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Abstract. We investigate the problem of securely outsourcing modular
exponentiations to a single, malicious computational resource. We revisit
recently proposed schemes using single server and analyse them against
two fundamental security properties, namely privacy of inputs and ver-
ifiability of outputs. Interestingly, we observe that the chosen schemes
do not appear to meet both the security properties. In fact we present
a simple polynomial-time attack on each algorithm, allowing the mali-
cious server either to recover a secret input or to convincingly fool the
client with wrong outputs. Then we provide a fix to the identified prob-
lem in the ExpSOS scheme. With our fix and without pre-processing,
the improved scheme becomes the best to-date outsourcing scheme for
single-server case. Finally we present the first precomputation-free single-
server algorithm, πExpSOS for simultaneous exponentiations, thereby
solving an important problem formulated in [6].

1 Introduction

The problem of securely offloading cryptographic computations from a (compar-
atively) weak device to a more powerful device has been considered since many
years [1] but the need for such a solution has been increasing rapidly [10][9][8][11].
A low-cost RFID tag is a natural example as it has limited computing resources
but will benefit from running cryptographic protocols [18]. Proliferation of the us-
age of mobile applications adds one more scenario wherein outsourcing resource-
consuming cryptographic tasks to a third-party is desirable.

The growing utilisation of cloud services such as Dropbox, Google and Ama-
zon Cloud Drives has raised concerns about the availability and integrity of the
data being handled and stored. By using cryptographic primitives such as prov-
able data possession [2] and proofs of retrievability [3], these service providers
could convince their clients that the actual data given by clients has been re-
trieved entirely. However, during this process, the clients have to engage in per-
forming computationally-intensive operations to verify the claims of their storage
providers and this is not practically viable for many devices in use today. Among
complex cryptographic operations, modular exponentiation is invariably the pre-
dominant and core operation; that is, to compute ua mod p with a variable base
u, a variable exponent a and a prime or RSA modulus p. In this paper, our
goal is to inspect the recently proposed single-server outsourcing algorithms for
modular exponentiation.



2 Jothi Rangasamy and Lakshmi Kuppusamy

1.1 Related Work

The problem of secure delegation of crypto computations to (untrusted) helpers
has been considered in various contexts[1,10,9,8,11,17,24]. In particular, the idea
of secure delegation of modular exponentiation can be attributed to the work
of Schnorr [21,22] as he was the first to propose speeding up modular expo-
nentiations in cryptography. However it has not received formal treatment until
Hohenberger and Lysyanskaya [12] developed a formal security framework for
secure outsourcing of cryptographic computations to untrusted servers in 2005.
In secure outsourcing scenario, preserving the secrecy of the inputs and/or out-
puts is vital. Hence, in Hohenberger-Lysyanskaya formalism, secrecy is the first
notion an outsourcing algorithm should aim to satisfy. The second security no-
tion, namely verifiability addresses the correctness of the output of the powerful
helper/server. Hohenberger and Lysyanskaya also presented a scheme for out-
sourcing modular exponentiation to two non-colluding servers. This approach
was improved in [6] and further in [15] with better verifiability results.

Designing an efficient algorithm using single untrusted (cloud) server for
securely outsourcing (multi-)modular exponentiation has been a perennial prob-
lem. Towards solving this, Wang et al. presented (at ESORICS 2014) an efficient
protocol to outsource modular exponentiation to a single untrusted server [23].
They also presented a generic protocol for outsourcing multi-exponentiations
to a single server. However Chevalieret al. [7] presented a lattice-based attack
on Wang et al. scheme recovering the secret exponent. Independently, Kiraz
and Uzunkol designed an outsourcing scheme but requires an additional sub
algorithm[14]. In 2017, Cai et al. [5] proposed a new scheme using redundant
inputs but with increased communication complexity undesirably. Recently, Li
et al.[16] have come up with a novel approach of using logical divisions twice for
the given inputs. Then Zhou et al.[25] proposed a new scheme, which they call
ExpSOS, using special ring structure of ZN with the goal of eliminating the (de
facto) preprocessing and achieving near-full verifiability simultaneously. To the
best of our knowledge, ExpSOS is the only single-server algorithm which does
not require resource-demanding pre-processing techniques such as Rand in [4].

1.2 Our Contributions

Contributions of the paper is two-fold. We first present practical attacks on three
recent single-server algorithms and then we resolve the issue with the ExpSOS
scheme, making it the best to-date scheme for this purpose.

First we show that the CExp scheme due to Li et al.[16] is unfortunately
zero verifiable, instead of the authors’ claim of satisfying the full verifibility. We
demonstrate how to manipulate the outputs so that the delegator can be tricked
by 100% into accepting false outputs .

Secondly, we note that the SgExp scheme proposed by Cai et al. [5] does not
provide the claimed verifiability guarantee. The idea behind this tricky attack is
to classify the queries to the untrusted (cloud) server into two categories because
exponents in a set of queries need to be powers of two. This makes the scheme
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unfortunately totally unverifiable, instead of having the verifiability probability
1 − 1

n2 which is ≈ 0.99996 for n = 160. The result is applicable to the SmExp
scheme proposed by Cai et al. for the case of simultaneous exponentiation.

