
Match Me if You Can: Matchmaking Encryption

and its Applications

Giuseppe Ateniese∗1, Danilo Francati†1, David Nuñez‡2, and Daniele Venturi§3
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Abstract

We introduce a new form of encryption that we name matchmaking encryption (ME).
Using ME, sender S and receiver R, each characterized by its own attributes, can both
specify policies the other party must satisfy in order for the message to be revealed. The
main security guarantee is that of privacy-preserving policy matching: During decryption
nothing is leaked beyond the fact that a match occurred/did not occur.

ME opens up new and innovative ways of secretly communicating, and enables several
new applications where both participants can specify fine-grained access policies to encrypted
data. For instance, in social matchmaking, S can encrypt a file containing his/her personal
details and specify a policy so that the file can be decrypted only by his/her ideal partner.
On the other end, a receiver R will be able to decrypt the file only if S corresponds to his/her
ideal partner defined through a policy.

On the theoretical side, we put forward formal security definitions for ME, as well as
generic frameworks for constructing ME from functional encryption. These constructions
need to face the main technical challenge of simultaneously checking the policies established
by S and R to avoid any leakage.

On the practical side, we construct an efficient scheme for the identity-based setting,
with provable security in the random oracle model under the standard BDH assumption. We
implement and evaluate our scheme and provide experimental evidence that our construction
is practical. We also apply identity-based ME to a concrete use case, in particular for creating
an anonymous bulletin board over a Tor network.
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1 Introduction

Intelligence operations often require secret agents to communicate with other agents from differ-
ent organizations. When two spies meet to exchange secrets, they use a type of secret handshake
to ensure that the parties participating in the exchange are the ones intended. For example, an
FBI agent may want to communicate only with CIA agents, and if this is not the case, the com-
munication should drop without revealing membership information and why the communication
failed. This form of live drop communication1, when parties are online and interact, has been
implemented in cryptography and it is referred to as secret handshake (SH) protocol [9]. In SH,
two parties agree on the same secret key only if they are both from the same group. Privacy
is preserved in the sense that, if the handshake fails, nobody learns anything relevant other
than the participants are not in the same group. In SH with dynamic matching [5], groups and
roles can even be determined just before the protocol execution. However, the most common
method of espionage tradecraft is the dead drop one1 which maintains operational security by
using a secret location for the exchange of information thus relieving the agents from meeting
in person. Unfortunately, dead-drop communication cannot be captured by any existing cryp-
tographic primitive since it requires a form of expressiveness that is not currently provided by
encryption and its more advanced forms.

Encryption allows a sender and a receiver to exchange a message over an insecure channel,
in such a way that the content of the message remains hidden to the eyes of an eavesdropper.
This fundamental cryptographic primitive was originally conceived with a strict “all-or-nothing”
flavor: Either the receiver obtains the plaintext embedded in the ciphertext, or it learns nothing
about the plaintext. Additionally, access to encrypted data is coarse-grained, in the sense that
only a single secret key can unlock the ciphertext.

Attribute-based encryption. Motivated by the lack of expressiveness required to protect
big, complex data in modern digital applications, new forms of encryption have emerged in
recent years. For instance, ciphertext-policy attribute-based encryption (CP-ABE) [44, 11]
allows embedding a policy in a ciphertext, and associating attributes to decryption keys, in
such a way that the ciphertext is unlocked only by keys whose attributes satisfy the underlying
policy.

In the dual scenario, a.k.a. key-policy ABE (KP-ABE) [28], the sender can embed its at-
tributes in the ciphertext, whereas decryption keys are now associated to access policies chosen
by the receiver. In both versions, decryption keys are generated using a master secret key held
by a trusted authority. Note that possession of the master secret key allows decrypting every
ciphertext; such a “key escrow” issue has several mitigations (see, e.g., [23] and the references
therein).

Even in ABE, one of the two parties (either the sender or the receiver) only takes a passive
role. For instance, in the case of CP-ABE, an encrypted message can be opened only by the
intended receivers, that must satisfy policies determined by the sender and cannot specify and
validate, e.g., restrictions on the type of messages they want to read, or the roles of the sender,
without decrypting first. Similar limitations apply to the case of KP-ABE, but now the passive
role is held by the sender. The situation is even worse in scenarios where privacy must be
preserved and, when decryption fails, the receiver should learn nothing about what went wrong.

Matchmaking encryption. In this paper, we are revamping the encryption primitive and
introducing a new concept termed “Matchmaking Encryption” or ME. In ME, a trusted authority
generates encryption and decryption keys associated, respectively, to attributes of the sender

1See https://en.wikipedia.org/wiki/Dead_drop.
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and the receiver. The authority also generates an additional decryption key for the receiver,
associated to an arbitrary policy of its choice. The sender of the message can specify on the
fly an arbitrary policy the receiver must satisfy in order for the message to be revealed. The
guarantee is now that the receiver will obtain the message if and only if a match occurs (i.e., the
sender’s attributes match the receiver’s policy and vice-versa). Nothing beyond that is leaked;
furthermore, the sender’s attributes are certified by the authority, so that no malicious sender
can forge a valid ciphertext which embeds fake attributes.

For instance, the sender, during encryption, can specify that the message is intended for an
FBI agent that lives in NYC. The receiver, during decryption, can also specify that he wants to
read messages only if they come from CIA agents. If any of these two policies is not satisfied,
the message remains secret, but nobody learns which policy failed. In this vein, ME can be
seen as a non-interactive version of SH but with much more enhanced functionality. Indeed, an
SH works only for groups and roles, while attribute-based key agreements [25] do not consider
privacy. We refer the reader to §1.3 for a comparison between ME and other primitives in the
realm of attribute-based cryptography.

ME is the first cryptographic primitive that implements the dead drop communication func-
tionality, and opens up new innovative ways for the intelligence community or the military
to covertly communicate without resorting to convoluted schemes involving encryption and
steganography. It also allows new business applications, where messages or transaction details
are revealed only if there is a policy match between the sender and the receiver (more on this
below).

1.1 Our Contributions

We initiate a systematic study of ME, both in terms of definitions and constructions. Our main
contributions are summarized below.

Syntax of ME. In ME, a trusted authority publishes a master public key mpk, associated
to a master secret key msk. The master secret key is used by the authority to generate 3 types
of keys: (i) An encryption key ekσ, associated with attributes σ for the sender (created using
an algorithm SKGen); (ii) A decryption key dkρ, associated with attributes ρ for the receiver
(created using an algorithm RKGen); (iii) A decryption key dkS, associated to a policy S that the
sender’s attributes should satisfy, but that is chosen by the receiver (created using an algorithm
PolGen). A sender with attributes σ, and corresponding encryption key ekσ obtained from the
authority, can thus create a ciphertext c by additionally specifying on the fly a policy R that
the receiver’s attributes should satisfy, and a plaintext; notice that c is associated with both
σ and R. Finally, the receiver can attempt to decrypt c using keys dkρ and dkS: In case of a
match (i.e., the attributes of both parties satisfy the counterparty’s policy), the receiver obtains
the plaintext, and otherwise an error occurs.

Security of ME. We consider 3 properties termed private mismatchings (MISMATCH), pri-
vate matchings (MATCH), and ciphertext authenticity (AUTH). On rough terms, MISMATCH
and MATCH security look at the privacy of the sender w.r.t. the plaintext m, the chosen policy
R, and its attributes σ, whenever a malicious receiver, possessing decryption keys for several
attributes ρ and policies S:

• Can not decrypt the ciphertext (“mismatch condition”), i.e., either the sender’s attributes
do not satisfy the policies held by the receiver (S(σ) = 0), or the receiver’s attributes do
not satisfy the policy specified by the sender (R(ρ) = 0).
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• Can decrypt the ciphertext (“match condition”), i.e., both the sender’s and the receiver’s
attributes satisfy the corresponding policy specified by the counterpart (R(ρ) = 1 and
S(σ) = 1). Of course, in such a case the receiver is allowed to learn the plaintext.

Finally, AUTH security says that an attacker not possesing attributes σ should not be able
to create a valid ciphertext (i.e., a ciphertext not decrypting to ⊥) w.r.t. any access policy that
is satisfied by σ.

Black-box constructions. It turned out that building matchmaking encryption is quite
difficult. While a compiler exists that turns key agreement protocols into public-key encryptions
(e.g., Diffie-Hellman key exchange into ElGamal public-key encryption), there is no obvious way
of building ME from SH, even by extending the model of SH to include attributes and policies in
order to achieve something akin to attribute-based key agreement protocols. The main technical
challenge is to ensure that the policies established by the sender and receiver are simultaneously
checked to avoid any leakage. This simultaneity requirement is so elusive that even constructions
that combine ABE with authentication mechanisms fail to achieve it (more on this later).

Our first technical contribution is a construction of an ME for arbitrary policies based on
three tools: (i) an FE scheme for randomized functionalities [1] (rFE), (ii) digital signatures,
and (iii) non-interactive zero-knowledge (NIZK) proofs. When using the rFE scheme from [1],
we can instantiate our scheme assuming the existence of either semantically secure public-key
encryption schemes and low-depth pseudorandom generators, or concrete assumptions on multi-
linear maps, or polynomially-secure indistinguishability obfuscation (iO).

This construction satisfies only security against bounded collusions, where there is an a-
priori upper bound on the number of queries a malicious receiver can make to oracles RKGen
and PolGen. We additionally give a simpler construction of ME for arbitrary policies that
even achieves full security (i.e., security against unbounded collusions), albeit under stronger
assumptions. Here, we replace rFE with 2-input functional encryption (2FE) [24]. When using
the 2FE scheme by Goldwasser et al. [24], we can instantiate this construction based on sub-
exponentially secure iO.

Being based on strong assumptions, the above constructions should be mainly understood
as feasibility results showing the possibility of constructing ME for arbitrary policies. It is
nevertheless worth pointing out a recent construction of iO based on LWE, bilinear maps, and
weak pseudorandomness [4], which avoids multi-linear maps. Additionally, Fisch et al. [20]
show how to implement efficiently 2-FE using trusted hardware, via Intel’s Software Guard
Extensions (SGX).

The identity-based setting. Next, we turn to the natural question of obtaining efficient ME
in restricted settings. In particular, we focus on the identity-based setting where access policies
are simply bit-strings representing identities (as for standard identity-based encryption). This
yields identity-based ME (IB-ME). For this setting, we provide an efficient construction that we
prove secure in the random oracle model (ROM), based on the standard bilinear Diffie-Hellman
assumptions (BDH) over bilinear groups.

Recall that in ME the receiver needs to obtain from the authority a different key for each
access policy S. While this requirement is perfectly reasonable in the general case, where a policy
might consist of the conjunction of several attributes, in the identity-based setting a receiver
that wants to receive messages from several sources must obtain one key for each source. Since
this would not scale well in practice, we slightly change the syntax of IB-ME and remove the
PolGen algorithm. In particular, the receiver can now specify on the fly an identity string
snd (playing the role of the access policy S) that is directly input to the decryption algorithm
(together with the secret key associated to the receiver’s identity).
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Type MISMATCH MATCH AUTH Assumptions

§4.1 ME X‡ X‡ X‡ rFE + Signatures + NIZK

§4.2 ME X X X 2FE + Signatures + NIZK

§4.3 A-ME X X X FE + Signatures + NIZK

§5 IB-ME X† X† X† BDH (RO model)

Table 1: Results achieved in this work. † Security only holds in the identity-based setting. ‡
Security only holds in case of bounded collusions.

While the above modification yields much more efficient IB-ME schemes, it comes with the
drawback that an adversary in the MISMATCH and MATCH security games can try to unlock
a given ciphertext using different target identities snd chosen on the fly. The latter yields simple
attacks that required us to slightly tweak the definitions of MISMATCH and MATCH security.
We refer the reader to §5 for a more detailed overview of our security definitions for IB-ME.

Concrete use case and implementation. We give evidence of the practical viability of our
IB-ME construction by providing a prototype implementation in Python. Our experimental
evaluation can be found in §6. There, we also detail a concrete use case where IB-ME is used
in order to realize a prototype of a new privacy-preserving bulletin board that is run on the
Tor network [47]. Our system allows parties to communicate privately, or entities such as
newspapers or organizations to collect information from anonymous sources. A public bulletin
board is essentially a broadcast channel with memory. Messages can be encrypted under ME
so that their content is revealed only in case of a policy match. The privacy-preserving feature
of ME ensures that, if decryption fails, nobody learns which policies were not satisfied. This
effectively creates secure and private virtual rooms or sub-channels.

Arranged ME. We also consider an alternative flavor of ME, called arranged matchmaking
encryption (A-ME), where there is a single decryption key dkρ,S that describes simultaneously
the receiver’s attributes ρ and the policy S chosen by the receiver. Thus, an A-ME scheme does
not come with a PolGen algorithm. This feature makes sense in applications where a receiver
could have multiple attributes, but with restricted access rights. A-ME results simpler to con-
struct, in fact we show how to construct A-ME for arbitrary policies from FE for deterministic
functionalities, digital signatures, and NIZK proofs.

See Table 1 for a summary of our constructions in terms of assumptions and for different
flavors of ME.

1.2 Technical Approach

Below, we describe the main ideas behind our constructions of ME. We start by presenting two
unsuccessful attempts, naturally leading to our secure constructions. Both attempts are based
on FE. Recall that FE allows to generate decryption keys dkf associated to a functionality f , in
such a way that decrypting a ciphertext c, with underlying plaintext x, under dkf , yields f(x)
(and nothing more). Note that FE implies both CP-ABE and KP-ABE [13].

First attempt. A first natural approach would be to construct an ME scheme by combining
two distinct FE schemes. The idea is to apply sequentially two functionalities f1 and f2, where
the first functionality checks whether the sender’s policy R is satisfied, whereas the second
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functionality checks whether the receiver’s policy S is satisfied. More in details, let f1 and f2

be the following functions:

f1
ρ (R, c) =

{
c, if R(ρ) = 1
⊥, otherwise

f2
S (σ,m) =

{
m, if S(σ) = 1
⊥, otherwise

where R(ρ) = 1 (resp. S(σ) = 1) means that receiver’s attributes ρ (resp. sender’s attributes
σ) satisfy the sender’s policy R (resp. receiver’s policy S). A sender now encrypts a message m
under attributes σ by first encrypting (σ,m) under the second FE scheme, and thus it encrypts
the corresponding ciphertext concatenated with the policy R under the first FE scheme. On the
other side, a receiver first decrypts a ciphertext using secret key dkρ associated with function
f1
ρ , and then it decrypts the obtained value using secret key dkS associated with function f2

S .
While “semantic security” of the underlying FE schemes computationally hides the plaintext

of the resulting ME scheme, MISMATCH security is not guaranteed completely: In fact, when
the first encrypted layer decrypts correctly (resp. does not decrypt correctly), a receiver infers
that the sender’s attributes σ match (resp. do not match) the policy S.

Second attempt. One could think to savage the above construction as follows. Each function
f i returns a random key ri in case the corresponding policy (i.e., the policy checked by function
f i) is satisfied, and otherwise it returns a random value generated by running a secure PRF F .
Both partial keys r1, r2 are then needed to unmask the string r1 ⊕ r2 ⊕m, which is included in
the ciphertext.

More precisely, consider functions f1
ρ (R, r1, k1) and f2

S (σ, r2, k2), such that f1
ρ (R, r1, k1) (resp.

f2
S (σ, r2, k2)) returns r1 (resp. r2) if ρ satisfies R (resp. σ satisfies S); otherwise, it returns Fk1(ρ)

(resp. Fk2(S)), where k1 (resp. k2) is a key for the PRF F . An encryption of message m w.r.t.
attributes σ and policy R would now consist of three values (c1, c2, c3), where c1 is an encryption
of (R, r1, k1) under the first FE scheme, c2 is an encryption of (σ, r2, k2) under the second FE
scheme, and finally c3 = r1⊕ r2⊕m. A receiver (with keys dkρ and dkS associated to functions
f1
ρ and f2

S as before) would decrypt c1 and c2 using dkρ and dkS, and finally xor the outputs
between them and with c3.

As before, “semantic security” still follows from the security of the two FE schemes. Fur-
thermore, it might seem that MISMATCH security is also satisfied because in this new scheme,
by security of the PRF, it is hard to distinguish whether the decryption of each ci yields the ran-
dom string ri (i.e., there was a match) or an output of Fki (i.e., there was no match). However,
a malicious receiver possessing distinct attributes ρ and ρ′, such that both satisfy the policy
R, is able to figure out whether the sender’s policy is matched by simply decrypting c1 twice
(using attributes ρ and ρ′) and comparing if the decryption returns twice the same value (i.e.,
r1). A similar attack can be carried out using two different keys for distinct policies S and S′,
such that both policies are satisfied by the attributes σ.

ME from 2FE. Intuitively, in order to avoid the above attacks, we need to check simulta-
neously that S(σ) = 1 and R(ρ) = 1. 2FE comes handy to solve this problem, at least if one
is willing to give up on AUTH security. Recall that in a 2FE scheme we can associate secret
keys with 2-ary functionalities, in such a way that decrypting ciphertexts c0, c1 computed using
independent keys ek0, ek1, and corresponding to plaintexts x0, x1, yields f(x0, x1) (and nothing
more).

Wlog., we reserve the 1st slot to the sender, while the 2nd slot is reserved to the receiver;
the administrator gives the key ek0 to the sender. The sender now encrypts a message m
under attributes σ and policy R by computing Enc(ek0, (σ,R,m)), which yields a ciphertext
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c0 for the first input of the function f . The receiver, as usual, has a pair of decryption keys
dkρ, dkR obtained from the administrator; here, dkS = Enc(ek1,S) = c1 is an encryption of S
under key ek1. Hence, the receiver runs Dec(dkρ, c0, c1), where dkρ is associated to the function
fρ((m,σ,R),S) that returns m if and only if both R(ρ) = 1 and S(σ) = 1 (i.e., a match occurs).

