subexponential modulus (assuming λ is polynomial in m), but we still
do not know how to break this subexponential barrier (or if it is even possible). The existence
of PRFs in NC1 has many interesting implications in complexity theory [BFKL94], so building
them from maximally hard assumptions is an important problem.

Comparison with Previous Work. In table 1 on the adjacent page, we compare our new
PRFs with those of the relevant previous works. We borrow the table format from [BP14].

The General View. While our synthesizers look very similar to existing PRF construc-
tions, the PRF constructions themselves can be viewed as generalizations of those in [BPR12],
[BLMR13], and [BP14]. In fact, setting ` = λ for the synthesizers S`, K`, and T` result in PRFs
that are almost identical to those in in [BLMR13], [BPR12], and [BP14], respectively. However,
we do lose the key homomorphic properties of [BLMR13] and [BP14] when we set ` < λ.

Concrete Instantiations and Parameters. If we want to instantiate an actual PRF, we
need to look beyond the asymptotics. It is relatively straightforward to see that, except for the
highly sequential GGM-based and [BP14] sequential constructions, the constructions of PRFs
from synthesizers with small values of ` and the construction from Banerjee’s thesis [Ban15] are
the most efficient overall PRF constructions (although the key sizes are larger) for large input
lengths: these have at most a small constant (either 2 or 4) times the number of multiplications
as the more direct constructions with a substantially smaller modulus. So, we choose to analyze
concretely the synthesizer constructions here.

If we fix a particular ‘lattice security dimension’ m and a particular subexponential param-
eter (derived from how we set the modulus in any learning with rounding reduction) rp, we can
examine how some of the schemes work practically. We show these concrete metrics in table 2.
While we have not implemented these PRFs or closely examined the speed for various multi-
plication algorithms, it seems like the PRF PR,2 is a strong candidate to be the fastest parallel
PRF from lattices known today.

Theoretical Implications. A lofty goal in lattice-based cryptography is to build a PRF based
on the hardness of LWE with polynomial modulus q. While we obviously do not achieve that
in this work, we seemingly make progress towards this goal. In particular, previous lattice-
based PRFs typically relied on long subset-products of matrices multiplied by a secret key. In
this work, we show that only a 2-subset product of matrices multiplied by a key is generally

8



Table 1: Comparison with Previous Work: The parameters are with respect to PRFs with
input length λ and reductions to worst-case lattice problems in dimension m. We let τ denote the
exponent of matrix multiplication. Brackets [·] denote parameters of a ring-LWE construction
that are better than those of integer lattices (when ring LWE schemes are possible). We ignore
constants, lower-order terms, and logarithmic factors. Parallel Circuit Complexity refers to the
parallel circuit complexity class of the PRF, when applicable. Parallel Matrix Comp. refers to
the parallel matrix complexity of a PRF in terms of matrix multiplication operations, which
is a much better measure of practical parallelizability than circuit depth. PP refers to public
parameters, again when applicable. F refers to polynomially-sized parameters that are too big
to fit nicely in the table (and are relatively unimportant anyway). z refers to parameters that
are dependent on a (unspecified) universal hash function.

Reference Modulus Parallel Circuit Parallel Matrix
Complexity or Ring Comp.

[BPR12] GGM mω(1) – λ
[BPR12] synth mlog λ NC2 log λ
[BPR12] direct mλ NC2

[
NC1

]
log λ

[BLMR13] mλ NC2 log λ

[BP14] sequen mω(1) – λ
[BP14] balanced mlog λ NC2 log λ

[Ban15] synth mω(1) NC2 log λ

[DS15] mlog λ NC1+o(1) log log λ

This Work: F 2 mω(1) NC2 log λ

This Work: P 2 mω(1) NC2 log λ

This Work: B2 mω(1) NC2 log λ

This Work: P λ
1√
log λ

mω(1)λ

λ 1√
log λ


NC2

[
NC1.5

]
log λ

This Work: P λ
c

mω(1)λc NC2
[
NC1

]
log λ

Reference Key Size PP Size Time/Out Out

[BPR12] GGM m m2 [m] λm [λ] m
[BPR12] synth λm2 [λm] 0 [0] λmτ−2 [λ] m2 [m]
[BPR12] direct λ3m2

[
λ2m

]
0 [0] λ3m

[
λ2
]

λm [λm]

[BLMR13] λ2m λ3m2 λ3m λm

[BP14] sequen m m2 [m] λmτ−1 [λ] m
[BP14] balanced m m2 [m] λmτ−1 [λ] m

[Ban15] synth λm2 [λm] 0 [0] λmτ−2 [λ] m2 [m]

[DS15] m2 [m] z z m

This Work: F 2 m2 λm2 λmτ−2 m2

This Work: P 2 λm2 [λm] m2 [m] λmτ−2 [λ] m2 [m]
This Work: B2 m2 [m] λm2 [λm] λmτ−2 [λ] m2 [m]

This Work: P λ
1√
log λ F F F F

This Work: P λ
c

F F F F

Some Comments: We note that the large keys of some of the PRFs (including ours) can be
computed using a lattice-based PRG in practical cases, making this less of an issue in practice.
In addition, we note that it is trivial to modify the (standard LWE-based) PRFs from [BP14]
to have exactly the same time per output and output sizes as our PRFs F 2, P 2, and B2 by
expanding the secret to be a full-rank matrix rather than a vector. The authors of [BP14]
mention this as an optimization in their work.

9



Table 2: Practical Comparison with Previous Work: In this table we consider the practical
implementation of the most efficient parallel lattice-based PRFs. We compare our PRFs to that
from [Ban15] in terms of concrete efficiency. The parameters are with respect to PRFs with input
length λ and reductions from worst-case lattice problems in dimension m. Brackets [·] denote
parameters of a ring-LWE construction that are better than those of integer lattices (when ring
LWE schemes are possible). For simplicity, we only state higher-order terms (i.e., we ignore
polynomial terms when superpolynomial terms exist, and we ignore constants when polynomial
terms exist). The term rp–short for ‘rounding parameter’–refers to the (superpolynomially large)
value induced by the LWE → LWR reduction that we have denoted in table 1 as mω(1).

Reference Modulus Matrix/Ring Key Size
Dimension (Matrices/Ring Elements)

[Ban15] synth r2
p m 8λ× Zm×mq [Rq]

This Work: F 2 rp m log q 4λ× Zm log q×m log q
2 , log λ× Zm log q×m log q

q

This Work: P 2 r3
p m 4λ× Zm×mp [Rp] , log λ× Zm×mq [Rq]

Reference Matrix/Ring Matrix/Ring Product
Multiplies Computation

[Ban15] synth 4 (λ− 1) U
(
Zm×mq

)
× U

(
Zm×mq

)
[U (Rq)× U (Rq)]

This Work: F 2 2 (λ− 1) U
(
Zm log q×m log q

2

)
× U

(
Zm log q×m log q
q

)
This Work: P 2 2 (λ− 1) U

(
Zm×mrp

)
× U

(
Zm×mq

)
[U (Rrp)× U (Rq)]

Some Comments: The ‘matrix/ring product computation’ shows the distributions of what
matrices or ringswe are multiplying in the PRFs above. All of the operations are computed
modulo q, but, for our PRFs listed here, some of the matrices or rings are nonuniform (and thus
can be multiplied more quickly). The fastest PRF is most likely either P 2 for regular LWE or
the ring version of P 2 for ring LWE (this is definitely the case if we use fast Fourier transform
(FFT) multiplication over field elements, but less clear for other multiplication algorithms–the
construction from [Ban15] or F 2 may be faster for asymptotically slow modular multiplication
algorithms).

10



sufficient to build a PRF. This substantially generalizes the requirements seemingly needed to
build a lattice-based PRF with polynomial modulus. We hope that this result can be used as a
stepping stone towards such PRFs.

1.4 Paper Outline

The rest of the paper proceeds as follows: we begin by defining some basic cryptographic notation
and facts about PRFs and lattice problems in section 2. A reader knowledgeable in lattices and
PRFs can safely skip this section. In section 3, we define pseudorandom synthesizers and state
results from [NR95] on constructions of PRFs from pseudorandom synthesizers. Our definitions
are phrased a little differently than those in [NR95], but the meaning is identical.

In section 4 we formally define our first pseudorandom synthesizer S` which is based on
FBLMR and give an overview of the proof of security. We then give formal analysis of the PRF
F 2 which we build from S2 in section 5. In section 6, we offer a formal proof of security for our
synthesizer S`, also including an explanation of the intuition behind the proof.

We define our synthesizers K` and KR,` which are based on the PRFs from [BPR12], in
section 7. We build PRFs from these synthesizers in 8 and follow this up with the security
discussion in section 9. We analyze PRFs built from higher values of ` with these synthesizers
in section 10, which enable us to achieve more parallelism at the expense of a higher modulus.

We finally discuss our synthesizer constructions based on [BP14], which we call T` and TR,`,
in section 11. We build PRFs from these synthesizers in section 13 and then discuss the security
of these synthesizers in section 12.

Finally, in section 14 we conclude and state what we consider are interesting and important
open problems in the area.

2 Preliminaries

We start by discussing some basic background material for the paper. A reader who is fa-
miliar with the basic cryptographic concepts in each subsection can safely skip the respective
subsections.

2.1 Notation

For a random variable X we denote by x← X the process of sampling a value x according to
the distribution of X. Similarly, for a finite set S we denote by x← S the process of sampling
a value x according to the uniform distribution over S. We sometimes also use U (S) to denote
the uniform distribution over a set S. We typically use bold lowercase letters (i.e. a) to denote
vectors and bold uppercase letters (i.e. A) to denote matrices.

For two bit-strings x and y (or vectors x and y) we denote by x‖y their concatenation. A
non-negative function f : N → R is negligible if it vanishes faster than any inverse polynomial.
We denote by Rki(Za×bp ) the set of all a× b matrices over Zp of rank i.

Binary Trees. We use T to denote a binary tree. For any given binary tree T , we let Tl
denote the left subtree of the root note and Tr denote the right subtree of the root node. Note
that these may be empty. We let |T | denote the number of leaves of T .

In addition, as in [BP14], we define the expansion of a tree e (T ) recursively in the following
way:

e (T ) =

{
0 if |T | = 1

max {e (Tl) + 1, e (Tr)} otherwise

}
(2.1)

11



Note that this is just the ‘left depth’ of the tree T .

Rounding. We use b·c to denote rounding a real number to the largest integer which does
not exceed it. For integers q and p where q ≥ p ≥ 2, we define the function d·cp : Zq → Zp
as dxcp = i, where i · bq/pc is the largest multiple of bq/pc that does not exceed x. For a
vector v ∈ Zmq , we define dvcp as the vector in Zmp obtained by rounding each coordinate of the
vector individually. A probability distribution χ over R is said to be B-bounded if it holds that
Prx←χ[|x| > B] is negligible in the security parameter.

Rings. Throughout this paper, we letR denote the cyclotomic polynomial ringR
def
= Z [x] / (xn + 1)

where n is a power of 2. Many properties of our cryptographic constructions will depend on the
structure of these cyclotomic rings, so it is important that we only use this kind of ring. For

any integer q, we define the quotient ring Rq
def
= R/qR. We note that an element of R can be

represented as a polynomial in x of degree n− 1 with integer coefficients.

While there are many more interesting rings, we work with these special cyclotomics due to
performance reasons. Our results will generally hold for many other choices of rings, but the
efficiency of our scehemes will suffer.

2.2 Pseudorandomness

We next review the definition of pseudorandom generators and pseudorandom functions [GGM84].
We start by discussing pseudorandom generators.

Pseudorandom Function Informally, a pseudorandom function is an efficiently computable
function such that no efficient adversary can distinguish the function from a truly random
function given only black-box access.

More precisely, a PRF is an efficiently computable function F : K×X → Y where K is called
the key space, X is called the domain, and Y is called the range. In this paper, we sometimes
allow the PRF to take additional public parameters pp and use Fpp : K × X → Y to denote
such a PRF. Security for a PRF is defined using two experiments between a challenger and an
adversary A. For b ∈ {0, 1} the challenger in Expb works as follows.

1. When b = 0 the challenger chooses a random key k ∈ K and sets f(·) def
= F (k, ·).

2. When b = 1 the challenger chooses a random function f : X → Y.

3. The adversary (adaptively) sends input queries x1, . . . , xq in X to the challenger and
the challenger responds with f(x1), . . . , f(xq). Eventually the adversary outputs a bit
b′ ∈ {0, 1}.

For b ∈ {0, 1} let Wb be the probability that A outputs 1 in Expb.

Definition 2.1. A PRF F : K×X → Y is secure if for all efficient adversaries A the quantity

PRFadv[A, F ]
def
= |W0 −W1|

is negligible.

As usual, we can make the terms “efficient” and “negligible” precise using asymptotic nota-
tion by equating efficient with probabilistic polynomial time and equating negligible with func-
tions smaller than all inverse polynomials. Here, we use non-asymptotic language to simplify
the notation.

12



2.3 Lattices

We now review background material on lattices. Let q, n, and m be positive integers, and let
A ∈ Zn×mq be a matrix. We let Λ⊥q (A) denote the lattice spanned by all x ∈ Zmq such that
A · x = 0 mod q. For a vector u ∈ Znq , we generalize this and let Λu

q (A) denote the set of all

vectors such that A · x = u. Note that this is a coset of Λ⊥q (A).

Discrete Gaussians. We borrow the elegant presentation style of [GPV08]. For any s > 0
define the Gaussian function on Rn centered at c with parameter s:

∀x ∈ Rn, ρs,c (x) = e−π||x−c||2/s2

We sometimes omit the subscripts s and c in the case that they are 1 and 0, respectively.

For any c ∈ Rn, real s > 0, and n-dimensional lattice Λ, we define the discrete Gaussian
distribution over Λ as:

∀x ∈ Λ, DΛ,s,c (x) =
ρs,c (x)

ρs,c (Λ)

Smoothing Parameter. In [MR04], Micciancio and Regev defined the smoothing parameter:
for any n-dimensional lattice Λ and positive real ε, the smoothing paramter ηε (Λ) is the smallest
real s > 0 such that ρ1/s (Λ∗\ {0}) ≤ ε.

The Gadget Matrix. In [MP12], Micciancio and Peikert invented the gadget vector g and the
gadget matrix G. Let q = 2c be some integer, and let c ∈ Z = dlog2 qe. Recall from [MP12] that
the vector g ∈ Zcq is defined to be a primitive vector such that gi = 2i−1, or gᵀ =

[
1|2|4|....|2c−1

]
.

