
On inversion modulo pseudo-Mersenne primes

Michael Scott

Cryptographic Researcher
MIRACL Labs

mscott@indigo.ie

Abstract. It is well established that the method of choice for imple-
menting a side-channel secure modular inversion, is to use Fermat’s little
theorem. So 1/x = xp−2 mod p. This can be calculated using any square-
and-multiply method safe in the knowledge that no branching or indexing
with potentially secret data (such as x) will be required. However in the
case where the modulus p is a pseudo-Mersenne, or Mersenne, prime of
the form p = 2n − c, where c is small, this process can be optimized to
greatly reduce the number of multiplications required. Unfortunately an
optimal solution must it appears be tailored specifically depending on n
and c. What appears to be missing from the literature is a near-optimal
heuristic method that works well in all cases.
Keywords: Elliptic Curves

1 Introduction

In elliptic curve cryptography (ECC), a pseudo-Mersenne modulus is often pro-
posed, as it introduces no known weaknesses, and allows a much faster modular
reduction algorithm, independent of the underlying computer architecture. Less
appreciated is the fact that modular inversions can also benefit from such a
choice. For maximum efficiency projective coordinates are most often used for
ECC, which greatly diminishes the significance of the cost of modular inversion.
Nevertheless in a paper that popularised such moduli, Bernstein [1] pointed out
that modular inversion still absorbed 7% of the time for a curve computation,
and in a recent paper Nath and Sarkar [7] point out that as a consequence of
the vigorous optimization of the other aspects of implementation, this may rise
as high as 9%.

Unfortunately working out the optimal strategy in the general case where p =
2n−c is not that simple, as it depends on both n and c. Since the binary expansion
of such a p mostly consists of 1 bits, a simple square and multiply algorithm will
be particularly inefficient, requiring nearly as many multiplications as squarings.
In fact it is impossible to avoid n− 1 squarings. So any attempt at optimisation
will focus on reducing the number of multiplications.

To get an idea of what is possible, let us deconstruct Bernsteins approach
for his prime 2255 − 19, as described by Bos [2]. The value after the # indicates
the exponent of x at that stage in the calculation. In this case the inverse will
be calculated as 1/x = x255 − 21



x2 ← x2 # 2
x4 ← x2

2 # 4
x8 ← x2

4 # 8
x9 ← x.x8 # 9
x11 ← x2.x9 # 11
x22 ← x2

11 # 22
t0 ← x9.x22 # 25 − 1

t1 ← t2
5

0 .t0 # 210 − 1

t2 ← t2
10

1 .t1 # 220 − 1

t3 ← t2
20

2 .t2 # 240 − 1

t4 ← t2
10

3 .t2 # 250 − 1

t5 ← t2
50

4 .t4 # 2100 − 1

t6 ← t2
100

5 .t5 # 2200 − 1

t7 ← t2
50

6 .t4 # 2250 − 1

x ← t2
5

6 .x11 # 2255 − 21

On closer examination the process consists of 3 phases. It makes extensive
use of the identity

x2n+m−1 = (x2n−1)2
m

.x2m−1 (1)

By the end of the second phase we have calculated x2250−1. Note that
c + 2 = 21 and 25 − 21 = 11. The third phase then calculates x2255−21 =
(x2250−1)2

5

.x25−21. It is easily confirmed that the whole process requires 254
squarings and just 11 multiplications.

Clearly the final phase requires only one extra multiplication. In the first
phase the important work is the calculation of k = x11 and x31 = x25−1. The
former to provide the “key” value needed by the final phase, and the latter is
used to kick-start the second phase with some value of the form x2m−1. Therefore
there are two addition chain calculations involved, the first to determine x31, with
the constraint that the chain pass through the value of x11. The second applies
to the second phase where the point is to calculate in as few steps as possible
x2250−1 using identity (1) above. The first chain requires a multiplication for each
addition step in the chain (but not for a doubling). The second addition chain
requires a multiplication for each step, so the shortest possible chain is desired.

To generalise this approach, first choose a value w such that 2w > c + 2.
Calculate the key k = x2w−c−2 and x2w−1 in phase 1. Raise this value up to
x2n−w−1 in phase 2, and finally calculate the inverse of x as x2n−c−2 in phase 3.
Clearly what makes this process rather awkward is the involvement of addition
chains. As is well known calculating shortest addition chains is an NP-complete
problem, and therefore not suitable to be calculated on-the-fly. So it appears

2



that an optimal solution must be tailored by hand to each pseudo-Mersenne
prime of interest.