Thirdly, we describe an attack on the ExpSOS scheme of Zhou et al.[25]
on its second invocation with the same secret exponent. The scheme will leak
the exponent if it is used again, invalidating the claimed secrecy guarantee. The
demonstrated attack extends to the other versions of the ExpSOS scheme in
[25].

Our last and main contribution are new single-server algorithms for secure
outsourcing of single and simultaneous modular exponentiations. For single ex-
ponentiation case, our algorithm is obtained by modifying ExpSOS. The mod-
ified scheme, which we call MExpSOS becomes the most efficient and simple
scheme available in the related literature in addition to eliminating the memory
requirement and the substantial computational cost of the precomputation step.
Finally, we present an elegant algorithm, πExpSOS extending MExpSOS for
simultaneous multiplications. The πExpSOS algorithm is near error-free and
preprocessing-free and hence is the first of its kind in the literature. Our obser-
vations are summarised in Table 1.

Algorithm Secrecy verifibility Pre-processing
Probability Required

SgExp, SmExp [5] Yes 0 Yes
CExp [16] Yes 0 Yes
Kiraz-Uzunkol [14] Yes < 1 Yes
ExpSOS[25] No ≈ 1 No
MExpSOS, πExpSOS Yes ≈ 1 No

Table 1. Single server based outsourcing algorithms and their properties

Outline. The paper is organised as follows. The Hohenberger-Lysyanskaya secu-
rity model is recalled in Section 2. In Section 3 we observe weaknesses in recent
single-server based outsourcing schemes. In Section 4 we propose a re-designed
ExpSOS scheme and prove that it satisfies security notions: secrecy and verifi-
ability and Section 5 concludes the paper.

2 Security Definitions

The first formal treatment for the problem of outsourcing cryptographic com-
putations from a weak client to a powerful server was due to Hohenberger and
Lysyanskaya [12]. The security model is useful in checking the privacy, efficiency
and verifiability probability when outsourcing the task. In this section, we re-
produce the security definitions of the Hohenberger-Lysyanskaya framework.
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Adversarial behaviour. Assume that an algorithm Alg is run by two par-
ties: a computationally weak and trusted party C (i.e., a client) who invokes
a computationally powerful and untrusted party U through oracle queries. An
outsource-secure implementation of an algorithm Alg = CU is specified by (C,U).
where C carries out the tasks by invoking U .

Hohenberger and Lysyanskaya modelled adversary A = (E ,U ′) and its be-
haviour in two parts: (i) the adversarial environment E simulated to send/submit
inputs to Alg; (ii) a malicious oracle U ′ simulated to mimic U . E and U ′ can es-
tablish a direct communication channel only before agreeing on a joint initial
strategy after which the only way they can communicate is by passing the mes-
sages through a channel re-directed/monitored by C.

Input/output specifications. The following are the forms of information the
algorithm’s input/output may have:

Secret information possessed by C;
Protected information known to both C and E but unknown to U ′ . This pro-

tected information is categorized depending upon the honest or adversarial
generation of inputs;

Unprotected information known to C, E and U ′ .

Definition 1. (Algorithm with IO-outsource) The outsource algorithm Alg
obeys the input/output specification if it accepts five inputs and produces three
outputs. The honest entity generates the first three inputs and the last two inputs
are generated by the environment E . The first three inputs can be further classified
based on the information about them available to the adversary A = (E ,U ′).
The first input is the honest, secret input which is unknown to both E and U ′ .
The second input is the honest, protected input which may be known by E , but
is protected from U ′ . The third input is the honest, unprotected input which
may be known by both E and U ′ . The fourth input is the adversarial, protected
input which may be known by E , but is protected from U ′ . The fifth input is
the adversarial, protected input which may be known by E , but is protected from
U ′ . Similarly, the first, second and third outputs are called secret, protected and
unprotected outputs respectively.

2.1 Outsource-security definitions

The following are the security requirements an outsource algorithm should sat-
isfy:

– Secrecy. It should be ensured that the malicious environment E should not
learn secret inputs and outputs of the algorithm Alg, although there exist a
joint initial strategy between E and the oracle U ′. In the formal definition,
it is assumed that a simulator S1 exists without having access to the secret
inputs and simulates the view of E .
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– verifiability. The malicious oracle U ′ does not gain any knowledge about the
inputs to Alg even when it mimics the behaviour of U to C. In the formal
definition it is assumed that a simulator S2 exists without having access to
the secret/protected inputs and simulates the view of U ′.

The following Definitions 2, 3, 4 and 5 are reproduced from [12].