On rough terms, both MATCH and MISMATCH security follow by the security of the un-
derlying 2FE scheme, which guarantees that the receiver learns nothing more than the output of
f . Unfortunately, this construction does not immediately satisfy AUTH security. To overcome
this limitation, we tweak it as follows. First, we let the sender obtain from the authority a
signature s on its own attributes σ; the signature is computed w.r.t. a verification key that is
included in the public parameters of the scheme. Second, during encryption, the sender com-
putes the ciphertext c0 as above, but now additionally proves in zero knowledge that it knows a
valid signature for the attributes that are hidden in the ciphertext. As we show, this modifica-
tion allows to prove AUTH security, while at the same time maintaining MATCH/MISMATCH
security.

ME from rFE. We now explain an alternative solution that combines rFE and FE. Recall
that rFE is a generalization of FE that supports randomized functionalities. In what follows,
we write f1 for the randomized functionality supported by the rFE scheme, and f2 for the
deterministic functionality supported by the plain FE scheme. The main idea is to let the
sender encrypt a message m under attributes σ and policy R by encrypting (m,σ,R) under
the rFE scheme. We then consider the randomized function f1

ρ that checks if ρ satisfies R: In
case a match occurs (resp. does not occur), it returns an encryption of (m,σ) (resp. of (⊥,⊥),
where ⊥ denotes garbage) for the second function f2

S , that simply checks whether the policy S
is satisfied or not. The receiver decryption keys are the keys dkρ, dkS associated to the functions
f1
ρ and f2

S .
Roughly speaking, since the randomized function f1 passes encrypted data to f2, a malicious

receiver infers nothing about the satisfiability of policy R. On the other hand, the satisfiability
of S remains hidden, as long as the FE scheme for function f2 is secure. Somewhat surprisingly,
the security analysis is much more subtle, and can be found in §A.1 of the appendix. Once
again, the above construction does not directly satisfy AUTH security. However, we show that
the same trick explained above for the 2FE-based scheme works here as well.

A-ME from FE. Recall that the difference between ME and A-ME lies in the number of
decryption keys: While in ME there are two distinct decryption keys (one for the policy S, and
one for the attributes ρ), in A-ME there is a single decryption key dkρ,S that represents both
the receiver’s attributes ρ and the policy S.

As a consequence, looking at our construction of ME from 2FE, we can now hard-code
the policy S (together with the attributes ρ) into the function, which allows to replace 2FE
with plain FE. This way, each A-ME decryption key dkρ,S is the secret key corresponding to
the function fρ,S for the FE scheme. The security proof only requires FE with game-based
security [13], which in turn can be instantiated under much weaker assumptions.

IB-ME. Above, we mentioned that the natural construction of ME where a ciphertext masks
the plaintext m with two distinct pads r1, r2—where r1, r2 are re-computable by the receiver as
long as a match occurs—is insecure. This is because the expressiveness of ME allows to have
two distinct attributes ρ and ρ′ (resp. two distinct policies S and S′) such that both satisfy the
sender’s policy R (resp. both are satisfied by the sender’s attributes σ).

The main idea behind our construction of IB-ME under the BDH assumption is that the
above attack does not work in the identity-based setting, where each receiver’s policy S (resp.
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receiver’s policy R) is satisfied only by the attribute σ = S (resp. ρ = R). This means that
an encryption m ⊕ r1 ⊕ r2 yields an efficient IB-ME as long as the random pad r2 (resp. r1)
can be re-computed by the receiver if and only if its policy S is satisfied (resp. its attributes ρ
satisfy the sender’s policy). On the other hand, if S is not satisfied (resp. ρ does not satisfy the
sender’s policy), the receiver obtains a pad r′2 (resp. r′1) that is completely unrelated to the real
r2 (resp. r1). In our scheme, we achieve the latter by following a similar strategy to that used
in the construction of Boneh-Franklin IBE [12].

1.3 Related Work

Attribute-based encryption. The concept of ABE was first proposed by Sahai and Wa-
ters [44] in the setting of fuzzy identity-based encryption, where users are identified by a sin-
gle attribute (or identity string), and policies consist of a single threshold gate. Afterwards,
Bethencourt et al. [11] generalized this idea to the case where users are described by multiple at-
tributes. Their ABE scheme is a CP-ABE, i.e. a policy is embedded into the ciphertext, whereas
the attributes are embedded into the receiver’s decryption keys. The first CP-ABE with non-
monotonic access structures was proposed by Ostrovsky et al. [41]. Goyal et al. [28], instead,
introduced KP-ABE, where ciphertexts contain the attributes, whereas the policy is embedded
in the decryption keys. Several other ABE schemes have been proposed in the litterature, see,
among others, [17, 27, 52, 39, 30, 38, 57, 15, 16, 55, 35, 7, 42, 29, 54, 56, 40].

Note that in ABE, only one party can choose the policy (in CP-ABE the policy is chosen
by the sender, whereas in KP-ABE it is held by the receiver). Hence, only one entity has the
power to select the source (or the destination) of an encrypted message. In contrast, ME is
the first type of encryption scheme where such a capability is given to both the sender and the
receiver.

Attribute-based key exchange. Gorantla et al. [25] introduced attribute-based authenti-
cated key exchange (AB-AKE). This is essentially an interactive protocol which allows sharing
a secret key between parties whose attributes satisfy a fixed access policy. Note that the policy
must be the same for all the parties, and thus it must, e.g., be negotiated before running the
protocol.

In a different work, Kolesnikov et al. [37] built a different AB-KE without bilateral authen-
tication. In their setting, a client with some attributes (certificated by an authority) wants to
authenticate himself to a server according to a fixed policy. The server will share a secret key
with the client if and only if the client’s attributes satisfy the server’s policy.

Note that in ME both senders and receivers can choose their own policies, a feature not
present in attribute-based key exchange protocols.

Access control encryption. Access control encryption (ACE) [19, 36, 21, 48] is a novel
type of encryption that allows fine-grained control over information flow. The actors are a
set of senders, a set of receivers, and a sanitizer. The goal is to enforce no-read and no-write
rules (described by a policy) over the communication, according to the sender’s and receiver’s
identities.

The flow enforcement is done by the sanitizer, that applies a randomized algorithm to the
incoming ciphertexts. The result is that only receivers allowed to communicate with the source
will be able to decrypt the sanitized ciphertext correctly, obtaining the original message (no-
read rule). On the other hand, if the source has not the rights to communicate with a target
receiver (e.g., the sender is malicious), then the latter will receive a sanitized ciphertext that
looks like an encryption of a random message (no-write rule).
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ACE and ME accomplish orthogonal needs: The former enables cryptographic control over
information flow within a system, whereas the latter enables both the sender and the receiver to
specify fine-grained access rights on encrypted data. Furthermore, ACE inherently requires the
presence of a trusted sanitizer, whereas no additional actor besides the sender and the receiver
is involved in ME.

Secret handshakes. Introduced by Balfanz et al. [9], SH allow two members of the same
group to secretly authenticate to each other and agree on a symmetric key. During the protocol,
a party can additionally specify the precise group identity (e.g., role) that the other party should
have.

SH preserves the privacy of the participants, meaning that when the handshake is successful
they only learn that they both belong to the same group (yet, their identities remain secret),
and learn nothing if the handshake fails. Subsequent work in the area [31, 46, 5, 14, 50, 53, 34,
51, 33, 32, 45] focused on improving on various aspects of SH, including members’ privacy and
expressiveness of the matching policies (i.e., attribute-based SH).

ME has some similarities with SH. For example, an ME scheme with MISMATCH and
MATCH security gives strong privacy guarantees to users, similar to what SH guarantees.
However, ME provides a more efficient way to communicate (as it is non-interactive) and, at
the same time, it is more flexible since a party is not constrained to a group.

2 Preliminaries

2.1 Notation

We use the notation [n]
def
= {1, . . . , n}. Capital boldface letters (such as X) are used to denote

random variables, small letters (such as x) to denote concrete values, calligraphic letters (such
as X ) to denote sets, and serif letters (such as A) to denote algorithms. All of our algorithms
are modeled as (possibly interactive) Turing machines; if algorithm A has oracle access to some
oracle O, we often implicitly write QO for the set of queries asked by A to O.

For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X | represents the number
of elements in X . When x is chosen randomly in X , we write x←$ X . If A is an algorithm,
we write y←$ A(x) to denote a run of A on input x and output y; if A is randomized, then y
is a random variable and A(x; r) denotes a run of A on input x and (uniform) randomness r.
An algorithm A is probabilistic polynomial-time (PPT) if A is randomized and for any input
x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a polynomial number of steps (in the
size of the input).

Negligible functions. Throughout the paper, we denote by λ ∈ N the security parameter
and we implicitly assume that every algorithm takes as input the security parameter. A function
ν : N→ [0, 1] is called negligible in the security parameter λ if it vanishes faster than the inverse
of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We sometimes
write negl(λ) (resp., poly(λ)) to denote an unspecified negligible function (resp., polynomial
function) in the security parameter.

2.2 Signature Schemes

A signature scheme is made of the following polynomial-time algorithms.

KGen(1λ): The randomized key generation algorithm takes the security parameter and outputs
a secret and a public key (sk, pk).
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Sign(sk,m): The randomized signing algorithm takes as input the secret key sk and a message
m ∈M, and produces a signature s.

Ver(pk,m, s): The deterministic verification algorithm takes as input the public key pk, a mes-
sage m, and a signature s, and it returns a decision bit.

A signature scheme should satisfy two properties. The first property says that honestly
generated signatures always verify correctly. The second property says that it should be hard
to forge a signature on a fresh message, even after seeing signatures on polynomially many
messages.

Definition 1 (Correctness of signatures). A signature scheme Π = (KGen, Sign,Ver) with mes-
sage space M is correct if ∀λ ∈ N, ∀(sk, pk) output by KGen(1λ), and ∀m ∈ M, the following
holds:

P [Ver(pk,m,Sign(sk,m)) = 1] = 1.

Definition 2 (Unforgeability of signatures). A signature scheme Π = (KGen,Sign,Ver) is ex-
istentially unforgeable under chosen-message attacks (EUF-CMA) if for all PPT adversaries
A:

P
[
Geuf

Π,A(λ) = 1
]
≤ negl(λ) ,

where Geuf
Π,A(λ) is the following experiment:

1. (sk, pk)←$ KGen(1λ).

2. (m, s)←$ ASign(sk,·)(1λ, pk)

3. If m 6∈ QSign, and Ver(pk,m, s) = 1, output 1, else output 0.

2.3 Functional Encryption

2.3.1 Functional Encryption for Randomized Functionalities

A functional encryption scheme for randomized functionalities [26] (rFE) f : K × X ×R → Y
consists of the following polynomial-time algorithms.2

Setup(1λ): Upon input the security parameter, the randomized setup algorithm outputs a mas-
ter public key mpk and a master secret key msk.

KGen(msk, k): The randomized key generation algorithm takes as input the master secret key
msk and an index k ∈ K, and outputs a secret key skk for fk.

Enc(mpk, x): The randomized encryption algorithm takes as input the master public key mpk,
an input x ∈ X , and returns a ciphertext cx.

Dec(skk, cx): The deterministic decryption algorithm takes as input a secret key skk and a
ciphertext cx, and returns a value y ∈ Y.

Correctness of rFE intuitively says that decrypting an encryption of x ∈ X using a secret key
skk for function fk yields fk(x; r), where r←$R. Since fk(x) is a random variable, the actual
definition requires that whenever the decryption algorithm is invoked on a fresh encryption of
a message x under a fresh key for fk, the resulting output is computationally indistinguishable
to fk(x).

2Often, and equivalently, FE schemes are parameterized by a function ensemble F = {fk : X ×R → Y}k∈K.
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Definition 3 (Correctness of rFE). A rFE scheme Π = (Setup,KGen,Enc,Dec) for a random-
ized functionality f : K×X ×R → Y is correct if the following distributions are computationally
indistinguishable:

{Dec(skkj , ci)}kj∈K,xi∈X {fkj (xi; ri,j)}kj∈K,xi∈X

where (mpk,msk)←$ Setup(1λ), skkj ←$ KGen(msk, kj) for kj ∈ K, ci←$ Enc(mpk, xi) for xi ∈
X , and ri,j ←$R.

As for security, the setting of rFE tackles malicious encryptors. However, for our purpose, it
will be sufficient to consider a weaker security guarantee that only holds for honest encryptors.
The reason for this is that both in the case of MISMATCH and MATCH security, the ciphertext
is generated honestly by the challenger. In this spirit, the definition below is adapted from [1,
Definition 3.3] for the special case of honest encryptors.

Definition 4 ((q1, qc, q2)-NA-SIM-security of rFE). A rFE scheme Π = (Setup,KGen,Enc,Dec)
for a randomized functionality f : K×X×R → Y is (q1, qc, q2)-NA-SIM-secure if there exists an
efficient (stateful) simulator S = (S1,S2,S3, S4) such that for all PPT adversaries A = (A1,A2)
where A1 makes at most q1 key generation queries and A2 makes at most q2 key generation
query, the output of the following two experiments are computationally indistinguishable:

REALΠ,A(λ)

(mpk,msk)←$ Setup(1λ)

(x∗, α)←$ A
O1(msk,·)
1 (1λ,mpk)

where x∗ = (x0, . . . , xqc )

ci←$ Enc(mpk, xi) for i ∈ [qc]

out←$ A
O2(msk,·)
2 (1λ, {ci}, α)

return (x, {k}, out)

IDEALΠ,A(λ)

(mpk, α′)←$ S1(1λ)

(x∗, α)←$ A
O′
1(α′,·)

1 (1λ,mpk)

where x∗ = (x0, . . . , xqc )

Let {k1, . . . , kq1} = QO′
1

For i ∈ [qc], j ∈ [q1]

yi,j = fkj (xi; ri,j), where ri,j ←$R
({ci}, α′)←$ S3(α′, {yi,j})

out←$ A
O′
2(α′,·)

2 (1λ, {ci}, α)

return (x, {k′}, out)

where the key generation oracles are defined in the following way:

O1(msk, ·) and O2(msk, ·): Are implemented with the algorithm KGen(msk, ·). The ordered set
{k} is composed by the queries made to oracles O1 and O2.

O′1(st′, ·) and O′2(st′, ·): Are implemented with two simulators S2(α′, ·), S4(α′, ·). The simulator
S4 is given oracle access to KeyIdeal(x∗, ·), which, on input k, outputs fk(xi; r), where
r←$R for every xi ∈ x∗. The ordered set {k′} is composed by the queries made to oracles
O′1 and the queries made by S4 to KeyIdeal.

2.3.2 Functional Encryption for Deterministic Functionalities

Functional encryption (FE) for deterministic functionalities f : K × X → Y can be cast as a
special case of rFE. Since f is a deterministic functionality, correctness now simply says that
whenever the decryption algorithm is invoked on a fresh encryption of a message x under a
fresh key for f , the resulting output equals fk(x).

Definition 5 (Correctness of FE). A functional encryption scheme Π = (Setup,KGen,Enc,Dec)
for a functionality f : K ×X → ρ is correct if ∀x ∈ X , ∀k ∈ K, the following holds:

P

 (mpk,msk)←$ Setup(1λ),
skk←$ KGen(msk, k),
Dec(skk,Enc(mpk, x)) = fk(x)

 = 1
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As for security, we report both a simulation-based definition and a game-based definition.
The former is identical to (q1, qc, q2)-SIM-security from Def. 4, except that the ideal functionality
in the description of the ideal experiment is also deterministic. The latter is taken from [13,
Section 4].

Definition 6 ((q1, qc, q2)-SIM-security of FE). A functional encryption scheme Π = (Setup,
KGen,Enc,Dec) for a functionality f : K × X → ρ is (q1, qc, q2)-SIM-secure if there exists an
efficient simulator S = (S1, S2,S3,S4) such that for all probabilistic polynomial time adversary
A = (A1,A2), where A1 makes at most q1 key generation queries and A2 makes at most q2 key
generation queries, the output of the following two experiments are computationally indistin-
guishable:

REALΠ,A(1λ)

(mpk,msk)←$ Setup(1λ)

(x∗, α)←$ A
O1(msk,·)
1 (1λ,mpk)

where x∗ = (x0, . . . , xqc )

ci←$ Enc(mpk, xi) for i ∈ [qc]

out←$ A
O2(msk,·)
2 (1λ, {ci}, α)

return (x, {k}, out)

IDEALΠ,A(1λ)

(mpk, α′)←$ S1(1λ)

(x∗, α)←$ A
O′
1(α′,·)

1 (1λ,mpk)

where x∗ = (x0, . . . , xqc )

Let {k1, . . . , kq1} = QO′
1

For i ∈ [qc], j ∈ [q1]

yi,j = fkj (xi)

({ci}, α′)←$ S3(α′, {yi,j})

out←$ A
O′
2(α′,·)

2 (1λ, {ci}, α)

return (x, {k′}, out)

where the key generation oracles are defined in the following way:

O1(msk, ·) and O2(msk, ·): Are implemented with the algorithm KGen(msk, ·). The ordered set
{k} is composed by the queries made to oracles O1 and O2.

O′1(st′, ·) and O′2(st′, ·): Are implemented with two simulators S2(α′, ·), S4(α′, ·). The simulator
S4 is given oracle access to KeyIdeal(x∗, ·), which on input k, outputs fk(xi) for every
xi ∈ x∗. The ordered set {k′} is composed by the queries made to oracles O′1 and the
queries made by S4 to KeyIdeal.

Definition 7 (Game-based security of FE). A functional encryption scheme Π = (Setup,KGen,
Enc,Dec) for a functionality f : K × X → Y is secure if for all probabilistic polynomial time
adversary A = (A1,A2), we have:∣∣∣∣P[Gfe

Π,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)

where Gfe
Π,A(λ) is the following experiment:

1. (msk,mpk)←$ Setup(1λ)

2. (m0,m1, α)←$ A
KGen(msk,·)
1 (1λ,mpk).

