
Cryptanalysis of the Wave Signature Scheme

Paulo S. L. M. Barreto1 and Edoardo Persichetti2

1 School of Engineering and Technology, University of Washington Tacoma
pbarreto@uw.edu

2 Department of Mathematical Sciences, Florida Atlantic University
epersichetti@fau.edu

Abstract. In this paper, we cryptanalyze the signature scheme Wave,
which has recently appeared as a preprint. First, we show that there
is a severe information leakage occurring from honestly-generated sig-
natures. Then, we illustrate how to exploit this leakage to retrieve an
alternative private key, which enables efficiently forging signatures for
arbitrary messages. Our attack manages to break the proposed 128-bit
secure Wave parameters in just over a minute, most of which is actu-
ally spent collecting genuine signatures. We also explain how our attack
applies to generalized versions of the scheme which could potentially be
achieved using generalized admissible (U,U + V) codes and larger field
characteristics. Finally, as a target for further cryptanalysis, we describe
a variant of Wave that we call Tsunami, which appears to thwart our
attacks while keeping the positive aspects of that scheme.

1 Introduction

Digital signatures schemes are, without a doubt, one of the most important
cryptographic protocols in use today, addressing the issue of authentication of
data. Digital signatures share many similarities with confidentiality operations
like encryption, key agreement, and key encapsulation; in some cases (e.g. RSA),
this means that it is possible to design a signature scheme very naturally.

However, this is not always true for all families of cryptosystems, with one of
the best examples being code-based cryptography. Despite code-based schemes
constituting one of the leading families of proposed quantum-resistant (aka post-
quantum) cryptosystems, designing efficient code-based signature schemes is in
fact a major challenge and, to date, still an open problem. The reason for this
is that the traditional hash-and-sign approach used for instance by RSA and
other signatures is severely hindered by the fact that the subset of decodable
syndromes of a linear code is typically only an exceedingly minute part of the
total vector space, and so picking a vector at random (via hashing) most likely
will not produce a decodable syndrome. This forces the signing algorithm to be
repeated a prohibitively large number of times, creating an obviously impractical
process. The authors of CFS [1], the first proposed signature scheme following
this approach, propose particular choices of parameters to alleviate this issue,
but the number of attempts required on average is still quite high (e.g. around 9!

for an estimated security level of 280) and the resulting signing times are several
orders of magnitude slower than schemes based on other primitives. Moreover,
“CFS-friendly” codes have a very high rate, and this can lead to potential addi-
tional issues such as distinguishers [4].

Alternatively, one could think of obtaining a signature scheme using the Fiat-
Shamir transform and an identification scheme: this approach works very well
for lattices, for instance [5]. However, the Hamming metric that comes with lin-
ear codes (instead of the Euclidean metric used for lattices) has proved to be
too weak to provide security [6], and therefore the only plausible method to
obtain code-based zero-knowledge is to use multiple commitments, as in Stern’s
scheme [7]. The problem with this type of schemes, though, is that multiple com-
mitments allow the attacker to cheat and be successful with non-trivial proba-
bility (2/3 in Stern’s original proposal), and therefore the identification scheme
needs to be repeated multiple times to guarantee acceptance. This results in a
very large signature size. Despite attempts to reduce this cheating probability [8],
it seems implausible to obtain a truly efficient scheme in this way.

The recent Wave scheme [3] would be a nice development in this scenario.
The scheme features an arguably elegant design and comes with a formal proof of
security in the sense of existential unforgeability under chosen-message attacks
(EUF-CMA). If that scheme withstood cryptanalysis, it would constitute a real
and most welcome breakthrough.

Our Contribution: In this work, we show that, unfortunately, the Wave scheme
leaks a considerable amount of private information in genuinely generated signa-
tures. The leaked information is enough to recover an equivalent private key from
the public key and a number of collected valid signatures, enabling an attacker to
forge signatures for arbitrary messages without knowing the actual private key.
The number of legitimate signatures the attacker needs to gather is fairly small
(around 600 for the proposed 128-bit secure Wave parameters). The equivalent
key recovery runs very fast in practice (a few seconds). The most time-consuming
stage by far is the generation of the collected legitimate signatures (about one
minute).

This is unusual for signature schemes equipped with EUF-CMA proofs, but
not unprecedented. The Courtois-Finiasz-Sendrier (CFS) scheme [1] was simi-
larly proven existentially unforgeable by Dallot [2] under the assumption that
the underlying code adopted for the scheme is indistinguishable from a uniformly
random linear error-correcting code. As it turned out, the only codes known to
be suitable for CFS are very high-rate Goppa codes, which have since been shown
to be distinguishable from random [4]. In other words, there is nothing wrong
with the proof per se; rather, the hardness assumptions themselves fail to hold.

The same unfortunate circumstance is found here, with a crucial difference:
an attacker can actually forge Wave signatures for arbitrary messages, rather
than merely a single signature for some valid but contrived, meaningless message,
while CFS signatures are, to the best of our knowledge, still empirically secure (it
is just that the security proof does not hold for the chosen codes). This behavior
is not only predicted theoretically by our attack, it is supported by empirical

evidence in the form of a Magma implementation that shows the attack to be
entirely practical.

Given the nature of the property we exploit to mount our attack, we com-
plete our contribution by proposing a variant of Wave that we call the Tsunami
scheme, which appears to prevent information leakage and hence to thwart the
attacks. We do not claim Tsunami to be impervious to attacks, even though
it seems to withstand all our present attempts: rather, it is meant to offer a
refined target for further cryptanalysis efforts, and hence to stimulate contin-
ued investigation on the possibilities (or lack thereof) of attaining code-based
signatures.

The remainder of this paper is organized as follows. We start by recapitulat-
ing theoretical notions in Section 2. We summarize the Wave digital signature
scheme in Section 3. In Section 4 we show how the structure of Wave parity-
check matrices unavoidably leaks structural information about the private key
in each generated signature. In Section 5 we turn the leaked information into a
full-fledged attack that recovers an equivalent private key and enables forging
signatures. In Section 6 we present the results obtained via a simple Magma
script. Section 7 discussed generalizations of our attack to other potential fam-
ilies of underlying codes mentioned in the Wave specification. We propose the
Tsunami variant in Section 8. We conclude in Section 9.
For the sake of completeness, we have included our Magma script, in Appendix A,
to better illustrate our attack against the proposed 128-bit security parameters.
That script also illustrates the Tsunami variant, conditioned to a suitably named
Boolean switch.

*** Update: Since the first version of this report was ready, the authors of Wave
have contacted us to point out that, in our description of Wave and in the script
we include in the Appendix, we omit the rejection sampling they adopt to make
sure the distribution of coefficients in the signatures is weakly uniform (that is,
that signatures are statistically close to uniform).

