
Kleptography trapdoor free cryptographic
protocols

Bohdan Kovalenko1 and Anton Kudin2

1 National technical University of Ukraine ”KPI”, Kyiv, Ukraine,
animantbk@gmail.com

2 National Bank of Ukraine,
pplayshner@gmail.com

Abstract. Context. Methods of known kleptography implementations are being
investigated. The article focuses mostly on SETUP design of subliminal data leakage
channels.
Aim. Suggest approach to develop SETUP resistant cryptosystems.
Methods. The necessary conditions for SETUP implementation is building in entropy
source (otherwise generated secret will be predictable). In this article it’s considered
subscriber whose protocol implementation is suspected to be modified by Developer
(malicious actor who is able to influence on cryptosystem implementation) to create
subliminal leakage channel. Possible countermeasure is to prohibit usage own random
sources for subscribers, enforce generate random values from public counters.
Results. Formal model for basic SETUP scheme has been suggested. Approach
to develop of SETUP resistant protocols has been described. Two basic SETUP-
resistance protocols (nonce generation protocol and Diffie-Hellman key agreement
protocol) have been proposed.
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Introduction
The ”kleptography” term was proposed by Adam Young and Moti Yung in 1996 [YY96].
Kleptography covers methods of implementation so-called ”back-doors” or ”subliminal
channels” in cryptosystems that allow Developers to access certain secret information
from customer’s cryptosystem. Developer is a kind of malicious actor who is able to make
changes (illegally) into some parts of cryptosystem implementations. In general, by the
level of construction, it is possible to distinguish two classes of kleptography mechanisms:
embedded at the cryptosystem design stage or back-doors injection into the existing
cryptosystem or protocol. Mechanisms of the second type, namely, SETUP (Secretly
Embedded Trapdoor with Universal Protection) schemes, were proposed by A. Young and
M. Yung [YY96]. The main idea of this scheme is that there is an additional protocol role
– ”Developer”. Developer modifies the protocol/cryptosystem implementation on one of
the endpoints (through unauthorized access to endpoints or via infection with malicious
software) in such way that the victim begins to transfer a certain secret to the Developer,
moreover other subscribers are unable to detect it.

The objectives of kleptography in the context of cryptographic protocols are:

1. Design of back-door in standard protocols

2. Back-door disclosure

3. Design of cryptographic protocols which are kleptography back-door free
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Many examples of theoretical and practical schemes for constructing channels of impercep-
tible secret leakage in cryptographic schemes are known. In this paper, the main attention
is paid to solving the problem of determining the conditions that provides resistance against
some back-door injection attacks.

1 Kleptography mechanism classification
There are problems in the classification of kleptography systems now. It is due to the fact
that there are no clear formal model of kleptography mechanisms. Kleptography covers a
wide range of attacks on cryptomechanisms and attacks based on cryptomechanisms. In
particular, it includes methods of constructing channels with secret leakage in standard
cryptosystems (including steganographic methods), design of built-in leakage channel,
development of cryptoprimitives with partial violation of cryptographic properties, etc. If
we consider the methods of leakage channels constructing, we may focus on asymmetric
cryptography to deliver secret to Developer or we can suspect a steganography channel that
uses a system randomizer (for example, the salt of the hash function or the initial vector of
the stream cipher). Cryptoprimitive with partial breach cryptographic properties can be
modified to allow Developers (and no more) to decrypt messages without the knowledge of
the key, or it may be a hash function that allows the designer to perform efficient preimage
search for given digest or to generate 1-st or 2-nd type of collisions.

The classification complexity follows by the fact that some kleptosystems can be
detected on because it’s design looks to be a ”nonstandard” scheme, but this can also be
explained by design fault. For example, until now, it’s impossible to say exactly whether
the DES encryption algorithm is kleptography cipher or not, since nobody really knowns
were the weak security parameters applied meaningly or this is a result of inadequate
analysis. In order to create classification we consider model of kleptography system which
consist of such parts: secure channel for the information transmission, users, attacker,
and Developer who has a subliminal leakage channel from some of users. In this case,
the attacker should not be able to violate the security of the main transmission channel.
Neither the attacker nor the user should be able to violate the security of the secret leakage
channel. So, we can propose such a classification of kleptography systems (depending on
different criteria of classification).