3. c←$ Enc(mpk,mb) where b←$ {0, 1}.

4. b′←$ A
KGen(msk,·)
2 (1λ, c, α).

5. If b = b′ then output 1, and otherwise output 0.

Adversary A = (A1,A2) is called valid if ∀k ∈ QKGen we have fk(m0) = fk(m1), where QKGen

contains all the queries submitted by A1 and A2 to oracle KGen.
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2.3.3 Two-Input Functional Encryption

A 2-input FE (2FE) scheme for a 2-arity functionality f : K × X0 × X1 → Y consists of the
following efficient algorithms.

Setup(1λ): Upon input the security parameter, the randomized setup algorithm outputs 2 en-
cryption keys ek0, ek1, and a master secret key msk.

KGen(msk, k): The randomized key generation algorithm takes as input the master secret key
msk, and an index k ∈ K, and outputs a secret key skk for fk.

Enc(eki, xi): For i ∈ {0, 1}, the randomized encryption algorithm takes as input the encryption
key eki, a value xi ∈ Xi, and returns a ciphertext cxi .

Dec(skk, cx0 , cx1): The deterministic decryption algorithm takes as input a secret key skk for fk,
and two ciphertexts cx0 , cx1 , and returns a value y ∈ Y.

Correctness of a 2FE means that decrypting (cx0 , cx1), where cxi is an encryption of xi,
using a secret key skk for function fk yields fk(x0, x1).

Definition 8 (Correctness of 2FE). A 2FE scheme Π = (Setup,KGen,Enc,Dec) for a function-
ality f : K ×X0 ×X1 → Y is correct if ∀(x0, x1) ∈ X0 ×X1,∀k ∈ K:

P


(ek0, ek1,msk)←$ Setup(1λ),
skk←$ KGen(msk, k),
c0←$ Enc(ek0, x0), c1←$ Enc(ek1, x1)
Dec(skk, c0, c1) = fk(x0, x1)

 ≥ 1− negl(λ) .

Security changes significantly depending on which keys among (ek0, ek1) are public. The
flavor we require has one public and one private key, with the adversary given oracle access to
the encryption algorithm for the private key. The formal definition follows below.

Definition 9 (IND-security of 2FE, {0, 1}-semi-private setting). For i ∈ {0, 1}, a 2FE scheme
Π = (Setup,KGen,Enc,Dec) for a functionality f : K ×X0 ×X1 → ρ is indistinguishably secure
in the i-semi-private setting if for all valid PPT adversaries A = (A1,A2):∣∣∣∣P[Gspriv

Π,A (λ, i) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where Gspriv
Π,A (λ, i) is the following experiment:

1. (msk, ek0, ek1)←$ Setup(1λ)

2. ((m0
0,m

0
1), (m1

0,m
1
1), α)←$ A

KGen(msk,·),Enc(eki,·)
1 (1λ, ek1−i).

3. c0←$ Enc(ek0,m
b
0), c1←$ Enc(ek1,m

b
1), where b←$ {0, 1}.

4. b′←$ A
KGen(msk,·),Enc(eki,·)
2 (1λ, (c0, c1), α).

5. If b = b′ then output 1, and otherwise output 0.

Adversary A = (A1,A2) is called valid if ∀k ∈ QKGen, ∀x ∈ X1−i, ∀x′ ∈ QEnc, we have:

fk(m
0
0,m

0
1) = fk(m

1
0,m

1
1)

and

fk(m
0
0, x) = fk(m

1
0, x) and fk(x

′,m0
1) = fk(x

′,m1
1), if i = 0

fk(x,m
0
1) = fk(x,m

1
1) and fk(m

0
0, x
′) = fk(m

1
0, x
′), if i = 1.
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The above definition is a generalization of [24, Def. 4] with parameters (n, t, q) = (2, 1, 1),
where the adversary is additionally given oracle access to Enc(eki, ·); this notion is easily seen
to be implied by [24, Def. 4] with parameters (n, t, q) = (2, 2, 1) as the latter means that both
keys (ek0, ek1) can be made public. In turn, IND-secure 2FE for arbitrary functionalities in
the public setting exists assuming sub-exponentially hard indistinguishability obfuscation for
all functions [24].

2.4 Bilinear Diffie-Hellman Assumption

Our practical implementation of IB-ME is provably secure under the BDH assumption, which
we recall below.

Definition 10 (BDH assumption). Let G and GT be two groups of prime order q. Let e :
G×G→ GT be an admissible bilinear map, and let P be a generator of G. The BDH problem
is hard in (G,GT , e) if for every PPT adversary A:

P
[
A(q,G,GT , e, P, P

a, P b, P c) = e(P, P )abc
]
≤ negl(λ) ,

where P ←$ G∗, and a, b, c←$ Z∗q.

2.5 Non-Interactive Zero Knowledge

Let R be a relation, corresponding to an NP language L. A non-interactive zero-knowledge
(NIZK) proof system for R is a tuple of polynomial-time algorithms Π = (I,P,V) specified as
follows. (i) The randomized algorithm I takes as input the security parameter and outputs
a common reference string ω; (ii) The randomized algorithm P(ω, (y, x)), given (y, x) ∈ R
outputs a proof π; (iii) The deterministic algorithm V(ω, (y, π)), given an instance y and a
proof π outputs either 0 (for “reject”) or 1 (for “accept”). We say that a NIZK for relation
R is correct if for all λ ∈ N, every ω output by I(1λ), and any (y, x) ∈ R, we have that
V(ω, (y,P(ω, (y, x)))) = 1.

We define two properties of a NIZK proof system. The first property says that honest proofs
do not reveal anything beyond the fact that y ∈ L.

Definition 11 (Adaptive multi-theorem zero-knowledge). A NIZK Π for a relation R satisfies
adaptive multi-theorem zero-knowledge if there exists a PPT simulator Z := (Z0,Z1) such that
the following holds:

• Algorithm Z0 outputs ω and a simulation trapdoor ζ.

• For all PPT distinguishers D, we have that∣∣∣P[DP(ω,(·,·))(ω) = 1 : ω←$ I(1λ)
]

− P
[
DO(ζ,(·,·))(ω) = 1 : (ω, ζ)←$ Z0(1λ)

] ∣∣∣ ≤ negl(λ) ,

where the oracle O(ζ, ·, ·) takes as input a pair (y, x) and returns Z1(ζ, y) if (y, x) ∈ R
(and otherwise ⊥).

Knowledge soundness, on the other hand, requires that every adversary creating a valid
proof for some statement, must know the corresponding witness.

Definition 12 (Knowledge soundness). A NIZK Π for a relation R satisfies knowledge sound-
ness if there exists a PPT extractor K = (K0,K1) such that the following holds:
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• Algorithm K0 outputs ω and an extraction trapdoor ξ, such that the distribution of ω is
computationally indistinguishable to that of I(1λ).

• For all PPT adversaries A, we have that

P

 V(ω, y, π) = 1∧
(y, x) 6∈ R :

(ω, ξ)←$ K0(1λ)
(y, π)←$ A(ω)
x←$ K1(ξ, y, π)

 ≤ negl(λ) .

3 Matchmaking Encryption

As explained in the introduction, an ME allows both the sender and the receiver, characterized
by their attributes, to choose fined-grained access policies that together describe the access
rights both parties must satisfy in order for the decryption of a given ciphertext to be successful.
Typically, the receiver’s attributes and policy are independent of each other (i.e., a receiver with
some given attributes can choose different policies).

We present the security model for ME and A-ME in §3.1 and §3.2.

3.1 Security Model

Formally, an ME is composed of the following polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm outputs, the
master policy key kpol, and the master secret key msk. We implicitly assume that all
other algorithms take mpk as input.

SKGen(msk, σ): The randomized sender-key generator takes as input the master secret key
msk, and attributes σ ∈ {0, 1}∗. The algorithm outputs a secret encryption key ekσ for
attributes σ.

RKGen(msk, ρ): The randomized receiver-key generator takes as input the master secret key
msk, and attributes ρ ∈ {0, 1}∗. The algorithm outputs a secret decryption key dkρ for
attributes ρ.

PolGen(kpol,S): The randomized receiver policy generator takes as input the master policy key
kpol, and a policy S : {0, 1}∗ → {0, 1} represented as a circuit. The algorithm outputs a
secret decryption key dkS for the circuit S.

Enc(ekσ,R,m): The randomized encryption algorithm takes as input a secret encryption key
ekσ for attributes σ ∈ {0, 1}∗, a policy R : {0, 1}∗ → {0, 1} represented as a circuit, and a
message m ∈M. The algorithm produces a ciphertext c linked to both σ and R.

Dec(dkρ, dkS, c): The deterministic decryption algorithm takes as input a secret decryption key
dkρ for attributes ρ ∈ {0, 1}∗, a secret decryption key dkS for a circuit S : {0, 1}∗ → {0, 1},
and a ciphertext c. The algorithm outputs either a message m or ⊥ (denoting an error).

Note that the decryption keys dkρ and dkS are independent, thus allowing a receiver with
attributes ρ to obtain decryption keys for different policies S. We also remark that the master
policy key kpol could be considered as part of the master secret key msk, but we preferred to
use distinct keys for clarity.
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Correctness. The intuition for correctness is that the output of the decryption algorithm
using decryption keys for receiver’s attributes ρ and access policy S, when decrypting an honestly
generated ciphertext which encrypts a message m using sender’s attributes σ and policy R,
should equal m if and only if the receiver’s attributes ρ match the policy R specified by the
sender, and at the same time the sender’s attributes σ match the policy S specified by the
receiver. On the other hand, in case of mismatch, the decryption algorithm returns ⊥. More
formally:

Definition 13 (Correctness of ME). An ME with message space M is correct if ∀λ ∈ N,
∀(mpk, kpol,msk) output by Setup(1λ), ∀m ∈M, ∀σ, ρ ∈ {0, 1}∗, ∀R,S : {0, 1}∗ → {0, 1}:

P [Dec(dkρ, dkS,Enc(ekσ,R,m)) = m] ≥ 1− negl(λ) ,

whenever S(σ) = 1 and R(ρ) = 1, and otherwise

P [Dec(dkρ, dkS,Enc(ekσ,R,m)) = ⊥] ≥ 1− negl(λ) ,

where ekσ←$ SKGen(msk, σ), dkρ←$ RKGen(msk, ρ), dkS←$ PolGen(kpol,S).

Security. We now turn to defining security of an ME via three properties, that we dub MIS-
MATCH security, MATCH security, and AUTH security. Both MATCH and MISMATCH
security aim at capturing privacy of the sender’s inputs (i.e., the attributes σ, the policy for
the receiver R, and the plaintext m), but in different conditions: The former in case of a
match between the sender’s and receiver’s attributes/policy, and the latter in case of mis-
match. Intuitively, this is formalized by requiring that the distributions Enc(ekσ0 ,R0,m0) and
Enc(ekσ1 ,R1,m1) be computationally indistinguishable to the eyes of an attacker with oracle
access to SKGen,RKGen,PolGen, where the values (m0,m1,R0,R1, σ0, σ1) are all chosen by the
adversary.

Naturally, we need to put constraints on what an attacker can do (otherwise it is easy to
distinguish). In particular, we require different constraints on the attacker as outlined below:

• In case of MISMATCH security, we focus on the case where the challenge ciphertext
cannot be decrypted by the adversary due to a mismatch condition. Hence, an adversary
is successful iff for each attribute ρ and policy S for which the adversary knows a valid
decryption key: (i) Either ρ does not satisfy policies R0 and R1; (ii) or σ0 and σ1 do not
satisfy policy S; (iii) or ρ does not satisfy R0 and σ1 does not satisfy S; (iv) or ρ does not
satisfy R1 and σ0 does not satisfy S.

• In case of MATCH security, we focus on the case where the challenge ciphertext can
be decrypted by the adversary. Hence, an adversary is successful iff m0 = m1, and
furthermore for each attribute ρ and policy S for which the adversary knows a valid
decryption key: (i) ρ satisfies both policies R0 and R1; (ii) S is satisfied by both attributes
σ0 and σ1.

It is important to note that the above security guarantees only hold for honestly computed
ciphertexts; in fact, recall that the output of the decryption algorithm could be ⊥ also when a
ciphertext is malformed (e.g., due to a forgery attempt).

Definition 14 (MISMATCH security of ME). We say that an ME Π has private mismatchings
(MISMATCH security) if for all PPT adversaries A:∣∣∣∣P[Gmismatch

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where game Gmismatch
Π,A (λ) is depicted in Fig 1.
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Gmismatch
Π,A (λ)

(mpk, kpol,msk)←$ Setup(1λ)

(m0,m1,R0,R1, σ0, σ1, α)←$ AO1,O2,O3
1 (1λ,mpk)

b←$ {0, 1}
ekσb ←$ SKGen(msk, σb)

c←$ Enc(ekσb ,Rb,mb)
b′←$ AO1,O2,O3

2 (1λ, c, α)

If ∀ρ ∈ QO2
: (R0(ρ) = 0 ∧ R1(ρ) = 0) ∧ (b′ = b)

return 1

Else If ∀S ∈ QO3
: (S(σ0) = 0 ∧ S(σ1) = 0) ∧ (b′ = b)

return 1

Else If ∀ρ ∈ QO2
,∀S ∈ QO3

:

(R0(ρ) = 0 ∧ S(σ1) = 0) ∧ (b′ = b)

return 1

Else If ∀ρ ∈ QO2
,∀S ∈ QO3

:

(R1(ρ) = 0 ∧ S(σ0) = 0) ∧ (b′ = b)

return 1

Else return 0

Gauth
Π,A(λ)

(mpk, kpol,msk)←$ Setup(1λ)

(c, ρ, S)←$ AO1,O2,O3 (1λ,mpk)

dkρ←$ RKGen(msk, ρ)

dkS←$ PolGen(kpol, S)

m = Dec(dkρ, dkS, c)

If ∀σ ∈ QO1
: (S(σ) = 0) ∧ (m 6= ⊥)

return 1

Else return 0

Gmatch
Π,A (λ)

(mpk, kpol,msk)←$ Setup(1λ)

(m,σ0, σ1,R0,R1, α)←$ AO1,O2,O3
1 (1λ,mpk)

b←$ {0, 1}
ekσb ←$ SKGen(msk, σb)

c←$ Enc(ekσb ,Rb,m)

b′←$ AO1,O2,O3
2 (1λ, c, α)

If ∀ρ ∈ QO2
, ∀S ∈ QO3

: (R0(ρ) = 1 ∧ R1(ρ) = 1) ∧ (S(σ0) = 1 ∧ S(σ1) = 1) ∧ (b′ = b)

return 1

Else return 0

Figure 1: Games defining MISMATCH, AUTH, and MATCH security of ME. Oracles O1, O2,
O3 are implemented by SKGen(msk, ·), RKGen(msk, ·), PolGen(kpol, ·).
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Definition 15 (MATCH security of ME). We say that an ME Π has private matchings
(MATCH security), if for all PPT adversaries A:∣∣∣∣P[Gmatch

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where game Gmatch
Π,A (λ) is depicted in Fig.1.

AUTH security captures the fact that ciphertexts are authentic, i.e., the only way to produce
a valid ciphertext under attributes σ is to obtain an encryption key ekσ from the authority. This
guarantees that if a ciphertext decrypts correctly, then it has been created by a sender with
the proper encryption key. The latter is modeled by a game in which the attacker has oracle
access to SKGen, RKGen, and PolGen. The attacker’s goal is to output a tuple (ρ,S, c) such
that Dec(dkρ, dkS, c) 6= ⊥, and none of the encryption keys ekσ for attributes σ (obtained by
the adversary via oracle queries) satisfies the policy S. Observe that the adversary is not given
access to an encryption oracle. The reason for this is that we only consider security in the CPA
setting for ME, and thus ciphertexts might be malleable, which makes it possible to forge in
the AUTH game.

Definition 16 (AUTH security of ME). We say that an ME Π has ciphertexts authenticity
(AUTH security), if for all PPT adversaries A:

P
[
Gauth

Π,A (λ) = 1
]
≤ negl(λ) ,

where game Gauth
Π,A (λ) is depicted in Fig.1.

Finally, a secure ME is an ME satisfying all the properties.

Definition 17 (Secure ME). We say that an ME Π is secure, if Π has private mismatchings
(Def. 14), private matchings (Def. 15), and ciphertexts authenticity (Def. 16).

Sometimes, we will also consider a weaker definition where there is an a priori upper bound
on the number of queries an attacker can make to oracles RKGen and PolGen. We refer to this
variant as security against bounded collusions. In particular, we say that an ME is (q1, q

′
1, q2, q

′
2)-

secure if it has (q1, q
′
1, q2, q

′
2)-MISMATCH security, AUTH security, and (q1, q

′
1, q2, q

′
2)-MATCH

security, where q1, q
′
1 (resp. q2, q

′
2) denote the number of queries to RKGen and PolGen allowed

by A1 (resp. A2) in the corresponding games.

Relation to ABE. An ME for arbitrary policies can be used as a CP-ABE with the same
expressiveness (note that the authors of [6, 8] show that CP-ABE implies KP-ABE in some
cases). The idea is to ignore the attributes of the sender and the policy of the receiver. It is
sufficient to set the ABE master public key to (mpk, ekσ) and an ABE receiver’s decryption key
to (dkρ, dkφ), where ekσ is the encryption key generated for attributes σ = 0λ, dkφ is the policy
key for a tautology φ (i.e., a circuit whose output is always 1 regardless of the input), and dkρ is
the decryption key for attributes ρ. The encryption of a message m under a policy R works by
running the ME encryption algorithm Enc(ekσ,R,m). The receiver will decrypt the ciphertext
by using the keys (dkρ, dkφ). Since φ is a tautology, it does not matter under which attributes
the message has been encrypted. Thus, the scheme will work as a normal CP-ABE.