Additionally recall the matrix S ∈ Zc×cq was defined such that entries of the form Si,i = 2,
Si+1,i = −1, and all other entries are zero. In picture form, we have

[
1 2 4 .... 2c−1

]
·


2 0 0 ... 0
−1 2 0 ... 0
0 −1 2 ... 0
... ... ... ... ...
0 0 0 ... 2

 = [0 0 0 .... 0] mod q

If q is not a power of 2, we can modify the last column to be the binary bit decomposition of q.
We also will need the standard tensor forms of g and S as well. We define the matrix G ∈ Zn×ncq

to be G = gᵀ⊗ In and the matrix T ∈ Znc×ncq to be T = S⊗ In. Pictorially, we have something
like the following (dimensions not to scale):

−gᵀ− 0 0 ... 0
0 −gᵀ− 0 ... 0
0 0 −gᵀ− ... 0
... ... ... ... ...
0 0 0 ... −gᵀ−

 ·


S 0 0 ... 0
0 S 0 ... 0
0 0 S ... 0
... ... ... ... ...
0 0 0 ... S

 = 0nc×c mod q

We define the deterministic ‘binary decomposition’ function g−1 : Zq → Zdlog qe
2 in the following

way: let the ith entry of the output of g−1 (a) for some a be the ith bit of a. In other words, if

we let the vector x ∈ Zdlog qe
2 = g−1 (a), then a =

∑dlog qe−1
i=0 xi2

i.

In addition, for all vectors and matrices over Zq, we define the function G−1 : Zn×mq →
Zndlog qe×m

2 to be the function g−1 applied entry by entry.

13



2.4 Learning With Errors

Learning with errors (LWE) assumption. The LWE problem was introduced by Regev [Reg05]
who showed that solving the LWE problem on average is as hard as (quantumly) solving several
standard lattice problems in the worst case.

Definition 2.2. Learning with Errors Problem (LWE): Consider integers n and q, some
distribution ψ over Zq, and distributions K and T , both over Znq .

A (q, n, ψ,K, T )-LWE problem instance consists of access to an unspecified challenge oracle
OLWE, being, either, a noisy pseudorandom sampler OLWE

s carrying some constant random
secret key s ∈ Znq sampled from the distribution K, or, a truly random sampler OLWE

$ , whose
behaviors are respectively as follows:

OLWE
s : Outputs samples of the form

(
ai,ai

ᵀ · s + δi
)
∈ Znq × Zq, where s ∈ Znq is a persistent

value invariant across invocations sampled by querying the distribution K, δi ∈ Zq consists
of a fresh sample from ψ, and ai ∈ Znq is sampled at random from T .

OLWE
$ : Outputs samples of the form

(
ai, ri

)
∈ Znq × Zq, where ai ∈ Znq is sampled at random

from T and ri is a uniform random sample from Zq.

The (q, n, ψ,K, T )-LWE problem allows repeated queries to the challenge oracle OLWE. We say
that an algorithm A decides the (q, n, ψ,K, T )-LWE problem if

AdvLWE [A]
def
=
∣∣Pr[AOLWE

s = 1]− Pr[AOLWE
$ = 1]

∣∣
is non-negligible for a s selected appropriately at random from K.

Let Unq be the uniform distribution over vectors in Znq . As we alluded to before, Regev [Reg05]
shows that for a certain B-bounded noise distribution χ (for some B = poly(n), for n polynomial
in some security parameter, and a sufficiently large q, the

(
q, n, χ,Unq ,Unq

)
-LWE problem is as

hard as the worst-case SIVP and GapSVP under a quantum reduction (see also [Pei09, BLP+13]).
Similarly, the noise distribution χ can be a simple low-norm distribution [MP13] if the number
of samples received by an adversary is small (which is unfortunately not the case in known PRF
reductions).

Ring LWE. In [LPR10], the authors developed a ring analogue of the learning with errors
problem. They showed that solving the Ring LWE problem on average for certain choices of
rings is as hard as (quantumly) solving several standard lattice problems in the worst case over
ideal lattices. This paper has been generalized by [PRSD17] to include a wider variety of rings,
but in this work we stick with a very specific class of rings as we mentioned earlier in this section.
Below we define the ring LWE problem formally.

Definition 2.3. Ring Learning with Errors Problem (RLWE): Consider integers n and
q, a polynomial ring R of maximum degree n, some distribution ψ over R, and distributions K
and T , both over Rq.

A (R, q, n,ψ,K, T )-RLWE problem instance consists of access to an unspecified challenge oracle
ORLWE, being, either, a noisy pseudorandom sampler ORLWE

s carrying some constant random
secret key s ∈ Rq sampled from the distribution K, or, a truly random sampler ORLWE

$ , whose
behaviors are respectively as follows:

ORLWE
s : Outputs samples of the form

(
ai,ai

ᵀ · s + δi
)
∈ Rq ×Rq, where s ∈ Rq is a persistent

value invariant across invocations sampled by querying the distribution K, δi ∈ R consists
of a fresh sample from ψ, and ai ∈ Rq is sampled at random from T .

14



ORLWE
$ : Outputs samples of the form

(
ai, ri

)
∈ Rq × Rq, where ai ∈ Rq is sampled at random

from T and ri is a uniform random sample from Rq.

The (R, q, n,ψ,K, T )-RLWE problem allows repeated queries to the challenge oracle ORLWE.
We say that an algorithm A decides the (R, q, n,ψ,K, T )-RLWE problem if

AdvRLWE [A]
def
=
∣∣Pr[AORLWE

s = 1]− Pr[AORLWE
$ = 1]

∣∣
is non-negligible for a s selected appropriately at random from K.

LWE with Key Sampled from the Noise Distribution. In [ACPS09], these hardness
results were extended to show that the LWE secret s can be sampled from a low norm distribution
(in particular, from the noise distribution χ) and the resulting problem is as hard as the basic
LWE problem. We will need this fact for our reductions, so we state this as a theorem here.

Theorem 2.4. Let n and q be integers, and let ψ be some noise distribution over Z. Let the
distribution ψ ∈ Zn consist of the concatenation of n samples from ψ.

Any adversary that can solve the
(
q, n, ψ,Unq ,ψ

)
-LWE problem can be used to solve the

(
q, n, ψ,Unq ,Unq

)
-

LWE problem.

We note that the (q, n, ψ,Unq ,Unq )-LWE problem is the standard version of the LWE problem.
This theorem immediately extends to rings as well. We state this corollary next.

Theorem 2.5. Let n and q be integers, let R be a polynomial ring R of maximum degree n,
and let ψ be some noise distribution over R.

Any adversary that can solve the (R, q, n,ψ,U (R) ,ψ)-RLWE problem can be used to solve the
(R, q, n,ψ,U (R) ,U (R))-RLWE problem.

We again note that the (R, q, n, ψ,U (Rq) ,U (Rq))-RLWE problem is the standard version of the
RLWE problem.

Non-uniform LWE. In [BLMR13], the authors introduced a variant of the learning with
errors (LWE) problem in which the the rows of A (i.e., the LWE samples) are sampled from
a non-uniform distribution η over Znq . They called this variant of LWE Non-uniform Learning
with Errors, or NLWE for short, and showed that for suitable parameters it is as hard as the
basic LWE problem. While the authors of [BLMR13] show that LWE instances with samples
drawn from a wide range of nonuniform distributions are hard, we will use the fact that LWE is
hard with uniform binary samples for appropriate parameter choices. We state this in a theorem
below.

Theorem 2.6. Let q = q(n) be an integer such that 2dlog qe−q
q is negligible (i.e., q is close to

a power of 2). Let m = ndlog2 qe be an integer. Let ηBin(m) denote the uniform distribution of
binary vectors in dimension m, let Umq denote the uniform distribution of all vectors over Zmq ,
and let ψ be a B-bounded noise distribution over Z.

Any adversary that can solve the (q,m, ψ,ηBin(m),Umq )-LWE problem with advantage ε can be
used to solve the (q, n, ψ,Unq ,Unq )-LWE problem with advantage ε.

Unfortunately this result does not apply to rings as well–ring LWE with low-norm samples is
trivially insecure.

15



LWE with Parallel Instances. We note that, by a simple hybrid argument, we can show
that LWE is hard if the key is a matrix of size n × m for some polynomially sized integer m
(provided the columns of the key matrix are sampled independently at random from the keyspace
K). We note that we lose a factor of m in the distinguishing advantage (which is typically not
an issue since m is a polynomial).

In addition, for any polynomially-bounded integer Q, it is the case that Q instances of LWE
(with keys as vectors or matrices) are also indistinguishable from Q random instances, and
this also can be shown using an easy hybrid argument. As expected, we lose a factor of Q
in an adversary’s distinguishing advantage. These facts have appeared in a number of lattice-
based papers, typically in a folklore-styled presentation, including [BLMR13]. We sometimes
use LWEx,y to denote the problem of distinguishing y parallel LWE instances containing keys
with x vectors and note that an adversary that can distinguish such an instance from random
with advantage ε can distinguish a regular LWE instance from random with advantage ε

mQ .

Learning with Rounding. Banerjee, Peikert, and Rosen[BPR12] consider a related problem,
denoted the “learning with rounding” (LWR) problem (recall the notation d·cp from earlier).
LWR can be viewed as a deterministic version of LWE. Our results do not explicitly use the
hardness of this problem (we reduce from LWE and RLWE instead) but use many of the core
ideas of the problem in their proofs.

Definition 2.7. Learning with Rounding Problem (LWR): Consider integers n, p, and
q such that q ≥ p, and distributions K and T , both over Znq .

A (q, p, n,K, T )-LWR problem instance consists of access to an unspecified challenge oracle
OLWR, being, either, a noisy pseudorandom sampler OLWR

s carrying some constant random
secret key s ∈ Znq sampled from the distribution K, or, a truly random sampler OLWR

$ , whose
behaviors are respectively as follows:

OLWR
s : Outputs samples of the form

(
ai, daiᵀ · scp

)
∈ Znq × Zp, where s ∈ Znq is a persistent

value invariant across invocations sampled by querying the distribution K and ai ∈ Znq is
sampled at random from T .

OLWR
$ : Outputs samples of the form

(
ai, ri

)
∈ Znq × Zp, where ai ∈ Znq is sampled at random

from T and ri is a uniform random sample from Zp.

The (q, p, n,K, T )-LWR problem allows repeated queries to the challenge oracle OLWR. We say
that an algorithm A decides the (q, p, n,K, T )-LWR problem if

AdvLWR [A]
def
=
∣∣Pr[AOLWR

s = 1]− Pr[AOLWR
$ = 1]

∣∣
is non-negligible for a s selected appropriately at random from K.

We note that it is also possible to define a ring analogue of LWR, but we omit this in this work.

3 Pseudorandom Synthesizers

In this section we introduce pseudorandom synthesizers. Pseudorandom synthesizers were
invented by Naor and Reingold in their seminal work [NR95]. Since previous general-purpose
PRF constructions were entirely sequential [GGM84] (i.e. had circuit depth at least linear in
the number of input bits), which was both theoretically and practically inefficient, Naor and
Reingold developed a new technique for building highly parallel PRF constructions which they
called pseudorandom synthesizers.

16



We spend a little bit more time on this than usual because we present the material in
a different way than [NR95] or Omer Reingold’s thesis [Rei]. Rather than using synthesizer
ensembles, we opt for the more modern game-based definitions where keys are chosen randomly
(rather than functions are selected randomly from an ensemble). This means that, in addition
to a traditional synthesizier, we need to define a keyed synthesizer as well. The definitional
changes require us to change the way the definitions of synthesizers are presented, but we note
that the content remains exactly the same.

We additionally generalize some of the definitions to cover alternative constructions that are
mentioned in [NR95] (and shown to be secure), but not covered by the main definition. We start
by defining a basic pseudorandom synthesizer.

Pseudorandom Synthesizer Basics. A pseudorandom synthesizer is, in rough terms, a
two-input function S (·, ·) parameterized by two integers m and n such that on random inputs
(x1, ...., xm) ∈ X and (w1, ..., wn) ∈ W, the matrix M of all mn values of S (xi, wj) = Mij is
indistinguishable from random.

Let m and n be integers. In precise terms, a pseudorandom synthesizer is an efficiently
computable function S : X ×W → Y parameterized by m and n, where X and W are the two
input domains and Y is the range. In this paper, we sometimes allow the synthesizer to take
additional public parameters pp and use Spp : X ×W → Y to denote such a synthesizer.

Security for a synthesizer is defined using two experiments between a challenger and an
adversary A. For b ∈ {0, 1} the challenger in Expb works as follows.

1. When b = 0 the challenger sets f(·, ·) def
= S(·, ·).

2. When b = 1 the challenger chooses a random function f : X ×W → Y.

3. The challenger samples input values (x1, ..., xm)← X and (w1, ..., wn)←W and sends the
values f (xi, wj) for all i ∈ [1,m] and j ∈ [1, n] to the adversary. Eventually the adversary
outputs a bit b′ ∈ {0, 1}.

For b ∈ {0, 1} let Wb be the probability that A outputs 1 in Expb.

Definition 3.1. A synthesizer S : X ×W → Y is secure if for all efficient adversaries A the
quantity

SYNTHadv[A, F ]
def
= |W0 −W1|

is negligible.

The above definition is what most papers that present pseudorandom synthesizers use. How-
ever, as we earlier alluded, the work of [NR95] allows for substantially more generality. First,
we note that we can also use keyed synthesizers. A keyed pseudorandom synthesizer (KPS) is,
in rough terms, a keyed two-input function S (k, ·, ·) parameterized by two integers m and n
such that on sets of random inputs (x1, ...., xm) ∈ X and (w1, ..., wn) ∈ W, the matrix M of all
mn values of S (k, xi, wj) = Mij is indistinguishable from random. We note that on successive
queries to the KPS, the same key is used but new input values xi and yi are chosen.

Additionally, we note that it is not necessary that our synthesizer S be a function with two
inputs and one output. S could have three (or more) inputs, as long as we can still prove security.
Once again, Naor and Reingold show a proof of security for this case as well in [NR95]. Thus,
we overload S so that it can take more than two inputs. We next present a modified definition
of a pseudorandom synthesizer that takes all of these extra considerations into account.

17



Keyed Pseudorandom Synthesizer Definition. Let ` be an integer, and let n1, ..., n` be
integers as well. In precise terms, a pseudorandom synthesizer is an efficiently computable
function S : K × X1 × ... × X` → Y parameterized by `, n1, ... , n` where K is the keyspace,
X1, ... , X` are the ` input domains and Y is the range. In this paper, we sometimes allow
the synthesizer to take additional public parameters pp and use Spp : K × X1 × ...× X` → Y to
denote such a keyed synthesizer.

Security for a synthesizer is defined using two experiments between a challenger and an
adversary A. For b ∈ {0, 1} the challenger in Expb works as follows.

1. When b = 0 the challenger selects a random key k ← K and sets f(·, ·) def
= S(k, ·, ..., ·).

2. When b = 1 the challenger chooses a random function f : X1 × ...×X` → Y.

3. The challenger samples input values (x1,1, ..., x1,n) ← X1, (x2,1, ..., x2,n) ← X2, ... ,
(x`,1, ..., x`,n) ← X` and sends the values f (x1,i1 , x2,i2 ..., x`,i`) for all i1 ∈ [1, n1] , ... ,
i` ∈ [1, n`] to the adversary. If the number of possible values of f is superpolynomial, the
adversary is allowed to adaptively query f on inputs of the form (i1, ..., i`) of its choice.
The challenger repeats this process an arbitrary polynomial number of times. Eventually
the adversary outputs a bit b′ ∈ {0, 1}.

For b ∈ {0, 1} let Wb be the probability that A outputs 1 in Expb.

Definition 3.2. A synthesizer S : K×X1× ...×X` → Y is secure if for all efficient adversaries
A the quantity

SYNTHadv[A, F ]
def
= |W0 −W1|

is negligible.