Definition 2. (Outsource-security) [12] A pair of algorithms (C,U) is said
to be an outsource-secure implementation of an algorithm Alg with IO-outsource
if:

Correctness CU is a correct implementation of Alg.
Security For all probabilistic polynomial-time adversaries A = (E ,U ′), there

exist probabilistic expected polynomial-time simulators (S1,S2) such that the
following pairs of random variables are computationally indistinguishable.

Pair One (E learns nothing): EVIEWreal ∼ EVIEWideal.

The real process: This process proceeds in rounds. Assume that the honestly
generated inputs are chosen by a process I. The view that the adversarial
environment obtains by participating in the following process:

EVIEWi
real = {

(
istatei, xihs, x

i
hp, x

i
hu

)
← I

(
1k, istatei−1

)
;(

estatei, ji, xiap, x
i
au, stop

i
)
← E

(
1k,EVIEWi−1

real, x
i
hp, x

i
hu

)
;(

tstatei, ustatei, yis, y
i
p, y

i
u

)
← CU ′(ustatei−1)

(
tstatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au

)
:(

estatei, yip, y
i
u

)
}

EVIEWreal = EVIEWi
real if stop

i = TRUE.

In round i, The adversarial environment does not have access to the honest
inputs (xihs, x

i
hp, x

i
hu) that are picked using an honest, stateful process I. The

environment based on its view from last round, chooses the value of its estatei
variable that is used to recall what it did next time it is invoked. Then, among
the previously generated honest inputs, the environment chooses a input vec-

tor (xj
i

hs, x
ji

hp, x
ji

hu) to give it to CU ′ . Observe that the environment can specify

the index ji of the inputs but not the values. The environment also chooses
the adversarial protected and unprotected input xiap and xiau respectively. It

also chooses the boolean variable stopi that determines whether round i is
the last round in this process.

Then, CU ′ is run on inputs (tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) where tstatei−1

is C’s previously saved state . The algorithm produces a new state tstatei for
C along with the secret yis, protected yip and unprotected yiu outputs. The or-

acle U ′ is given ustatei−1 as input and the current state in saved in ustatei.
The view of the real process in round i consists of estatei, and the values yip
and yiu. The overall view of the environment in the real process is just its
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view in the last round.

The ideal process:

EVIEWi
ideal = {

(
istatei, xihs, x

i
hp, x

i
hu

)
← I

(
1k, istatei−1

)
;(

estatei, ji, xiap, x
i
au, stop

i
)
← E

(
1k,EVIEWi−1

ideal, x
i
hp, x

i
hu

)
;(

astatei, yis, y
i
p, y

i
u

)
← Alg

(
astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au

)
;(

sstatei, ustatei, Y ip , Y
i
u, replace

i
)
← SU

′(ustatei−1)
1

(
sstatei−1, xj

i

hp, x
ji

hu, x
i
ap, x

i
au, y

i
p, y

i
u

)
;(

zip, z
i
u

)
= replacei

(
Y ip , Y

i
u

)
+
(
1− replacei

) (
yip, y

i
u

)
:(

estatei, zip, z
i
u

)
}

EVIEWideal = EVIEWi
ideal if stop

i = TRUE.

This process also proceeds in rounds. The secret input xihs is hidden from the
stateful simulator S1. But, the non-secret inputs produced by the algorithm
that is run on all inputs of round i is given to S1. Now, S1 decides whether
to output the values (yip, y

i
u) generated by the algorithm Alg or replace them

with some other values (Y ip , Y
i
u). This replacement is captured using the indi-

cator variable replacei ∈ {0, 1}. The simulator is allowed to query the oracle
U ′ which saves its state as in the real experiment.

Pair two (U ′ learns nothing): UVIEWreal ∼ UVIEWideal.

The view that the untrusted entity U ′ obtains by participating in the real
process is described in pair one. UVIEWreal = ustateiifstopi = TRUE. The
ideal process:

UVIEWi
ideal = {

(
istatei, xihs, x

i
hp, x

i
hu

)
← I

(
1k, istatei−1

)
;(

estatei, ji, xiap, x
i
au, stop

i
)
← E

(
1k, estatei−1, xihp, x

i
hu, y

i−1
p , yi−1u

)
;(

astatei, yis, y
i
p, y

i
u

)
← Alg

(
astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au

)
;(

sstatei, ustatei
)
← SU

′(ustatei−1)
2

(
sstatei−1, xj

i

hu, x
i
au

)
;(

ustatei
)
}

UVIEWideal = UVIEWi
ideal if stop

i = TRUE.

In the ideal process, the stateful simulator S2 is given with only the unpro-
tected inputs (xihu, x

i
au), queries U ′. As before, U ′ may maintain state.

Definition 3. (α−efficient, secure outsourcing)[12] A pair of algorithms
(C,U) is said to be an α−efficient implementation of an algorithm Alg if (C,U)
is an outsource secure implementation of algorithm Alg and for all inputs x, the
running time of C is ≤ an α− multiplicative factor of the running time of Alg(x)

Definition 4. (β−verifiable , secure outsourcing) [12] A pair of algorithms
(C,U) is a β−verifiable implementation of an algorithm Alg if (C,U) is an out-
source secure implementation of algorithm Alg and for all inputs x, if U ′ deviates
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from its advertised functionality during the execution of CU ′(x), C will detect the
error with probability ≥ β
Definition 5. ((α, β)−outsource-security) [12]A pair of algorithms (C,U) is
said to be an (α, β)−outsource-secure implementation of an algorithm Alg if they
are both α−efficient and β−checkable.