By a similar reasoning, ME implies KP-ABE. This is achieved by setting ekσ = σ, and by
using the same approach described above (i.e., set the sender’s policy circuit R to a tautology
φ which ignores the receiver’s attributes). Note that for this implication AUTH security is not
required.

17



3.2 Arranged Matchmaking Encryption

The syntax of an A-ME is similar to that of an ME, except that decryption keys are associated
with both attributes and policies. In particular, an A-ME is made by the following efficient
algorithms:

SKGen,Enc: Identical to the ones in an ME (cf. §3.1).

Setup: Upon input the security parameter 1λ, the randomized setup algorithm outputs the
master public key mpk and the master secret key msk.

RKGen(msk, ρ,S): The randomized receiver key generator takes as input the master public key
mpk, the master secret key msk, attributes ρ ∈ {0, 1}∗, and a policy S : {0, 1}∗ → {0, 1}
represented as a circuit. The algorithm outputs a secret decryption key dkρ,S.

Dec(dkρ,S, c) The deterministic decryption algorithm takes a decryption key dkρ,S, and a cipher-
text c. The algorithm outputs either a message m or ⊥ (denoting an error).

The definitions below capture the very same correctness and security requirements of an
ME, but translated to the arranged case.

Definition 18 (Correctness of A-ME). An A-ME with message space M is correct if ∀λ ∈ N,
(mpk,msk) output by Setup(1λ), ∀m ∈M, ∀σ, ρ ∈ {0, 1}∗, ∀R, S : {0, 1}∗ → {0, 1}:

P [Dec(dkρ,S,Enc(mpk, ekσ,R,m)) = m ] ≥ 1− negl(λ) ,

whenever σ ∈ S and ρ ∈ R, and otherwise

P [Dec(dkρ,S,Enc(mpk, ekσ,R,m)) = ⊥] ≥ 1− negl(λ) ,

where ekσ and dkρ,S are generated by SKGen(mpk,msk, σ) and RKGen(mpk,msk, ρ,S).

Definition 19 (MISMATCH security of A-ME). We say that an A-ME Π has private mis-
matchings (MISMATCH security), if for all PPT adversaries A:∣∣∣∣P[Garr-mismatch

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where game Garr-mismatch
Π,A (λ) is depicted in Fig 2.

Definition 20 (MATCH security of A-ME). An A-ME Π has private matchings (MATCH
security), if for all PPT adversaries A:∣∣∣∣P[Garr-match

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where game Garr-match
Π,A (λ) is depicted in Fig. 2.

Definition 21 (AUTH security of A-ME). We say that an A-ME Π has ciphertext authenticity
(AUTH security), if for all PPT adversaries A:

P
[
Garr-auth

Π,A (λ) = 1
]
≤ negl(λ) ,

where game Garr-auth
Π,A (λ) is depicted in Fig. 2.

Definition 22 (Secure A-ME). An A-ME Π is secure if it has private mismatchings (Def. 19),
private matchings (Def. 20), and ciphertexts authenticity (Def. 21).
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Garr-mismatch
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(m0,m1,R0,R1, σ0, σ1, α)←$ AO1,O2
1 (1λ,mpk)

b←$ {0, 1}
ekσb ←$ SKGen(mpk,msk, σb)

c←$ Enc(mpk, ekσb ,Rb,mb)
b′←$ AO1,O2

2 (1λ, c, α)

If ∀(ρ, S) ∈ QO2
: (R0(ρ) = 0 ∧ R1(ρ) = 0) ∧ (b′ = b)

return 1

Else If ∀(ρ, S) ∈ QO2
:

(S(σ0) = 0 ∧ S(σ) = 0) ∧ (b′ = b)

return 1

Else If ∀(ρ, S) ∈ QO2
:

(R0(ρ) = 0 ∧ S(σ1) = 0) ∧ (b′ = b)

return 1

Else If ∀(ρ, S) ∈ QO2
:

(R1(ρ) = 0 ∧ S(σ0) = 0) ∧ (b′ = b)

return 1

Else return 0

Garr-auth
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(c, ρ, S)←$ AO1,O2 (1λ,mpk)

dkρ,S←$ RKGen(mpk,msk, ρ, S)

m = Dec(mpk, dkρ,S, c)

If ∀σ ∈ QO1
: (S(σ) = 0) ∧ (m 6= ⊥)

return 1

Else return 0

Garr-match
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(m,σ0, σ1,R0,R1, α)←$ AO1,O2
1 (1λ,mpk)

b←$ {0, 1}
ekσb ←$ SKGen(mpk,msk, σb)

c←$ Enc(mpk, ekσb ,Rb,m)

b′←$ AO1,O2
2 (1λ, c, α)

If ∀(ρ, S) ∈ QO2
: (R0(ρ) = 1 ∧ R1(ρ) = 1) ∧ (S(σ0) = 1 ∧ S(σ1) = 1) ∧ (b′ = b)

return 1

Else return 0

Figure 2: Games defining MISMATCH, AUTH, and MATCH security of A-ME. Oracles O1,
O2 are implemented by SKGen(msk, ·) and RKGen(msk, ·).
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Relation to ABE. As for ME, A-ME for arbitrary policies implies CP-ABE and KP-ABE
with the same expressiveness. The constructions are similar to the ones discussed in §3.1 for
the case of ME.

Relation between ME and A-ME. We stress that ME and A-ME are incomparable. On
the one hand, it is not clear how to use an A-ME to define an ME. This is because A-ME
decryption key dkρ,S describes both receiver’s attributes and policy, and thus it is unclear how
to implement the PolGen algorithm of an ME.

On the other hand, it is unclear how to define an A-ME starting with an ME. The natural
construction which sets dkρ,S = (dkρ, dkS) does not work. In a nutshell, this is because a
malicious receiver can detach the two keys, thus breaking security of the A-ME. For concreteness,
let us focus on MISMATCH security (a similar attack works for MATCH security). Let R0,
R1, σ0 = σ1 = σ be the policies and the attributes contained in the challenge chosen by the
adversary during the experiment defining MISMATCH security. The attacker can request a first
decryption key dkρ,S = (dkρ, dkS) such that ρ satisfies both R0 and R1, but S(σ) = 0. Next, it can
request a second decryption key dkρ′,S′ = (dkρ′ , dkS′) for which the symmetric condition holds:
R0(ρ′) = 0 and R1(ρ′) = 0, but S′(σ) = 1. Finally, it can interleave the keys creating a new
decryption key dkρ,S′ = (dkρ, dkS′), which makes it possible to decrypt the challenge ciphertext
and win the game. Observe that both decryption keys are legal queries in the MISMATCH
game.

4 Black-Box Constructions

We explore black-box constructions of ME and A-ME from several types of FE schemes. In
particular, in §4.1 we give a construction of ME based on rFE and FE. As discussed in the
introduction, such a construction allows us to obtain ME from weaker assumptions, at the price
of achieving only security against bounded collusions. In §4.2, we give a construction of ME
that is secure against unbounded collusions, based on 2FE (and thus on stronger assumptions).
Finally, in §4.3, we show a construction of A-ME based on FE. All schemes additionally rely on
digital signatures and on NIZK proofs.

4.1 ME from rFE

Our construction is based on the following two functionalities fFE and f rFE:

fFES (σ,m) =

{
m, if σ 6= ⊥ ∧ S(σ) = 1
⊥, otherwise

and

f rFE(ρ,mpkFE)(R, σ,m; r) =

{
Enc(mpkFE, (σ,m); r), if R(ρ) = 1
Enc(mpkFE, (⊥,⊥); r), otherwise.

Construction 1 (ME for arbitrary policies). Let FE, rFE, SS, NIZK be respectively an FE
scheme for the deterministic functionality fFE, a rFE scheme for the randomized functionality
f rFE, a signature scheme, and a NIZK proof system for the NP relation:

R1
def
=

((c, pk,mpkrFE), (σ, s)) :
∃r,m,R s.t.

c = EncrFE(mpkrFE, (R, σ,m); r)∧
Ver(pk, s, σ) = 1

 .

We construct an ME scheme in the following way:
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Setup(1λ): On input the security parameter 1λ, the setup algorithm computes (mpkFE,mskFE)
←$ SetupFE(1λ), (sk, pk)←$ KGenSS(1λ), (mpkrFE,mskrFE)←$ SetuprFE(1λ), and ω←$ I(1λ).
Finally, it outputs the master secret key msk = (mskrFE, sk), the master policy key kpol =
mskFE, and the master public key mpk = (pk, ω,mpkFE,mpkrFE). Recall that all other
algorithms are implicitly given mpk as input.

SKGen(msk, σ): On input the master secret key msk = (mskrFE, sk), and attributes σ ∈ {0, 1}∗,
the algorithm returns the encryption key ekσ = (σ, s) where s←$ Sign(sk, σ) (i.e., s is a
signature on attributes σ ∈ {0, 1}∗).

RKGen(msk, ρ): On input the master secret key msk = (mskrFE, sk), and attributes ρ ∈ {0, 1}∗,
the algorithm computes the decryption key sk(ρ,mpkFE)←$ KGenrFE(mskrFE, (ρ,mpkFE)). Then,
it outputs the decryption key dkρ = sk(ρ,mpkFE).

PolGen(kpol,S): On input the master policy key kpol = mskFE, and policy S represented as a
circuit, the algorithm computes the function key skS by running KGenFE(mskFE,S). Then,
it outputs the decryption key dkS = skS.

Enc(ekσ,R,m): On input an encryption key ekσ = (σ, s), a policy R represented as a circuit, and
a message m, the algorithm encrypt the message by computing c←$ EncrFE(mpkrFE, (R, σ,
m)). Finally, it returns the ciphertext ĉ = (c, π) where π←$ P(ω, (pk, c,mpkrFE), (σ, s)).

Dec(dkρ, dkS, c): On input two keys dkρ = sk(ρ,mpkFE), dkS = skS, and a ciphertext ĉ = (c, π),
the algorithm first checks whether V(ω, (pk, c,mpkrFE), π) = 1. If that is not the case, it
returns ⊥, and else it returns DecFE(skS,DecrFE(sk(ρ,mpkFE), c)).

Correctness of the scheme follows directly by the correctness of the underlying primitives.
As for security, we establish the following result, whose proof appears in §A.1 of the appendix.

Theorem 1. Let rFE, FE, SS, NIZK be as above. If rFE is (q1, 1, q2)-NA-SIM-secure (Def.4), FE
is (q′1, q1, q

′
2)-SIM-secure, SS is EUF-CMA (Def.2), and NIZK satisfied adaptive multi-theorem

zero knowledge (Def.11) and knowledge soundness (Def.12), then the ME scheme Π from Con-
struction 1 is (q1, q

′
1, q2, q

′
2)-secure.

4.2 ME from 2-Input FE

In this section we explain how to construct an ME combining a signature scheme SS, a non-
interactive zero-knowledge proof NIZK, an 2FE scheme. In order to build ME from 2FE, we
use a 2-ary functionality f that checks if a match occurs. More formally, consider the following
functionality f : K ×X0 ×X1 → {0, 1}∗ ∪ {⊥}:

fρ((R, σ,m), S) =

{
m, S(σ) = 1 ∧ R(ρ) = 1
⊥, otherwise.

Construction 2 (ME for arbitrary policies). Let 2FE, SS, and NIZK be respectively a 2FE for
the functionality f above, a signature scheme, and a NIZK proof system for the NP relation:

R2
def
=

{
((pk, c, ek0), (σ, s)) :

∃r,m,R s.t.
c = Enc2FE(ek0, (R, σ,m); r) ∧ Ver(pk, s, σ) = 1

}
.

We build an ME scheme in the following way:
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Setup(1λ): On input the security parameter 1λ, the setup algorithm runs (ek0, ek1,msk2FE)←$

Setup2FE(1λ), (sk, pk)←$ KGenSS(1λ), and ω←$ I(1λ). Finally, it outputs the master secret
key msk = (msk2FE, sk), the master policy key kpol = ek1, and the master public key
mpk = (pk, ω, ek0).

SKGen(msk, σ): On input the master secret key msk = (msk2FE, sk), and attributes σ ∈ {0, 1}∗,
the algorithm returns the encryption key ekσ = (σ, s) where s = Sign(sk, σ).

RKGen(msk, ρ): On input the master secret key msk = (msk2FE, sk), and attributes ρ ∈ {0, 1}∗,
the algorithm computes the key skρ←$ KGen2FE(msk2FE, ρ). Then, it outputs dkρ = skρ.

PolGen(kpol,S): On input the master policy key kpol = ek1, and a policy S : {0, 1}∗ → {0, 1}
represented as a circuit, the algorithm runs c1←$ Enc2FE(ek1, S). Then, it outputs the
decryption key dkS = c1.

Enc(ekσ,R,m): On input an encryption key ekσ = (σ, s), a policy R : {0, 1}∗ → {0, 1} repre-
sented as a circuit, and a message m, the algorithm encrypts the message by computing
c0←$ Enc2FE(ek0, (R, σ,m)). Finally, it returns the ciphertext c = (c0, π) where π←$ P(ω,
(pk, c0, ek0), (σ, s)).

Dec(dkρ, dkS, c): On input a decryption key dkρ = skpk, a decryption key dkS = c1, and a
ciphertext c = (c0, π), the algorithm first checks whether V(ω, (pk, c0, ek0), π) = 1. If that
is not the case, it returns ⊥, and else it returns Dec2FE(skρ, c0, c1).

Correctness of the scheme follows directly by the correctness of the underlying primitives.
As for security, we establish the following result, whose proof appears in §A.2 of the appendix.

Theorem 2. Let 2FE, SS, and NIZK be respectively a 2FE scheme, a signature scheme, and a
NIZK proof for the relation R2. If 2FE is indistinguishably secure in the 1-semiprivate setting
(Def. 9), SS is EUF-CMA (Def. 2), and NIZK satisfies adaptive multi-theorem zero knowledge
(Def. 11) and knowledge soundness (Def. 12), then the ME scheme Π from Construction 2 is
secure (Def. 17).

4.3 A-ME from FE

In this section, we show a general construction of A-ME from FE. Consider the following
functionality f : K ×X → {0, 1}∗ ∪ {⊥}:

f(ρ,S)(R, σ,m) =

{
m, S(σ) = 1 ∧ R(ρ) = 1
⊥, otherwise.

Construction 3 (A-ME). Let FE and SS be respectively an FE scheme for the functionality f
above and a signature scheme, and a NIZK proof system for the NP relation:

R3
def
=

{
((pk, c,mpkFE), (σ, s)) :

∃r,m,R s.t.
c = EncFE(mpkFE, (R, σ,m); r) ∧ Ver(pk, s, σ) = 1

}
.

We build an A-ME scheme in the following way:

Setup(1λ): On input the security parameter 1λ, the setup algorithm runs (mpkFE,mskFE)←$

SetupFE(1λ), (sk, pk)←$ KGenSS(1λ), and ω←$ I(1λ). Finally, it outputs the master secret
key msk = (mskFE, sk), and the master public key mpk = (pk, ω,mpkFE).

SKGen(msk, σ): On input the master secret key msk = (mskFE, sk), and σ{0, 1}∗, the algorithm
returns the encryption key ekσ = (σ, s) where s = Sign(sk, σ).
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RKGen(msk, ρ,S): On input the master secret key msk = (mskFE, sk), attributes ρ ∈ {0, 1}∗,
and a policy S : {0, 1}∗ → {0, 1} represented as a circuit, the algorithm computes the
encryption key sk(ρ,S)←$ KGenFE(mskFE, (ρ,S)). Then, it outputs dkρ,S = sk(ρ,S).

Enc(ekσ,R,m): On input , an encryption key ekσ = (σ, s), a policy R : {0, 1}∗ → {0, 1} rep-
resented as a circuit, and a message m, the algorithm encrypts the message in the fol-
lowing way: c′←$ EncFE(mpkFE, (R, σ,m)). Finally, it returns the ciphertext (c′, π) where
π←$ P(ω, (pk, c′,mpkFE), (σ, s)).

Dec(dkρ,S, c): On input, a decryption key dkρ,S = sk(ρ,S), and a ciphertext c = (c′, π), the algo-
rithm first checks whether V(ω, (pk, c′,mpkFE), π) = 1. If that is not the case, it returns
⊥, and else it returns DecFE(sk(ρ,S), c

′).

Correctness of the above scheme follows directly by the correctness of the underlying prim-
itives. As for security, we establish the following result, whose proof appears in §A.3 of the
appendix.

Theorem 3. Let FE, SS, and NIZK be respectively an FE scheme, a signature scheme, and a
NIZK proof for the relation R3. If FE is secure (Def. 7), SS is EUF-CMA (Def. 2), and NIZK
satisfies adaptive multi-theorem zero knowledge (Def. 11) and knowledge soundness (Def. 12),
then the A-ME Π from Construction 3 is secure (Def. 22).

5 Identity-Based Matchmaking Encryption

In this section we present a practical ME for the identity-based setting. As in ME, attributes
are encoded by bit strings, but now each attribute x ∈ {0, 1}∗ satisfies only the access policy
A = x, which means that both the sender and the receiver specify a single identity instead of
general policies (represented as a circuits). We will denote by snd and rcv, respectively, the
target identities (i.e., the access policies) specified by the receiver and by the sender.

While any ME as defined in §3 perfectly works for this restricted setting, the problem is
that in order to select the identity snd of the source, a receiver must ask to the administrator
the corresponding key dksnd such that S = snd. (Recall that the sender, instead, can already
specify the target identity R = rcv on the fly, during encryption.) In particular, if the receiver
is interested in decrypting ciphertexts from several distinct sources, it must ask for several
decryption keys dksnd, which is impractical.3

We resolve this issue by removing algorithm PolGen from the syntax of an IB-ME, so that
the decryption algorithm takes directly as input the description of the target identity snd (i.e.,
Dec(dkρ, snd, c)). This way, the receiver can specify the target identity the source must satisfy
on the fly, without talking to the authority.