3.1 Building PRFs from Synthesizers

In this section we explain how to build pseudorandom functions from synthesizers using the main
theorem from [NR95]. We use different terminology but the content of the theorem statement
remains the same.

`-Admissible Synthesizers. In order to build synthesizers that combine ` inputs into one,
we need to make sure that the overall bit length of our input is appropriate for our synthesizer
length `. To see how this might go wrong, suppose we are trying to construct a 4-bit PRF from
a 3-way synthesizer. If we combine inputs 1, 2, and 3, we will get another input 1′. But we will
only have input 4 to combine with it. If our synthesizer only works on three inputs (and not
two–some synthesizers might work on both two or three inputs), we will be stuck and unable to
finish our PRF! The authors of [NR95] do not explicitly mention such an idea, but it is implicit
in their work.

Definition 3.3. We say that a number λ is `-admissible if the following procedure outputs one:

1. While λ ≥ `:

(a) Write λ = `k + r where r ∈ [0, `]

(b) Set λ = λ−r
` + r.

2. Output λ

18



We note that any λ is 2-admissible. For larger values of `, the situation is slightly more
complicated. In practice, this admissibility fact won’t be too much of an issue–we can just pick
λ to be a multiple of `, for instance–but we need it for our synthesizer definition to be complete.

Definition 3.4. Squeeze Function SQ`sk: Let X be some set and sk some secret key. Let k
and ` be an integers, and let k mod ` = r. For every function S`sk : X ` → X , and every sequence
of inputs L = {x1, ..., xk} where xi ∈ X we define the squeeze SQsk (L) to be the sequence

L′ =

{
x′1, ...., x

′
b k` c

, x′b k` c+1
, ..., x′b k` c+r

}
where x′i = Ssk

(
x`i−(`−1), ...x`i−1, x`i

)
for i ≤

⌊
k
`

⌋
, and

if k 6= 0 mod `, then for each i ≥
⌊
k
`

⌋
we set x′i = x(`−1)b k` c+i.

Definition 3.5. Let ` be an integer, and let λ be an `-admissible integer. Let S`sk : X ` → X be
a family of keyed pseudrandom synthesizers with key generation algorithm KeyGen. We define
a pseudorandom function F in the following way:
Key Generation:

1. For j ∈ [1, ..., dlog` λe], sample ski ← KeyGen.

2. For i ∈ [1, ..., λ] and b ∈ [0, 1], sample xi,b ← X .

Evaluation: For some bit string i ∈ ZΛ
2 = {i1i2...iλ} we have

Fpp (i) = SQ`sk1

(
SQ`sk2

(
...SQ`skdlog` λe

{x1,i1 , x2,i2 , ..., xλ,iλ} ...
))

We next state the main theorem from [NR95], which proves that any adversary that can
distinguish the PRF construction in definition 3.5 from random can be used to distinguish the
output of the synthesizer S`sk from random. We paraphrase the theorem slightly to accomodate
our definitions, which, as we have mentioned numerous times, are slightly different from those
in [NR95].

Theorem 3.6. Let ` and λ be integers. Let S`sk be a pseudorandom synthesizer as defined
in definition 3.2, and let Fpp be the function defined in definition 3.5. Any adversary that can
distinguish Fpp from a truly random function with advantage ε can be used to distinguish S`sk
from random with advantage ε

log` λ
.

Proof. This theorem is almost exactly Theorem 5.1 of [NR95] and the proof can be found
there.

4 Sample Subset-Product Pseudorandom Synthesizer

In this section we define a new pseudorandom synthesizer based on the LWE assumption and
prove that it is secure. Our synthesizer S` very closely resembles the PRF from [BLMR13]. We
choose to present this synthesizer first because it is the simplest and most intuitive construction
and has the easiest composition into PRFs.

4.1 Synthesizer Definition

Definition 4.1. Let m, q, p, and ` be integers such that p ≤ q and 2dlog qe−q
q is negligible. Let

k1, ..., k` ∈ Z be positive integers. For i ∈ [1, `] and j ∈ [1, ki] let Ai,j ∈ Zm×m2 be a uniformly
distributed binary matrix. Let S ∈ Zm×mq be a matrix sampled uniformly at random.

19



We define the synthesizer S` : Zm×mq ×
[(
Zm×m2

)k1 × ...× (Zm×m2

)k`]→ Zk1m×...×k`mp in the

following way: for each m×m block of output of S`, define

S` (x1, ...x`)
def
=

⌈[∏̀
i=1

Ai,xi

]
S

⌋
p

(4.1)

where xi ∈ [1, ki].

We now offer some comments on our synthezier SLWE. First, note that as long as p is even,
we can ‘chain’ this synthesizer. In other words, if this is the case, we can modify the output of
each (i, j)-block of the synthesizer SLWE(i,j) to be a random matrix over Zm×m2 by just computing
the output modulo two. Later in the paper (when we select parameters and analyze the overall
PRF’s performance) we will comment more on this.

We defer the security proof of this construction to section 6. In section 6, we explain the intuition
behind the proof and then work through it formally. Unfortunately, it is different enough from
known security proofs that we thought it needed to be explained fully. While the proof of [BP14]
could be applied obliquely to get the same result, the implied parameters are not quite as good
as we can achieve with a direct proof. Thus, we elect to present a straightforward proof here.

5 Constructions of PRFs from S`

In this section we show how our synthesizer S` can be used to build PRFs. We also show some
optimizations that we can achieve by slightly modifying the overall synthesizer construction (in
a way that doesn’t affect security).

We start by stating an overall theorem about the security of PRFs constructed from our
pseudorandom synthesizers using the synthesizer construction of [NR95]. This theorem follows
almost immediately from applying the synthesizer construction security theorem of [NR95] as
we stated in theorem 3.6 to our theorem 6.8proving our synthesizers S` secure.

Theorem 5.1. Let m, n, q, p, λ, and ` be integers. In words, m will be our lattice dimension,
n will be the dimension of the LWE problem we reduce to, q is our modulus, p is our rounding
parameter, λ is our PRF length, and ` is our synthesizer parameter. Let ψ ∈ Z be a B-bounded

noise distribution. We additionally require that q ≥ 2m`+ω(1)Bp and 2k−q
q is negligible for some

integer k. Let p = 2.
Let the PRF F ` defined by applying the synthesizer construction defined in definition 3.5 to

the synthesizer S` defined in definition 4.1. Let Q be the number of queries an adversary makes
to F `.

Any adversary that can distinguish F ` from random as defined in definition 2.1with advantage
ε can be used to solve the

(
q, n, ψ,Unq , Unq

)
-LWE problem (the standard version of LWE) with

advantage ε
2mQ log λ .

As long as we follow the parameter choices implied by theorem 5.1, we can build PRFs from
S` for any choice of `. In fact, we could mix and match different values of ` in a single PRF, but
we do not see any logical reason to do so (perhaps odd hardware constraints could make such a
thing useful).

In the rest of the section, we examine the PRF F 2, which we build from S2.

20



5.1 The Synthesizer S2

We start by analyzing the simplest, and yet one of the most efficient, synthesizers: S2. From
theorem 5.1, we know that F 2–the PRF built using S2–is secure as long as q ≥ 2m2+ω(1)Bp =

2mω(1)Bp and 2k−q
q is negligible for some integer k. We let p = 2.

Let’s evaluate our PRF construction F 2. We start by noting that, due to our choice of
parameters, q ≥ 4m2+ω(1)Bp = 2mω(1)Bp, and thus

log q = O (ω (1) (logm)) = O (ω (1) (log (n log q))) =

O (ω (1) (log (n) log log (q))) = O (ω (1) log n)

Efficiency Calculations. At level i of the synthesizer tree, we do 2 · 2log(λ)−i matrix mul-
tiplications and 2log(λ)−i matrix rounding operations. If we sum over all levels of the tree, we
perform 4λ− 1 matrix multiplications and 2λ− 1 matrix rounding operations. Since p = 2, the
output of our synthesizer is a random-looking binary matrix that can be immediately used at
the next level, and we do not have to spend any computational time reformatting this output.

Our matrices are of dimension size m = n log q. If we set τ to be the exponent corresponding
to optimal matrix multiplication, this means our PRF can be computed in time Õ (λnτ ). In
addition, note that we output m2 bits, so our operations per output bit is Õ

(
λnτ−2

)
.

Parallel Complexity. We subdivide parallel complexity into two categories: complexity in
terms of matrix operations if this is what we are only allowed (i.e. multiply, add, and round)
and absolute complexity. Our PRF F 2 clearly has O (log λ) matrix operation complexity, since
the longest potential path from root to leaf on our synthesizer tree has 2 log (λ) multiplies and
log (λ) rounding operations. Since matrix multiplication is in NC1 [RW04] and our synthesizer
tree has depth log λ, this means F 2 is in NC2.

Key and Public Parameter Size. The one area that our construction F 2 does not do well
on is key size. For our key, we need log λ uniform matrices in Zm×mq as well as 2λ matrices in

Zm×m2 . We note that these additional binary matrices can be made public without any loss of
security (since they are what would traditionally be the public matrices of an LWE instance).
This gives us secret key sizes of log (λ)

(
m2 log q

)
and public parameter sizes of λm2.

6 Proof of Security

In this section, we formally prove security of our synthesizer S`.

6.1 Security Proof Intuition

We start by discussing the principles behind the proof security of our synthesizer construction.
Our proof is somewhat of a Frankenstein of the proofs of both [BLMR13] and [BP14]. The proof
does not follow exactly from either of these PRF papers: we need to use an arbitrary polynomial
number of matrices at every muiltiplication step. Additionally, the proof in [BLMR13] has the
added restriction that the A matrices are full rank (the proof in [BP14] avoids this) which
we would like to avoid because it would substantially complicate composing S in synthesizer
constructions.

However, our proof is quite closely related to those two proofs, and a reader familiar with
those two papers can predict how our proof works without too much imagination.

21



Proof Intuition for ` = 2. In order to explain the proof at a high level, we will explicity spell
out the case for ` = 2. The intuition for this case directly applies to the cases for larger `, and the
notation can get very confusing since we have to keep track of an enormous number of variables,
so we will explain this case in a fair amount of detail. For a reader familiar with [BLMR13],
we note that we are essentially proving the generalized version of their PRF where, instead
of having two matrices A0 and A1 that we use at every level of the construction, we have ki
different random matrices Ai,1, ...,Ai,ki we use for each level i.

The proof involves two main steps: proving that an unrounded, noisy version of our synthe-
sizer is secure, and then proving that rounding the unrounded, noisy synthesizer almost always
results in the same value as computing the actual synthesizer. The proof of [BP14] almost ex-
actly follows this format, and the proof of [BLMR13] accomplishes this by interleaving hybrids.
We discuss each of these two steps below.

The Noisy Synthesizer. To begin, recall that our synthesizer for ` = 2 has the form
dA1,iA2,jScp. Ignoring the rounding, we simply have A1,iA2,jS. Our synthesizer S2 is ob-
viously insecure if we ignore the rounding. However, suppose we add noise at each layer the
synthesizer. In other words, we compute

A1,i (A2,jS + ∆j) + ∆i,j = A1,iA2,jS + [A1,i∆j + ∆i,j ] (6.1)

where the ∆j and ∆i,j are independently sampled noise matrices where each entry is sampled
from some B-bounded noise distribution ψ. In order to show that this noisy synthesizer is
random, we can use the format of the left-hand side of equation 6.1 and hybridize over the
implicitly nested LWE with binary samples instances. This is shown in the table below.
Distribution Output for each (i, j) input Reduction Technique

0′: Unrounded Real A1,i (A2,jS + ∆j) + ∆i,j –
Scheme with Noise

1′: A1,i (Sj) + ∆i,j LWE with binary samples

2′: Random Rij ← Zm×mq LWE with binary samples

We note that the values Sj and Rij are sampled independently and uniformly at random for
each j and i, j pair, respectively. Additionally, we can sample the ∆ terms (and, if we are not
given them in advance, the A terms as well) lazily. This will become important to remember as
we move to higher `.

Rounding the Synthesizer. In the preceding paragraph, we explained how the ‘noisy syn-
thesizer’ version of S2 can be shown to be secure. In the remainder of the proof, we show that,
as long as the ratio q

p is large enough, an efficient adversary can only find an input value (i, j)
such that

dA1,i (A2,jS + ∆j) + ∆i,jcp 6= dA1,iA2,jScp
with negligible probability. Since we have already shown the noisy synthesizer to be indistin-
guishable from random, this will complete the proof.

Our proof technique for this portion of the proof closely mirrors that of [BP14]. In [BLMR13],
the authors use a slightly different technique (and overall series of hybrids). We start by restating
equation 6.1.

A1,i (A2,jS + ∆j) + ∆i,j = A1,iA2,jS + [A1,i∆j + ∆i,j ] (6.2)

Note that A1,i is a binary matrix and ∆j has B-bounded entries, so the product Ai,1∆j has
entries bounded by mB. Since ∆i,j has entries bounded by B, the entire sum A1,i∆j + ∆i,j

has entries bounded by (m+ 1)B.

22



Now let’s consider what would have to happen for a rounding error to occur: a rounding
error happens when A1,iA2,jS + [A1,i∆j + ∆i,j ] and A1,iA2,jS are closest to different integer
multiples of q

p . Note that this implies that A1,iA2,jS must be within (m+ 1)B of an integer

multiple of q
p .

Consider the following game: suppose a dealer chooses polynomially many random integers
in [0, q − 1] and gives these to a player. We say that a player wins the game if any of these
random integers is within (m+ 1)B of an integer multiple of q

p . If we choose the ratio q
p to

be superpolynomially large in our security parameter, the probability that any single individual
integer is close to a an integer multiple of q

p is negligible and thus, by a union bound, the

probability that any one of the set of integers is close to an integer multiple of qp is also negligible.
Thus, the player loses with all but negligible probability.

Unfortunately, it is difficult to directly prove that an adversary cannot find a value of
A1,iA2,jS for some choices of i and j such that the overall value is close to an integer mul-
tiple of q

p . This is particularly troublesome to prove if k1 and k2 are superpolynomially large
(and we are, of course, lazily sampling) and the adversary gets to select which choices of i and
j for which they see outputs (which happens implicitly in the hybrid arguments of our PRF
proofs). If we had such a proof, then we could perhaps simplify our overall proof substantially.

However, we have already shown that A1,iA2,jS + [A1,i∆j + ∆i,j ] is indistinguishable from
random. Since no efficient adversary can distinguish this from random, we know that, intuitively,
an efficient adversary can only find an output of this noisy synthesizer within (m+ 1)B of an
integer multiple of q

p with negligible probability, as this would distinguish the noisy synthesizer
from random. Since we know that this noisy synthesizer is always within (m+ 1)B of the real,
unrounded synthesizer, we can see that any adversary that can cause a rounding error to happen
can distinguish the noisy synthesizer from random, which completes the proof.