3 On Recent Single-server Outsourcing Schemes

This section presents security issues with three single-server algorithms proposed
in 2017; They are 1) Li et al. scheme (CExp), 2) Cai et al. scheme (SgExp)
and 3) Zhou et al. scheme (ExpSOS).

3.1 Li et al. Scheme (CExp) and Its Weakness

First, we present Li et al. scheme briefly and then show its security weakness of
not achieving full verifiability as claimed by the authors.

CExp Algorithm We use the same notations followed by Li et al. [16] to
describe their outsourcing algorithm. Let N = pq for two large primes p and
q. Let CExp be an algorithm which outputs ud mod N upon accepting u ∈ Z∗N
and d ∈ Z∗φ(N) as inputs. The assumption is that the inputs u and d are secret

or (honest/adversarial) protected. Hence the inputs need to be computationally
blinded (masked) by the delegator C before passing them to the untrusted server
U .
Masking the Inputs. To mask the inputs, the algorithm CExp uses prepro-

cessing technique RandN for efficient generation of pairs of the form (x, xe mod
N) for a fixed e. (For more details about the description, analysis and effi-
ciency of these pre-processing techniques, please refer to [4, Section 2] and
[20].)

The client C runs RandN to generate four pairs (g1, g
e
1), (g2, g

e
2), (g3, g

e
3),

(g4, g
e
4). Let v1 = ge1 mod N,w1 = ge2 mod N, v2 = ge3 mod N, and w2 =

ge4 mod N . To logically split base u and exponent d into random looking
pieces, the first logical divisions are done as follows:

ud = v1c
r1
1 w1w

`1(wk1g2)t1 , (1)

where c1 = g1/g2, r1 = d − e, w = u/g1, t1 = r1 − e and d = `1 + k1t1. For
second logical divisions, C computes an integer a such that ad ≡ 1 mod φ(N).
Then C computes ra mod N for a randomly chosen r ∈ {2, 10} and sets
u′ = u · ra.

(u′)d = v2c
r1
2 w2(w′)`1((w′)k1g4)t1 , (2)

where c2 = g3/g4, r1 = d − e, w′ = u′/g3, t1 = r1 − e and d = `1 + k1t1. It
is recommended to choose the random blinding factor t1 such that t1 ≥ 2λ,
where λ being the security parameter should be at least 64 bits long.
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Queries to U . C queries U in random order as follows:

1. (r1, c1)→ cr11 ;
2. (r1, c2)→ cr12 ;
3. (`1, w)→ w`1 ;
4. (k1, w)→ wk1 ;
5. (`1, w

′)→ (w′)`1 ;
6. (k1, w

′)→ (w′)k1 .

Verifying the correctness of U ’s outputs. The client C checks whether

r
(
v1c

r1
1 w1w

`1(wk1g2)t1
) ?

= v2c
r1
2 w2(w′)`1((w′)k1g4)t1 (3)

Recovering ud mod N . If the above check passes, C computes the result as

ud = v1c
r1
1 w1w

`1(wk1g2)t1 . (4)

Otherwise C outputs error message.

Attack on CExp Algorithm Li et al. claim that their algorithm CExp is
1-verifiable; that is, it allows the client C to verify the outputs returned by U
with probability 1. We show that with a minimal effort, U can cheat C with the
malformed outputs and hence CExp offers unfortunately 0-verifiability.

The attacker’s strategy is to identify and segregate just 2 out of 6 queries
for which the exponent is same. For instance, let U choose (r1, c1) and (r1, c2).
Note that this separation is easier since each base value ci is distinct and does
not appear twice. Now the malicious U manipulates the outputs corresponding
to these two queries only by multiplying them with a random δ ∈ {1, N} and
proceeds as follows.

1. (r1, c1)→ δcr11 ;
2. (r1, c2)→ δcr12 ;
3. (`1, w)→ w`1 ;
4. (k1, w)→ wk1 ;
5. (`1, w

′)→ (w′)`1 ;
6. (k1, w

′)→ (w′)k1 .

After receiving the outputs, C checks if

r
(
v1δc

r1
1 w1w

`1(wk1g2)t1
) ?

= v2δc
r1
2 w2(w′)`1((w′)k1g4)t1 .

Or equivalently, rδud
?
= δ(u′)d.

Since the check has been passed, C finally computes the unintended output:

ud = v1δc
r1
1 w1w

`1(wk1g2)t1 .
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3.2 Cai et al. Scheme (SgExp) and Its Weakness

For the single untrusted server model, Cai et al. [5] proposed two algorithms
to securely outsource single and simultaneous modular exponentiations with
verifiability probability being close to 1. We show in this section that both their
variants fail to detect wrong values output by the malicious server.