5.1 Security of IB-ME

The choice of removing the PolGen algorithm has an impact on the security properties for IB-
ME. Below, we revisit each security guarantee in the identity-based setting, and explain how
(and why) the security definition has to be adapted. We refer the reader to Fig. 3 for the formal
definitions.

3This is not an issue for an ME that supports arbitrary policies, as in that case a single policy encodes a large
number of attributes.

23



Gib-mismatch
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(m0,m1, rcv0, rcv1, σ0, σ1, α)←$ AO1,O2
1 (1λ,mpk)

b←$ {0, 1}
ekσb ←$ SKGen(msk, σb)

c←$ Enc(ekσb , rcvb,mb)

b′←$ AO1,O2
2 (1λ, c, α)

If ∀ρ ∈ QO2
: (ρ 6= rcv0 ∧ ρ 6= rcv1) ∧ (b′ = b)

return 1

Else return 0

Gib-auth
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(c, ρ, snd)←$ AO1,O2 (1λ,mpk)

dkρ←$ RKGen(msk, ρ)

m = Dec(dkρ, snd, c)

If ∀σ ∈ QO1
: (σ 6= snd) ∧ (ρ 6∈ QO2

)∧
(m 6= ⊥)

return 1

Else return 0

Figure 3: Games defining MISMATCH, AUTH, and MATCH security of ME. Oracles O1, O2

are implemented by SKGen(msk, ·), RKGen(msk, ·).

MISMATCH security. We cannot require that the sender’s identity remains hidden in case
of a decryption failure due to a mismatch condition. In particular, a malicious receiver can
always change the sender’s target identity in order to infer under which identity a ciphertext
has been encrypted.

More formally, consider the adversary that chooses a tuple (m,m, rcv, rcv, σ0, σ1), and re-
ceives a ciphertext c such that c←$ Enc(ekσb , rcv,m), where the encrytion key ekσb corresponds
to identity σb; the attacker can simply pick a target identity snd′ such that, say, σ0 = snd′

(whereas σ1 6= snd′), and thus distinguish σ0 from σ1 by decrypting c with dkρ and target iden-
tity snd′.4 On the other hand, MISMATCH security might still hold when the keys dkρ held by
the receiver correspond to identities ρ that do not match the receiver’s target identity. Thus,
in the security game, an attacker is now valid if for every decryption key dkρ obtained from the
oracle, it holds that ρ 6= rcv0 and ρ 6= rcv1, where the target identities rcv0, rcv1 are chosen by
the adversary.

The above security definition does not guarantee that the message m remains secret with
respect to an honest receiver that chooses the “wrong” target identity snd. The latter is,
however, a desirable feature that our practical scheme will satisfy (cf. Remark 1).

MATCH security. Note that in case of a match, if a receiver has identity ρ and specifies
a policy snd, it can automatically infer that σ = snd and rcv = ρ. For this reason, we do not
consider MATCH security in IB-ME.

AUTH security. Turning to unforgeability of ciphertexts, in the identity-based setting, the
forgery (c, ρ, snd) is considered valid if for all encryption keys ekσ obtained by the adversary it
holds that σ 6= snd, and moreover the identity ρ is not held by the adversary (i.e., the adversary
cannot “forge to itself”).

The definitions below capture the very same correctness and security requirements of an
ME, but translated to the identity based case.

Definition 23 (Correctness of IB-ME). An IB-ME Π = (Setup, SKGen,RKGen,Enc,Dec) is
correct if ∀λ ∈ N, ∀(mpk,msk) output by Setup(1λ), ∀m ∈M, ∀σ, ρ, rcv, snd ∈ {0, 1}∗:

P[Dec(dkρ, snd,Enc(ekσ, rcv,m)) = m] ≥ 1− negl(λ) ,

4This attack can be generalized to show that MISMATCH security does not hold if the PolGen algorithm (and
thus the policy key kpol) is made public.
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whenever σ = snd and ρ = rcv, and otherwise

P [Dec(dkρ, snd,Enc(ekσ, rcv,m)) = ⊥] ≥ 1− negl(λ) ,

where ekσ, dkρ are generated by SKGen(msk, σ), and RKGen(msk, ρ).

Definition 24 (MISMATCH security of IB-ME). We say that an IB-ME Π has private mis-
matchings (MISMATCH security) if for all PPT adversaries A:∣∣∣∣P[Gib-mismatch

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) ,

where game Gib-mismatch
Π,A (λ) is depicted in Fig 3.

Definition 25 (AUTH security of IB-ME). We say that a IB-ME Π has ciphertexts authenticity
(AUTH security), if for all PPT adversaries A:

P
[
Gib-auth

Π,A (λ) = 1
]
≤ negl(λ) ,

where game Gib-auth
Π,A (λ) is depicted in Fig.3.

Definition 26 (Secure IB-ME). We say that an identity based ME Π is secure, if Π has private
mismatchings (Def. 24) and ciphertexts authenticiy (Def. 25).

5.2 The Scheme

We are now ready to present our practical IB-ME scheme.

Construction 4 (IB-ME). The construction works as follows.

Setup(1λ): Let e : G × G → GT be a symmetric pairing, and P a generator of G, with G, and
GT of an order q that depends on λ. We also have three hash functions H : {0, 1}∗ → G,
H ′ : {0, 1}∗ → G, Ĥ : GT → {0, 1}`, modeled as random oracles, and a polynomial-time
computable padding function Φ : {0, 1}n → {0, 1}`. We require that for all m ∈ {0, 1}n
one can verify in polynomial time if m has been padded correctly, and moreover that
Φ(m) is efficiently invertible. On input the security parameter 1λ, the setup algorithm
samples two random r, s ∈ Zq, and sets P0 = P r. Finally, it outputs the master public key
mpk = (e,G,GT , q, P, P0, H,H

′, Ĥ,Φ) and the master secret key is msk = (r, s). Recall
that all other algorithms are implicitly given mpk as input.

SKGen(msk, σ): On input the master secret key msk, and identity σ, the algorithm outputs
ekσ = H ′(σ)s.

RKGen(mpk,msk, ρ): On input the master secret key msk, and identity ρ, the algorithm outputs
dkρ = (dk1

ρ, dk
2
ρ, dk

3
ρ) = (H(ρ)r, H(ρ)s, H(ρ)).

Enc(mpk, ekσ, rcv,m): On input an encryption key ekσ, a target identity rcv = ρ, and a message
m ∈ {0, 1}n, the algorithm proceeds as follows:

1. Sample random u, t ∈ Zq.
2. Compute T = P t and U = P u.

3. Compute kR = e(H(ρ), P u0 ) and kS = e(H(ρ), T · ekσ).

4. Compute V = Φ(m)⊕ Ĥ(kR)⊕ Ĥ(kS).
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5. Output ciphertext C = (T,U, V ).

Dec(mpk, dkρ, snd, c): On input the master public key mpk, a decryption key dkρ, a target identity
snd = σ, and a message m, the algorithm proceeds as follows:

1. Parse c as (T,U, V ).

2. Compute kR = e(dk1
ρ, U) and kS = e(dk2

ρ, H
′(σ)) · e(dk3

ρ, T ).

3. Compute Φ(m) = V ⊕ Ĥ(kR)⊕ Ĥ(kS)

4. If the padding is valid, return m. Otherwise, return ⊥.

Correctness. The correctness of the scheme only depends on the computation of kR and kS
as evaluated by the decryption algorithm. Here, we require that the padding function Φ satisfies
the property that a random string in {0, 1}` has only a negligible probability to form a valid
padding w.r.t. the function Φ.5 Let kR, kS be the keys computed during encryption, and k′R,
k′S the ones computed during decryption. The scheme is correct since ∀σ, ρ, rcv, snd ∈ {0, 1}∗,
ekσ←$ SKGen(msk, σ), dkρ←$ RKGen(msk, ρ):

1. If σ = snd and ρ = rcv:

kR = e(H(ρ), P u0 ) = e(H(ρ)r, P u) = e(dk1
ρ, U) = k′R,

and

kS = e(H(ρ), T · ekσ) = e(H(ρ), T ·H ′(σ)s) =

= e(H(ρ), T ) · e(H(ρ)s, H ′(σ)) = e(dk3
ρ, T ) · e(dk2

ρ, H
′(σ)) = k′S

2. Otherwise, if ρ 6= rcv = ρ′ or σ 6= snd = σ

kR = e(H(ρ′), P u0 ) 6= e(H(ρ)r, P u) = e(dk1
ρ, U) = k′R,

or

kS = e(H(ρ), T · ekσ) = e(H(ρ), T ·H ′(σ)s) = e(dk3
ρ, T ) · e(dk2

ρ, H
′(σ)) 6=

= e(dk3
ρ, T ) · e(dk2

ρ, H
′(σ′)) = k′S .

Since k′R (resp. k′S) is hashed by the random oracle Ĥ, then Ĥ(k′R) (resp. Ĥ(k′S)) is statistically

close to a random string of length `. Hence, with overwhelming probability, V ⊕Ĥ(kR)⊕Ĥ(k′S)
(decryption step), where either kR 6= k′R or kS 6= k′S , will produce an invalid padding and the
decryption algorithm returns ⊥.

Remark 1 (Plaintext secrecy w.r.t. unauthorized-but-honest receivers). We note that the plain-
text is information-theoretically hidden from the point of view of a honest receiver which specifies
a target identity that does not match the sender’s identity. Moreover, the latter holds even given
the internal state of the receiver at the end of the decryption procedure. In fact, since Ĥ(kS) is
statistically close to uniform, and |Ĥ(kS)| = |Φ(m)| = `, the decryption algorithm will compute
a symmetric key kS different to the one generated during encryption.6

5This can be achieved, e.g., by setting ` = n+ λ+ 1, and by appending to each message the string 1||0λ.
6It is important to recall that a similar guarantee does not hold in the identity-based setting, when the receiver

is semi-honest (cf. §5.1).
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Table 2: Performance of high- and low-level cryptographic operations of IB-ME
Operation Minimum (ms) Average (ms)

Setup 2.197 2.213
RKGen 2.200 2.225
SKGen 3.400 3.429

Encryption 6.942 7.012
Decryption 4.344 4.385

Security. As for security, we establish the following result, whose proof appears in §A.4 of
the appendix.

Theorem 4. Let G, GT be two groups of prime order q, and let e : G×G→ GT be an admissible
bilinear map. If the BDH problem is hard in (G,GT , e) (Def. 10), then the IB-ME scheme Π
from Construction 4 is secure (Def. 26) in the random oracle model.

6 IB-ME Performance Evaluation and Application

In this section, we demonstrate the practical viability of our IB-ME, not only from the perfor-
mance point of view, but also for applications. We first show in §6.1 the performance evaluation
of the IB-ME implementation. We then describe in §6.2 an application for IB-ME built on top
of our implementation. The proposed application is a bulletin board hidden service that is fully
anonymous and privacy-preserving. It allows users to exchange IB-ME messages over the Tor
network, specifically, using the Tor Hidden Services feature (cf. §6.2.1).

6.1 Implementation and Evaluation of the IB-ME cryptosystem

We provide an experimental evaluation of the IB-ME cryptosystem. To this end, we imple-
mented a proof of concept in Python 3.6.5 using Charm 0.50 [2], a framework for prototyping
pairing-based cryptosystems (among others). Since our IB-ME is defined using symmetric pair-
ings (also called Type-I pairings), we instantiate it with a supersingular curve with a 512-bit
base field (curve SS512 in Charm), which gives approximately 80 bits of security [43]. The
execution environment is an Intel NUC7i7BNH with an Intel Core i7-7567U CPU @ 3.50GHz
and 16 GB of RAM, running Ubuntu 18.04 LTS.

Table 2 shows the cost in milliseconds associated to the main high- and low-level crypto-
graphic operations of IB-ME. We executed these experiments in 50 different runs of 10 times
each and both the minimum and average timing was taken for each operation; we use the Python
module timeit for these measurements. It can be seen that the average timings for the main
high-level operations of IB-ME, namely Encryption and Decryption, are 7.012 ms and 4.385 ms,
respectively. These results show that the scheme is highly practical.

It is worth mentioning that there is room for improvement in the implementation if we use
optimizations such as pre-computation of some pairing operations when one of the arguments
is fixed (which occurs in the two pairings during decryption since one argument is a decryption
key) or is reused (the two pairings in the encryption function have H(ρ) as an argument), which
can lead to speeds-up around 30%, as reported in [18]. Another potential optimization is the
use of multipairings in the decryption operation. A promising direction would be to redefine
the scheme in a Type-III pairing setting, which allows for more performant curves [22].

Finally, Table 3 shows a summary of the space costs associated to different elements of our
IB-ME. We analyze both the theoretical cost and the actual values with the parameters of the
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Table 3: Space costs of IB-ME elements.
Element Theoretical cost Size (in bits)

Encryption key |G| 512
Decryption key 3|G| 1536

Message n 1024
Ciphertext 2|G|+ ` 2129

Ciphertext expansion `
n + 2|G|

n ≈2

experiment. In addition to the use of Charm’s curve SS512 (which implies that the size of
|G| = 512 bits and |GT | = 1024), we use for the size of identity bitstrings |G|, for the size of
messages n = |GT |, and for the padding output size ` = n+ λ+ 1 = 1105.

6.2 Anonymous Bulletin Board powered by IB-ME and Tor Hidden Services

Here, we describe the implementation of a bulletin board hidden service that is powered by our
IB-ME scheme (cf. §5). In a nutshell, our application allows senders to post encrypted messages
to an anonymous bulletin board, hosted by a Tor hidden service [49]. To this end, senders
specify a target identity string that acts as the receiver’s access policy, as well as the encryption
key corresponding to their own identity. Conversely, receivers can fetch encrypted messages
from the bulletin board, and try to decrypt them with their own decryption keys (associated to
their identity) and the expected identity of the sender. Only those encrypted messages where
there is a match between sender and receiver can be decrypted correctly.

Our system protects every party’s privacy on several aspects. First of all, thanks to the
nature of Tor hidden services, the IP addresses of each party and the connection between the
client and the server remain hidden. Secondly, it provides strong guarantees about the identities
of both receivers and senders.

Before continuing with more details of our application, we will give a brief overview of Tor
Hidden Services.

6.2.1 Tor and Hidden Services

Presently, Tor [47] is the most famous P2P anonymous system that counts more than 2 mil-
lions users and 6, 000 relays. It allows clients to access the Internet anonymously, hiding the
final destination of their connections by creating random circuits between the client and the
destination (e.g., web server), where every relay is aware only of the incoming and outgoing
links.

Tor allows to deploy services that are accessible only using the its network. While the
standard Tor system allows clients to connect to standard services (i.e., services whose IP is
public, or known to DNSs), the Tor Hidden Services [49] enable services (known as hidden
services, or HS) to not reveal their IP address, allowing clients to access the service without any
prior information. In order to deploy a HS, the owner needs to initialize the service by choosing
some relays that will act as introduction points (IPs). The service will keep an open Tor circuit
to each IP that will be the entry points to access the HS. The IPs’ identities are communicated
to Tor by creating a service descriptor entry. This entry contains all the information needed to
the client in order to access the service (e.g., description ID, list of IPs, etc.). Then, the entry
is uploaded to the responsible hidden service directory (HSDir): public servers responsible to
store the description entries of all available HSs. At this point, the HS is online and ready
to be accessed. A client that wants to access a service retrieves from the HSDirs the correct
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C 1 C 2 C 3

RP 1 RP 2 RP 3

bjopwtc2f3umlark.onion

Tor Network

Client Level

Hidden Service

Figure 4: Example of interaction between three clients C1, C2, C3 and the anonymous bul-
lentin board (http://bjopwtc2f3umlark.onion) using Tor. The relays RP1, RP2, and RP3 are
the rendezvous points shared between the service and the respective clients. Every party com-
municate with the respective RPs using a Tor circuit.

description entry. Then, it opens a Tor circuit to a random relay (known as rendezvous point,
RP in short), and communicate to one of the hidden service’s IP (contained in the description
entry) the RP’s address. The IP forwards the address to the service, that will open a Tor circuit
to it. The client and the HS can now use their respective circuits to communicate anonymously,
using the RP as joint of the connection. This protocol allows to hide the IP addresses of both
client and service. The only information known by both parties is the RP’s address.

6.2.2 Our Anonymous Bulletin Board

In more detail, our application is composed by two parts: a web server implemented as Tor
hidden service and, a command line client that permits to upload and download data from the
server.

A user that wants to post a message to the bulletin board can use the client to encrypt it
(using their IB-ME encryption key ekσ and an identity string policy rcv for the intended re-
ceiver), and upload the ciphertext to the web server through the Tor network. These ciphertexts
are publicly available.

A receiver can now use the client to download all the ciphertexts and try to decrypt each
of them, using the receiver’s decryption key dkρ and the sender’s identity policy snd (given as
input to the client). The client will report to the user the outcome of the decryption phase,
showing all the successfully decrypted messages.

The role of the web server is limited to store the encrypted messages and to offer a simple
REST API that allows clients to post and read these messages. In our prototype we do not
include any additional security measure, but in a real-world deployment, it should be protected
against potential denial of service attacks from clients (e.g., by requiring a proof-of-work along
with the request) and/or include some authentication mechanism. We refer the reader to
Figure 4 for an overview of the system.

We have not described yet the mechanism by which senders and receivers obtain the encryp-
tion and decryption keys, respectively. As in many identity-based cryptosystems, our IB-ME
scheme requires a key generation service to handle this. There are several ways that can be
used to implement this, depending on the actual use case covered by our application. This can
be, for example, an automatic service that produces encryption and decryption keys associated
to email addresses or phone numbers, The identity assurance level given by this service is out
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of the scope here. For consistency, this key generation service can even be deployed as another
hidden service, or even integrated with an existing HSDir. A second possibility is to assume
the existence of an off-line authority, so that users of the application obtain these keys through
an out-of-band channel. In our prototype, we assume this latter option, for simplicity.