In response, we point out that our attack does not depend on, and in fact is
not related at all, to that distribution. As we describe in Section 4, our distin-
guisher is not based on biases on the overall distribution of signature coefficient.
Rather, it can be viewed as a differential distinguisher: it keeps track of in-
dividual differences between certain components, not their distributions. This
differential bias is not removed when some candidate signatures are rejected
during signing: it cannot be removed, since doing so would necessarily mean
violating the Hamming weight constraint on the signatures.

Indeed, the script in the Appendix can be readily adapted to simply use
signatures generated elsewhere. Only the final forgery would have to be updated
accordingly, namely, a few candidate signatures would have to be computed from
the recovered equivalent and tested for whatever rejection sampling criterion
is adopted. The same expected amount of rejections are expected for forged
signatures as they are for genuine ones (between 25% and 33% according to the
authors of Wave).

Summarizing: out attack still holds against a fully detailed implementation
of Wave; it does not depend on the total counts of signature coefficient values
being uniform, and is not thwarted by making them so.

2 Preliminaries

Notation: We denote with 0 the all-zero matrix and with I the identity matrix.
Let p be a prime number and let n an k be positive integers with k < n. The

Hamming weight of a vector x ∈ Fnp is defined as the number wt(x) of its nonzero
components. An (n, r)-linear code C of length n, dimension k and co-dimension
r = n − k is a k-dimensional vector subspace of Fnp . The code is called ternary
in the case p = 3 (and p-ary in general).

Every linear code is spanned by the rows of some matrix G ∈ Fk×np , called a
generator matrix of C. Since bases of vector spaces are not unique, every code
admits multiple generator matrices, each corresponding to a particular choice
of basis. Equivalently, a linear code can be described as the kernel of a matrix
H ∈ Fr×np , called parity-check matrix, i.e. C = {c | cHT = 0}. The codeword

c ∈ C corresponding to a vector m ∈ Fkq is given by c = mG. The syndrome

s ∈ Frp of a vector e ∈ Fnp is the vector s := eHT .
A (U,U +V) code is a linear code that admits a parity-check matrix of form

H :=

[
HU 0
−HV HV

]
∈ Fr×np ,

for some HU ∈ FrU×(n/2)p , HV ∈ FrV ×(n/2)p , and rU + rV = r.

3 The Wave Signature Scheme

The original Wave signature scheme follows the hash-and-sign approach. This
means that signatures are obtained by decoding syndromes, which are (random-
ized) hashes of the message to be signed, into error patterns of a certain Ham-
ming weight. Traditionally in code-based cryptography, this Hamming weight is
required to be very low (well below the Gilbert-Varshamov bound), so that the
honest signer can make use of his trapdoor, i.e. the decoding algorithm associ-
ated to the code in use, while decoding is hard for an attacker. However, this is
not the only instance in which decoding is hard: as the authors of Wave point
out, the problem is easy if the weight grows beyond the bound, but it becomes
hard again when it becomes very high.

The setting that is actually proposed in Wave is the latter (see [3, “Tweaking
the Prange Decoder for Reaching Large Weights”]), where the error pattern has
very high Hamming weight. The reason is that the trapdoor enables solving dense
decoding instances which are seemingly much harder than sparse instances when
the code characteristic p is odd. The trapdoor itself consists of the particular
class of codes chosen, a generalized version of (U,U+V) codes called Generalized
Admissible (U,U + V) codes. These codes can be decoded using a small variant

of the (U,U + V) decoder, for which the range of relative weights that are easy
to decode is wider than the generic “easy” range (hence the trapdoor).

The only concrete instantiation specified by the authors of Wave is in char-
acteristic p = 3 and for plain (U,U + V) codes. We will simplify our exposition
accordingly, although we will also discuss the general case later.

3.1 Key Pair

The Wave private key is a triple (S,Hsk, P), where S ∈ Fr×r3 is a nonsingular
matrix, Hsk ∈ Fr×n3 is the parity-check matrix of a linear code of even length
n, co-dimension r (and dimension k = n − r), and P ∈ Fn×n3 is a permutation
matrix (i.e. each row and each column have only a single component of unit
value, and all other components are zero), where Hsk is a generator matrix of a
(U,U + V) code, i.e. it has the shape:

Hsk :=

[
HU 0
−HV HV

]
∈ Fr×n3 ,

with HU ∈ FrU×(n/2)3 , HV ∈ FrV ×(n/2)3 , and rU + rV = r. The public key
associated to the triple is Hpk := SHskP .

3.2 Signing and Verifying

The structure of the private parity-check matrix allows to decode a syndrome
s := (sU , sV) with sU ∈ FrU3 , sV ∈ FrV3 , into an error pattern e := (eU , eU + eV)

with eU , eV ∈ Fn/23 . If we initially disregard the Hamming weight of the solution,
we just need to obtain arbitrary solutions of the two linear systems eVH

T
V = sV

and eUH
T
U = sU , as one can check that e = (eU , eU +eV) is an arbitrary solution

of eHT
sk = s.

Solving those two linear systems is easy: choose any n/2 − rU (resp. n/2 −
rV) components of the desired error pattern and set them to arbitrary values,
then solve the resulting square linear system for the remaining rU (resp. rV)
components. Prange’s method does essentially this, but is tailored to look for
a solution of specifically low or high Hamming weight: instead of setting the
chosen components to random values, set them all to zero (to obtain a low-
weight solution) or else set them all to random nonzero values (to obtain a
high-weight solution).

As the authors point out, one can actually do much better to obtain high-
weight solutions of the target linear system eHT

sk = s. The technique consists
of choosing eV entirely at random, and then computing eU to satisfy certain
criteria. Specifically, since we want eU+eV to have as few zero entries as possible,
and given that the code has characteristic 3, it is enough to make as many
entries on eU equal to the corresponding entries on eV if the latter are nonzero
(if eV [j] = ±1, setting eU [j] ← eV [j] not only ensures eU [j] 6= 0, but also
eU [j] + eV [j] = −eU [j] 6= 0), or else a random nonzero value if those entries on
eV are zero (in which case eU [j] = ±1 at random and eU [j]+eV [j] = eU [j] 6= 0).

Consequently, all but rU entries on eU and as many on eU + eV can be forced
to be nonzero. The remaining rU entries on eU are computed as solutions to the
linear system eUH

T
U = sU and hence their values are not coercible to nonzero

values, nor are the values of the corresponding entries on eU + eV , for the same
reason. However, since those 2rU values are expected to be roughly uniformly
distributed, only about 1/3 of them will turn out to be zero, and the expected
weight of (eU , eU + eV) is thus about n− 2eU/3.