This rounding error issue is the reason why we need two sets of hybrid arguments instead
of just one: we need the proof that the noisy synthesizer is random in order to show that this
rounding error does not occur. This is the only step in the reduction where a superpolynomial
modulus is required. If we had a more efficient LWR to LWE reduction, we might be able to
avoid such an inefficient proof. The table below summarizes the second set of hybrids.
Distribution Output for each (i, j) input Reduction Technique

0: Real Scheme dA1,iA2,jScp –

1 dA1,i (B2,jS + ∆j) + ∆i,jcp Error doesn’t change output

Relies on 0′ → 2′

2 dA1,i (Sj) + ∆i,jcp Implied by 0′ → 1′

3: Random
⌈
Rij ← Zm×mq

⌋
p

Implied by 1′ → 2′

Moving to Higher ` We have shown how security works for our synthesizer S2. For larger
values of `, the proof technique is exactly the same. The proofs of S` include ` − 2 additional
hybrid levels, but the overall structure is exactly the same. The main differences are semantic:
we introduce quite a bit of notation, which can make the proof difficult to follow. This is why
we decided to explain the ` = 2 case for intuition.

6.2 Background Definitions and Lemmas

Before we start with the formal proof, we need to introduce some new notation. We will also
show some helpful lemmas that will greatly simplify our proof.

Error Aggregating Function E. In order to make the proof readable, we will lump all of
the error terms together into a single term, almost exactly like in the proof of [BP14]. This will

23



allow us to state our theorems more concisely.

Definition 6.1. Let m, q, and ` be integers, and let ψ ∈ Z be a B-bounded noise distribution.
Let k1, ..., k` ∈ Z be positive integers. For i ∈ [1, `] and j ∈ [1, k`] let Ai,j ∈ Zm×m2 be a uniformly
distributed matrix.

We next define a series of ∆ terms. For x1 ∈ [0, k1], x2 ∈ [0, k2], .... , x` ∈ [0, k`] we let
each term of one of the following forms

∆x` ,∆x`−1,x` , ....∆x1,x2,...,x`

be sampled such that each entry is sampled independently from some B-bounded distribution ψ.
We note that there are potentially exponentially many ∆ terms. However, when computing the
function E, we can sample these terms lazily.

Let d ∈ [1, `]. We define the function Ed,` (x1, ...., x`) : [1, ..., k1]× ...× [1, ..., k`]→ Zm×m in
the following way:

Ed,` (x1, ..., x`)
def
=

d−1∑
j=0

([
j∏
i=1

Ai,xi

]
∆xj+1, ...x`

)

The equation for E looks extremely complicated. In reality, it is just the generalization of
the telescoping noise term that we showed in the ` = 2 synthesizer proof sketch. For instance,
if we expand out the summation, it is easy to see that (for some d >> 3)

Ed,` (x1, ..., x`)
def
=

([
d−1∏
i=1

Ai,xi

]
∆xd, ...x`

)
+

([
d−2∏
i=1

Ai,xi

]
∆xd−1, xd, ...x`

)
+ ...

(A2,x2A1,x1∆x3,...,x`) + (A1,x1∆x2,....,x`) + ∆x1,...,x`

We can go one step further and see that

Ed,` (x1, ..., x`)
def
=

A1,x1

(
A2,x2

[
...
[
Ad−2,xd−2

(
Ad−1,xd−1

(∆xd,...,x`) + ∆xd−1,...,x`

)
+ ∆xd−1,...,x`

]
...] + ∆x2,...,x`) + ∆x1,...,x`

It will be useful to view E in this telescoping form. Note that

Ed−1,` (x1, ..., x`)
def
=

A1,x1

(
A2,x2

[
...
[
Ad−2,xd−2

(
((((((((((hhhhhhhhhh
Ad−1,xd−1

(∆xd,...,x`) + ∆xd−1,...,x`

)
+ ∆xd−1,...,x`

]
...] + ∆x2,...,x`) + ∆x1,...,x`

In other words, Ed,` is just Ed−1,` with an extra A and ∆ term. An astute reader might already
be able to see how this might be useful for a hybrid argument. This gives us the following
identity:

Ed,` (x1, ..., x`)
def
= Ed−1,` (x1, ..., x`) +

d−1∏
i=1

Ai,xi∆xd,...,x` (6.3)

In addition, note that E1,` (x1, ..., x`)
def
= ∆x1,...,x` .

24



Bounds on E Before we go further, it will be useful to have a bound on the maximum size
that E can attain. We prove this in the following lemma:

Lemma 6.2. Let m, q, and ` be integers, and let ψ ∈ Z be a B-bounded noise distribution. Let
the function Ed,` (x1, ..., x`) be defined as in definition 6.1, with all relevant parameters defined
there as well.

It is the case that every entry in the matrix output by Ed,` (x1, ..., x`) has norm at most 2m`B.

Proof. Recall that we can write, for d and ` large enough,

Ed,` (x1, ..., x`)
def
=

([
d−1∏
i=1

Ai,xi

]
∆xd, ...x`

)
+

([
d−2∏
i=1

Ai,xi

]
∆xd−1, xd, ...x`

)
+ ...

(A2,x2A1,x1∆x3,...,x`) + (A1,x1∆x2,....,x`) + ∆x1,...,x`

By definition, each individual entry in all of the ∆ matrices is B-bounded. The dot product
of any vector with B-bounded entries and a binary vector must be at most mB. Chaining this
property through all d matrices and assuming that m ≥ 2 allows us to complete the proof.

6.3 The Noisy Pseudorandom Synthesizer

With our error function E now defined (in definition 6.1), we can define our general noisy
pseudorandom synthesizer, which we will call G (in another nod to the proof of [BP14]. We
define this function below:

Definition 6.3. Let m, q, and ` be integers, and let ψ ∈ Z be a B-bounded noise distribution.
Let k1, ..., k` ∈ Z be positive integers. For i ∈ [1, `] and j ∈ [1, k`] let Ai,j ∈ Zm×m2 be a uniformly
distributed full-rank matrix.

We next define a series of ∆ terms. For x1 ∈ [1, ..., k1], x2 ∈ [1, ..., k2], .... , x` ∈ [1, ..., k`]
we let each term of one of the following forms

∆x` ,∆x`−1,x` , ....∆x1,x2,...,x`

be sampled such that each entry is sampled independently from some B-bounded distribution ψ.
Let Sxd+1,...,x` ∈ Zm×mq be sampled uniformly at random for each different value of the set

(xd+1, ..., x`). Let the function Ed,` (x1, ..., x`) be defined as in definition 6.1.
The function Gd,` : [1, ..., k1]× ...× [1, ..., k`]→ Zm×mq is defined in the following way:

Gd,` (x1, ...., x`)
def
=

d∏
i=1

(Ai,xi) Sxd+1,...,x` + Ed,` (x1, ..., x`)

First, note that G`,` (x1, ..., x`) is exactly the noisy synthesizer corresponding to the proper
synthesizer S`. To see this (and, more generally, some insight on the hybrids), note that Gd,`
can be written in the following way:

Gd,` (x1, ...., x`)
def
=

A1,x1

(
A2,x2

[
...
[
Ad−2,xd−2

(
Ad−1,xd−1

(
Ad,xdSxd+1,...x` + ∆xd,...,x`

)
+ (6.4)

∆xd−1,...,x`

)
+ ...

]
...
]

+ ...
)

+ ∆x1,...,x`

25



Hybrid Argument. We are now in position to state (and prove) a hybridizing lemma. Since
the functions Gd,` can have superpolynomially long output for certain choices of d and `, we will
let the adversary adaptively query Gd,` at certain points (x1, ...., x`) rather than send them all of
the data (since we cannot possibly send a superpolynomial amount of data). In the case where
Gd,` only has a polynomial number of outputs, we assume that an adversary can just query all
of them if they like.

Lemma 6.4. Let m, q, and ` be integers, and let ψ ∈ Z be a B-bounded noise distribution. Let
T ∈ Zm be defined to be the distribution of random binary vectors over Zm. Let k1, ..., k` ∈ Z
be positive integers. For i ∈ [1, `] and j ∈ [1, k`] let Ai,j ∈ Zm×m2 be a uniformly distributed
full-rank matrix.

We next define a series of ∆ terms. For x1 ∈ [1, ..., k1], x2 ∈ [1, ..., k2], .... , x` ∈ [1, ..., k`]we
let each term of one of the following forms

∆x` ,∆x`−1,x` , ....∆x1,x2,...,x`

be sampled such that each entry is sampled independently from some B-bounded distribution ψ.
Let Sxd+1,...,x` ∈ Zm×mq be sampled uniformly at random for each different value of the set

(xd+1, ..., x`). Let the function Ed,` (x1, ..., x`) be defined as in definition 6.1 and let the function
Gd,` (x1, ..., x`) be defined as in definition 6.3. Let d ∈ [1, `] be an integer.

Any adversary that can distinguish Gd−1,` (x1, ..., x`) from Gd,` (x1, ..., x`) with advantage ε
in Q queries to G of the form (x1, ..., x`) can be used to solve the

(
q,m, ψ,Umq , T

)
-LWE problem

with advantage ε
mQ .

Proof. Suppose we are given a collection of
(
q,m, ψ,Umq , T

)
-LWEm,Q oracles OLWEm

z for z ∈
[1, ..., Q], all of which are either of the form OLWEm

s
def
= OLWE

S or OLWEm

$
def
= OLWE

$ . We must

respond to an adversary’s queries of the form (x1, ..., x`) and simulate either the function Gd−1,`

(in the case we received oracles of the form OLWE
$ ) or Gd,` (in the case we received oracles of the

form OLWE
S ).

In order to do this, we make the following tables

� Table T∆ consisting of all terms of the form ∆xd−1,...,x` , ∆xd−2,xd−1,...,x` , ... , ∆x1,....,x` for
all xd−1 ∈ [1, ..., kd−1] , ..., x` ∈ [1, ..., k`]

� Table TA consisting of all terms of the form Ai,xi for i ∈ [1, d− 1].

� Table TO consisting of a mapping between a set of partial inputs (xd, ..., x`) and a set of
oracle numbers [1, ..., Q]

� Table Tout consisting of sets of the form (i, j,C) ∈ [1, ..., Q]× [1, ..., kd]×Zm×mq . These sets
correspond to the jth set of m concatenated output values from the LWE oracle indexed
by i.

Note that the ∆ terms may be exponential in number, but that this is OK since we will sample
them lazily. Additionally, we comment that Tout has kd possible values for each choice of i
because this is the total number of matrices of the form Axd,j .

We respond to queries from the adversary of the form (x1, ..., x`) in the following way:

1. Check if the string of partial inputs (xd, ..., x`) has a value in table TO. If it does, set
OLWE equal to the LWE oracle indexed by TO [(xd, ...., x`)]. Otherwise, select the unused
oracle with the lowest index c in the set [1, ..., Q], write the mapping (xd, ..., x`) → c in
the table TO, and set OLWE equal to this oracle.

26



2. Check the table T∆ to see if the terms ∆xd−1,...,x` , ∆xd−2,xd−1,...,x` , ... , ∆x1,....,x` have been
already added. If not, sample them appropriately and add them to the table.

3. Check the table TA to see if the terms Ai,xi are included. If not, sample them appropriately
and add them.

4. Check if table Tout has a set of the form (c, xd,C) for some C. If it does, set Y ∈ Zm×mq =

C. If not, query OLWE m times and concatenate the result into a matrix Y ∈ Zm×mq . Add
the entry (c, xd,Y) to the table Tout.

5. Compute the function
[∏d−1

i=1 (Ai) Y
]

+ Ed−1,` (x1, ..., x`) and send it to the adversary.

We claim that this faithfully simulates Gd−1,` if we were given parallel instances of OLWE
$

and Gd,` if we were given parallel instances of OLWE
S . To see this, let’s consider the output in

each case. Suppose we start with the case where we were given parallel instances of OLWE
S . We

have: [
d−1∏
i=1

(Ai) Y

]
+ Ed−1,` (x1, ..., x`) =

[
d−1∏
i=1

(Ai)

] (
Ad,xdSxd+1,...,x` + ∆xd,...,x`

)
+ Ed−1,` (x1, ..., x`)

Recall that, from equation 6.3

Ed,` (x1, ..., x`)
def
= Ed−1,` (x1, ..., x`) +

d−1∏
i=1

Ai,xi∆xd,...,x` (6.5)

Thus, we can say that[
d−1∏
i=1

(Ai)

] (
Ad,xdSxd+1,...,x` + ∆xd,...,x`

)
+ Ed−1,` (x1, ..., x`) =

[
d−1∏
i=1

(Ai)

] (
Ad,xdSxd+1,...,x`

)
+

[
d−1∏
i=1

(Ai)

]
∆xd,...,x` + Ed−1,` (x1, ..., x`) =

[
d−1∏
i=1

(Ai)

] (
Ad,xdSxd+1,...,x`

)
+ Ed,` (x1, ...., x`) = Gd,` (x1, ..., x`)

This proves the ‘real’ case. Now assume instead we were given parallel instances of pure ran-
domness (or, as we eloquently write, OLWE

$ ). In this case we have[
d−1∏
i=1

(Ai) Y

]
+ Ed−1,` (x1, ..., x`) =

[
d−1∏
i=1

(Ai)

]
(Sxd,...,x`) + Ed−1,` (x1, ..., x`)

= Gd−1,` (x1, ..., x`)

This shows the ‘random’ case. Thus, we have faithfully simulated Gd−1,` if we were given parallel
instances of OLWE

$ and Gd,` if we were given parallel instances of OLWE
S .

Going back to our overall argument, after Q queries, the adversary responds to us with a
guess bit bg, indicating either Gd−1,` (zero) or Gd,` (one). If the adversary has guessed Gd−1,`, we
guess that we were given random data, and adversary has guessed Gd,`, we guess that we were
given a true parallel LWE instance. Suppose that the adversary has advantage ε. Since we have

27



faithfully simulated the proper distributions, we know that the adversary can distinguish our
parallel LWE oracle problem with advantage ε. As we discussed in section 2.3, this means that
the adversary can distinguish a true LWE oracle from random with advantage ε

mq , completing
the proof.

Given our hybrid argument, we are now in position to make the claim that our noisy pseu-
dorandom synthesizer (G`,`) is indistinguishable from random. We state this in a lemma below.

Lemma 6.5. Let m, q, and ` be integers, and let ψ ∈ Z be a B-bounded noise distribution. Let
T ∈ Zm be defined to be the distribution of random binary vectors over Zm. Let k1, ..., k` ∈ Z
be positive integers. For i ∈ [1, `] and j ∈ [1, k`] let Ai,j ∈ Zm×m2 be a uniformly distributed
full-rank matrix.

We next define a series of ∆ terms. For x1 ∈ [1, ..., k1], x2 ∈ [1, ..., k2], .... , x` ∈ [1, ..., k`]we
let each term of one of the following forms

∆x` ,∆x`−1,x` , ....∆x1,x2,...,x`

be sampled such that each entry is sampled independently from some B-bounded distribution ψ.
Let Sxd+1,...,x` ∈ Zm×mq be sampled uniformly at random for each different value of the set

(xd+1, ..., x`). Let the function Ed,` (x1, ..., x`) be defined as in definition 6.1 and let the function
Gd,` (x1, ..., x`) be defined as in definition 6.3. Let d ∈ [1, `] be an integer.