Finally, with regard to the performance evaluation of our Tor application it is important to
note that it is dominated by the network latency of the Tor relays. Since the main scope of the
paper is the primitive, we report only the evaluation of our IB-ME scheme (cf. §6.1).

7 Conclusions

We have proposed a new form of encryption, dubbed matchmaking encryption (ME), where
both the sender and the receiver, described by their own attributes, can specify fine-grained
access policies to encrypted data. ME enables several applications, e.g. communication between
spies, social matchmaking, and more.

On the theoretical side, we put forward formal security definitions for ME and established the
feasibility of ME supporting arbitrary policies by leveraging FE for randomized functionalities in
conjunction with other more standard cryptographic tools. On the practical side, we constructed
and implemented practical ME for the identity-based setting, with provable security in the
random oracle model under the BDH assumption. We also showcased the utility of IB-ME to
realize an anonymous bulletin board using the Tor network.

Our work leaves open several important questions. First, it would be interesting to con-
struct ME from simpler assumptions Second, it is conceivable that our black-box construction
could be instantiated based on better assumptions, since we only need secure rFE w.r.t. honest
encryptors; unfortunately, the only definition that is specifically tailored for this setting [3] has
some circularity problems that might render it vacuous [26, 1]. Third, a natural direction is to
come up with efficient ME schemes for the identity-based setting without relying on random
oracles, or to extend our scheme to the case of fuzzy matching [5]. Further extensions include
the setting of chosen-ciphertext security, ME with multiple authorities, and creating an efficient
infrastructure for key management and revocation.
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A Supporting Proofs

A.1 Proof of Theorem 1

We use QiRKGen to denote the queries submitted by adversary Ai. We start with showing
(q1, q

′
1, q2, q

′
2)-MISMATCH security.

Lemma 1. If rFE is (q1, 1, q2)-NA-SIM-secure (Def.4), FE is (q′1, q1, q
′
2)-SIM-secure, SS is EUF-

CMA (Def.2), and NIZK is adaptive multi-theorem zero knowledge (Def.11), then the ME scheme
Π from Construction 1 is (q1, q

′
1, q2, q

′
2)-MISMATCH secure.

Proof. We prove that ME Π is (q1, q
′
1, q2, q

′
2)-MISMATCH secure using a hybrid argument.

Consider the following hybrid experiments:

Hyb0: This is exactly the experiment Gmismatch
Π,A (λ).

Hyb1: Same as Hyb0, except that the challenger uses the zero-knowledge simulator Z = (Z0,Z1)
to generate the CRS ω and the proof π contained in the challenge ciphertext. Formally,
the challenger runs (ω, ζ)←$ Z0(1λ) at the beginning of the experiment. Thus, when A1

outputs the challenge (m0,m1,R0,R1, σ0, σ1), the challenger flips a bit b←$ {0, 1} and runs
c←$ EncrFE(mpkrFE, (Rb, σb,mb)), π←$ Z1(ζ, (c, pk,mpkrFE)). Finally, it sets the challenge
ciphertext to (c, π).

Hyb2: Same as Hyb1, except that the challenger uses the simulators SrFE = (SrFE1 ,SrFE2 , SrFE3 ,SrFE4 )
to generate mpkrFE and implement the oracle RKGen. Formally, the challenger runs
(mpkrFE, α

′
rFE)←$ SrFE1 (1λ) to generate the master public key of rFE, and uses SrFE2 (α′rFE, ·)

and SrFE4 (α′rFE, ·) to answer the queries submitted to RKGen by A1 and A2. Finally, when
A1 outputs the challenge (m0,m1,R0,R1, σ0, σ1), the challenger flips a bit b←$ {0, 1} and
proceeds as follows:

• For all ρi ∈ Q1
RKGen such that Rb(ρi) = 0, compute c′i by running EncFE(mpkFE, (⊥,

⊥))

• For all ρi ∈ Q1
RKGen such that Rb(ρi) = 1, compute c′i by running EncFE(mpkFE, (σb,

mb)).

Finally, it returns (c, π) where c←$ SrFE3 (α′rFE, {c′i}) and π←$ Z1(ζ, (c, pk,mpkrFE)).

Hyb3: Same as Hyb2 except that the challenger uses the FE simulator SFE = (SFE1 , SFE2 ,SFE3 , SFE4 )
to generate mpkFE and implement the oracle PolGen. Formally, the challenger runs
(mpkFE, α

′
FE)←$ SFE1 (1λ) to generate the master public key of FE, and uses SFE2 (α′FE, ·)

and SFE4 (α′FE, ·) to answer the queries submitted to RKGen by A1 and A2. When A1 out-
puts the challenge (m0,m1,R0,R1, σ0, σ1), the challenger sets yi = ⊥ for i ∈ |Q1

PolGen|.
Finally, it returns (c, π) where {c′i}←$ SFE3 (α′FE, {yi}), c←$ SrFE3 (α′rFE, {c′i}) and π←$ Z1

(ζ, (c, pk,mpkrFE)).

Claim 1. Hyb0(λ) ≈c Hyb1(λ).

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property of NIZK. The
proof is standard, so we omit it here.

Claim 2. Hyb1(λ) ≈c Hyb2(λ).

Proof. Suppose it exists an adversary A that distinguishes between Hyb0 and Hyb1. We build a
distinguisher A′ from experiments REALrFE,A′(1

λ) and IDEALrFE,A′(1
λ).
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1. At the beginning, A′ receives the master public key mpk∗. Then, it runs (mpkFE,mskFE)
←$ SetupFE(1λ), (pk, sk)←$ KGenSS(1λ), and (ω, ζ)←$ Z0(1λ). Finally, A′ sends mpk =
(pk, ω,mpkFE,mpk∗) to A.

2. A′ answers oracle queries in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, compute s = Sign(sk, σ) and return ekσ = (σ, s).

• Upon input ρ ∈ {0, 1}∗ for RKGen, send (ρ,mpkFE) to the key generation oracle OrFE
1

and return the output.

• Upon input S : {0, 1}∗ → {0, 1} for PolGen, return KGenFE(mskFE,S).

3. Receive the challenge (m0,m1,R0,R1, σ0, σ1) chosen by A. Set m∗0 = (m0,R0, σ0) and
m∗1 = (m1,R1, σ1). Finally, it sends to the challenger m∗b , where b←$ {0, 1}.

4. Receive c and return (c, π) where π←$ Z1(ζ, (c, pk,mpk∗)).

5. Answer the incoming queries as in step 2.

6. Finally, A′ outputs whatever A outputs.

First, note that A submits q1 and q2 queries to RKGen (because, she is playing an hybrid version
of game (q1, q

′
1, q2, q

′
2)-MISMATCH). Hence, A′ is a valid adversary for (q1, q2)-NA-SIM security

game. Second, we claim that if A′ is playing, respectively, the experiment REALrFE,A′(1
λ)

and IDEALrFE,A′(1
λ), then the reduction perfectly simulates game Hyb1 and Hyb2. The

latter is because, in experiment REALrFE,A′(1
λ), the attacker A′ answers to the challenge

(m0,m1,R0,R1, σ0, σ1) with (c, π) where π is the NIZK proof simulated by Z(ζ, (c, pk,mpk∗)),
and c is the output of SrFE3 (α′rFE, {c′i}) where the ciphertexts {c′i} are distributed exactly as in
Hyb2(λ). Additionally, mpk∗ is generated by SrFE1 and the outputs of oracle RKGen are sim-
ulated using SrFE2 and SrFE4 , as it happens in Hyb2(λ). On the other hand, in the experiment
IDEALrFE,A′(1

λ), the attacker A′ answers using the real rFE algorithms. This concludes the
proof.

Claim 3. Hyb2(λ) ≈c Hyb3(λ).

Proof. Suppose it exists an adversary A that distinguishes between Hyb2 and Hyb3. Then, we
build a distinguisher A′ from experiments REALFE,A′(1

λ) and IDEALFE,A′(1
λ).

1. At the beginning, A′ receives the master public key mpk∗. Then, it runs (mpkrFE, α
′
rFE)←$

SrFE1 (1λ), (pk, sk)←$ KGenSS(1λ), and (ω, ζ)←$ Z0(1λ). Finally, A′ sends mpk = (pk, ω,
mpk∗,mpkrFE) to A.

2. A′ answers oracle queries in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, compute s = Sign(sk, σ) and return ekσ = (σ, s).

• Upon input ρ ∈ {0, 1}∗ for RKGen, answer with SrFE2 (α′rFE, (ρ,mpk∗)).

• Upon input S : {0, 1}∗ → {0, 1} for PolGen, send S to the key generation oracle OFE
1

and return the output.

3. Receive the challenge (m0,m1,R0,R1, σ0, σ1). A′ flips a bit d←$ {0, 1} and proceeds as
follows: ∀ρi ∈ Q1

RKGen, Rd(ρi) = 0, set m∗i = (⊥,⊥). Otherwise, set m∗i = (σd,md). Send
(m∗0, . . . ,m

∗
q1) to the challenger.

4. Receive {c∗i }i∈q1 and return (c, π) where c←$ SrFE3 (α′rFE, {c∗i }i∈q1), and π←$ Z1(ζ, (c, pk,
mpk∗)).
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5. Answer the incoming queries as in step 2.

6. Finally, A′ outputs whatever A outputs.

Note that A submits q′1 and q′2 queries to PolGen (because, she is playing an hybrid version
of game (q1, q

′
1, q2, q

′
2)-MISMATCH). Hence, A′ is a valid adversary for (q′1, q1, q

′
2)-SIM security

game. A similar analysis of proof of claim 2 but for the FE case let us conclude that Hyb2 and
Hyb3 are computational indistinguishable.

Note that Hyb3 is completely independent of the challenge bit b for the initial MISMATCH
game. Hence, combining Claims 1, 2, 3, we conclude that Construction 1 is (q1, q

′
1, q2, q

′
2)-

MISMATCH secure.

Lemma 2. If SS is EUF-CMA (Def. 2), and NIZK has knowledge soundness (Def. 12), then
the ME scheme Π from Construction 1 has AUTH security (Def. 16).

Proof. By contradiction, assume Construction 1 has not ciphertexts authenticity, i.e., there
exists an attacker A that has a non negligible advantage in experiment Gauth

Π,A (λ). We build an
attacker A′ that breaks unforgeability of SS. A proceeds as follows:

1. Receive pk∗ from the challenger.

2. Execute (mpkrFE,mskrFE)←$ SetuprFE(1λ), (mpkFE,mskFE)←$ SetupFE(1λ), (ω, ξ)←$ K0(1λ),
and send mpk = (pk∗, ω,mpkFE,mpkrFE) to A.

3. Answer the incoming A’s queries in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, forward the query to oracle Sign obtaining s as
answer, and return (σ, s).

• Upon input ρ ∈ {0, 1}∗ for RKGen, compute and return the decryption key dkρ←$

KGenrFE(mskrFE, (ρ,mpkFE)).

• Upon input S : {0, 1}∗ → {0, 1} for PolGen, compute and return the policy key
dkS←$ EncFE(mskFE,S).

4. Upon the forgery ((c∗, π∗), ρ∗,S∗) from A, compute dkρ∗ and dkS∗ by running KGenrFE(mskrFE,
(ρ∗,mpkFE)) and KGenFE(mskFE,S∗). If either V(ω, (c∗, pk∗,mpkrFE), π∗) = 0, or DecrFE(dkS∗ ,
DecrFE(dkρ∗ , c

∗)) = ⊥, it abort. Else, run and return (σ∗, s∗)←$ K1(ξ, (c∗, pk∗,mpkrFE), π∗)
as forgery to the challenger.

We now show that the simulation is perfect, except with negligibly small probability. First,
note that conditioned on (pk∗, sk∗,mpkrFE,mskrFE,mpkFE,mskFE, ω), then ∀σ, ρ ∈ {0, 1}∗,∀S :
{0, 1}∗ → {0, 1} the oracle queries of A are perfectly simulated by A′, and the only difference is
that the CRS ω is computed via K0 in the reduction, but this distribution is computationally
close to that of an honestly generated CRS. This means that with non-negligible probability
the ciphertext (c∗, π∗) returned by A is valid, which implies that the proof π∗ verifies correctly,
and moreover DecrFE(dkS∗ ,DecrFE(dkρ∗ , c

∗)) 6= ⊥ (so c∗ is also a valid ciphertext).
Now, by knowledge soundness of the NIZK proof, except with negligible probability, we must

have that the witness (σ∗, s∗) computed by the extractor is such that ((c∗, pk∗,mpkrFE), (σ∗, s∗))
∈ R2, which implies that s∗ is a valid signature on σ∗ w.r.t. public key pk∗. Finally, in Gauth

Π,A (λ)
none of the query in QSKGen satisfies the policy S∗. Thus, σ∗ has not been queried to Sign (i.e.,
σ∗ 6∈ QSign), and A′ wins with non-negligible probability.
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Lemma 3. If rFE is (q1, 1, q2)-NA-SIM-secure (Def.4), FE is (q′1, q1, q
′
2)-SIM-secure, SS is EUF-

CMA (Def.2), and NIZK is adaptive multi-theorem zero knowledge (Def.11), then the ME scheme
Π from Construction 1 is (q1, q

′
1, q2, q

′
2)-MATCH secure.

Proof. We prove that ME Π is (q1, q
′
1, q2, q

′
2)-MATCH secure using a hybrid argument. Consider

the following hybrid experiments:

Hyb0: This is exactly the experiment Gmatch
Π,A (λ).

Hyb1: Defined as in Lemma 1 except that, when A1 outputs the challenge (m,R0,R1, σ0, σ1), the
challenger flips a bit b←$ {0, 1} and computes c←$ EncrFE(mpkrFE, (Rb, σb,m)), π←$ Z1(ζ,
(c, pk,mpkrFE)).

Hyb2: Defined as in Lemma 1 except that, when A1 outputs the challenge (m,R0,R1, σ0, σ1),
the challenger flips a bit b←$ {0, 1} and computes c′i by running EncFE(mpkFE, (σb,m))
for every ρi ∈ Q1

RKGen.

Hyb3: Defined as in Lemma 1 except that, the challenge answer (c, π) is computed by running
{c′i}←$ SFE3 (α′FE, {yi}), c←$ SrFE3 (α′rFE, {c′i}) and π←$ Z1(ζ, (c, pk,mpkrFE)), where yi = m
for Si ∈ Q1

PolGen.

Claim 4. Hyb0(λ) ≈c Hyb1(λ).

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property of NIZK. The
proof is standard, so we omit it here.

Claim 5. Hyb1(λ) ≈c Hyb2(λ)

Proof. Follows by a similar argument in Lemma 2.

Claim 6. Hyb2(λ) ≈c Hyb3(λ).

Proof. Suppose it exists an adversary A that distinguishes between Hyb2 and Hyb3. Then, we
build a distinguisher A′ from experiments REALFE,A′(1

λ) and IDEALFE,A′(1
λ). The reduction

is similar to claim 3 except for the challenge phase:

4) Receive the challenge (m,R0,R1, σ0, σ1) chosen by A. Then, A′ flips a bit d←$ {0, 1}, set
m∗ = (σd,m) for ρi ∈ Q1

RKGen, and send (m∗0, . . . ,m
∗
q1) to the challenger.

The same analysis provided for claim 3 let us conclude that Hyb2(λ) and Hyb3(λ) are compu-
tationally indistinguishable.

Note that Hyb3 is completely independent to the challenge bit b of the orginal MATCH game.
Hence, combining Claims 4, 5, 6, we conclude that Construction 1 has (q1, q

′
1, q2, q

′
2)-MATCH

security.

Finally, combining Lemmas 1, 2, 3, we conclude that Construction 1 is (q1, q
′
1, q2, q

′
2)-secure.
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A.2 Proof of Theorem 2

Lemma 4. If 2FE is indistinguishably secure in the 1-semiprivate setting (Def. 9), and NIZK is
adaptive multi-theorem zero knowledge (Def. 11), then the ME scheme Π from Construction 2
is MISMATCH secure (Def. 14).

Proof. We prove that ME Π has MISMATCH security using a hybrid argument. Consider the
following hybrid experiments:

Hyb0(λ): This is exactly the experiment Gmismatch
Π,A (λ).

Hyb1(λ): Same as Hyb0(λ), except that the challenger uses the zero-knowledge simulator Z =
(Z0,Z1) to generate the CRS ω and the proof π contained in the challenge ciphertext. For-
mally, the challenger runs (ω, ζ)←$ Z0(1λ) at the beginning of the experiment. Thus, when
A1 outputs the challenge (m0,m1,R0,R1, σ0, σ1), the challenger computes c0←$ Enc2FE(ek0,
(Rb, σb,mb)), π←$ Z1(ζ, (c0, pk, ek0)), and sets the challenge ciphertext to (c0, π).

Claim 7. Hyb0(λ) ≈c Hyb1(λ).

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property of NIZK. The
proof is standard, so we omit it here.

Claim 8. If 2FE is indistinguishably secure in the 1-semi-private model (Def. 9), then for all
PPT adversaries A: |Pr[Hyb1(λ) = 1]− 1/2| ≤ negl(λ).

Proof. Suppose that there exists an adversary A that has non-negligible advantage in Hyb1(λ).
We build an attacker A′ that breaks security of experiment Gspriv

2FE,A′(λ, 1). A′ proceeds as follows:

1. At the beginning, receive ek∗0 sampled by the challenger. Then, it runs (pk, sk)←$

KGenSS(1λ) and (ω, ζ)←$ Z0(1λ). Finally, A′ sends mpk = (pk, ω, ek∗0) to A.