3.3 Parameters

Only one set of parameters is suggested in the original description of Wave,
namely, ternary codes of length n = 5172, dimension k = 3908 and target
Hamming weight w = 4980, with k = kU + kV , kU = 2299, kV = 1609 (and
hence r = rU + rV = 1264, rU = 287, rV = 977). Here we see how the dense
setting outperforms the more intuitive, sparse one: in this configuration, sparse
Wave could only expect to decode a syndrome to an error pattern of weight
around 747, while the dense setting decoding to w = bn− 2rU/3c = 4980 leaves
only 192 zero columns.

4 Structural Leakage

We now show that, as it turns out, it is possible to accumulate statistics from
observed genuine signatures and recover information on the secret column per-
mutation P .

Indeed, consider the distribution of entry values in the Wave setting with
very dense error patterns before the column permutation. We know that n/2−rU
entries of eU have their values chosen rather than computed as solutions of a
linear system. About 2/3 out of those entries eU [j], namely, those corresponding
to eV [j] 6= 0, are set to be equal to eV [j], in which case eU [j] + eV [j] = −eU [j].
The remaining 1/3 entries, corresponding to eV [j] = 0, are set to eU [j] = ±1
uniformly at random, in which case eU [j] + eV [j] = eU [j]. The values of the
remaining (computed) rU entries of eU are close to uniform, as are the corre-
sponding entries of eU + eV . If neither is zero, which happens about 4/9 of the
time, they are either equal or opposite with equal probability, namely, 2/9 of the
time each.

Overall, (2/3)(n/2−rU)+(2/9)rU = n/3− (4/9)rU entries of eU are nonzero
and opposite to its corresponding entry on eU +eV , (1/3)(n/2−rU)+(2/9)rU =
n/6− (1/9)rU entries of eU are nonzero and equal to that entry on eU + eV , and
(5/9)rU entries of eU are zero or correspond to a zero entry on eU + eV .

Now let e := (eU , eU + eV) before the column permutation. Then, discarding
the entries where either eU or eU + eV are zero, we see that

Pr{e[j] = −e[j + n/2]} ≈ n/3− (4/9)rU
n/2− (5/9)rU

and

Pr{e[j] = e[j + n/2]} ≈ n/6− (1/9)rU
n/2− (5/9)rU

.

Therefore, after the column permutation is applied, one still expects

Pr{e[j] = −e[h]} ≈ n/3− (4/9)rU
n/2− (5/9)rU

≈ 2/3

and

Pr{e[j] = e[h]} ≈ n/6− (1/9)rU
n/2− (5/9)rU

≈ 1/3

whenever two columns j and h correspond to the same original pair and their
values are both nonzero. If columns j and h are nonzero but do not correspond to
one same original pair, then Pr{e[j] = e[h]} ≈ 1/2 and Pr{e[j] = −e[h]} ≈ 1/2,
since their values are independent and essentially uniform.

Thus, observing a certain amount of genuine signatures, it would be possible
in principle to accumulate enough statistics to infer which pairs of columns on
the public parity-check matrix are more likely to correspond to matching pairs of
columns on the secret parity-check matrix. To that end, among those signatures
where any target columns j and h are both nonzero, count how many times their
values are equal and how many times they are opposite: if the ratio is close to
2 (or 1/2), these columns are likely a matching pair in the unpermuted code; if
the ratio is close to 1, they are likely unrelated.

One might think, at first glance, that adopting a signed column permutation
might thwart the accumulation of statistics. However, since the permutation is
fixed for all signatures (it is a feature of the key pair), the actual result would
merely be swapping the unbalanced probabilities without affecting the ratio of
those probabilities. In particular, if two originally matching columns j and h are
permuted and one of them is sign-swapped, then

Pr{e[j] = −e[h]} ≈ n/3− (4/9)rU
n/2− (5/9)rU

and

Pr{e[j] = e[h]} ≈ n/6− (1/9)rU
n/2− (5/9)rU

when they correspond to the same original pair and their values are both nonzero:
the counts are inverted, but their ratio is close to 2 (or 1/2) rather than to 1, as
would be the case for unmatching columns. For simplicity, then, we henceforth
only focus on the case where P is an unsigned permutation.

4.1 Gathering Statistics

There is a simple and effective way to gather the required statistics to recover
the essential code structure. Let C be the matrix whose rows consist of all t
collected signatures, each being a vector from F3. Lift the entries of C to Z

with zero-centered entries (i.e. view C as a matrix of integers in range [−1..1]
rather than [0..2]). Then one can distinguish between matching and unmatching
columns by looking for the largest entry on each row of C ′ := −CTC.

This works because, when two given columns i and j do not match in the
private code, the product of the corresponding coefficients on any given signature
is either zero (in which case it does not contribute to the value of C ′ij), or else is
uniformly distributed between −1 and 1. Either way, C ′ij will be simply a sum
of up to t values uniformly chosen from {−1, 1}, with an expected value of zero
and a standard deviation of

√
t.

However, when the columns do match, C ′ij will be the difference between the
number of opposite and equal coefficients that occur at those columns among all
collected signatures. Thus the expected value of C ′ij in this case is not zero but

around t/3 and again a standard deviation of around
√
t, with discrepancies due

to the noise introduced when those columns are computed rather than chosen
and neither is zero.

Except for those discrepancies, this distinguisher is likely to identify a pair
of matching columns as long as the observed values between matching and un-
matching columns do not coincide. Coincidence happens within α standard de-
viations when 0 + α

√
t = t/3 − α

√
t, that is, when α =

√
t/6. For a desired

(un)likeliness of failure (which corresponds to the probability of an event at or
outside α standard deviations), this yields the approximate number of signa-
tures needed to ensure success in guessing correctly one matching column pair,
namely, t = (6α)2. Here we use the central limit theorem to approximate the
distribution of C ′ij with a normal distribution (which is reasonable since the sig-
nature coefficients are, to a high enough precision, independent and identically
distributed).

For instance, α = 4 corresponds to a probability of failure of 1/15787 per
column pair, or roughly 1/6 for all pairs when n = 5172 (the only proposed Wave
code length). To attain this, about t = (6α)2 = 576 signatures must be collected.
In oractice more signatures are required to compensate for the aforementioned
noise (but not too many more).