SgExp Algorithm We use the same notations followed by Cai et al. to describe
their outsourcing algorithm SgExp.

Masking the Inputs. To mask the inputs, the algorithm SgExp used the pre-
processing techniques BPV+ or SMBL to generate four pairs (α, gα), (β, gβ),
(ε, gε), (θ, gθ) denoted by A,B,C and D respectively. Let w = u/A mod p
and v = u/C mod p. Then C represents u in the following two ways:
– ua = (Aw)a = gaαwa = gβgγwa mod p, where γ = (aα− β) mod q;
– ua = (Cv)a = gaεva = gθgτva mod p, where τ = (aε− θ) mod q.

To implicitly mask a in wa and va, C randomly chooses i, j such that 2i 6=
2j < a and computes
– a1 = a− 2i

– a2 = a− 2j .
Queries to U . C runs BPV+ or SMBL to generate 8 pairs (t1, g

t1), (t2, g
t2) and

(s1, g
s1), (s2, g

s2) · · · (s6, gs6). Then C query U in random order after choosing
m1, · · ·mi−1,mi+1, · · ·mj−1,mj+1, · · ·mn as follows:
– (gt1 , γ/t1, p)→ gγ ;
– (wgs1 , a1, p)→ R11 = wa1gs1a1 ;
– (gs3 , s1a1−s2s3

, p)→ R12 = gs1a1−s2 ;

– (gt2 , τ/t2, p)→ gτ ;
– (vgs4 , a2, p)→ R21 = va2gs4a2 ;
– (gs6 , s4a2−s5s6

, p)→ R22 = gs4a2−s5 ;

– (m1, 2)→ m[1] = m2
1;

– (m2, 2
2)→ m[2] = m4

2;
– · · ·
– (w, 2i)→ m[i] = w2i ;
– · · ·
– (v−1, 2j)→ m[j] = v−2

j

;
– · · ·
– (mn, 2

n)→ m[n] = m2n

n ;
Verifying the correctness of U ’s outputs. The client C computes

wa1 = R11(R12g
s2)−1

va2 = R21(R22g
s5)−1

and checks whether

Bgγwa1m[i]m[j] mod p
?≡ Dgτva2 mod p (5)

Recovering ua. If the above check passes, C computes

ua ≡ Bgγwa1m[i] mod p.

Otherwise C outputs the error symbol ⊥.
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Attack on SgExp Algorithm Cai et al. claim that their algorithm SgExp
preserves secrecy and the client C can verify the outputs returned by U with
probability 1− 1/n2. We show that even a minimal effort from U could lead to
cheating the client C with the malformed outputs and hence SgExp is unfortu-
nately 0-verifiable.

The attacker’s strategy is to identify and segregate n out of n+ 6 queries for
which the first argument is a power of 2. Then the attacker forms two bins; to
fill n number of queries of the form 2i in one bin and the remaining 6 queries
in the other bin. Note that this kind of separation of n + 6 queries is possible
as exponent is a power of 2 in n queries. After segregation of n queries, the
adversary manipulates the outputs of remaining 6 queries only by multiplying
them with a random δ ∈ G and proceeds as follows.

– (gt1 , γ/t1, p)→ δgγ ;
– (wgs1 , a1, p)→ R11 = δwa1gs1a1 ;
– (gs3 , s1a1−s2s3

, p)→ R12 = δgs1a1−s2 ;

– (gt2 , τ/t2, p)→ δgτ ;
– (vgs4 , a2, p)→ R21 = δva2gs4a2 ;
– (gs6 , s4a2−s5s6

, p)→ R22 = δgs4a2−s5 ;

– (m1, 2)→ m[1] = m2
1;

– (m2, 2
2)→ m[2] = m4

2;
– · · ·
– (w, 2i)→ m[i] = w2i ;
– · · ·
– (v−1, 2j)→ m[j] = v−2

j

;
– · · ·
– (mn, 2

n)→ m[n] = m2n

n ;

After receiving the outputs, C computes

wa1 = δR11(δR12g
s2)−1 = R11(R12g

s2)−1

va2 = δR21(δR22g
s5)−1 = R21(R22g

s5)−1

and checks
Bδgγwa1m[i]m[j] mod p

?
= Dδgτva2 mod p. (6)

Since the check has been passed, C finally computes the undesired output:

ua = Bδgγδwa1m[i] mod p 6= Bgγwa1m[i] mod p.

3.3 Zhou et al. Scheme (ExpSOS) and Its Weakness

Zhou et al.[25] proposed several algorithms for outsourcing variable-exponent
variable-base modular exponentiation using only a single untrusted server. In
this section, we consider only the most generic algorithm, namely ExpSOS
under malicious model [25, Section IV]. However our observations here are also
applicable to other versions in the paper [25].
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ExpSOS Algorithm Let N be either a prime number or an RSA modulus and
u, a ∈ ZN . The aim of the client C is to compute ua mod N keeping the variable
values u, a and ua secret. The client runs the oracle U whose task is to return
ij mod k on input (i, j, k). In order to maintain the secrecy of u and a they are
computationally masked before being given as input to U .