Any adversary that can distinguish our noisy synthesizer G`,` (x1, ..., x`) from the truly ran-
dom function G0,` (x1, ..., x`) with advantage ε in Q queriesof the form (x1, ..., x`) can be used to
solve the

(
q,m, ψ,Umq , T

)
-LWE problem with advantage ε

mQ` .

Proof. This follows by a basic hybrid argument over the choice of d in Gd,` using lemma 6.4.

6.4 Handling the Rounding

We have now shown that our noisy pseudorandom synthesizer Gd,` is indistinguishable from
random. As we mentioned in the proof outline, what remains is to show that the rounded noisy
synthesizer is indistinguishable from the actual synthesizer. This corresponds to dealing with
what [BLMR13] and [BP14] refer to as the BAD event. Our argument is technically almost
identical to that of [BP14], although we phrase it a little bit differently.

Lemma 6.6. Let m, q, p, and ` be integers, and let ψ ∈ Z be a B-bounded noise distribution
for some real number B. We also require that q ≥ 2m`Bmω(1)p. Let k1, ..., k` ∈ Z be positive
integers. Let the noisy pseudorandom synthesizer G`,` (x1, ...., x`) be defined as in definition 6.3.

Any adversary that can find some input (x1, ..., x`) such that value of G`,` (x1, ..., x`) has an entry
within 2m`B of an integer multiple of q

p (a rounding boundary) can be used to distinguish the

function G`,` (x1, ..., x`) from random.

Proof. This follows almost immediately from our choices of p and q. Since q ≥ 2m`Bmω(1)p is
superpolynomially large in p, the probability that a truly random function U (x1, ..., x`)→ Zm×mq

outputs a matrix with an entry close to an integer multiple of q
p is any polynomial number of

samples is negligble.
Thus, any adversary that can find such an output is immediately a distinguisher, and the

advantage ε is preserved.

28



Lemma 6.7. Let m, q, p, and ` be integers, and let ψ ∈ Z be a B-bounded noise distribution for
some real number B. We also require that q ≥ 2m`Bmω(1)p. Let k1, ..., k` ∈ Z be positive inte-
gers. Let the noisy pseudorandom synthesizer calG`,` (x1, ...., x`) be defined as in definition 6.3,
and let the synthesizer S` (x1, ..., x`) be defined as in definition 4.1.

Any adversary that can distinguish
⌈
G`,` (x1, ..., x`)

⌋
p

from S` (x1, ..., x`) with advantage ε can

be used to distinguish G`,` (x1, ..., x`) from random with advantage ε.

Proof. Let S′` be the unrounded version of the synthesizer. In other words,

S′` (i1, ...i`)
def
=

∏
i1,...,i`

[A1,i1 ...A`,i` ] S

where all of the terms are as defined in 4.1. Note that, by definition

S′` (x1, ..., x`) + E`,` (x1, ..., x`)
def
= G`,` (x1, ..., x`)

Recall from lemma 6.2 that every entry in the matrix output by Ed,` (x1, ..., x`) has norm at most
2m`B. Thus, the only time that

⌈
G`,` (x1, ..., x`)

⌋
p

and S` (x1, ..., x`) actually output a different

value is when some entry of G`,` (x1, ..., x`) is within 2m`B of an integer multiple of q
p .

Thus, in order to distinguish
⌈
G`,` (x1, ..., x`)

⌋
p

from S` (x1, ..., x`), an adversary must be

able to output some value (x1, ..., x`) such that some entry of G`,` (x1, ..., x`) is within a factor
of 2m`B of an integer multiple of q

p . In lemma 6.6, we showed that any adversary that could

do this with advantage ε could distinguish G`,` (x1, ..., x`) from random with advantage ε, which
completes our proof.

6.5 Putting It All Together

We have now worked out the proofs for all of our hybrids and can state a theorem regarding the
security of our synthesizer S`.

Theorem 6.8. Let m, n, q, p, and ` be integers, and let ψ ∈ Z be a B-bounded noise distri-
bution. We additionally require that q ≥ 2m`+ω(1)Bp and that m = n log q. Let k1, ..., k` ∈ Z
be positive integers. Let Um×mq denote the uniform distribution over matrices in Zm×mq and let
T ∈ Zm be defined to be the distribution of random binary vectors over Zm . Any adversary that
can distinguish S` from

⌈
Um×mq

⌋
p

with advantage ε can be used to solve the
(
q, n, ψ,Unq , Unq

)
-

LWE problem with advantage ε
2mQ .

Proof. This follows from our series of hybrids and a theorem from [BLMR13] about low-norm
LWE samples, which we will list below:

1. In lemma 6.5, we showed that any adversary that could distinguish our noisy synthe-
sizer G`,` (x1, ..., x`) from Um×mq (random) could be used to solve the listed LWE problem
with advantage ε

mQ . This immediately implies that any adversary that can distinguish⌈
G`,` (x1, ..., x`)

⌋
p

from
⌈
Um×mq

⌋
p

can also be used to solve the
(
q,m, ψ,Umq , T

)
-LWE prob-

lem with advantage ε
mQ .

2. In lemma 6.7, we showed that any adversary that can distinguish
⌈
G`,` (x1, ..., x`)

⌋
p

from

S` (x1, ..., x`) with advantage ε can be used to distinguish G`,` (x1, ..., x`) from random with
advantage ε.

29



3. In theorem 2.6 from [BLMR13], it is shown that any adversary that can solve the
(
q,m, ψ,Umq , T

)
-

LWE problem with advantage ε can be used to solve the
(
q, n, ψ,Unq , Unq

)
-LWE problem

with advantage ε.

Combining these three results means that any adversary that can distinguish S` from
⌈
Um×mq

⌋
p

with advantage ε can be used to solve the
(
q, n, ψ,Unq , Unq

)
-LWE problem (the standard version

of LWE) with advantage ε
2mQ .

It is important to note that the final output
⌈
Um×mq

⌋
p

is only uniform if p divides q, but

negligibly far from uniform if q
p is superpolynomially large. Since our theorem only holds if ratio

q
p to be superpolynomially large, we do not worry about this issue.

An astute reader may also notice that we have technically proven that a single instance of S`
is hard, rather than parallel instances with the same key. However, since we have not restricted
the number of different queries in a particular coordinate (i.e. the number of matrices Ai,xi for
a fixed i) we are essentially allowing the adversary to query any combination of input matrices
they like, giving the adversary more power than they would have in the parallel game (they can
effectively mix and match matrices from the different parallel instances in our reduction above).

7 Key Subset-Product Pseudorandom Synthesizer

In this section we define a new pseudorandom synthesizer inspired by (and very similar to)
the PRFs invented in [BPR12]. We call this new pseudorandom synthesizer K` as it uses a key
subset-product like these PRFs.

7.1 Synthesizer Construction

Definition 7.1. Let m, q, p, and ` be integers such that p ≤ q and let Ψ ∈ Zm×m be a
noise distribution over matrices where each entry is B-bounded. Let k1, ..., k` ∈ Z be positive
integers. For i ∈ [1, `] and j ∈ [1, ki] let Si,j ∈ Zm×m be a matrix sampled randomly from Ψ.
Let A ∈ Zm×mq be a matrix sampled uniformly at random.

We define the synthesizer K` : Zm×mq ×
[
(Zm×m)

k1 × ...× (Zm×m)
k`
]
→ Zk1m×...×k`mp in the

following way: for each m×m block of output of K`, define

K` (x1, ...x`)
def
=

⌈
A

[∏̀
i=1

Si,xi

]⌋
p

(7.1)

where each xi ∈ [1, ki].

We now offer some comments on our synthezier KLWE. We are essentially reversing the
traditional notion of ‘key’ and ‘sample’ in our synthesizer definition, as the synthesizer ‘key’ is
the LWE sample, and the synthesizer ‘samples’ are the LWE secrets. This works because we
do not necessarily have to keep the key of a keyed pseudorandom synthesizer secret in order to
maintain security.

In addition, note that it is a bit more complicated to ‘chain’ this synthesizer than it was to
‘chain’ S`. However, as long as we make sure that it takes less than m2 log p bits of entropy
(the amount of entropy in a random matrix over Zm×mp ) to sample a new matrix from Ψ, we
can still ‘chain’ this synthesizer. In other words, if this is the case, we can modify the output of
each (i, j)-block of the synthesizer KLWE(i,j) to be a randomly sampled matrix from Ψ. This is
obviously not as straightforward of a transformation as that of S`, but it is still possible to do
in a number of different ways. We will discuss some of these later in the paper.

30



We note that the security of this synthesizer follows almost immediately from the proof of
security of the ‘direct’ PRF construction in [BPR12]. We discuss this more in section 9.

7.2 Synthesizer Construction from Ring LWE

Unlike the [BLMR13]-inspired synthesizer S`, we can build pseudorandom synthesizers based
on ring-LWE using key subset product constructions. This is because ring-LWE with low norm
samples is not a hard problem, but ring-LWE where the key is drawn from the noise distribution
is a hard problem. This allows us to build more efficient synthesizers (and thus more efficient
PRFs), although at the cost of potentially stronger ring-based lattice assumptions.

Definition 7.2. Let m, q, p, and ` be integers such that p ≤ q, let R be a polynomial ring
of degree m, and let ψ ∈ R be a noise distribution over R where each entry is B-bounded. Let
k1, ..., k` ∈ Z be positive integers. For i ∈ [1, `] and j ∈ [1, ki] let si,j ∈ R be ring elements matrix
sampled randomly from ψ. Let a ∈ Rq be a ring element sampled uniformly at random.

We define the synthesizer KR,` : Rq ×
[
(R)k1 × ...× (R)k`

]
→ Rk1×...×k`p in the following

way: for each R ‘block’ of output of KR,`, define

KR,` (x1, ...x`)
def
=

⌈
a

[∏̀
i=1

si,xi

]⌋
p

(7.2)

where each xi ∈ [1, ki].

Again, the security of this synthesizer follows almost immediately from the proof of security of
the ‘direct’ PRF construction in [BPR12]. This is also discussed in section 9.

8 Constructions of PRFs from K` and KR,`

In this section we show how our synthesizer K` can be used to build PRFs. Before we do,
however, we need an additional lemma to make sure that our synthesizer constructions compose
properly.

8.1 LWE with Large Uniform Key and Noise

Recall that in [ACPS09], the authors show that LWE is hard even when the key is drawn
from the noise distribution. We state this result in theorem 2.4. However, in our synthesizer
constructions from K` and KR,`, we would like to avoid having to continually sample Gaussian
(or other complicated) noise distributions, as these complicate and slow down the construction.

To avoid such complicated noise distributions, below we show that LWE is hard when both the
key and noise are sampled from a (superpolynomially large) uniform distribution. This result
obviously necessitates a superpolynomially large modulus q (and thus larger approximation
factors in our reductions from worst-case lattice problems), but this is already needed by our
PRF constructions, so making this relaxation does not end up hurting our PRF parameters
substantially. The proof is essentially just based on the technique of ‘noise flooding’.

Lemma 8.1. Consider integers n and q and some B-bounded distribution ψ over Zq. Let
p < 2q be an integer such that p ≥ B · nω(1). In addition, let ψ ∈ Zn be the distribution made
by concatenating n samples from ψ into a vector.

The (q, n,Up,Unp ,Unq )-LWE problem is at least as hard as the
(
q, n, ψ,ψ,Unq

)
-LWE problem.

31



Proof. This result follows simply. Suppose we are given an LWE oracle OLWE corresponding to
the

(
q, n, ψ,ψ,Unq

)
-LWE problem which is either OLWE

s or OLWE
$ . We get samples of the form

(ai, ri) where ri is either equal to ais + δi or truly random.

Now suppose we sample some t ∈ Zm from Ump . In addition, for each sample we receive from

the oracle, we sample some bi from Ump as well. Then we take each sample from OLWE and add
ait + bi to the second term. Since the uniformly random terms are superpolynomially larger
than the key from ψ and the noise sample from ψ, the resulting sum is statistically close to
ait + bi if we were given OLWE

s and still uniformly random if we were given OLWE
$ , meaning we

have successfully completed the simulation.

We also note that a similar lemma follows for rings.

Lemma 8.2. Consider integers n and q and let R be a polynomial ring of degree n, as well as
some B-bounded distribution ψ over R. Let p < 2q be an integer such that p ≥ B · nω(1).

The (R, q, n,Up,Unp ,Unq )-RLWE problem is at least as hard as the
(
R, q, n, ψ, ψ,Unq

)
-RLWE prob-

lem.

Proof. The proof follows using the exact same argument as in lemma 8.1.

8.2 Synthesizer Statement

As with S`, we state an overall theorem about the security of PRFs constructed from our
pseudorandom synthesizers using the synthesizer construction of [NR95]. This theorem follows
almost immediately from applying the synthesizer construction security theorem of [NR95] as
we stated in theorem 3.6 to our theorem 9.1 proving our synthesizer K` secure.

As discussed in section 9, we know that K` and KR,` are secure for a wide variety of parameters.
However, in order to make our synthesizers compose properly into PRFs, we must ensure that
the output of each synthesizer has enough randomness to sample a new input. To make this
really easy (and to optimize our efficiency) we will choose our parameters so that the inputs and
outputs to our synthesizer are identical. In our case, both will be uniform elements from Zm×mp

(and Rp for rings) for some p that is of size at least mω(q). While we lose some efficiency due to
the superpolynomial size of p, we gain a lot back because we can use the uniform distribution
and simple rounding. The hardness of the LWE instances underlying these concrete synthesizers
therefore follows from lemmas 8.1 and 8.2 (which we just showed earlier in this section) when
coupled with theorems 2.4 and 2.5, respectively.

Theorem 8.3. Let m, q, p, λ, and ` be integers. In words, m will be our lattice dimension,
q is our modulus, p is our rounding parameter, λ is our PRF length, and ` is our synthesizer
parameter. Let ψ ∈ Z be the uniform distribution over Zp, let ψ ∈ Zm be the noise distribution
created by concatenating m samples from ψ, and let Ψ ∈ Zm×m be the distribution created by
concatenating m samples from ψ.

We additionally require that q ≥ p` (Cpm)` ·mω(1) for some universal constant C. Let the PRF
P ` defined by applying the synthesizer construction defined in definition 3.5 to the synthesizer
K` defined in definition 7.1.

Any adversary that can distinguish P ` from random as defined in definition 2.1 with non-
negligible advantage ε can be used to solve the

(
q,m,Up,Ump , Umq

)
-LWE problem with non-

negligible advantage.

As long as we follow the parameter choices implied by theorem 8.3, we can build PRFs from K`

for any choice of `. In fact, as with S`, we could mix and match different values of ` in a single
PRF, but again we do not see any logical reason to do so.

32



8.3 The Synthesizer K2

We start by analyzing the synthesizer K2. From theorem 8.3, we know that P 2–the PRF built
using K2–is secure as long as q ≥ p` (Cpm)` ·mω(1) for some universal constant C.

Let’s evaluate our PRF construction P 2. Since it must be the case that q ≥ p` (Cpm)` ·mω(1)

which, since p = mω(1) is at most C2mω(1), we know that

log q = O (ω (1) (logm))

Efficiency Calculations. At level i of the synthesizer tree, we do 2 ·2log(λ)−i matrix multipli-
cations and 2log(λ)−i matrix rounding operations. If we sum over all levels of the tree, we perform
4λ − 1 matrix multiplications and 2λ − 1 matrix rounding operations. Since both our inputs
and outputs can be thought of as uniform matrices over Zm×mp , the output of our synthesizer
can be immediately used at the next level, and we do not have to spend any computational time
reformatting this output.