4.2 Recovering the Essential Key Structure

Although the above process does not reveal the exact column permutation P ,
it allows to group the columns of the parity-check matrix in such a way that
matching pairs are exactly at a distance of n/2 apart. This grouping corresponds
to applying a partial column permutation Q that keeps the overall structure
(though not the actual coefficients) of the lower part of the private parity-check
matrix unchanged, namely:

HpkQ = S(HskPQ)

where

HskPQ =

[
A′ B′

−W ′ W ′
]

for some A′, B′ ∈ FrU×(n/2)3 and W ′ ∈ FrV ×(n/2)3 .
Moreover, doing this allows to compute a different basis for the same code

where the structure of the lower part of the parity-check matrix is publicly
visible. Namely, it becomes possible to find a matrix R such that:

RHpkQ =

[
A B
−W W

]
.

The obvious technique to achieve this is to compute the echelon form of a
matrix Z consisting of the sum of the left and right sides of HpkQ, namely:

Z := HpkQ ·
[
I
I

]
= S ·

[
A′ B′

−W ′ W ′
]
·
[
I
I

]
= S ·

[
A′ +B′

0

]
,

since the rank of Z is no more than rU . Thus, the unscrambling matrix R we
look for is one such that:

R · Z =

[
Z ′

0

]
for some Z ′. Such a matrix is effectively computed via plain Gaussian elimina-
tion, and one can check that Hbk := RHpkQ has the desired form.

It remains to show how to make use of Hbk to forge Wave signatures. We
will discuss this in the next section.

5 Forging Signatures

As we have seen, the permutation Q and the unscrambling matrix R, recovered
through leaks from genuine signatures, reveal part of the private parity-check
structure, yielding a parity-check matrix Hbk with the structure:

Hbk := RHpkQ =

[
A B
−W W

]
.

A crucial remark is that the permutation Q likewise restores the struc-
ture e′ = (e′U , e

′
U + e′V) of valid signatures, even though the actual coefficients

probably differ from those of the actual signature. This means that e′[j] =
±e′[j + n/2] 6= 0 for all but bn − 2rU/3c entries of e′ when e′V [j] 6= 0, that
the ratio between equal and opposite values in such matching pairs is about 2,
and that the coefficients of e′V are essentially random (only the coefficients of e′U
have to be chosen according to the same guidelines as before).

Now consider the task of decoding a syndrome s′ := (sU , sV) into a w-dense
error pattern e′ under the parity check matrix Hbk, that is, solving e′HT

bk = s′.
We have:

e′HT
bk =

[
e′U e′U + e′V

]
·
[
AT −WT

BT WT

]
=

[
e′UA

T + (e′U + e′V)BT −e′UWT + (e′U + e′V)WT
]

=
[
e′U (A+B)T + e′VB

T e′VW
T
]

=
[
s′U s′V

]
.

This can be carried out by finding a random solution to e′VW
T = s′V , then

solving e′U (A + B)T = s′U − e′VBT . To keep the Hamming weight high, simply
follow the same strategy as for the original Wave private structure: set n/2−rU
coefficients e′U [j] = e′V [j] when e′V [j] 6= 0 or to a random nonzero value when
e′V [j] = 0, then solve for the remaining rU coefficients.

To forge signatures for any message (properly hashed to a syndrome s),
notice that any valid signature satisfies eHT

pk = s⇔ (eQ)(QTHT
pkR

T) = sRT ⇔
e′HT

bk = s′, with e′ := eQ and s′ := sRT . Thus we can forge a Wave signature e
under key Hpk for a given syndrome s by recovering Hbk as shown in the previous
section, then solving e′HT

bk = s′ for e′ of the correct weight with s′ := sRT , and
finally returning e = e′QT .

6 Measurements and Results

We have implemented our attack via a simple Magma script, which we have
included in the Appendix. Below, we report the results obtained when running
the script on Wave parameters. The machine used is an iMac, with processor
Intel Core i5 at 3.2 GHz and 16Gb of RAM. In the script we actually allow for
the Hamming weight of genuine signatures to be within 5% of the target weight.
This is by no means a restriction of the attack: it is merely a way to speedup
the generation of legitimate Wave signatures, a process which could otherwise
be unnecessarily slow: while it is not hard to get signatures whose weight is
ever so slightly off the target w = 4980, a legitimate user would have to spend
quite some time to obtain a signature of weight exactly w, perhaps tenfold or
even longer. Yet, once these genuine signatures are available, the attack proceeds
without any difference in running time, namely, just a few seconds.

Table 1. Timings (in seconds) to perform a full attack on 128-bit Wave parameters.

Collect signatures Recover structure Forge signature Total time
59.83 6.15 0.12 66.10

The first column indicates the time spent to collect the required number of
signatures (set to 600). This is the most expensive part of the attack. The second
column reports the time necessary to recover the matrix structure corresponding
to the alternative private key. Finally, the time to produce a forgery (which is
negligible) is reported in the last column. Overall, the attack takes just over a
minute.

7 Generalizing the Attack

As we have mentioned, the Wave scheme is formally defined on top of general-
ized admissible (U,U + V) codes over some finite field Fp. The authors choose

to restrict the scheme description to plain (U,U + V) codes of characteristic 3,
justifying their choice for the sake of simplicity, but pointing out that their con-
struction and analysis can be generalized. Although they refrain from providing
explicit details on the use of these codes, we briefly show that they would still
be vulnerable to simple variants of our attack, while also pointing out the lim-
itations of our technique. We first consider the adoption of ternary generalized
admissible (U,U + V) codes, then we discuss larger characteristics.

7.1 Attacking Generalized Admissible (U,U + V) Codes

The detailed structure of the private parity-check matrix for a generalized ad-
missible (U,U + V) code is the following:[

HUD4M −HUD2M
HVD3M −HVD1M

]
,

where D1 through D4 and M are diagonal matrices, with D1, D3 and M invert-
ible, and M := (D1D4 − D3D2)−1. In this description, plain (U,U + V) codes
correspond to the particular choice of matrices D1 = D3 = D4 = I and D2 = 0.

Since M and D1 through D4 are diagonal, they commute. Moreover, given
the condition that D1 and D3 are both invertible, we can define E := D3 ·D−11

and rewrite the above matrix in the following form as:[
(HUD4M) · (D3D

−1
1)−1 · (D3D

−1
1) (−HUD2M)

−(−HVD1M) · (D3D
−1
1) (−HVD1M)

]
or, equivalently, [

AE B
−WE W

]
=

[
A B
−W W

] [
E 0
0 I

]
where A := (HUD4M) · (D3D

−1
1)−1, B := −HUD2M and W := −HVD1M .