The alternative is to come up with a heuristic approach which can quickly
produce a good (if sub-optimal) solution given only n and c. That is the contri-
bution of this paper.

2 A heuristic approach

Choose w to be the smallest number such that 2w > c + 2. Next calculate and
store powers of x using this fixed addition chain of exponents

[1 2 3 6 12 15 30 60 120 240 255]

This will require three multiplications and seven squarings. Next evaluate the
key value k = x2w−c−2 by multiplying together appropriate powers, which will
probably require a few more multiplications. It is easily confirmed that this is
possible for any values of 2w−c−2 < 745, which will cover most cases of interest.
Note that these stored values include all of x, x22−1, x24−1, x28−1. Extract these
values, and use them to initialise another addition chain in the exponents, where
the entry i represents the power x2i−1.

[1 2 4 8 16 ... 2m ... n− w]

which is just the powers of 2 while n−w < 2m. Finally complete the addition
chain using a simple binary method. This chain dictates how to use the identity
(1) to ramp up x28−1 to x2n−w−1. Finally calculate the result by squaring this
final value w times, and multiplying it by the key k.

For the modulus 2255 − 19, w = 5 and the key value will be k = x11 =
x2.x3.x6, which would require two extra multiplications. The addition chain in
the exponents will be

[1 2 4 8 16 32 64 128 192 224 240 248 250]

which will require 9 further multiplications (recall that the first 4 entries are
already available), plus one for phase 3. The total number of multiplications is
15, somewhat inferior to the optimal value of 11.

When it comes to implementing this method, note that the same array used
to store the powers of x in phase 1, can be re-used in phase 2. Specifically the
11 element array used in phase 1 can be re-used in phase 2 for values of n less
than 2048. Therefore the method as described will work for all primes of the
form 2n − c for n < 2048 and c < 1024. See algorithm 1.

3 Performance

To get an idea of just how suboptimal this general approach will be, we compare
it with some implementations that are already “out there” in the wild, in existing

3



Algorithm 1 Modular inversion with respect to a pseudo-Mersenne prime

Input: An element x ∈ Fp, n and c, where prime p = 2n − c, n < 2048, c < 1024
Input: An array a=[1,2,3,6,12,15,30,60,120,240,255]
Output: 1/x mod p

1: function Fpinv(x, n, c)
2: h[0] ← x ◃ Phase 1
3: h[1] ← x2

4: h[2] ← x.h[1]
5: h[3] ← h[2]2

6: h[4] ← h[3]2

7: h[5] ← h[4].h[2]
8: h[6] ← h[5]2

9: h[7] ← h[6]2

10: h[8] ← h[7]2

11: h[9] ← h[8]2

12: h[10] ← h[9].h[5]
13: b ← 0
14: w ← 1
15: while w < c + 2 do
16: w ← 2w
17: b ← b + 1

18: j ← w − c− 2
19: if j ̸= 0 then
20: i ← 10
21: while a[i] > j do
22: i ← i− 1

23: k ← h[i] ◃ Calculate Key
24: j ← j − a[i]

25: while j ≠ 0 do
26: i ← i− 1
27: if k ≥ a[i] then
28: k ← k.h[i]
29: j ← j − a[i]

◃ Phase 2
30: h[1] ← h[2] ◃ Re-use the array
31: h[2] ← h[5]
32: h[3] ← h[10]
33: j ← 3
34: m ← 8
35: n ← n− b
36: while 2m < n do ◃ Double up
37: t ← h[j]
38: j ← j + 1
39: for i← 0; i < m; i← i + 1 do
40: t ← t2

41: h[j] ← t.h[j − 1]
42: m ← 2m
43: l ← n−m
44: r ← h[j]
45: while l ̸= 0 do ◃ Complete addition chain
46: m ← m/2
47: j ← j − 1
48: if l ≥ m then
49: l ← l−m
50: t ← r
51: for i← 0; i < m; i← i + 1 do
52: t ← t2