Our matrices are of dimension size m. If we set τ to be the exponent corresponding to optimal
matrix multiplication, this means our PRF can be computed in time Õ (λmτ ). In addition, note
that we output m2 log p bits, so our operations per output bit is Õ

(
λmτ−2

)
.

Parallel Complexity. We subdivide parallel complexity into two categories: complexity in
terms of matrix operations if this is what we are only allowed (i.e. multiply, add, and round)
and absolute complexity. Our PRF P 2 clearly has O (log λ) matrix operation complexity, since
the longest potential path from root to leaf on our synthesizer tree has 2 log (λ) multiplies and
log (λ) rounding operations. Since matrix multiplication is in NC1 [RW04] and our synthesizer
tree has depth log λ, this means P 2 is in NC2.

Key and Public Parameter Size. The one area that our construction F 2 does not do well on
is key size. For our key, we need log λ uniform matrices in Zm×mq as well as 2λ matrices in Zm×mp .
We note that the Zm×mq matrices can be made public without any loss of security (since they
are what would traditionally be the public matrices of an LWE instance). This gives us public
parameter sizes of log (λ)

(
m2 log q

)
= Õ

(
m2
)

and secret key sizes of 2λm2 log p = Õ
(
λm2

)
.

8.4 The Synthesizer for Rings

We can easily adapt what we just did above to the ring setting, immediately getting the following
lemma:

Theorem 8.4. Let m, q, p, λ, and ` be integers. Let R be acyclotomic polynomial ring

R
def
= Z [x] / (xm + 1) where m is a power of 2. In words, q is our modulus, p is our rounding

parameter, λ is our PRF length, and ` is our synthesizer parameter. Let ψ ∈ Z be the uniform
distribution over Rp.

We additionally require that q ≥ p`
(
Cpm · ω

(√
logm

))` ·mω(1) for some universal constant C.
Let the PRF PR,` defined by applying the synthesizer construction defined in definition 3.5 to
the synthesizer KR,` defined in definition 7.2.

Any adversary that can distinguish P ` from random as defined in definition 2.1 with non-
negligible advantage ε can be used to solve the

(
R, q,m,Up,Ump , Umq

)
-RLWE problem with non-

negligible advantage.

33



8.5 The Synthesizer KR,2

We continue by analyzing the ring-based synthesizer KR,2. From lemma 8.4, we know that

PR,2–the PRF built using KR,2–is secure as long as q ≥ p` (Cpm· ω
(√

logm
))` ·mω(1) for some

universal constant C.

Let’s evaluate our PRF construction PR,2. Since it must be the case that q ≥ p`
(
Cpm · ω

(√
logm

))`·
mω(1) which, since p = mω(1) is at most C2mω(1), we know that

log q = O (ω (1) (logm))

Efficiency Calculations. At level i of the synthesizer tree, we do 2 · 2log(λ)−i ring multipli-
cations and 2log(λ)−i ring rounding operations. If we sum over all levels of the tree, we perform
4λ − 1 ring multiplications and 2λ − 1 ring rounding operations. Since both our inputs and
outputs can be thought of as uniform ring elements over Rp, the output of our synthesize can
be immediately used at the next level, and we do not have to spend any computational time
reformatting this output.

Our base ring R is of degree m. Since we can do modular ring multiplications in the power
basis with m logm modular scalar operations [LPR10], this means our PRF can be computed
in time Õ (λm). In addition, note that we output m log p bits, so our operations per output bit
is just Õ (λ).

Parallel Complexity. We subdivide parallel complexity into two categories: complexity in
terms of ring operations if this is what we are only allowed (i.e. multiply, add, and round)
and absolute complexity. Our PRF PR,2 clearly has O (log λ) ring operation complexity, since
the longest potential path from root to leaf on our synthesizer tree has 2 log (λ) multiplies and
log (λ) rounding operations. Since ring multiplication is in NC1 [RW04] and our synthesizer
tree has depth log λ, this means PR,2 is in NC2.

Key and Public Parameter Size. As with all of our synthesized PRFs, the one area that our
construction PR,2 does not do well on is key size. For our key, we need log λ uniform ring elements
in Rq as well as 2λ ring elements that effecively live in Rp. We note that the Rq elements can be
made public without any loss of security (since they are what would traditionally be the public
matrices of an RLWE instance). This gives us public parameter sizes of log (λ) (m log q) = Õ (m)
and secret key sizes of 2λm log p = Õ (λm).

8.6 Using K with larger `

In section 10, we pick out synthesizers K` for larger choices of `, analyze them, and point out
what makes them interesting–namely, the circuit complexity for KR,`.

9 Security of the Key Product Synthesizers K` and KR,`

In this section, we discuss the security of our synthesizer K`. As we mentioned earlier, the
security of K` follows almost exactly from the security of the direct PRF construction presented
in [BPR12]. Suppose we call this PRF construction FBPR. Recall that FBPR has the following
form:

Let m, q, p, and ` be integers such that p ≤ q and let Ψ ∈ Zm×m be a noise distribution over
matrices where each entry is B′-bounded. Let k1, ..., k` ∈ Z be positive integers. For i ∈ [1, `]

34



and j ∈ [0, 1] let Si,j ∈ Zm×m be a matrix sampled randomly from Ψ. Let A ∈ Zm×mq be a
matrix sampled uniformly at random.

The function FBPR : {0, 1}` → Zm×mp is defined in the following way: for each m ×m block of
output of K`, define

FBPR (x)
def
=

⌈
A

[∏̀
i=1

Si,xi

]⌋
p

(9.1)

Note that this is almost exactly the definition of K`. The only difference is that K` generalizes
FBPR by having several choices of matrix for each input ‘position’ rather than just two. If we
generalized FBPR to have higher-order inputs (one example would be input ‘bytes’ that had 8
matrices, one for each input value) we would exactly get K`. This only changes the security
proof very slightly–we just need to simulate more LWE instances at each level (corresponding to
the additional keys) and we are done. Thus, security follows immediately from the security proof
of FBPR. We state this in a lemma below, which is essentially just theorem 5.2 from [BPR12]
with slightly different notation.

Lemma 9.1. Let K` be a synthesizer defined as in definition 7.1 with all associated parameters.
Let ψ be a ‘noise’ distribution over Z such that ψ is B-bounded, and let ψ be the ‘noise’ distri-
bution over Zm where each entry is sampled independently from ψ. Let q ≥ p` (CBm)` ·mω(1)

for some universal constant C.

Any adversary A that can win the pseudorandom synthesizer game for K` defined in defini-
tion 3.2 can be used to solve the

(
q,m, ψ,ψ,Umq

)
− LWE problem.

We note that this immediately translates to ‘standard’ LWE hardness via theorem 2.4. In
addition, we can state a similar theorem for KR,`, our ring LWE-based synthesizer. The following
is a essentially a restatement of theorem 5.3 from [BPR12] to mesh with our notation:

Lemma 9.2. Let KR,` be a synthesizer defined as in definition 7.2 with all associated parameters.

Let ψ be a ‘noise’ distribution over R such that ψ is B-bounded. Let q ≥ p`
(
Bm · ω

(√
logm

))` ·
mω(1).

Any adversary A that can win the pseudorandom synthesizer game for KR,` defined in defini-
tion 3.2 can be used to solve the (R, q,m,ψ,ψ,U (Rq))-Ring LWE problem.

We again note that this immediately translates to typical ring LWE hardness via theorem 2.5.

10 Constructions of PRFs with Large `

In this section we use our synthesizers K` and KR,` to build two PRFs for two choices of
` other than two and analyze these PRFs. In particular, we choose larger choices of ` that
correspond to different hardness assumptions of the underlying LWE problem from which we
reduce our PRF hardness. These two PRFs don’t seem to have many practical applications,
but we think that they are interesting to examine from a circuit complexity perspective. We
don’t bother to compute some of the parameter sizes because they are complicated and not
particularly interesting.

The main point of building these new PRFs is the circuit complexity. Suppose we again denote
the main direct PRF construction of [BPR12] by FBPR. In [BPR12], the authors cleverly show
how to compute the ring version of this PRF FR,BPR in NC1. Without too much work, we can
show how to adapt their techniques to our ring-based synthesizer KR,`.

35



The basic idea is the following: let a, s1, ..., s` ∈ Rq be ring elements, where R is a cyclotomic

polynomial ring R
def
= Z [x] / (xn + 1) such that m is a power of 2. When we are attempting

to compute a subset product over rings a
[∏`

i=1 si

]
, we can store all of these ring elements as

vectors in Zmq using the discrete Fourier transform or the ‘Chinese remainder’ representation
modulo q (see [LPR10] for more details on this exact formulation).

To do this, we just evaluate the ring elements a, s1, ..., s` as polynomials at the m roots of our
cyclotomic polynomial xm + 1 mod q. This allows us to compute the multiplication of two ring
elements as a coordinate-wise product of their two vectors. Then, to evaluate our overall subset
product, we would only need to compute a subset product element-wise on the appropriate
vectors. We could then finish up and move back to the power-basis representation using an
m-dimensional Fourier transform over Zq. At this point, we could round our result as required
by our constructions.

This gives us essentially four steps for each synthesizer computation: converting the input to a
‘Chinese remainder’ form, computing the subset product, returning to the power basis, and then
rounding. We can use a fast Fourier transform to convert the input to a ‘Chinese remainder’
form in circuit depth O (logm) [SS91]. Iterated subset product over the integers is also in
NC1 [IL95], as is the discrete Fourier transform that allows us to move back to the power
basis [RT92]. Rounding is also an NC1 operation.

Thus, we can compute our synthesizer KR,` in NC1. While this isn’t particularly surprising
given that FR,BPR can be computed in NC1, it is important that we can chain our calculations.
If we want our synthesizers to compose gracefully into PRFs with low circuit complexity, we
cannot do any preprocessing operations that are not in NC1. While we cannot do some of the
further optimizations discussed in [BPR12] like computing/having discrete logs, we can still fit
everything in an NC1 circuit since the only preprocessing we need is to convert the ring elements
we are given into the ‘Chinese remainder’ representation.

With all of this in mind, we discuss some synthesizers that utilize this fact.

10.1 The Synthesizer K
λ

(
1√
log λ

)

We next analyze a synthesizer that doesn’t seem to have much use (because it is over the integers,
and not rings): K

λ

(
1√
log λ

) . The notable thing about this synthesizer is it allows a PRF tree

of depth
√

log λ. From theorem 8.3, we know that P λ

(
1√
log λ

)
–the PRF built using K

λ

(
1√
log λ

)–

is secure as long as q ≥ p` (Cpm)` · mω(1) for some universal constant C. We once again set
p = mω(1).

Let’s evaluate our PRF construction P λ

(
1√
log λ

)
. We start by noting that, due to our choice of

parameters, q ≥ p (Cpm)λ

(
1√
log λ

)
·mω(1), which, although it is superpolynomially large, still is

smaller than mλc for any constant c ≥ 0. We can use this fact to evaluate log q:

log q = O

((
ω (1)λ

(
1√
log λ

)
+ ω (1)

)
log (m)

)
= O

(
ω (1)λ

(
1√
log λ

)
logm

)
Parallel Complexity. We subdivide parallel complexity into two categories: complexity in
terms of matrix operations if this is what we are only allowed (i.e. multiply, add, and round)
and circuit complexity. From a circuit complexity standpoint, this PRF is in NC2 since matrix

36



multiplication is in NC1. In addition, P λ

(
1√
log λ

)
clearly has O (log λ) parallel matrix operation

complexity, since, in practice and if we are only allowed matrix operations, we will need to
compute all of the matrix multiplications in a tree-like way. This is the case for all of our PRF
constructions (and all known lattice-based PRF constructions that are not more sequential).

10.2 The Synthesizer K
R,λ

(
1√
log λ

)

We next analyze a synthesizer that will give us a parallel construction with very interesting
properties: K

R,λ

(
1√
log λ

) . The notable thing about this synthesizer is it allows a PRF tree of

depth
√

log λ. From theorem 8.4, we know that PR,λ

(
1√
log λ

)
–the PRF built using K

R,λ

(
1√
log λ

)–

is secure as long as q ≥ p` (Cpm)` · mω(1) for some universal constant C. We once again set
p = mω(1).

Let’s evaluate our PRF construction PR,λ

(
1√
log λ

)
. We start by noting that, due to our choice of

parameters, q ≥ p (Cpm)λ

(
1√
log λ

)
·mω(1), which, although it is superpolynomially large, still is

smaller than mλc for any constant c ≥ 0. We can use this fact to evaluate log q:

log q = O

((
ω (1)λ

(
1√
log λ

)
+ ω (1)

)
log (m)

)
= O

(
ω (1)λ

(
1√
log λ

)
logm

)
Parallel Complexity. We subdivide parallel complexity into two categories: complexity in
terms of ring operations if this is what we are only allowed (i.e. multiply, add, and round)
and circuit complexity. The circuit complexity is where things get interesting. Note that we
have

√
log λ layers of synthesizers, each of which can be computed in NC1 as we discussed

in the beginning of this section. Moreover, these synthesizers compose without any additional
complexity. Thus, we achieve an NC1.5 circuit complexity10.

In addition, P λ

(
1√
log λ

)
clearly has O (log λ) parallel matrix operation complexity, since, in prac-

tice and if we are only allowed matrix operations, we will need to compute all of the matrix
multiplications in a tree-like way. This is the case for all of our PRF constructions (and all
known lattice-based PRF constructions that are not more sequential).

10.3 The Synthesizer Kλc

The penultimate synthesizer we examine will allow us to build PRFs that aren’t very interesting
but that do have interesting ring variants. For some constant c ∈ (0, 1), the PRF P λ

c
has

tree depth of only 1
c in terms of calls to our synthesizer Kmλ in order to obtain a PRF with λ

output bits. From theorem 8.3, we know that P λ
c
–the PRF built using Kλc–is secure as long as

q ≥ p` (Cpm)` ·mω(1) for some universal constant C. We once again set p = mω(1).

Let’s evaluate our PRF construction P λ
c
. We start by noting that, due to our choice of param-

eters, q ≥ p` (Cpm)λ
c

·mω(1), which is subexponetially large. However, note that c can be an
arbitrarily small constant. We can use this fact to evaluate log q:

log q = O ((ω (1)λc + ω (1)) log (m)) = O (ω (1)λc log (m))

10Yes, this is a slight abuse of notation, but we think it is illustrative.

37



Parallel Complexity. This PRF does not have very interesting complexity, unfortunately.
We only have synthesizer tree depth of 1

c for some constant c ∈ (0, 1), but we have to do quite
a few matrix multiplies in each synthesizer computation. Our PRF parallel complexity is still
NC2 in this case.

As with all of our PRFs, F λ
c

clearly has O (log λ) matrix operation complexity, since, in prac-
tice and if we are only allowed matrix operations, we will need to compute all of the matrix
multiplications in a tree-like way.