This form is very closely related to the recovered matrix in the attack against
plain (U,U + V) codes, the difference consisting only of the diagonal matrix:

F :=

[
E 0
0 I

]
on the right. The effect of multiplying an error pattern (without the private
column permutation) by F is just to consistently flip the sign of certain paired
columns: while in the plain case e[j] = −e[j + n/2] 6= 0 about 2/3 − ε/2 of the
time and e[j] = e[j + n/2] 6= 0 about 1/3 − ε/2 of the time (the ε being due
to 2rU/n computed entries whose values cannot be freely chosen), on columns
where the diagonal element on F is −1 rather than 1 these probabilities are
swapped.

This, however, does not prevent an attacker from finding out which columns
are paired in the public permuted code, and also determining whether the corre-
sponding entry on E is 1 or −1: the lack of balance between equal and opposite

values for those entries is still roughly 2/3 to 1/3, while it is 1/2 to 1/2 for
unrelated entries. Moreover, the elements on the diagonal of E are inferred to
be 1 if opposite signs predominate in a certain matched pair, and to be −1 if
equal signs predominate instead.

In conclusion, an attacker can still recover an equivalent private key for gen-
eralized admissible (U,U + V) codes with only a small modification to the basic
attack strategy for plain (U,U + V) codes. The recovered equivalent trapdoor,
in a sense, is even more general than the structure of generalized admissible
(U,U + V) codes, since it does not require that complicated decomposition to
work.

7.2 Larger Characteristics

Assume now that the codes are defined over Fp for p ≥ 3. The distinguisher we
employ for ternary codes to pair up matching columns on legitimate signatures
works by matching pairs (h, j) of columns that are not selected to be the solutions
of linear systems. It is based on the observation that e[j] = e[h] only when
eV [j] = 0 (which happens with probability around 1/p), while if the columns do
not match equality happens by chance among all nonzero values (which happens
with probability around 1/(p − 1)). Thus, we count the number of times the
values of two columns match, and infer they match when the count is close to
1/p rather than 1/(p− 1).

For p = 3 the distinguisher works with a comfortable margin (1/3 of equal-
ities for matching columns against 1/2 for unmatching ones). For larger char-
acteristics all we need to make is a small modification to the way we count
equalities/inequalities.

The generalized distinguisher for any p ≥ 3 is designed to lead again to an
expected zero-sum when the columns do not match, but to an expected sum
value of roughly t/p for matched columns, where t is the number of collected
signatures. To attain this, we simply compute a weighted sum instead, assigning
weight −p−12 to count occurrences of e[j] = e[h] and weight p−1

2(p−2) to count

occurrences of e[j] 6= e[h].
Thus, when the columns are unmatched, the fraction of equal coefficients

between columns h and j is mapped from 1
p−1 to − 1

p−1 ·
p−1
2 = − 1

2 , and the

fraction of different coefficients on those columns is mapped from p−2
p−1 to p−2

p−1 ·
p−1

2(p−2) = 1
2 , yielding the expected zero-sum. In contrast, for matched columns

the fraction of equal coefficients is mapped from 1
p to − 1

p ·
p−1
2 = − p−1

2p(p−2) ·(p−2),

and the fraction of different coefficients is mapped from p−1
p to p−1

p ·
p−1

2(p−2) =
p−1

2p(p−2) · (p − 1), therefore with a bias of p−1
2p(p−2) ≈

1
2p above the zero-sum in

favor of matching column pairs.
Adapting the statistical analysis from Section 4.1 accordingly, we conclude

that the number of required signatures for the generalized distinguisher is t ≈
(2pα)2 = 4α2p2 where α is again the number of standard deviations that an
event with the same probability as an attack failure would be away from the

mean. Thus, the odds of attack success become negligible when p2 ∈ O(2λ) for
λ-bit security. More precisely, since the signature size is proportional to lg p, the
total number of collected bits from t signatures becomes 4α2p2 lg p, and setting
this value to 2λ yields a refined lower bound for p, namely, p ≈ 2λ/2−1/(α

√
λ).

For instance, for λ = 128 and α = 6 (corresponding to a probability of roughly
n/506797346 ≈ 2−17 that the attack fails for the proposed n = 5172), the
minimum characteristic to thwart the attack would be p ≈ 257.

Yet, it is far less clear how to choose secure parameters that prevent other
types of vulnerability for p as large as this: it might well turn out that other
vulnerabilities are introduced by this setting, which we therefore neither recom-
mend nor claim to be secure at all. Investigating the possibilities left, if any,
transcends the scope of this paper.

8 The TSUNAMI Variant

The Wave signature scheme is conceptually elegant, sports a detailed concrete
assessment of the coding-theoretical problems related to the hardness assump-
tion, and comes with a formal security proof which still formally holds, even
though the hardness assumption itself does not. One can therefore legitimately
ask if there is any way of fixing its security shortcomings. We now present in-
triguing evidence that this just might be the case. We focus on characteristic
p = 3 to keep as close as possible to the original Wave setting, but similar
observations hold for higher characteristics as well.

The distinguisher we exploit to mount our attack is based on the property
that, for matching columns h and j that happen not to have been chosen for the
information set needed for signing, equality of signature coefficients e[h] = e[j]
holds one-third of the time (specifically, when eV [j] = 0 and hence eU [j]+eV [j] =
eU [j]), while inequality e[h] 6= e[j] holds the remaining two-thirds (that is, when
eV [j] 6= 0 and hence eU [j] = eV [j], leading to eU [j] + eV [j] = −eu[j]). This
distinguisher works because the original Wave scheme computes eV so that its
entries are essentially uniform (i.e. eV is not subjected to rejection sampling,
though eU is as a requirement for the EUF-CMA proof).

We now propose the Tsunami variant, that coincides with Wave except in
the computation of eV . Specifically, we set the distribution of the eV coefficients
in such a way that equality and inequality of entries on the final signature are
equiprobable, that is, Pr{e[h] = e[j]} and Pr{e[h] 6= e[j]}.

In other words, let ζ be the fraction of zero entries on the columns of eV
outside the information set chosen for solving the linear system. The number
of zero coefficients in that part is thus ζkV , and the number of ±1 coefficients
there is (1−ζ)kV . Within the columns corresponding to the information set, the
expected number of zero entries is ≈ 1

3rV and the number of nonzero entries is
≈ 2

3rV , since those entries are essentially uniform. We want the total number of
zero entries on eV to match the number of nonzero entries, since this nullifies
the distinguisher. That is, we need ζkV + 1

3rV = (1− ζ)kV + 2
3rV , which means

ζ = 1
2

(
1 + 1

3
rV
kV

)
.

Algorithmically, this means choosing the kV free coefficients of eV (that is,
those outside the information set used to solve the linear system) to zero with
probability ζ, and uniformly to ±1 with probability (1− ζ).