2. A′ answers the incoming oracle queries from A in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, return (σ, s) where s←$ Sign(sk, σ).

• Upon input ρ ∈ {0, 1}∗ for RKGen, send ρ to oracle KGen2FE and return the corre-
sponding output.

• Upon input S : {0, 1}∗ → {0, 1} for PolGen, send S to oracle Enc2FE and return the
corresponding output.

3. Receive the challenge (m0,m1,R0,R1, σ0, σ1) chosen by A. Select a policy S∗ : {0, 1}∗ →
{0, 1} such that S∗(σ0) = 0, S∗(σ1) = 0 (e.g., an unsatisfiable policy). Set m0

0 = (R0, σ0,
m0), m1

0 = (R1, σ1,m1) and m0
1 = m1

1 = S∗. Send the challenge (m0
0,m

0
1), (m1

0,m
1
1) to the

challenger.

4. After receiving the ciphertexts (c∗0, c
∗
1) from the challenger, A computes π←$ Z1(ζ, (c∗0, pk,

ek0)). Finally, send (c∗0, π) to A.

5. Simulate oracle queries as in step 3.

6. Return the output of A.
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We now show that the simulation is perfect. Conditioned on msk∗, ek∗0, ek∗1 sampled by the
challenger and sk, pk, ω, ζ generated by A′, ∀σ, ρ ∈ {0, 1}∗, ∀S : {0, 1}∗ → {0, 1} the following
holds:

SKGen(mpk,msk, σ) = (σ, Sign(sk, σ))

RKGen(mpk,msk, ρ) = KGen2FE(msk∗, ρ)

PolGen(mpk, kpol, S) = Enc2FE(ek∗1, S)

where mpk = (pk, ω, ek∗0), kpol = ek∗1, msk = (msk∗, sk). This suffices to conclude that the
queries’ answers have the same distribution of what A expects to receive. Moreover, in Hyb1(λ)
(cf. Def. 14) at least of one the following conditions holds:

1. ∀ρ ∈ QRKGen, (R0(ρ) = 0 ∧ R1(ρ) = 0).

2. ∀S ∈ QPolGen, (S(σ0) = 0 ∧ S(σ1) = 0).

3. ∀ρ ∈ QRKGen, ∀S ∈ QPolGen, (R0(ρ) = 0 ∧ S(σ1) = 0).

4. ∀ρ ∈ QRKGen, ∀S ∈ QPolGen, (R1(ρ) = 0 ∧ S(σ0) = 0).

This allows us to conclude that ∀S′ ∈ QEnc2FE ∪ {m0
1} (recall m0

1 = m1
1 = S∗ s.t. σ0, σ1 6∈ S∗),

and ∀ρ ∈ QKGen2FE , the following equality holds:

fρ(m
0
0, S′) = fρ(m

1
0,S′) = ⊥.

Finally, it is clear that there does not exist any 1-st position input such that fρ(·,m0
1) 6= fρ(·,m1

1)

(since m0
1 = m1

1 = S∗). Thus, A′ is a valid adversary for Gspriv
2FE,A′(λ, 1) and has the same

advantage of A.

Combining Claim 7 and Claim 8, we obtain that construction 2 is MISMATCH secure.

Lemma 5. If SS is EUF-CMA (Def. 2), and NIZK has knowledge soundness (Def. 12), then
the ME scheme Π from Construction 2 has AUTH security (Def. 16).

Proof. By contradiction, assume Construction 2 has not ciphertexts authenticity, i.e., there
exists an attacker A that has a non negligible advantage in experiment Gauth

Π,A (λ). We build an
attacker A′ that breaks unforgeability of SS. A proceeds as follows:

1. Receive pk∗ from the challenger.

2. Execute (msk2FE, ek0, ek1)←$ Setup2FE(1λ), (ω, ξ)←$ K0(1λ), and send mpk = (pk∗, ω, ek0)
to A.

3. Answer the incoming A’s queries in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, forward the query to oracle Sign obtaining s as
answer, and return (σ, s).

• Upon input ρ ∈ {0, 1}∗ for RKGen, compute and return the decryption key dkρ←$

KGen2FE(msk2FE, ρ).

• Upon input S : {0, 1}∗ → {0, 1} for PolGen, compute and return the policy key
dkS←$ Enc2FE(ek1,S).

4. Receive the forgery ((c∗0, π
∗), ρ∗,S∗) from A and proceed as follows:

• Compute dkρ∗ ←$ KGen2FE(msk2FE, ρ
∗) and c∗1←$ Enc2FE(ek1, S∗).
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• If either V(ω, (c∗0, pk
∗, ek0), π∗) = 0, or Dec2FE(dkρ∗ , c

∗
0, c
∗
1) = ⊥, abort.

• Else, run (σ∗, s∗)←$ K1(ξ, (c∗0, pk
∗, ek0), π∗) and return (σ∗, s∗) as forgery to the chal-

lenger.

We now show that the simulation is perfect, except with negligibly small probability. First,
note that conditioned on (pk∗, sk∗) chosen by the challenger, and (ek0, ek1,msk2FE, ω) generated
by A′, the following holds ∀σ, ρ ∈ {0, 1}∗:

SKGen(mpk,msk, σ) = (σ, Sign(sk∗, σ))

RKGen(mpk,msk, ρ) = KGen2FE(msk2FE, ρ)

PolGen(mpk, kpol, S) = Enc2FE(ek1, S).

Hence, the oracle queries of A are perfectly simulated by A′, and the only difference is that
the CRS ω is computed via K0 in the reduction, but this distribution is computationally close
to that of an honestly generated CRS. This means that with non-negligible probability the
ciphertext (c∗0, π

∗) returned by A is valid, which implies that the proof π∗ verifies correctly, and
moreover Dec2FE(dkρ∗ , c

∗
0, c
∗
1) 6= ⊥ (so c∗0 is also a valid ciphertext).

Now, by knowledge soundness of the NIZK proof, except with negligible probability, we must
have that the witness (σ∗, s∗) computed by the extractor is such that ((c∗0, pk

∗, ek0), (σ∗, s∗)) ∈
R2, which implies that s∗ is a valid signature on σ∗ w.r.t. public key pk∗. Finally, in Gauth

Π,A (λ)
none of the query in QSKGen satisfies the policy S∗. Thus, σ∗ has not been queried to Sign (i.e.,
σ∗ 6∈ QSign), and A′ wins with non-negligible probability.

Lemma 6. If 2FE is indistinguishably secure in the 1-semiprivate setting (Def. 9), and NIZK is
adaptive multi-theorem zero knowledge (Def. 11), then the ME scheme Π from Construction 2
is MATCH secure (Def. 15).

Proof. We prove that ME Π has MATCH security using a hybrid argument. Consider the
following hybrid experiments:

Hyb0(λ): This is exactly the experiment Gmatch
Π,A (λ).

Hyb1(λ): Same as Hyb0(λ), except that the challenger uses the zero-knowledge simulator Z =
(Z0,Z1) to generate the CRS ω and the proof π contained in the challenge ciphertext.
Formally, the challenger runs (ω, ζ)←$ Z0(1λ) at the beginning of the experiment. Thus,
when A1 outputs the challenge (m,R0,R1, σ0, σ1), the challenger runs c0←$ Enc2FE(ek0,
(Rb, σb,m)) and π←$ Z1(ζ, (c0, pk, ek0)), and sets the challenge ciphertext to (c0, π).

Claim 9. Hyb0(λ) ≈c Hyb1(λ).

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property of NIZK. The
proof is standard, so we omit it here.

Claim 10. If 2FE is indistinguishably secure in the 1-semi-private model (Def. 9), then for all
PPT adversaries A: |Pr[Hyb1(λ) = 1]− 1/2| ≤ negl(λ).

Proof. Suppose that there exists an adversary A that has non-negligible advantage in Hyb1(λ).
We build an attacker A′ that breaks security of experiment Gspriv

2FE,A′(λ, 1). A′ proceeds as follows:

1. At the beginning, receive ek∗0 sampled by the challenger. Then, it runs (pk, sk)←$

KGenSS(1λ) and (ω, ζ)←$ Z0(1λ). Finally, A′ sends mpk = (pk, ω, ek∗0) to A.
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2. A′ answers the incoming oracle queries from A in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, return (σ, s) where s = Sign(sk, σ).

• Upon input ρ ∈ {0, 1}∗ for RKGen, send ρ to oracle KGen2FE and return the corre-
sponding output.

• Upon input S : {0, 1}∗ → {0, 1} for PolGen, send S to oracle Enc2FE and return the
corresponding output.

3. Receive the challenge (m,R0,R1, σ0, σ1) chosen by A. Select an arbitrary policy S∗ such
that S∗(σ0) = 1,S∗(σ1) = 1 (e.g., a tautology). Set m0

0 = (R0, σ0,m), m1
0 = (R1, σ1,m)

and m0
1 = m1

1 = S∗. Send the challenge (m0
0,m

0
1), (m1

0,m
1
1) to the challenger.

4. After receiving the ciphertexts (c∗0, c
∗
1) from the challenger, A computes π←$ Z1(ζ, (c∗0, pk,

ek0)). Finally, send (c∗0, π) to A.

5. Simulate oracle queries as in step 3.

6. Return the output of A.

We now show that the simulation is perfect. Conditioned on msk∗, ek∗0, ek∗1 sampled by the
challenger and sk, pk, ω, ζ generated by A′, ∀σ, ρ ∈ {0, 1}∗, ∀S : {0, 1}∗ → {0, 1} the following
holds:

SKGen(mpk,msk, σ) = (σ, Sign(sk, σ))

RKGen(mpk,msk, ρ) = KGen2FE(msk∗, ρ)

PolGen(mpk, kpol, S) = Enc2FE(ek∗1, S)

where mpk = (pk, ω, ek∗0), kpol = ek∗1, msk = (msk∗, sk). This suffices to conclude that the
queries’ answers have the same distribution of what A expects to receive. Moreover, in Hyb1(λ)
(cf. Def. 15) the following condition holds:

∀ρ ∈ QRKGen,∀S ∈ QPolGen, (R0(ρ) = 1 ∧ R1(ρ) = 1) ∧ (S(σ0) = 1 ∧ S(σ1) = 1)

This allows us to conclude that ∀S′ ∈ QEnc2FE ∪ {m0
1} (recall m0

1 = m1
1 = S∗ s.t. σ0,S(σ0) = 1∗),

and ∀ρ ∈ QKGen2FE , the following equality holds:

fρ(m
0
0,S′) = fρ(m

1
0, S′) = m.

Finally, it is clear that there does not exist any 1-st position input such that fρ(·,m0
1) 6= fρ(·,m1

1)

(since m0
1 = m1

1 = S∗). Thus, A′ is a valid adversary for Gspriv
2FE,A′(λ, 1) and has the same

advantage of A.

Combining Claim 9 and Claim 10, we obtain that Construction 2 is MATCH secure.

By combining Lemmas 4, 5, 6 we obtain that Construction 2 is secure.

A.3 Proof of Theorem 3

Lemma 7. If FE is secure (Def. 7), and NIZK is adaptive multi-theorem zero knowledge
(Def. 11), then the A-ME scheme Π from Construction 3 is MISMATCH secure (Def. 19).

Proof. We prove that ME Π has MISMATCH security using a hybrid argument. Consider the
following hybrid experiments:
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Hyb0(λ): This is exactly the experiment Garr-mismatch
Π,A (λ).

Hyb1(λ): Same as Hyb0(λ), except that the challenger uses the zero-knowledge simulator Z =
(Z0,Z1) to generate the CRS ω and the proof π contained in the challenge ciphertext.
Formally, the challenger runs (ω, ζ)←$ Z0(1λ) at the beginning of the experiment. Thus,
when A1 outputs the challenge (m0,m1,R0,R1, σ0, σ1), the challenger sets the challenge
ciphertext to (c, π) where c←$ EncFE(mpkFE, (Rb, σb,mb)), and π←$ Z1(ζ, (c, pk,mpkFE)).

Claim 11. Hyb0(λ) ≈c Hyb1(λ).

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property of NIZK. The
proof is standard, so we omit it here.

Claim 12. If FE is secure (Def. 7), then for all PPT adversaries A: |Pr[Hyb1(λ) = 1]− 1/2| ≤
negl(λ).

Proof. Suppose that there exists an adversary A that has non-negligible advantage in Hyb1(λ).
We build an attacker A′ that breaks security of experiment Gfe

FE,A′(λ). A′ proceeds as follows:

1. At the beginning, receive mpk∗ sampled by the challenger. Then, it runs (pk, sk)←$

KGenSS(1λ) and (ω, ζ)←$ Z0(1λ). Finally, A′ sends mpk = (pk, ω,mpk∗) to A.

2. A′ answers the incoming oracle queries from A in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, return (σ, s) where s = Sign(sk, σ).

• Upon input ρ ∈ {0, 1}∗ and S : {0, 1}∗ → {0, 1} for RKGen, send (ρ, S) to oracle
KGenFE and return the corresponding output.

3. Receive the challenge (m0,m1,R0,R1, σ0, σ1) chosen by A Set m∗0 = (R0, σ0,m0), m∗0 =
(R1, σ1,m1). Send the challenge (m∗0,m

∗
1) to the challenger.

4. After receiving the ciphertext c∗ from the challenger, A computes π←$ Z1(ζ, (c∗, pk,mpk)).
Finally, send (c∗, π) to A.

5. Simulate oracle queries as in step 3.

6. Return the output of A.

We now show that the simulation is perfect. Conditioned on msk∗, msk∗0 sampled by the chal-
lenger and sk, pk, ω, ζ generated by A′, ∀σ, ρ ∈ {0, 1}∗, ∀S : {0, 1}∗ → {0, 1} the following
holds:

SKGen(mpk,msk, σ) = (σ, Sign(sk, σ))

RKGen(mpk,msk, ρ,S) = KGenFE(msk∗, (ρ,S))

where mpk = (pk, ω,mpk∗), msk = (msk∗, sk). This suffices to conclude that the queries’ answers
have the same distribution of what A expects to receive. Moreover, in Hyb1(λ) (cf. Def. 19) at
least of one the following conditions holds:

1. ∀(ρ,S) ∈ QRKGen, (R0(ρ) = 0 ∧ R1(ρ) = 0).

2. ∀(ρ,S) ∈ QRKGen, (S(σ0) = 0 ∧ S(σ1) = 0).

3. ∀(ρ,S) ∈ QRKGen, (R0(ρ) = 0 ∧ S(σ1) = 0).

4. ∀(ρ,S) ∈ QRKGen, (R1(ρ) = 0 ∧ S(σ0) = 0).
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This allows us to conclude that ∀(ρ, S) ∈ QKGenFE , the following equality holds:

f(ρ,S)(m
∗
0) = f(ρ,S)(m

∗
1) = ⊥.

Thus, A′ is a valid adversary for Gfe
FE,A′(λ) and has the same advantage of A.

Combining Claim 11 and Claim 12, we obtain that Construction 3 is MISMATCH secure.

Lemma 8. If SS is EUF-CMA (Def. 2), and NIZK has knowledge soundness (Def. 12), then
the A-ME scheme Π from Construction 3 has AUTH security (Def. 21).

Proof. By contradiction, assume Construction 3 has not ciphertexts authenticity, i.e., there
exists an attacker A that has a non negligible advantage in experiment Garr-auth

Π,A (λ). We build
an attacker A′ that breaks unforgeability of SS. A proceeds as follows:

1. Receive pk∗ from the challenger.

2. Execute (mskFE,mpkFE)←$ SetupFE(1λ), (ω, ξ)←$ K0(1λ), and send mpk = (pk∗, ω,mpkFE)
to A.

3. Answer the incoming A’s queries in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, forward the query to oracle Sign obtaining s as
answer, and return (σ, s).

• Upon input ρ ∈ {0, 1}∗ and S : {0, 1}∗ → {0, 1} for RKGen, compute and return the
decryption key dk(ρ,S)←$ KGenFE(mskFE, (ρ, S)).

4. Receive the forgery ((c∗, π∗), ρ∗,S∗) from A and proceed as follows:

• Compute dkρ∗,S∗ ←$ KGenFE(mskFE, (ρ
∗, S∗)).

• If either V(ω, (c∗, pk∗,mpkFE), π∗) = 0, or DecFE(dkρ∗,S∗ , c
∗) = ⊥, abort.

• Else, run (σ∗, s∗)←$ K1(ξ, (c∗, pk∗,mpkFE), π∗) and return (σ∗, s∗) as forgery to the
challenger.

We now show that the simulation is perfect, except with negligibly small probability. First,
note that conditioned on (pk∗, sk∗) chosen by the challenger, and (mpkFEmskFE, ω) generated by
A′, the following holds ∀σ, ρ ∈ {0, 1}∗:

SKGen(mpk,msk, σ) = (σ, Sign(sk∗, σ))

RKGen(mpk,msk, ρ,S) = KGenFE(mskFE, (ρ, S))

Hence, the oracle queries of A are perfectly simulated by A′, and the only difference is that
the CRS ω is computed via K0 in the reduction, but this distribution is computationally close
to that of an honestly generated CRS. This means that with non-negligible probability the
ciphertext (c∗, π∗) returned by A is valid, which implies that the proof π∗ verifies correctly, and
moreover DecFE(dkρ∗,S∗ , c) 6= ⊥ (so c∗ is also a valid ciphertext).

Now, by knowledge soundness of the NIZK proof, except with negligible probability, we must
have that the witness (σ∗, s∗) computed by the extractor is such that ((c∗, pk∗,mpkFE), (σ∗, s∗))
∈ R3, which implies that s∗ is a valid signature on σ∗ w.r.t. public key pk∗. Finally, in Garr-auth

Π,A (λ)
none of the query in QSKGen satisfies the policy S∗. Thus, σ∗ has not been queried to Sign (i.e.,
σ∗ 6∈ QSign), and A′ wins with non-negligible probability.
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Lemma 9. If FE is secure (Def. 7), and NIZK is adaptive multi-theorem zero knowledge
(Def. 11), then the ME scheme Π from Construction 3 is MATCH secure (Def. 20).