10.4 The Synthesizer KR,λc

The final synthesizer we examine will allow us to build maximally parallel PRFs with the
strongest assumptions possible. For some constant c ∈ (0, 1), the PRF PR,λ

c
has tree depth

of only 1
c in terms of calls to our synthesizer KR,mλ in order to obtain a PRF with λ output

bits. From theorem 8.4, we know that PR,λ
c
–the PRF built using KR,λc–is secure as long as

q ≥ p` (Cpm)` ·mω(1) for some universal constant C. We once again set p = mω(1).

Let’s evaluate our PRF construction PR,λ
c
. We start by noting that, due to our choice of

parameters, q ≥ p` (Cpm)λ
c

·mω(1), which is subexponetially large. However, note that c can
be an arbitrarily small constant. We can use this fact to evaluate log q:

log q = O ((ω (1)λc + ω (1)) log (m)) = O (ω (1)λc log (m))

Parallel Complexity. This PRF has quite interesting parallel complexity. We only have
synthesizer tree depth of 1

c for some constant c ∈ (0, 1), which means that we only have to
compute a constant number of synthesizers in any given branch of our PRF calculation. Since
we showed that each synthesizer of this form can be computed in NC1, we know that the parallel
complexity in this case is still NC1. To our knowledge, this is the weakest LWE assumption
(smallest modulus) that is known to admit PRFs in NC1.

As with all of our PRFs, F λ
c

clearly has O (log λ) ring operation complexity, since, in prac-
tice and if we are only allowed matrix operations, we will need to compute all of the matrix
multiplications in a tree-like way.

11 Tree-Based Pseudorandom Synthesizer

In this section we build our most general (and complicated) pseduorandom synthesizer T` and
its ring version TR,`, which are based upon the general PRF construction in [BP14]. There
are only two slight differences between T` and the PRF from [BP14]: first, T` has an arbitrary
polynomial amount of input matrices at each layer (instead of just two for the whole PRF).
In addition, in order to make T` compose nicely, we need to use a non-square secret matrix S
instead of a vector or square matrix (this allows us to extract more entropy from our outputs),
which amounts to just running multiple instances of the original PRF in parallel with different
keys. This is in fact mentioned as an optimization in the original work [BP14] since it allows
for a better ratio of output bits to computation time.

These differences don’t change the fundamental structure of the function (and the security proof
is essentially identical) but do make bookkeeping substantially more difficult. In addition, the
syntax of the construction will look more complicated than the [BP14] PRF construction, but
we again want to emphasize that they are actually very, very similar.

38



11.1 Synthesizer Construction

Definition 11.1. Let m, c, q, p, and ` be integers such that p ≤ q. Let T be a binary tree such
that ` = |T |. Suppose we order the leaf nodes of T in order from left to right, assigning each
one an integer in [1, `]. Let k1, ..., k` ∈ Z be positive integers, and let z ∈ Z` be a vector such

that zi ∈ [1, k`] For i ∈ [1, `] and j ∈ [1, ki] let Ai,j ∈ Zm×mdlog qe
q be matrices selected uniformly

at random. Let S ∈ Zcm×mq be a matrix sampled uniformly at random.

Let the tree-navigating function AT : [1, k1]× [1, k2]× ...× [1, k`]→ Zm×mdlog qe
q be defined in the

following way:

AT (y) =

{
Ay if |T | = 1

ATl(yl) ·G
−1
(
ATr(yr)

)
otherwise

}
where yl corresponds to the portion of the vector y with indices corresponding to leaf nodes in
Tl and yr corresponds to the portion of y with indices corresponding to leaf nodes in Tr.

We define the synthesizer T` : Zcm×mq ×
[(
Zm×m2

)k1 × ...× (Zm×m2

)k`]→ Zc(k1m×...×k`m)dlog qe
p

in the following way: for each c (m×m) block of output of S`, define

T` (x1, ...x`)
def
= dS ·AT (x)cp (11.1)

where x is the vector made by the concatentation of the xis and each xi ∈ [1, ki].

We now offer some comments on our synthezier T`. First, note that the ‘key’ S is of larger
dimension than the matrices A. This is because we need to be able to have an output with
higher dimension than m×m if our inputs are uniformly random matrices over Zm×mq and we
are rounding.

We note that security follows almost immediately from the PRF construction of [BP14]. We
discuss this more in section 13. In addition, we can define a ring form of this synthesizer as well.

Definition 11.2. Let m, c, q, p, and ` be integers such that p ≤ q, and let R be a cyclotomic

polynomial ring R
def
= Z [x] / (xn + 1) where m is a power of 2. Let T be a binary tree such

that ` = |T |. Suppose we order the leaf nodes of T in order from left to right, assigning each
one an integer in [1, `]. Let k1, ..., k` ∈ Z be positive integers, and let z ∈ Z` be a vector such

that zi ∈ [1, k`] For i ∈ [1, `] and j ∈ [1, ki] let Ai,j ∈ Rdlog qe
q be row vectors of rings selected

uniformly at random. Let S ∈ Rcq be a column vector of rings sampled uniformly at random.

Let the tree-navigating function AT : [1, k1] × [1, k2] × ... × [1, k`] → R
dlog qe
q be defined in the

following way:

AT (y) =

{
Ax if |T | = 1

ATl(yl) ·G
−1
(
ATr(yr)

)
otherwise

}
where yl corresponds to the portion of the vector y with indices corresponding to leaf nodes in
Tl and yr corresponds to the portion of y with indices corresponding to leaf nodes in Tr.

We define the synthesizer TR,` : Rcq×
[
(Rq)

k1 × ...× (Rq)
k`
]
→ R

c(k1×...×k`)dlog qe
p in the following

way: for each Rcp-block of output of T`, define

TR,` (x1, ...x`)
def
= dS ·AT (x)cp (11.2)

where x is the vector made by the concatentation of the xis and each xi ∈ [1, ki].

39



12 Constructions of PRFs from T` and TR,`

In this section we show how our synthesizer T` can be used to build PRFs.

12.1 Synthesizer Statement

While we have proven T` and TR,` secure for a wide variety of parameters, we have one issue
left: our synthesizers don’t compose perfectly because our input and output don’t exactly match:

our inputs are matrices in Zm×mdlog qe
q and row vectors of rings R

dlog qe
q , respectively, and our

outputs are matrices in Zcm×mdlog qe
p and vectors of rings R

c×dlog qe
p . If we set p = q

c for some
small constant c, then it becomes easy to solve this issue: we can just combine multiple Zp (or
Rp) elements to form a Zq or (Rq) element in the straightforward manner. With this in mind,
building a PRF from T` becomes simple.

As with S` and K`, we state an overall theorem about the security of PRFs constructed from our
pseudorandom synthesizers using the synthesizer construction of [NR95]. This theorem follows
almost immediately from applying the synthesizer construction security theorem of [NR95] as
we stated in theorem 3.6 to our theorem 13.1 proving our synthesizer T` secure.

Theorem 12.1. Let T` be a synthesizer defined as in definition 11.1 with all associated param-
eters, and let λ be an integer. Let ψ be a ‘noise’ distribution over Z such that ψ is B-bounded.
Let q ≥ pB` (m dlog qe)e(T ) ·mω(1) such that q

p = c. In words, m will be our lattice dimension,
q is our modulus, p is our rounding parameter, λ is our PRF length, and ` is our synthesizer
parameter.

Let the PRF B` defined by applying the synthesizer construction defined in definition 3.5 to
the synthesizer T` defined in definition 11.1. Any adversary that can distinguish B` from
random as defined in definition 2.1 with non-negligible advantage ε can be used to solve the(
q,m, ψ,Umq ,Umq

)
-LWE problem with non-negligible advantage.

As long as we follow the parameter choices implied by lemma 13.1, we can build PRFs from T` for
any choice of `. In fact, we can make PRFs by mixing and matching different size synthesizers T`
and even different trees T , but we don’t really see any applications that would really benefit from
this sort of variety (perhaps there could be some parallel PRF evaluation with odd hardware
restrictions, but this seems a bit farfetched.

In the rest of the section, we examine the PRF B2, which we build from T2, and the PRF BR,2,
which we build from TR,2. These seem to be the most useful parameter choices we can make
with this generic construction, although there certainly could be many more useful constructions
that we have simply overlooked.

12.2 The Synthesizer T2

We start by analyzing the simplest, and yet one of the most efficient, synthesizers: T2. From the-
orem 12.1, we know that B2–the PRF built using T2–is secure as long as q ≥ pB` (m dlog qe)e(T ) ·
mω(1).

Let’s evaluate our PRF construction 2. For our lemmas to hold, it must be the case that
q ≥ pB` (m dlog qe)e(T ) ·mω(1). we know that

log q = O (ω (1) (logm) + log p+ logB + log `)

40



Efficiency Calculations. While the full tree construction of T` can be complicated to evaluate
(see the original work [BP14] for more details), the construction is much simpler when we restrict
trees to two leaf nodes as we do for this choice of `. At level i of the synthesizer tree, we effectively
do 2log(λ)−i computations of T2.

For each T2 calculation, we have to do one G−1 calculation over a matrix of size Zm×mdlog qe
q and

then two matrix multiplications (of dimensions consist of constant or logarithmic numbers of
m×m blocks). If we sum over all of the levels of the tree, we end up going 2n− 1 calculations
of T2 and n− 1 operations converting multiplie outputs over Zp to a single output over Zq, the
latter of which requires substantially less computation than the former.

Our matrices are of dimension size Õ (m). If we set τ to be the exponent corresponding to
optimal matrix multiplication, this means our PRF can be computed in time Õ (λmτ ). In
addition, note that we output Õ

(
m2
)

bits, so our operations per output bit is Õ
(
λmτ−2

)
.

Parallel Complexity. We subdivide parallel complexity into two categories: complexity in
terms of matrix operations if this is what we are only allowed (i.e. multiply, add, and round)
and absolute complexity. Our PRF B2 clearly has O log (λ) matrix operation complexity, since
the longest potential path from root to leaf on our synthesizer tree has 2 log (λ) multiplies and
log (λ) rounding operations. Since matrix multiplication is in NC1 [RW04] and our synthesizer
tree has depth log λ, this means B2 is in NC2.

Key and Public Parameter Size. The one area that our construction B2 does not do well
on is key size. For our key, we need log λ uniform matrices in Zcm×mq as well as 2λ matrices

in Zm×mdlog qe
q . We note that the Zm×mdlog qe

q matrices can be made public without any loss of
security (since they are what would traditionally be the public matrices of an LWE instance).
This gives us public parameter sizes of Õ

(
λm2

)
and secret key sizes of Õ

(
m2
)
.

12.3 The Synthesizer for Rings

Like K`, we can easily adapt what we just did above to the ring setting, immediately getting
the following lemma:

Theorem 12.2. Let TR,` be a synthesizer defined as in definition 11.1 with all associated
parameters, and let λ be an integer. Let ψ be a ‘noise’ distribution over the ring R such that ψ
is B-bounded. Let q ≥ pB` (m dlog qe)e(T ) ·mω(1) with q

p = c. In words, m will be the degree of
our polynomial ring, q is our modulus, p is our rounding parameter, λ is our PRF length, and
` is our synthesizer parameter.

Let the PRF BR,` defined by applying the synthesizer construction defined in definition 3.5 to
the synthesizer TR,` defined in definition 11.2. Any adversary that can distinguish BR,` from
random as defined in definition 2.1 with non-negligible advantage ε can be used to solve the
(R, q,m, ψ,U (Rq) ,U (Rq))-Ring LWE problem with non-negligible advantage.

As long as we follow the parameter choices implied by lemma 13.1, we can build PRFs from
TR,` for any choice of `. In fact, we can make PRFs by mixing and matching different size
synthesizers TR,` and even different trees T , but we don’t really see any applications that would
really benefit from this sort of variety (perhaps there could be some parallel PRF evaluation
with odd hardware restrictions, but this seems a bit farfetched.

41



12.4 The Synthesizer TR,2

From theorem 12.1, we know that BR,2–the PRF built using TR,2–is secure as long as q ≥
pB` (m dlog qe)e(T ) ·mω(1).

Let’s evaluate our PRF construction B2. For our lemmas to hold, it must be the case that
q ≥ pB` (m dlog qe)e(T ) ·mω(1). we know that

log q = O (ω (1) (logm) + log p+ logB + log `)

Efficiency Calculations. While the full tree construction of T` can be complicated to evaluate
(see the original work [BP14] for more details), the construction is much simpler when we restrict
trees to two leaf nodes as we do for this choice of `. At level i of the synthesizer tree, we effectively
do 2log(λ)−i computations of TR,2.

For each TR,2 calculation, we have to do one G−1 calculation over a row vector of rings R
dlog qe
q

and then a logarithmic number of ring multiplications. If we sum over all of the levels of the tree,
we end up going 2n − 1 calculations of TR,2 and n − 1 operations converting multiple outputs
over Rp to a single output over Rq, the latter of which requires substantially less computation
than the former.

Our ring elements are of degree m. Since we can do modular ring multiplications in the power
basis with m logm modular scalar operations [LPR10], this means our PRF can be computed
in time Õ (λm). In addition, note that we output cm log p bits, so our operations per output bit
is Õ (λ).

Parallel Complexity. We subdivide parallel complexity into two categories: complexity in
terms of matrix operations if this is what we are only allowed (i.e. multiply, add, and round) and
absolute complexity. Our PRF BR,2 clearly has O log (λ) ring operation complexity, since the
longest potential path from root to leaf on our synthesizer tree has 2 log (λ) multiplies and log (λ)
rounding operations. Since ring element multiplication is in NC1 [RW04] and our synthesizer
tree has depth log λ, this means BR,2 is in NC2.

Key and Public Parameter Size. We repeat, ad nauseam: the one area that our construc-
tion BR,2 does not do well on is key size. For our key, we need c log λ uniform ring elements in
Rq as well as 2λ dlog qe ring elements in Rq. We note that the latter Õ (λ) ring elements can be
made public without any loss of security (since they are what would traditionally be the public
matrices of a ring LWE instance). This gives us public parameter sizes of Õ (λm) and secret
key sizes of Õ (m).

13 Security of the Tree Synthesizers T` and TR,`

In this section, we discuss the security of our synthesizer T` and its ring variant TR,`. As we
mentioned earlier, the security of T` follows almost exactly from the security of the family of
PRF constructions presented in [BP14]. Suppose we call this PRF construction FBP . Recall
that FBP has the following form:

Let m, q, and p be integers, and let T be a non-empty binary tree with ` leaf nodes. Let

the matrices A0,A1 ∈ Zm×mdlog qe
q be chosen uniformly at random. Let the function AT :

{0, 1}|T | → Zm×mdlog qe
q be defined recursively as follows:

AT (x) =

{
Ax if |T | = 1

ATl(xl) ·G
−1
(
ATr(xr)

)
otherwise

}
42



where x can be parsed as x = xl||xr for xl ∈ {0, 1}|Tl| and xr ∈ {0, 1}|Tr|.

The function FBP : {0, 1}` → Zmdlog qe
p is defined in the following way:

FBP (x)
def
= dsᵀAT (x)cp (13.1)

There are only two differences between T` and FBP . First, we use a matrix S as a secret key in
T` instead of a vector s as in FBP . The authors of [BP14] actually allude to the fact that this
can actually be used as a technique to gain more output bits per computational work in their
paper, and it does not change the security proof substantially (a proof would need a hybrid
argument over multiple LWE instances, but this is widely presented without a formal proof and
sometimes the LWE problem itself is even defined in this way).