For the proposed Wave parameters, this means setting ≈ 60% of the free
entries of eV to zero and the remaining ≈ 40% uniformly to ±1. Numerically,
≈ 967 entries will be zero and the remaining ≈ 642 will be uniformly set to ±1.

We stress once again that we do not claim this variant to be secure: it with-
stands the core of our attack, but there may exist other distinguishers that enable
pairing up the columns of Hsk (or that break the scheme in an entirely different
fashion). Still, since Tsunami appears to share all positive properties of Wave
and was designed to fix its only drawback known so far, it is proposed explicitly
as a target for further cryptanalysis, and as motivation for follow-up research on
the possibility (or otherwise) of achieving code-based signatures.

9 Conclusion

We have described distinguishers for (plain or generalized admissible) (U,U+V)
codes in small-to-moderate characteristic, exploiting leaks in genuinely generated
signatures that enable recovering an equivalent signing key. The recovered key
can in turn be used to sign arbitrary messages, not merely to produce an exis-
tential forgery. Thus the attack constitutes a total break of Wave, and shows
that the hardness assumption required for that scheme to be secure does not
hold.

The attack is practical as corroborated by empirical assessment (see the
Appendix for a simple but complete implementation). Proposed parameters for
the 128-bit classical security level can be broken in about a minute, with the
actual key recovery taking only a few seconds after a modest number of genuine
signatures are collected.

We have also proposed a potential fix in the form of the Tsunami variant.
While we do not claim it to resist all kinds of structural attacks, it was designed
specifically to withstand ours while keeping all positive aspects of Wave, and is
thus offered as a target for further cryptanalysis. We hope this helps fostering
continued research into the possibility (or otherwise) of achieving code-based
digital signatures.

Acknowledgments

We are indebted and grateful to the authors of Wave for their comments on
preliminary versions of this document.

References

1. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) Advances in Cryptology — ASIACRYPT 2001.
pp. 157–174. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

2. Dallot, L.: Towards a concrete security proof of Courtois, Finiasz and Sendrier sig-
nature scheme. In: Lucks, S., Sadeghi, A.R., Wolf, C. (eds.) Research in Cryptology.
pp. 65–77. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

3. Debris-Alazard, T., Sendrier, N., Tillich, J.P.: Wave: A new code-based signature
scheme. arXiv preprint arXiv:1810.07554 (2018)

4. Faugère, J.C., Gauthier-Umaña, V., Otmani, A., Perret, L., Tilllich, J.P.: A distin-
guisher for high-rate McEliece cryptosystems. IEEE Transactions on Information
Theory 59(10), 6830–6844 (Oct 2013). https://doi.org/10.1109/TIT.2013.2272036

5. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) Advances in Cryptology – ASIACRYPT 2009.
pp. 598–616. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

6. Persichetti, E.: Improving the efficiency of code-based cryptography. Ph.D. thesis,
ResearchSpace@ Auckland (2012)

7. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) Advances in Cryptology — CRYPTO’ 93. pp. 13–21. Springer Berlin
Heidelberg, Berlin, Heidelberg (1994)

8. Véron, P.: Improved identification schemes based on error-correcting codes. Appl.
Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)

A Magma script to illustrate the attack

K := GF(3);

/**

* Compute the Hamming weight of a vector.

*/

function Hweight(e)

w := 0;

for k in [1..Ncols(e)] do

if e[k] ne 0 then

w +:= 1;

end if;

end for;

return w;

end function;

/**

* Find any solution e of e*H^T = s, observing that

* e*H^T = s <=> ek*Hk^T + er*Hr^T = s <=> er*Hr^T = s - ek*Hk^T

* <=> er = (s - ek*Hk^T)*Hr^-T:

*/

function LinSolve(s, HT, hint, zetak)

n := Nrows(HT); r := Ncols(HT); k := n - r; assert Ncols(s) eq r;

A := {u : u in K} diff {0};

// guess k components:

repeat

// choose the columns of the k components to guess:

J := {1..n};

e := Vector(K, n, [0 : j in [1..n]]); ss := s;

for c in [1..k] do

j := Random(J); J diff:= {j};

// guess one component and update the syndrome accordingly:

if #hint eq 0 then

if zetak ne 0 then // Tsunami

e[j] := (Random(1, k) le zetak) select K!0 else K!Random(0, 1) + 1;

else // Wave

e[j] := Random(K); // entirely random

end if;

elif hint[j] eq 0 then

e[j] := Random(A); // random nonzero

else

e[j] := hint[j];

end if;

ss -:= e[j]*HT[j];

end for;

// compute the remaining coefficients:

L := [];

for j in [1..n] do

if j in J then

L cat:= [j];

end if;

end for;

HH := VerticalJoin([HT[L[i]] : i in [1..r]]);

until Determinant(HH) ne 0;

ee := ss*HH^-1;

c := 0;

for j in [1..n] do

if j in J then

c +:= 1; e[j] := ee[c];

end if;

end for;

assert c eq r;

//assert e*HT eq s;

return e;

end function;

/**

* Compute the matrix R such that R*M is in echelon form, and also the rank of M.

*/

function Echelon(M)

r := Nrows(M); m := Ncols(M);

A := HorizontalJoin(M, IdentityMatrix(K, r)); // [M | I]

n := Ncols(A);

// echelonize the i-th row:

p := 0; // pivot column

for i in [1..r] do

repeat

p +:= 1;

// force unit pivot on the p-th column:

for k in [i..r] do

if A[k, p] ne 0 then

scale := A[k, p]; // A[k, p]^-1; // no inversion if char 3

// swap k-th and i-th rows and

// normalize i-th row from the p-th column onward:

swap := Submatrix(A, k, p, 1, n - p + 1);

InsertBlock(~A, Submatrix(A, i, p, 1, n - p + 1), k, p);

InsertBlock(~A, scale*swap, i, p);

break; // done pivoting

end if;

end for;

until A[i, p] eq 1 or p eq m;

// clear the p-th column below the i-th line:

for k in [i+1..r] do

if A[k, p] ne 0 then

scale := -A[k, p];

InsertBlock(~A, Submatrix(A, k, p, 1, n - p + 1)

+ scale*Submatrix(A, i, p, 1, n - p + 1), k, p);

end if;

end for;

end for;

// compute rank(M) from its echelon form:

rank := 0;

for i in [1..r] do

if &and[A[i, j] eq 0 : j in [1..m]] then

break;

end if;

rank +:= 1;

end for;

//assert Rank(M) eq rank;

return Submatrix(A, 1, m+1, r, r), rank;

end function;

/**

* Create a random (U, U+V) {\Wave} key pair.