Proof. We prove that ME Π has MATCH security using a hybrid argument. Consider the
following hybrid experiments:

Hyb0(λ): This is exactly the experiment Garr-match
Π,A (λ).

Hyb1(λ): Same as Hyb0(λ), except that the challenger uses the zero-knowledge simulator Z =
(Z0,Z1) to generate the CRS ω and the proof π contained in the challenge ciphertext.
Formally, the challenger runs (ω, ζ)←$ Z0(1λ) at the beginning of the experiment. Thus,
when A1 outputs the challenge (m,R0,R1, σ0, σ1), the challenger runs c←$ EncFE(mpkFE,
(Rb, σb,m)) and π←$ Z1(ζ, (c, pk,mpkFE)), and sets the challenge ciphertext to (c, π).

Claim 13. Hyb0(λ) ≈c Hyb1(λ).

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property of NIZK. The
proof is standard, so we omit it here.

Claim 14. If FE is secure (Def. 7), then for all PPT adversaries A: |Pr[Hyb1(λ) = 1]− 1/2| ≤
negl(λ).

Proof. Suppose that there exists an adversary A that has non-negligible advantage in Hyb1(λ).
We build an attacker A′ that breaks security of experiment Gfe

FE,A′(λ). A′ proceeds as follows:

1. At the beginning, receive mpk∗ sampled by the challenger. Then, it runs (pk, sk)←$

KGenSS(1λ) and (ω, ζ)←$ Z0(1λ). Finally, A′ sends mpk = (pk, ω,mpk∗) to A.

2. A′ answers the incoming oracle queries from A in the following way:

• Upon input σ ∈ {0, 1}∗ for SKGen, return (σ, s) where s = Sign(sk, σ).

• Upon input ρ ∈ {0, 1}∗ and S : {0, 1}∗ → {0, 1} for RKGen, send (ρ, S) to oracle
KGenFE and return the corresponding output.

3. Receive the challenge (m,R0,R1, σ0, σ1) chosen by A. Set m∗0 = (R0, σ0,m), m∗0 = (R1, σ1,
m) Send the challenge (m∗0,m

∗
1) to the challenger.

4. After receiving the ciphertexts c∗ from the challenger, A computes π←$ Z1(ζ, (c∗, pk,
mpk∗)). Finally, send (c∗, π) to A.

5. Simulate oracle queries as in step 3.

6. Return the output of A.

We now show that the simulation is perfect. Conditioned on msk∗, mpk∗, sampled by the
challenger and sk, pk, ω, ζ generated by A′, ∀σ, ρ ∈ {0, 1}∗, ∀S : {0, 1}∗ → {0, 1} the following
holds:

SKGen(mpk,msk, σ) = (σ, Sign(sk, σ))

RKGen(mpk,msk, ρ,S) = KGen2FE(msk∗, (ρ, S))

where mpk = (pk, ω,mpk∗), msk = (msk∗, sk). This suffices to conclude that the queries’ answers
have the same distribution of what A expects to receive. Moreover, in Hyb1(λ) (cf. Def. 15) the
following condition holds:

∀(ρ,S) ∈ QRKGen, (R0(ρ) = 1 ∧ R1(ρ) = 1) ∧ (S(σ0) = 1 ∧ S(σ1) = 1)
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This allows us to conclude that ∀(ρ, S) ∈ QKGenFE , the following equality holds:

f(ρ,S)(m
∗
0) = f(ρ,S)(m

∗
1) = m.

Thus, A′ is a valid adversary for Gfe
FE,A′(λ) and has the same advantage of A.

Combining Claim 13 and Claim 14, we obtain that Construction 3 is MATCH secure.

By combining Lemmas 7, 8, 9 we obtain that Construction 3 is secure.

A.4 Proof of Theorem 4

Lemma 10. Let A be an adversary that breaks MISMATCH security of Construction 4 with
advantage ε and asks at most qR queries to the decryption key oracle RKGen and qĤ queries to

the random oracle Ĥ. Then, there is an algorithm that solves the BDH problem with advantage
8ε/e2(qR + 2)2qĤ .

There are many similarities between our scheme and Boneh-Franklin CPA-secure IBE [12],
and we will use a similar strategy than theirs for proving MISMATCH. Their proof demonstrates
that the Boneh-Franklin IBE achieves CPA-security under the BDH assumption, although using
an intermediate PKE scheme called BasicPub to simplify the security analysis. This proof has
two parts: first, it shows that the IBE scheme is CPA-secure if BasicPub is CPA-secure [12,
Lemma 4.2]; and next, it demonstrates that if the BDH assumption holds then BasicPub is
CPA-secure [12, Lemma 4.3].

We will follow a similar tactic, defining two games that in the end prove that IB-ME is
MISMATCH secure under the BDH assumption. First, we define BasicPub+, a variant of
BasicPub more suitable for our needs. BasicPub+ is composed by the following algorithms:

Setup(1λ): Generate a symmetric pairing e : G×G→ GT , with G, and GT of an order q that
depends on λ. Choose a random generator P of G. Sample a random r ∈ Zq and set
P0 = P r. Choose a key derivation function Ĥ : G → {0, 1}n, for some n. The master
public key is the tuple mpk = (q,G,GT , e, n, P, P0, Ĥ). The master secret key is msk = r.

KGen(mpk,msk): Choose a random G ∈ G. The public key is pk = G. The private key is
sk = Gr.

Enc(mpk, pk,m): To encrypt a message m under public key pk = G, choose a random x ∈ Zq
and output c = (U, V ) = (P x,m⊕ Ĥ(e(G,P0)x)).

Dec(mpk, sk, c): Let c = (U, V ) be a ciphertext for public key pk, then the algorithm returns
m = V ⊕ Ĥ(e(sk, U)).

In the first game, described in Lemma 15, we show that if BasicPub+ is IND-CPA+-secure,
then IB-ME is MISMATCH secure. In order to be compatible with our definition of MIS-
MATCH, we define IND-CPA+ security as a variant of traditional IND-CPA where the adver-
sary not only inputs a pair of messages m0 and m1, but also a pair of public keys pkj0 and pkj1
(which must have been generated during the first key generation phase). This modified game
can be seen as a hybrid between the usual IND-CPA game and the key-privacy game for PKE
defined by Bellare et al. [10].
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Definition 27 (IND-CPA+). A public-key encryption scheme Π = (Setup,KGen,Enc,Dec) is
IND-CPA+ secure if for all probabilistic polynomial time adversary A = (A1,A2), we have that
the advantage of adversary A in attacking the scheme Π is negligible:∣∣∣∣P[Gcpa+

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)

where Gcpa+

Π,A (λ) is the following experiment:

1. (msk,mpk)←$ Setup(1λ)

2. (m0,m1, pkj,0, pkj,1, α)←$ A
KGen(msk,·),
1 (1λ,mpk).

3. c←$ Enc(mpk, pkj,b,mb) where b←$ {0, 1}.

4. b′←$ A
KGen(msk,·)
2 (1λ, c, α).

5. If b = b′ and pkj,0, pkj,1 ∈ QKGen then output 1, and otherwise output 0.

In game above, the oracle KGen generates a pair (pk, sk), but it outputs only the public key pk.

Claim 15. Let A be an adversary that breaks MISMATCH security of Construction 4 with
advantage ε, and asks at most qR queries to the decryption key oracle RKGen. Then, there is
an algorithm A′ with advantage 4ε/e2(qR + 2)2 against IND-CPA+ security of BasicPub+.

Proof. This proof is similar to the proof of [12, Lemma 4.2]. The challenger starts the game by
running the Setup algorithm of BasicPub+ and sends the public parameters (q,G,GT , e, n, P, P0,
Ĥ) to A′. Note that the master secret key msk = r remains unknown to A′. Now, A′ interacts
with the adversary A in the following way:

Setup: A′ samples a secret value s←$ Zq and gives A the public parameters defined above,
plus two random oracles H and H ′ under its control and the padding function Φ.

H queries: A′ performs the following steps:

1. If query ρi is in a tuple (ρi, Qi, βi, di) ∈ L1, then return Qi. Otherwise, generate a
random coin di ∈ {0, 1} so that Pr[di = 0] = δ

2. If di = 0, then sample a random βi ∈ Zq, compute Qi = P βi , and add the tuple
(ρi, Qi, βi, 0) to L1. Otherwise, run the public key generation oracle of BasicPub to
obtain pki, set Qi = pki, and add the tuple (ρi, Qi,⊥, 1) to L1.

3. Return Qi.

H ′ queries: A′ maintains a list L2 that stores tuples of the form (σi, Zi) with the history of
calls to H ′. If the query σi was already done, the challenger returns the value Zi. If not,
it samples a random Zi ∈ G, adds (σi, Zi) to the list, and returns Zi.

SKGen queries: Let σi be the input to oracle SKGen. A′ obtains H ′(σi) = Zi, where (σi, Zi) is
the corresponding tuple in L2, and returns Zsi .

RKGen queries: Let ρi be the input to oracle RKGen. A′ obtains H(ρi) = Qi, where (ρi, Qi, βi,
di) is the corresponding tuple in L1. If di = 1, A′ aborts; otherwise, returns dkρi =

(P βi0 , Qsi , Qi = P βi). Note that, since P0 = P r, we have that dk1
ρi = (P βi)r = Qri .
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Challenge: At this moment, A sends (m0,m1, rcv0, rcv1, σ0, σ1) to A′. Now A′ performs the
following steps:

1. Let rcv0 = ρ0 and rcv1 = ρ1. A′ queries H(ρ0) = Q0 and H(ρ1) = Q1. If both tuples
(ρ0, Q0, b0, 1) and (ρ1, Q1, b1, 1) do not belong to L1 (i.e., di = 1 in both tuples), A′

aborts. Otherwise, we know that d0 = 1 and d1 = 1, which means that Q0 = pk0

and Q1 = pk1.

2. A′ computes T = P t, for a random t ∈ Zq and queries H ′(σ0) = Z0 and H ′(σ1) = Z1.
It uses them to obtain m∗0 = Φ(m0)⊕Ĥ(e(Q0, T ·Zs0)) and m∗1 = Φ(m1)⊕Ĥ(e(Q1, T ·
Zs1)). Note that ekσi = Zsi .

3. A′ sends (m∗0,m
∗
1, Q0, Q1) to its challenger and receives C = (U, V ) as response.

4. A′ computes C ′ = (T,U, V ) and sends it to A. Note that this is a proper encryption
of mb under policy rcvb = ρb and sender’s identity σb.

Second query phase: A′ answers all the queries as in the first phase.

Guess: A outputs a guess b′ and A′ responds its challenger with the same guess.

Assuming that the adversary makes at most qR queries to oracle RKGen, then the probability
that A′ does not abort for any of these calls is δqR . Similarly, A′ does not abort in the challenge
with probability (1− δ)2. Hence, the overall probability of A′ not aborting is δqR(1− δ)2, which
is maximized at δopt = qR/(qR + 2). If we use δopt as the probability for obtaining coins di = 0
in H queries, we have that the probability of A′ not aborting is at least 4/e2(qR + 2)2.

Claim 16. Let A be an adversary that breaks IND-CPA+-security of BasicPub+ with advantage
ε, and asks at most qĤ queries to the random oracle Ĥ. Then, there is an algorithm A′ that
solves the BDH problem with advantage 2ε/qĤ .

Proof. The proof follows the strategy of [12, Lemma 4.2]:
A′ receives a BDH tuple (P, P a, P b, P c), whose correct solution is D = e(P, P )abc.
During setup, the A′ sends the master public key to A where P0 = P a. This implies that

the master secret key msk = a, although this remains unknown to A′. Then, A′ proceeds in the
following way:

KGen queries: A′ samples a random xi ∈ Zq and sets pki = (P b)xi . Note that the associated
secret key is ski = P abxi , although it remains unknown to A′.

Ĥ oracle: A′ maintains a list L̂ that stores tuples of the form (Xi, ĥi) with the history of calls
to Ĥ. If the query Xi was already done, the A′ returns the value ĥi. If not, it samples a
random hi ∈ {0, 1}n, adds (Xi, ĥi) to the list, and returns ĥi.

Challenge: A sends a tuple (m0,m1, pkj0 , pkj1). A′ samples a random string Z ∈ {0, 1}n,
defines the challenge ciphertext as c = (P c, Z), and sends c to A. Note that the decryption
of c is Z ⊕ Ĥ(e(P c, skjβ )), for some β ∈ {0, 1}, which is equal to Z ⊕ Ĥ(D

xjβ ), where xjβ
is the secret key associated to public key pkjβ .

Guess: The A′ receives the guess β′ from the A, sets z = 1/xjβ′ , takes a random tuple (Xi, Ĥi) ∈
L̂ and outputs Xz

i as the solution to the received instance of BDH.

A′ outputs the correct solution D with probability at least 2ε/qĤ . The analysis that gives
this bound is exactly the same than the provided in [12, Lemma 4.2], so we will omit it here.
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Proof to Lemma 10. By composing the reductions in Claim 15 and Claim 16, we can conclude
that if there exists an MISMATCH adversary against the IB-ME scheme with advantage ε, then
there exists an algorithm that solves the BDH problem with advantage 8ε/e2(qR + 2)2qĤ .

Lemma 11. Let A be an adversary that breaks AUTH-security of Construction 4 with advantage
ε, and asks at most qR, qS, qĤ queries, respectively, to the decryption key oracle RKGen, the

encryption key oracle SKGen, and to the random oracle Ĥ. Then, there is an algorithm A′ that
solves the BDH problem with advantage 8ε/e2(qR + qS + 2)2qĤ .

Proof. A′ receives the challenge (P, P a, P b, P c). The solution is D = e(P, P )abc. A′ decides that
the master secret key is msk = (a, b,H ′) (although a, b are unknown). Now, A′ interacts with
the adversary A in the following way:

Setup: A′ gives A the public parameters (q,G,GT , e, n, P, P
a = P0, H,H

′, Ĥ,Φ) where H, H ′,
Ĥ are three random oracles controlled by A′.

H queries: A′ performs the following steps:

1. If query ρi is in a tuple (ρi, Qi, βi, di) ∈ L1, then return Qi. Otherwise, generate a
random βi ∈ Zq, and random coin di ∈ {0, 1} so that Pr[di = 0] = δ.

2. If di = 0, then set Qi = P βi . Otherwise, set Qi = P cβi .

3. Finally, add (ρi, Qi, βi, di) to L1 and send Qi to A.

H ′ queries: A′ performs the following steps:

1. If query σi is in a tuple (σi, Qi, βi, di) ∈ L2, then return Qi. Otherwise, generate a
random βi ∈ Zq, and random coin di ∈ {0, 1} so that Pr[di = 0] = δ.

2. If di = 0, then set Qi = P βi . Otherwise, set Qi = P aβi .

3. Finally, add (σi, Qi, βi, di) to L2 and send Qi to A.

Ĥ queries: A′ maintains a list L̂ that stores tuples of the form (Xi, ĥi) with the history of calls
to Ĥ. If the query Xi was already done, the challenger returns the value ĥi. If not, it
samples a random hi ∈ {0, 1}n, adds (Xi, ĥi) to the list, and returns ĥi.

SKGen queries: Let σi be the input to oracle SKGen. A′ obtains H ′(σi) = Qi, where (σi, Qi, βi,
di) is the corresponding tuple in L2. If di = 1, A′ aborts; otherwise, returns ekσi = P bβi .

RKGen queries: Let ρi be the input to oracle RKGen. A′ obtains H(ρi) = Qi, where (ρi, Qi, βi,
di) is the corresponding tuple in L1. If di = 1, A′ aborts; otherwise, returns dkρi =
(P aβi , P bβi , Qi = P βi).

Forgery: At this moment, A sends (c, ρ, snd) to A′. Let snd = σ. Now A′ performs the following
steps:

1. Compute H(ρ) = Q and H ′(σ) = Q′. If both the tuples (ρ,Q, β, d) ∈ L1 and
(σ,Q′, β′, d′) ∈ L2 do not have coins d, d′ equal to 1, A′ aborts. If not, we know that
dk2
ρ = P cbβ and H ′(σ) = P aβ

′
. Hence, Ĥ(kS) = Ĥ(e(dk2

ρ, H
′(σ))e(dk3

ρ, T )), where:

e(dk2
ρ, H

′(σ)) = e(P cbβ, P aβ
′
) = Dββ′ , and Q = dk3

ρ.

2. Parse c as (T,U, V ). Compute z = 1/(ββ′) and take a random tuple (Xi, ĥi). Return
D′ = (Xi · e(Q,T )−1)z.
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First of all, note that the simulation is perfect since in the identity based AUTH game,
we require that the challenge (c, ρ, snd = σ) satisfies ρ 6∈ QRKGen and ∀σ′ ∈ QSKGen, σ

′ 6= σ.
Assuming that the adversary makes at most qR and qS queries to oracle RKGen and SKGen,
then the probability that A′ does not abort for any of these calls is δqR+qS . Similarly, A′ does
not abort in the forgery phase with probability (1−δ)2. Hence, the overall probability of A′ not
aborting is δqR+qS (1− δ)2, which is maximized at δopt = (qR + qS)/(qR + qS + 2). If we use δopt
as the probability for obtaining coins di = 0 in H and H ′ queries, we have that the probability
of A′ not aborting is at least 4/e2(qR + qS + 2)2.

If A′ does not abort, it outputs the correct solution D′ with probability at least 2ε/qĤ .
Hence, A′ solves the BDH problem with advantage 8ε/e2(qR + qS + 2)2qĤ .

By setting ε ≥ 1
poly(λ) , qR = poly(λ), qS = poly(λ), qĤ = poly(λ) in Lemmas 10,11, we

obtain that IB-ME (construction 4) is secure.
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