The only other difference is how we handle leaf nodes. In FBP , once we reach a leaf node in
the recursive tree evaluation, we choose one of two input matrices–either A0 or A1–depending
on a single input bit. In T`, when we reach a leaf node we choose one of many different input
matrices based on a particular index in a larger set. This does not substantively change the
security proof–we just query for more LWE samples at each level of the hybrid in the obvious
manner. In addition, our leaf nodes have different sets of matrices, whereas all leaf nodes in FBP
use the same two matrices. This is essentially just an optimization that the authors of [BP14]
use in order to reduce the public parameter size.

Thus, the security proof of T` follows immediately from that of FBP . We state this in a lemma
below, which is essentially just a restatement of theorem 2.3 from [BP14].

Lemma 13.1. Let T` be a synthesizer defined as in definition 11.1 with all associated parame-
ters. Let ψ be a ‘noise’ distribution over Z such that ψ is B-bounded. Let q ≥ pB` (m dlog qe)e(T )·
mω(1).

Any adversary A that can win the pseudorandom synthesizer game for T` defined in definition 3.2
can be used to solve the

(
q,m, ψ,Umq ,Umq

)
− LWE problem.

We can also state a similar lemma for TR,`, our ring LWE-based synthesizer.

Lemma 13.2. Let TR,` be a synthesizer defined as in definition 11.2 with all associated
parameters. Let ψ be a ‘noise’ distribution over R such that ψ is B-bounded. Let q ≥
pB` (m dlog qe)e(T ) ·mω(1).

Any adversary A that can win the pseudorandom synthesizer game for TR,` defined in defini-
tion 3.2 can be used to solve the (R, q,m,ψ,U (Rq) ,U (Rq))−RLWE problem.

14 Conclusion and Open Problems

In this paper, we showed how to build more efficient lattice-based PRFs using keyed pseudo-
random synthesizers. We constructed PRFs with only slightly superpolynomial modulus (inde-
pendent of the number of input bits) that match the efficiency of the otherwise most efficient
known constructions. We also show how to build other PRFs that imply interesting results on
the parallel circuit complexity of lattice PRFs.

14.1 Open Problems

We conclude the paper by stating two open problems. We think these problems are very impor-
tant for lattice cryptography in general, as well as (obviously) PRFs.

43



LWR with Polynomial Modulus. Recall that the learning with rounding problem states

that, informally, it is hard to distinguish samples of the form
(
ai, daiᵀscp

)
from random for

uniformly random samples ai and secret key s. For an unbounded number of samples (what is
needed for a PRF reduction), the hardness of LWR is only known when the modulus q of the
problem instance is superpolynomially large. This doesn’t seem natural to us, and we think
attempting to prove that LWR is hard for a polynomial modulus and unbounded samples (or
showing evidence that this is not true, although we consider this unlikely) is a worthwhile en-
deavor. While there have been several papers establishing the hardness of LWR with polynomial
hardness and a fixed numbers of samples [AKPW13] [BGM+16] [BLL+15] [AA16], the security
of LWR with a polynomial modulus and unbounded polynomial samples is still unknown.

Earlier this year, Montgomery [Mon18] showed how to build a (highly nonstandard) variant of
learning with rounding with polynomial modulus and unbounded samples. However, at a first
glance, this new LWR variant does not seem to be able to be used with our techniques (or any
others, for that matter) to build PRFs with polynomial modulus. Constructing a variant of
LWR that can be used to build PRFs with polynomial modulus (or showing a security proof
with polynomial modulus and unbounded samples for the regular version of LWR) remains an
important open problem in our opinion.

Subset Product LWE with Polynomial Modulus. Let Ai,bi ∈ Zm×mq for i ∈ [1, ...λ] and
bi ∈ {0, 1} be matrices selected uniformly at random, and let s ∈ Zmq also be sampled uniformly
from random. We call the following function subset product LWE:

F (x1...xλ) =
λ∏
i=1

Ai,xis + δx

where δx is a noise vector selected independently at random for each input x.
Currently, for polynomial λ, this function F can only be shown to be hard for modulus on

the order of mλ. Like LWR, we see no real reason why this problem should not be hard for a
polynomial modulus: there are no known attacks, and the large modulus seems to be a relic
of the hybrid argument in the proofs. We think attempting to prove this function secure for
smaller modulus (and thus achieve better lattice hardness results) is a great candidate for future
research.

References

[AA16] Jacob Alperin-Sheriff and Daniel Apon. Dimension-preserving reductions from LWE
to LWR. IACR Cryptology ePrint Archive, 2016:589, 2016.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture
Notes in Computer Science, pages 595–618, Santa Barbara, CA, USA, August 16–
20, 2009. Springer, Heidelberg, Germany.

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with
rounding, revisited - new reduction, properties and applications. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume
8042 of Lecture Notes in Computer Science, pages 57–74, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Heidelberg, Germany.

44



[Ban15] Abhishek Banerjee. New constructions of cryptographic pseudorandom functions.
Ph.D. Thesis, 2015. https://smartech.gatech.edu/bitstream/handle/1853/

53916/BANERJEE-DISSERTATION-2015.pdf?sequence=1&isAllowed=y.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revis-
ited: The cascade construction and its concrete security. In 37th Annual Symposium
on Foundations of Computer Science, pages 514–523, Burlington, Vermont, Octo-
ber 14–16, 1996. IEEE Computer Society Press.

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Crypto-
graphic primitives based on hard learning problems. In Douglas R. Stinson, editor,
Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer
Science, pages 278–291, Santa Barbara, CA, USA, August 22–26, 1994. Springer,
Heidelberg, Germany.

[BFP+15] Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak, and So-
phie Stevens. Key-homomorphic constrained pseudorandom functions. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptography
Conference, Part II, volume 9015 of Lecture Notes in Computer Science, pages 31–
60, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On
the hardness of learning with rounding over small modulus. In Eyal Kushilevitz and
Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptography Conference, Part I,
volume 9562 of Lecture Notes in Computer Science, pages 209–224, Tel Aviv, Israel,
January 10–13, 2016. Springer, Heidelberg, Germany.

[BKM17] Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable PRFs
from standard lattice assumptions. Lecture Notes in Computer Science, pages 415–
445. Springer, Heidelberg, Germany, 2017.

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld.
Improved security proofs in lattice-based cryptography: Using the Rényi divergence
rather than the statistical distance. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology – ASIACRYPT 2015, Part I, volume 9452 of Lecture Notes
in Computer Science, pages 3–24, Auckland, New Zealand, November 30 – Decem-
ber 3, 2015. Springer, Heidelberg, Germany.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan.
Key homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture
Notes in Computer Science, pages 410–428, Santa Barbara, CA, USA, August 18–
22, 2013. Springer, Heidelberg, Germany.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th Annual ACM Symposium on Theory of Computing,
pages 575–584, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

[BMR10] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic pseu-
dorandom functions with improved efficiency from the augmented cascade. In Ehab
Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10: 17th

45

https://smartech.gatech.edu/bitstream/handle/1853/53916/BANERJEE-DISSERTATION-2015.pdf?sequence=1&isAllowed=y
https://smartech.gatech.edu/bitstream/handle/1853/53916/BANERJEE-DISSERTATION-2015.pdf?sequence=1&isAllowed=y


Conference on Computer and Communications Security, pages 131–140, Chicago,
Illinois, USA, October 4–8, 2010. ACM Press.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseu-
dorandom functions. In Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer
Science, pages 353–370, Santa Barbara, CA, USA, August 17–21, 2014. Springer,
Heidelberg, Germany.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryp-
tology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 719–737, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[BR17] Andrej Bogdanov and Alon Rosen. Pseudorandom Functions: Three Decades Later,
pages 79–158. Springer International Publishing, Cham, 2017.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Pri-
vate constrained PRFs (and more) from LWE. In TCC 2017: 15th Theory of Cryp-
tography Conference, Part I, Lecture Notes in Computer Science, pages 264–302.
Springer, Heidelberg, Germany, March 2017.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs
from standard lattice assumptions - or: How to secretly embed a circuit in your
PRF. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory
of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Computer
Science, pages 1–30, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg,
Germany.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their ap-
plications. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology –
ASIACRYPT 2013, Part II, volume 8270 of Lecture Notes in Computer Science,
pages 280–300, Bengalore, India, December 1–5, 2013. Springer, Heidelberg, Ger-
many.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from
LWE. Lecture Notes in Computer Science, pages 446–476. Springer, Heidelberg,
Germany, 2017.

[DKW16] Apoorvaa Deshpande, Venkata Koppula, and Brent Waters. Constrained pseudo-
random functions for unconstrained inputs. Lecture Notes in Computer Science,
pages 124–153. Springer, Heidelberg, Germany, 2016.

[DS15] Nico Döttling and Dominique Schröder. Efficient pseudorandom functions via on-
the-fly adaptation. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Ad-
vances in Cryptology – CRYPTO 2015, Part I, volume 9215 of Lecture Notes in
Computer Science, pages 329–350, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany.

[Fat06] Richard J Fateman. When is fft multiplication of arbitrary-precision polynomials
practical? University of California, Berkeley, 2006.

46



[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions (extended abstract). In 25th Annual Symposium on Foundations of Com-
puter Science, pages 464–479, Singer Island, Florida, October 24–26, 1984. IEEE
Computer Society Press.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork,
editors, 40th Annual ACM Symposium on Theory of Computing, pages 197–206,
Victoria, British Columbia, Canada, May 17–20, 2008. ACM Press.

[IL95] Neil Immerman and Susan Landau. The complexity of iterated multiplication. In-
formation and Computation, 116(1):103–116, 1995.

[JKP18] Tibor Jager, Rafael Kurek, and Jiaxin Pan. Simple and more efficient prfs with tight
security from lwe and matrix-ddh. Cryptology ePrint Archive, Report 2018/826,
2018. https://eprint.iacr.org/2018/826.

[KSN+04] Donald E Knuth, Hiroaki Saitou, Takahiro Nagao, Shougo Matui, Takao Matui,
and Hitoshi Yamauchi. of Book: The Art of Computer Programming.-Volume 2,
Seminumerical Algorithms (Japanese Edition), volume 2. ASCII, 2004.

[KW17] Sam Kim and David J. Wu. Watermarking cryptographic functionalities from stan-
dard lattice assumptions. Lecture Notes in Computer Science, pages 503–536, Santa
Barbara, CA, USA, 2017. Springer, Heidelberg, Germany.

[LMR14] Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Improved con-
structions of PRFs secure against related-key attacks. In Ioana Boureanu, Philippe
Owesarski, and Serge Vaudenay, editors, ACNS 14: 12th International Conference
on Applied Cryptography and Network Security, volume 8479 of Lecture Notes in
Computer Science, pages 44–61, Lausanne, Switzerland, June 10–13, 2014. Springer,
Heidelberg, Germany.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In Henri Gilbert, editor, Advances in Cryptology – EURO-
CRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 1–23,
French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[MG12] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a crypto-
graphic perspective, volume 671. Springer Science & Business Media, 2012.

[Mon18] Hart Montgomery. A nonstandard variant of learning with rounding with polynomial
modulus and unbounded samples. Cryptology ePrint Archive, Report 2018/100,
2018. https://eprint.iacr.org/2018/100.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 700–718, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg,
Germany.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small pa-
rameters. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages

47

https://eprint.iacr.org/2018/826
https://eprint.iacr.org/2018/100


21–39, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Ger-
many.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on Gaussian measures. In 45th Annual Symposium on Foundations of Computer
Science, pages 372–381, Rome, Italy, October 17–19, 2004. IEEE Computer Society
Press.

[NR95] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel
construction of pseudo-random functions. In 36th Annual Symposium on Founda-
tions of Computer Science, pages 170–181, Milwaukee, Wisconsin, October 23–25,
1995. IEEE Computer Society Press.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th Annual Symposium on Foundations of Computer Science,
pages 458–467, Miami Beach, Florida, October 19–22, 1997. IEEE Computer Society
Press.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In Michael Mitzenmacher, editor, 41st Annual ACM Sympo-
sium on Theory of Computing, pages 333–342, Bethesda, Maryland, USA, May 31 –
June 2, 2009. ACM Press.

[PRSD17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of
ring-LWE for any ring and modulus. In 49th Annual ACM Symposium on Theory
of Computing, pages 461–473. ACM Press, 2017.

[PS17] Chris Peikert and Sina Shiehian. Privately constraining and programming prfs, the
lwe way. Cryptology ePrint Archive, Report 2017/1094, 2017. https://eprint.

iacr.org/2017/1094.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium
on Theory of Computing, pages 84–93, Baltimore, Maryland, USA, May 22–24,
2005. ACM Press.

[Rei] Omer Reingold. Pseudorandom synthesizers, functions, and permutations.

[RT92] John H Reif and Stephen R Tate. On threshold circuits and polynomial computation.
SIAM Journal on Computing, 21(5):896–908, 1992.

[RW04] Steven Rudich and Avi Wigderson. Computational complexity theory, volume 10.
American Mathematical Soc., 2004.

[SS91] Victor Shoup and Roman Smolensky. Lower bounds for polynomial evaluation and
interpolation problems. In 32nd Annual Symposium on Foundations of Computer
Science, pages 378–383, San Juan, Puerto Rico, October 1–4, 1991. IEEE Computer
Society Press.

48

https://eprint.iacr.org/2017/1094
https://eprint.iacr.org/2017/1094

	Introduction
	Lattice-Based PRFs
	Pseudorandom Synthesizers and Lattices
	Our Contributions
	Paper Outline

	Preliminaries
	Notation
	Pseudorandomness
	Lattices
	Learning With Errors

	Pseudorandom Synthesizers
	Building PRFs from Synthesizers

	Sample Subset-Product Pseudorandom Synthesizer
	Synthesizer Definition

	Constructions of PRFs from S
	The Synthesizer S2

	Proof of Security
	Security Proof Intuition
	Background Definitions and Lemmas
	The Noisy Pseudorandom Synthesizer
	Handling the Rounding
	Putting It All Together

	Key Subset-Product Pseudorandom Synthesizer
	Synthesizer Construction
	Synthesizer Construction from Ring LWE

	Constructions of PRFs from K and KR, 
	LWE with Large Uniform Key and Noise
	Synthesizer Statement
	The Synthesizer K2
	The Synthesizer for Rings
	The Synthesizer KR, 2
	Using K with larger 

	Security of the Key Product Synthesizers K and KR, 
	Constructions of PRFs with Large 
	The Synthesizer K( 1 log )
	The Synthesizer KR, ( 1 log )
	The Synthesizer Kc
	The Synthesizer KR, c

	Tree-Based Pseudorandom Synthesizer
	Synthesizer Construction

	Constructions of PRFs from T and TR, 
	Synthesizer Statement
	The Synthesizer T2
	The Synthesizer for Rings
	The Synthesizer TR, 2

	Security of the Tree Synthesizers T and TR, 
	Conclusion and Open Problems
	Open Problems