*/

function KeyGen(rU, rV, n)

n2 := n div 2; assert rU lt n2; assert rV lt n2;

r := rU + rV;

// create a matrix Hsk of form [U O]:

// [-V V]

U := Matrix(K, rU, n2, [Random(K) : i in [1..rU], j in [1..n2]]);

UT := Transpose(U);

V := Matrix(K, rV, n2, [Random(K) : i in [1..rV], j in [1..n2]]);

VT := Transpose(V);

O := ZeroMatrix(K, rU, n2);

Hsk := VerticalJoin(HorizontalJoin(U, O), HorizontalJoin(-V, V));

// create an invertible scrambling matrix S:

repeat

S := Matrix(K, r, r, [Random(K) : i, j in [1..r]]);

until Determinant(S) ne 0;

SinvT := Transpose(S^-1);

// create a permutation matrix P:

P := ZeroMatrix(K, n, n);

J := {1..n};

for i in [1..n] do

j := Random(J); J diff:= {j};

P[i, j] := 1;

end for;

// compute the public key:

Hpk := S*Hsk*P;

return UT, VT, SinvT, Hsk, P, Hpk;

end function;

/**

* Sign a given syndrome s given a {\Wave} private key (S^-T, U^T, V^T, P)

* to an error pattern of weight w +- wThreshold.

*

* NB: The weight threshold is used only to speed up the generation of valid signatures.

* It is irrelevant for the attack, and could be set to zero (for signing and verification).

*/

function Sign(SinvT, UT, VT, P, s, w, wThreshold, Tsunami)

r := Ncols(s); assert Nrows(SinvT) eq r; assert Ncols(SinvT) eq r;

n := Nrows(P); k := n - r; assert Ncols(P) eq n; assert n mod 2 eq 0; assert r lt n;

n2 := n div 2;

rU := Ncols(UT); kU := n2 - rU; assert Nrows(UT) eq n2; assert rU lt n2;

rV := Ncols(VT); kV := n2 - rV; assert Nrows(VT) eq n2; assert rV lt n2;

assert r eq rU + rV;

// compute the privately decodable syndrome:

ss := Eltseq(s*SinvT);

sU := Vector(K, rU, ss[1..rU]);

sV := Vector(K, rV, ss[rU+1..r]);

// find a solution of eV*V^T = sV:

zeta := (1/2)*(1 + (1/3)*rV/kV); zetakV := Floor(zeta*kV);

eV := LinSolve(sV, VT, [], (Tsunami) select zetakV else 0);

// find a dense solution of eU*U^T = sU s.t. |wt(eU, eU + eV) - w| <= wThreshold:

satt := 0;

repeat

satt +:= 1;

eU := LinSolve(sU, UT, Eltseq(eV), 0); // only eV is different in Tsunami

e := Vector(K, n, Eltseq(eU) cat Eltseq(eU + eV));

wt := Hweight(e);

assert wt ge n - 2*rU and wt le n;

until Abs(wt - w) le wThreshold or satt gt 100;

assert satt lt 100; // random sigs have weight very close to, but often not exactly, w.

// permute the error pattern:

return e*P;

end function;

/**

* Verify a purported signature e for syndrome s

* under public key Hpk within a given weight threshold of w.

*

* NB: The weight threshold is used only to speed up the generation of valid signatures.

* It is irrelevant for the attack, and could be set to zero (for signing and verification).

*/

function Verify(Hpk, e, s, w, wThreshold)

return Abs(Hweight(e) - w) le wThreshold and e*Transpose(Hpk) eq s;

end function;

/**

* Basic {\Wave} key generation, signing & verification tests.

*/

procedure TestKeySigVer(rU, rV, n, w, wThreshold, keys, sigs, Tsunami)

if keys gt 0 and sigs gt 0 then

"**** Testing signing/verification:", keys, "key(s), ", sigs, "sig(s) per key...";

r := rU + rV; assert n gt rU + rV;

fail := 0;

for key in [1..keys] do

UT, VT, SinvT, Hsk, P, Hpk := KeyGen(rU, rV, n);

for sig in [1..sigs] do

s := Vector(K, r, [Random(K) : j in [1..r]]);

e := Sign(SinvT, UT, VT, P, s, w, wThreshold, Tsunami);

fail +:= (Verify(Hpk, e, s, w, wThreshold)) select 0 else 1;

end for;

end for;

if fail eq 0 then

"**** Testing complete. No failures detected.";

else

"**** Testing complete. Failures:", fail;

end if;

end if;

end procedure;

/**

* Collect a number of legitimate signatures created under a given {\Wave} private key.

*/

function CollectSigs(SinvT, UT, VT, P, w, wThreshold, numSig, Tsunami)

ZZ := Integers();

r := Nrows(SinvT); assert Ncols(SinvT) eq r; assert Nrows(UT) eq Nrows(VT); assert Ncols(UT) + Ncols(VT) eq r;

n := Nrows(P); assert Ncols(P) eq n;

// collect signatures:

sigTab := ZeroMatrix(ZZ, numSig, n);

for sig in [1..numSig] do

s := Vector(K, r, [Random(K) : j in [1..r]]);

e := Sign(SinvT, UT, VT, P, s, w, wThreshold, Tsunami);

sigTab[sig] := Vector(ZZ, n, [(e[j] eq 2) select ZZ!(-1) else ZZ!e[j] : j in [1..n]]);

end for;

return sigTab;

end function;

/**

* Recover the matching of column pairs from both sides of the private (U, U+V)

* parity-check matrix, given the corresponding public key

* and statistics inferred from the collected signatures.

*/

function RecoverQ(Hpk, sigTab)

r := Nrows(Hpk); n := Ncols(Hpk); n2 := n div 2; assert n mod 2 eq 0;

// pair up matching columns:

count := -Transpose(sigTab)*sigTab;

n := Nrows(count);

pair := [0 : j in [1..n]];

for j in [1..n] do

// guess the pair for the target column:

maxval, paired := Max(Eltseq(count[j]));

pair[j] := paired;

end for;

assert &and[pair[pair[j]] eq j : j in [1..n]];

// compute a corresponding column permutation:

Q := ZeroMatrix(K, n, n);

done := {};

col := 0;

for j in [1..n] do

if j in done then

continue;

end if;

col +:= 1;

Q[j][col] := 1;

Q[pair[j]][col + n2] := 1;

done join:= {j, pair[j]};

end for;

//assert Determinant(Q) ne 0;

return Q;

end function;

/**

* Find a different but equally consistent permutation of pairs of matching columns.