53: r ← t.h[j]
◃ Phase 3

54: for i← 0; i < b; i← i + 1 do
55: r ← r2

56: if w − c− 2 ̸= 0 then
57: r ← r.k
58: return r

4



code and libraries. Specifically we looked at the code associated with references
[1], [3], [4], [7] and [8] in October 2018. In Table 1 we show the number of
multiplications as implemented, and as required by the method described here.
In cases where the number of squarings exceeds n − 1, these are recorded as
well. As expected our method is suboptimal, but not by much. In fact it may
be considered as better than expected. For example Bos et al. [3] found that
they could always calculate the modular inversion using at most 1.11 ⌈log2(p)⌉
squarings and multiplications. With our much larger sample we find that it can
be done using at most 1.09 ⌈log2(p)⌉. As can be seen we also find that on occasion
this method improves on a tailored solution.

Prime As Implemented This Method

2127 − 1 10 [7] 12
2221 − 3 12 [7] 12
2222 − 117 12 [7] 14
2251 − 9 14 [7] 15
2255 − 19 11 [1] 15
2256 − 189 21(260) [3] 14
2266 − 3 12 [7] 12
2336 − 3 13 [8] 13
2382 − 105 14 [7] 16
2383 − 187 15 [7] 17
2384 − 317 15 [3] 18
2414 − 17 14 [7] 14
2511 − 187 15 [7] 18
2512 − 569 16(512) [3], 18 [7] 19
2521 − 1 13 [4] 13
2607 − 1 14 [7] 15
2751 − 165 19 [7] 19
2832 − 143 16 [7] 17
2896 − 213 18 [7] 18
2960 − 167 19 [7] 17
21024 − 105 20 [7] 18
21088 − 89 16 [7] 17

Table 1: Number of Multiplications (Squarings)

4 Two birds, one stone

The same idea can be used to efficiently calculate modular square roots, as
often required in ECC implementation for point decompression. If the prime
p = 3 mod 4, then the square root y of a quadratic residue x can be calculated
from y = x(p−3)/4 as

√
x = xy mod p, and if p = 5 mod 8, the square root can be

calculated from y = x(p−5)/8, with a small amount of extra work – see algorithm
3.37 in chapter 3 of [6] for details. By modifying our algorithm in an obvious

5



way to calculate these y values instead, and then re-using the same function,
the inverse xp−2 mod p can be found in the former case as xy4, and in the latter
case as x3y8. For an example of the deployment of this idea, see [5].

5 Conclusion

When implementing an easy-to-maintain general purpose cryptographic library,
it helps to avoid duplication and special case implementation where possible,
while still obtaining respectable performance. In the case of side-channel resistant
modular inversion with respect to pseudo-Mersenne primes, the method of choice
is to use Fermat’s Little Theorem. Optimal performance seems to require a
tailored solution for each modulus of interest, a process prone to error. Here
we have presented a slightly suboptimal algorithm which provides acceptable
performance, but using a single function which works well for all cases likely to
be of interest to cryptographers.

References

1. D. Bernstein. Curve25519: New Diffie-Hellman speed records. In PKC 2006, vol-
ume 3958 of Lecture Notes in Computer Science, pages 207–228. Springer Berlin
Heidelberg, 2006.

2. J. Bos. Constant time modular inversion. Journal of Cryptographic Engineering,
4(4):275–281, 2014.

3. J. Bos, C. Costello, P. Longa, and M. Naehrig. Selecting elliptic curves for cryp-
tography: An efficiency and security analysis. Cryptology ePrint Archive, Report
2014/130, 2014. http://eprint.iacr.org/2014/130.

4. R. Granger and M. Scott. Faster ECC over F2521−1. In Public-Key Cryptography
– PKC 2015, volume 9020 of Lecture Notes in Computer Science, pages 539–553.
Springer Berlin Heidelberg, 2015.

5. M. Hamburg. https://github.com/otrv4/little-ed448-Goldilocks.
6. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-

book of applied cryptography. CRC Press, Boca Raton, Florida, 1996. URL:
http://cacr.math.uwaterloo.ca/hac.

7. K. Nath and P. Sarkar. Efficient inversion in (pseudo-)Mersenne prime order fields.
Cryptology ePrint Archive, Report 2018/985, 2018. http://eprint.iacr.org/

2018/985.
8. M. Scott. Ed3363 (highfive) – an alternative elliptic curve. Cryptology ePrint

Archive, Report 2015/991, 2015. http://eprint.iacr.org/2015/991.

6