Masking the Inputs. To mask the inputs, the client C generates a large prime
p and calculates L = pN keeping N and p secret from the server U . By
choosing the random integers k1, k2, t1, t2, r such that t1, t2 ≤ b, (where b is
a security parameter) C calculates the following:
1. A1 = a+ k1φ(N)
2. A2 = t1a+ t2 + k2φ(N)
3. U = u+ rN mod L.

Queries to U . C queries U in random order as follows:
1. (U,A1, L)→ R1

2. (U,A2, L)→ R2.
Verifying the correctness of U ’s outputs. The client C checks whether

Rt11 · ut2
?≡ R2 mod N. (7)

Recovering ua. If the above check passes, C computes

ua ≡ R1 mod N. (8)

Otherwise C outputs error message.

Attack on ExpSOS Algorithm The first generic algorithm for outsourcing
variable-exponent variable-base modular exponentiation using only a single un-
trusted server was due to Wang et al. [23]. In [7] Chevalier et al. presented a
lattice-based attack on Wang et al.’s scheme recovering the secret exponent when
it appears again in another invocation. In this section, we follow the approach of
Chevalier et al. and describe a similar attack on ExpSOS when the same secret
exponent is used in two or more runs. In fact we will show that an exponent in
ExpSOS can be recovered in polynomial time when two exponentiations having
the same exponent are outsourced to the server U . The assumed scenario is evi-
dent from the first application proposed in [25, Section VI.A] to securely offload
Inner Product Encryption for Biometric Authentication [13].

The considered attack scenario is the following: The client wants to compute
ua mod N first and (u′)a mod N later. Let (U,A1, A2) and (U ′, A′1, A

′
2) be the

queries to U corresponding to two exponentiations such that

A1 = a+ k1φ(N);A2 = t1a+ t2 + k2φ(N)

and
A′1 = a+ k3φ(N);A′2 = t3a+ t4 + k4φ(N).

Now, subtracting the first exponents in two exponentiations gives A1 − A′1 =
(k1−k3)φ(N). Thus, given a multiple of φ(N), U can recover the secret exponent
a in polynomial time using the well-known Miller’s algorithm. (Miller in [19]
showed that factoring of n is possible given any multiple of φ(n)).
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Remark 1. The above attack breaks the secrecy of other versions of ExpSOS in
[25]. In fact it is applicable even for ExpSOS under honest-but-curious server
model in [25, Section III.C]. The malicious server could act benignly in com-
puting the required values but can learn silently any reused secret exponent. In
the next section we attempt to thwart this attack under malicious server model
since there is no efficiency gain to consider having the semi-honest server.

4 Our Algorithms for Single and Simultaneous
Exponentiations

We first present the algorithm for single exponentiation by revising the ExpSOS
algorithm and then extend the resulting algorithm for simultaneous exponenti-
ations.

4.1 Improved ExpSOS Scheme for Single Exponentiation

In this section we present an improved ExpSOS algorithm which resists attack
described in Section 3.3. We use the same notations from Section 3.3 used to
describe the ExpSOS algorithm.

The MExpSOS Algorithm Let N be either a prime number or an RSA mod-
ulus and u, a ∈ ZN . The aim of the client C is to compute ua mod N keeping
the variable values u, a and ua secret.

Masking the Inputs. To mask the inputs, the client C generates a large prime
p and calculates L = pN to keep N and p secret from the server U . Select
a random r such that N ′ = rN is fixed for all invocations. By choosing
the random integers k1, k2, t1, t2 such that t1, t2 ≤ b (where b is a security
parameter), C calculates the following:
1. a1 = a− t1
2. A1 = a1 + k1φ(N)
3. A2 = t2a+ k2φ(N)
4. U = u+N ′ mod L

Queries to U . C queries U in random order as follows:

1. (U,A1, L)→ R1

2. (U,A2, L)→ R2

Verifying the correctness of U ’s outputs. The client C checks whether

(R1u
t1)t2 mod N

?
= R2 mod N (9)

Recovering ua. If the above check passes, C computes

ua = R1u
t1 mod N (10)

Otherwise C outputs error message.
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Remark 2. The performance gain of the above algorithm is that instead of a
full modular exponentiation(on the size of an RSA private key, for example), the
client device needs to do 2 smaller exponentiations with size comparable to the
security parameter. Moreover the communication cost and the overhead for the
third-party server are not prohibitive compared to the previously-known algo-
rithms. Hence the proposed solution shall directly produce speed-ups in practice.

Lemma 1. (Correctness). In the malicious model, the algorithms (C,U) are cor-
rect implementation of MExpSOS.