*/

function RandomizeQ(Q)

n := Nrows(Q); n2 := n div 2; assert Ncols(Q) eq n; assert n mod 2 eq 0;

QQ := ZeroMatrix(K, n2, n2);

A := {1..n2};

for i in [1..n2] do

j := Random(A); A diff:= {j};

QQ[i, j] := 1;

end for;

//assert Determinant(QQ) ne 0;

Q *:= DiagonalJoin(QQ, QQ);

return Q;

end function;

/**

* Recover a basis of the public code that enables forging signatures,

* given the public parity-check matrix Hpk

* and the column permutation Q that pairs up matching columns.

*

* Return the basis change matrix R

* (and possibly a modified but equally valid permutation Q of matching columns).

*/

function RecoverR(Q, Hpk, rU)

r := Nrows(Hpk); n := Ncols(Hpk); n2 := n div 2;

assert Nrows(Q) eq n; assert Ncols(Q) eq n; assert n mod 2 eq 0;

rV := r - rU; assert rU lt r;

zatt := 0;

repeat zatt +:= 1;

// prepare linear system:

Hvk := Hpk*Q;

Z := Submatrix(Hvk, 1, 1, r, n2) + Submatrix(Hvk, 1, n2+1, r, n2);

R, rZ := Echelon(Z);

assert rZ eq rU;

if rZ lt rU then

// try a different permutation of matching column pairs:

Q := RandomizeQ(Q);

end if;

until rZ ge rU or zatt gt 100;

//"zatt =", zatt;

assert zatt eq 1;

assert rZ ge rU;

//assert IsZero(Submatrix(R*Z, rU + 1, 1, rV, n2));

//assert Determinant(R) ne 0;

return Q, R; // NB: Q has potentially been updated

end function;

/**

* Recover a full equivalent {\Wave} private key for a given public key

* given a suitable collection of legitimate signatures.

*/

function RecoverStructure(Hpk, rU, sigTab)

r := Nrows(Hpk); n := Ncols(Hpk); n2 := n div 2; assert n mod 2 eq 0;

rV := r - rU; assert rU lt r;

// exploit statistics to pair up columns:

Q := RecoverQ(Hpk, sigTab);

qatt := 0;

repeat

repeat

qatt +:= 1;

Q, R := RecoverR(Q, Hpk, rU);

Hbk := R*Hpk*Q;

//assert IsZero(Submatrix(Hbk, rU+1, 1, rV, n2) + Submatrix(Hbk, rU+1, n2+1, rV, n2));

BT := Transpose(Submatrix(Hbk, 1, n2+1, rU, n2)); // B^T

DT := Transpose(Submatrix(Hbk, 1, 1, rU, n2)) + BT; // (A + B)^T

rD := Rank(DT);

assert rD eq rU;

until rD eq rU or qatt gt 100;

assert qatt le 100;

WT := Transpose(Submatrix(Hbk, rU+1, n2+1, rV, n2)); // W^T

rW := Rank(WT);

until rW eq rV or qatt gt 100;

//"qatt =", qatt;

assert qatt le 100;

return Q, R, BT, DT, WT;

end function;

/**

* Forge a {\Wave} signature for an arbitrarily given syndrome,

* given an equivalent trapdoor corresponding to the legitimate public key.

*/

function ForgeSignature(R, BT, DT, WT, Q, Hpk, s, w, wThreshold, Tsunami)

r := Nrows(Hpk); n := Ncols(Hpk); n2 := n div 2; rU := Ncols(BT);

assert Nrows(Q) eq n; assert Ncols(Q) eq n; assert n mod 2 eq 0;

rV := r - rU; kV := n2 - rV; assert rU lt r;

sp := Eltseq(s*Transpose(R));

sU := Vector(K, rU, sp[1..rU]);

sV := Vector(K, rV, sp[rU+1..r]);

// find any solution of eV*W^T = sV:

zeta := (1/2)*(1 + (1/3)*rV/kV); zetakV := Floor(zeta*kV);

eV := LinSolve(sV, WT, [], (Tsunami) select zetakV else 0);

// find a dense solution of e_U D^T = s_U - e_V B^T.

att := 0;

repeat

att +:= 1;

eU := LinSolve(sU - eV*BT, DT, Eltseq(eV), 0); // only eV is different in Tsunami

e := Vector(K, n, Eltseq(eU) cat Eltseq(eU + eV));

wt := Hweight(e);

assert wt ge n - 2*rU and wt le n;

until Abs(wt - w) le wThreshold or att gt 100;

assert att le 100;

//"**** att =", att;

// permute the error pattern:

e := e*Transpose(Q);

return e;

end function;

// some toy parameters for testing:

//kU := 23; kV := 16; k := kU + kV; n := 52; r := n - k;

//kU := 46; kV := 32; k := kU + kV; n := 104; r := n - k;

//kU := 92; kV := 64; k := kU + kV; n := 208; r := n - k;

//kU := 230; kV := 161; k := kU + kV; n := 518; r := n - k;

//kU := 460; kV := 322; k := kU + kV; n := 1034; r := n - k;

//kU := 920; kV := 644; k := kU + kV; n := 2068; r := n - k;

//kU := 1150; kV := 805; k := kU + kV; n := 2586; r := n - k;

//kU := 1840; kV := 1288; k := kU + kV; n := 4132; r := n - k;

// actually proposed 128-bit level parameters:

kU := 2299; kV := 1609; k := kU + kV; n := 5172; r := n - k;

n2 := n div 2;

rU := n2 - kU;

rV := n2 - kV;

w := n - Ceiling(2*rU/3);

wThreshold := Ceiling((n - w)/20); // 5% tolerance, just for practicality of legitimate signatures

"n =", n, ": w =", w;

"kU =", kU, ": rU =", rU;

"kV =", kV, ": rV =", rV;

"k =", k, ": r =", r;

"threshold:", wThreshold;

Tsunami := false; // set this to true to test the Tsunami variant

//TestKeySigVer(rU, rV, n, w, wThreshold, 0, 0, Tsunami);

// create a sample key pair:

UT, VT, SinvT, Hsk, P, Hpk := KeyGen(rU, rV, n);

// collect signatures:

numSig := 600; // in case of failure, slightly increase this number

"collecting", numSig, "signatures..";

time sigTab := CollectSigs(SinvT, UT, VT, P, w, wThreshold, numSig, Tsunami);

// break Wave:

"recovering structure...";

time Q, R, BT, DT, WT := RecoverStructure(Hpk, rU, sigTab);

"forging signature...";

// get target syndrome:

s := Vector(K, r, [Random(K) : j in [1..r]]);

time e := ForgeSignature(R, BT, DT, WT, Q, Hpk, s, w, wThreshold, Tsunami);

"**** success?", Verify(Hpk, e, s, w, wThreshold);