Proof. Whenever U returns R1 and R2, C computes ut1 on its own and then
raising the value R1u

t1 mod N to the power t2. Then the resultant (R1u
t1)t2

mod N is compared with R2. If the equality holds, then C computes the desired
result ua = R1u

t1 mod N. ut

In the following theorem, we show that (C,U) is an outsource-secure implemen-
tation of MExpSOS using Hohenberger-Lysyanskaya security model for a single
malicious server. [12].

Theorem 1. (Privacy) In the one malicious program model, the algorithms
(C,U) are an outsource-secure implementation of MExpSOS.

Proof. Assume that A = (E ,U ′) be a probabilistic polynomial time (PPT) ad-
versary which interacts with the PPT algorithm C in the one malicious program
model.

Pair One: (E learns nothing) EVIEWreal ∼ EVIEWideal

If the input (u, a,N) is honest, protected or adversarial protected, the simu-
lator S1 behaves the same way as in the real experiment. If the input is honest
and secret, then S1 ignores the received input in the ith round. The goal of
S1 in this ith round is to query U ′ with the inputs (U∗, A∗1, A

∗
2, L
∗) such that

the inputs U∗, A∗1, A
∗
2 and L∗ are chosen at random by S1. After receiving the

outputs, S1 saves both the states of S1 and U ′ .
In real process, all the inputs that occur in the queries are re-randomized

to give computational indistinguishability. Whereas S1 always set the queires
to U ′ with the random input values. Hence the input distributions to U ′ are
computationally indistinguishable both in the real and ideal process.
Pair Two: ( U ′ learns nothing): UVIEWreal ∼ UVIEWideal :
Let S2 be a PPT simulator that behaves in the same manner regardless of
whether the input is honest, secret or honest, protected or adversarial protected.
That is, S2 ignores the actual input in the ith round and set the queries to U ′

with the random value. Then S2 saves not only its state but also U ′ ’s state.
Whenever the inputs to the experiment are honest, protected and adversarial

protected, E can easily distinguish ith round of two experiments. But it is of no
help as E cannot communicate to U ′ and the inputs are computationally blinded
by C before being given as input to U ′ in the ideal experiment. In the ideal
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experiment, the simulator S2 always query the values selected uniform at random
from the same distribution. Hence UVIEWi

real ∼ UVIEWi
ideal for each round i.

By the hybrid argument, it is easy to see that UVIEWreal ∼ UVIEWideal. ut

Theorem 2. (verifiability) In the one malicious program model, the above al-
gorithms (C,U) are an (3 + 1.5(log t1 + log t2), 1− 1/2b)-outsource-secure imple-
mentation of MExpSOS.

Proof. The computation of modular exponentiation ua mod N without outsourc-
ing requires roughly 1.5 log a modular multiplications (MM) using square and
multiply method. As discussed in [25], the computational overhead to calculate
φ(N), L and N ′ becomes negligible when the client C runs MExpSOS multi-
ple times. The following paragraph shows that with outsourcing, the modular
exponentiation computation is reduced to 3 + 1.5(log t1 + log t2) modular multi-
plications: the computation of A1 and A2 during the masking step requires two
modular multiplication altogether. Then the verification step requires one mod-
ular exponentiation (ut1), one modular multiplication (R1u

t1) and one modular
exponentiation ((R1u

t1)t2). Thus our algorithm MExpSOS requires 3 modular
multiplications and two b−bit modular exponentiations. Therefore our algorithm
(C,U) is an ( 1

2 logb a)−efficient implementation of MExpSOS.
On the other hand the two outputs sent by U are verified as in Equation 11.

The server U can trick the client C if it correctly guesses t2 as in the following:

– Assume that the malicious U sets A1 as A1 + θ and A2 as A2 + θ
– Then the Equation 11 becomes

(UA1+θut1)t2 ≡ UA2+θ mod N
ua1t2+θt2ut1t2 ≡ ut2a+θ mod N
uat2uθt2 ≡ ut2a+θ mod N

If the value t2 is correctly guessed then the adversary can compute uθt2 and
set A1 as A1 + θ and A2 as A2 + θt2 to pass the verification. If t2 is guessed
with probability 1/b and θt2 is inserted accordingly in one out of two queries
sent in random order, the malicious server can pass the verification step with
false outputs with probability 1

2b . Hence our algorithm is a (1− 1
2b )-verifiable

implementation of MExpSOS.

The proof of the theorem completes by combining the above arguments. ut

4.2 New Algorithm for Simultaneous Exponentiation

In this section, we present a generic algorithm πExpSOS for simultaneous expo-
nentiation whose complexity grows linearly in size of the number of exponenti-
ations. Simultaneous modular exponentiations appear predominantly in crypto-
graphic primitives such as provable data possession [2] and proofs of retrievability
[3].
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The πExpSOS Algorithm Let us follow the notations used to describe the
MExpSOS algorithm. Let N be either a prime number or an RSA modulus and
ui, ai ∈ ZN for i = 1, . . . , n. In order to maintain the secrecy of ui and ai, i =
1, . . . , n they are computationally masked before being given as input to U .

Masking the Inputs. To mask the inputs, the client C generates a large prime
p and calculates L = pN to keep N and p secret from the server U . Select
a random r such that N ′ = rN is fixed for all invocations. By choosing
the random integers k1i, k2i(i = 1, . . . , n) and t1, t2 such that t1, t2 ≤ b, C
calculates the following for i = 1, . . . , n:
1. a1i = ai − t1
2. A1i = a1i + k1iφ(N)
3. A2i = t2ai + k2iφ(N)
4. Ui = ui +N ′ mod L

Queries to U . C issues 2n queries to U in random order as follows:

1. (Ui, A1i, L)→ R1i

2. (Ui, A2i, L)→ R2i

Verifying the correctness of U ’s outputs. The client C checks whether[
n∏
i=1

R1i(

n∏
i=1

ui)
t1

]t2
mod N

?
=

n∏
i=1

R2i mod N (11)

Recovering ua. If the above check passes, C computes

n∏
i=1

uaii ≡
n∏
i=1

R1i(

n∏
i=1

ui)
t1 mod N (12)

Otherwise C outputs error message.

Lemma 2. (Correctness). In the malicious model, the algorithms (C,U) are cor-
rect implementation of πExpSOS.

Proof. Whenever U returns R1i and R2i for i = 1 . . . n, C computes (
∏n
i=1 ui)

t1

on its own and then raising the value
∏n
i=1R1i(

∏n
i=1 ui)

t1 mod N to the power
t2. Then the resultant (

∏n
i=1R1i(

∏n
i=1 ui)

t1)t2 mod N is compared with
∏n
i=1R2i.

If the equality holds, then C computes the desired result∏n
i=1 u

ai
i ≡

∏n
i=1R1i(

∏n
i=1 ui)

t1 mod N. ut

In the following theorem, we show that (C,U) is an outsource-secure implemen-
tation of πExpSOS using Hohenberger-Lysyanskaya security model for a single
malicious server. [12].

Theorem 3. (Privacy) In the one malicious program model, the algorithms
(C,U) are an outsource-secure implementation of πExpSOS.

We omit the proof to this theorem as this can be easily written using Theo-
rem 1
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Theorem 4. (verifiability) In the one malicious program model, the above al-
gorithms (C,U) are an (5n − 2 + 1.5(log t1 + log t2), 1 − 1/2b)-outsource-secure
implementation of πExpSOS.

Proof. The computation of modular exponentiation
∏n
i=1 u

ai
i mod N without

outsourcing requires roughly 1.5n log amodular multiplications (MM) using square
and multiply method. Outsourcing the modular exponentiation computation re-
duces the cost to 2n+ 3(n− 1) + 1.5(log t1 + log t2) + 1 modular multiplications
as detailed below: the computation of A1i and A2i during the masking step re-
quires 2n modular multipications altogether. Then the verification step requires
n− 1 modular multiplications to compute

∏n
i=1 ui, one modular exponentiation

to compute
∏n
i=1 u

t1
i , n − 1 modular multiplications to compute

∏n
i=1R1i, one

modular multiplication to compute
∏n
i=1R1i

∏n
i=1 u

t1
i , one modular exponentia-

tion to compute (
∏n
i=1R1i

∏n
i=1 u

t1
i )t2 and n−1 modular multiplications to com-

pute
∏n
i=1R2i. Thus our algorithm πExpSOS requires 2n+ 1 + 3(n−1) = 5n−2

modular multiplications and 2 b-bit modular exponentiations. Therefore our al-
gorithm (C,U) is an ( 1

2 logb a)−efficient implementation of πExpSOS.
On the other hand the 2n outputs sent by U are verified as in Equation 11.

The server U can trick the client C if it correctly guess t2 as in explained in
Theorem 2 with probability 1/b. Thus an adversary can pass the verification
step with false outputs with probability 1

2b . Hence our algorithm is a (1 − 1
2b )-

verifiable implementation of πExpSOS. The proof of the theorem completes by
combining the above arguments. ut

5 Conclusion

The need for reducing cost of cryptographic computations is growing especially
in the case of devices having resource scarcity. We reviewed several algorithms for
offloading single and simultaneous modular exponentiations to a single untrusted
helper. In CExp and SgExp algorithms, we demonstrated that the falsified val-
ues of a malicious server could go undetected by the client in the verification
and hence the client outputs the unintended value. For ExpSOS, we presented
a practical attack revealing the secret exponent challenging the claimed secu-
rity guarantees. We then proposed modifications to the ExpSOS algorithm and
proved that the resulting algorithm MExpSOS meets the fundamental security
requirements of the Hohenberger-Lysyanskaya security model. We finally solved
an intriguing problem underlined in [6] by proposing πExpSOS, the most ef-
ficient to-date algorithm using single untrusted (cloud) server for securely out-
sourcing (multi-)modular exponentiation. Our proposal being near error-free and
preprocessing-free is of both theoretical and practical interest.
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