By implementation availability:

1. Open standard implementations (software libraries, circuit design, RFCs).

2. Proprietary, mostly hardware implementation (cryptoprocessors, hardware crypto-
modules).

By destruction level:

1. With the possibility of further usage (reverse engineering of program components,
delayering of masked hardware components, specifications analysis, etc.).

2. Without further usage (probing of cryptographic controllers, built-in EEPROM
memory, etc.).

By design method:

1. Modification of existing cryptosystems (insertion of a leakage channel).

2. Design of new crypto algorithms with built-in back-door.

By implementation way:

1. Modification of working cryptosystems on the user’s side (through malicious software,
cyber attacks, etc.).
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2. Open distribution of implementations with kleptography modifications (e.g., in
opensource or freeware software components).

3. Distribution of proprietary protected cryptosystems such as hardware modules.

4. Lobbying for the cryptography standardization, imposing their use through legal
mechanisms or corporate policies.

According to this classification we can determine the main kleptography problems:

1. Implementation of information leakage channels through modification of standard
cryptosystems implementations

2. Development of cryptosystems with built-in leakage channel

3. Search for leakage channels in a cryptosystem

4. Search for leakage channels in the implementation of the cryptosystem

5. Designing of cryptosystems without leakage channel

6. Implementation of cryptosystems that are resistant against kleptography modification

We suggest to discuss partial cases of designing of back-door free cryptosystems.

2 SETUP mechanism

2.1 Definition
One of the methods to build kleptosystems based on cryptosystem is SETUP [AOS12](Secretly
Embedded Trapdoor with Universal Protection).

The main idea of SETUP is that the attacker (Developer) modifies the implementation
of the standard cryptosystem in such a way that the cryptographic properties of the system
are not fulfilled for the Developer but for other users it remains the same security level.
Moreover, other participants can not even suspect the fact of such a modification. In
addition to the SETUP also one can distinguish weak and strong SETUP.

SETUP cryptosystem C is called its modification C’ that:

1. Interface interaction (input and output parameters) with C ’corresponds to the one
declared for the C standard.

2. C’ is efficiently computed.

3. The Developer’s secret is available only to him and not contained in C’.

4. The secret information that C’ sends via back-door can be decrypted effectively only
by the Developer (the Developer uses his secret key for decryption).

5. No one, except the Developer, can distinguish outputs of systems C ’and C in
polynomial time.

6. After analysis of the modified implementation (obtaining all necessary algorithms,
destructive reverse engineering) it is impossible to restore the previous keys or to
predict the future ones.
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Weak SETUP is called SETUP for which both Developer and implementation owner
are able to distinguish outputs C and C’. A strong SETUP is called SETUP with an
additional condition - it is impossible to restore the previous keys and to predict the next
keys after online analysis (non-destructive) of working system. An important parameter
of the SETUP mechanism is a bandwidth. (n,m)-scheme leakage is called the SETUP
mechanism, which requires to transmit m messages to a communication channel to perform
leakage of n messages.

Currently, all well-known SETUP mechanisms are based on asymmetric cryptography
for many cryptosystems: DSA digital signature ([AOS12]), systems based on discrete
logarithm problems ([YY97]) and RSA ([YY96]).

2.2 The Discrete Logarithm Problem based protocol
In 1994, A. Young and M. Yung suggested a method for SETUP building for protocols
whose security is based on DLP. The idea is that the subscriber who generates key pairs
and publishes public one is modified by Developer to enable hidden data transmission to
the Developer side.

Input: g – generator of multiplicative group F ∗p , (x ∈ F ∗p , Y = gx) – Developer’s key
pair,

W,a, b ∈ F ∗p – fixed parameters
1 Generate random key c1 ∈ F ∗p . c1 is stored for next time.
2 Compute and publish the first public key M1 = gc1 mod p

3 Generate random t ∈ {0, 1}
4 Compute z = gc1−W tY −ac1−b mod p
5 Compute next secret key: c2 = hash(z), hash : {0, 1}∗ → F ∗p
6 Compute and publish the second public key M2 = gc2 mod p

Algorithm 1: SETUP in Diffie-Hellman protocol: transmission private key to
Developer

The Developer restores the secret key c2 using intercepted data from the open channel:

1 r = Ma
1 g

b mod p
2 z1 = M1/r

x mod p

3 c2 = hash(z1) or c2 = hash(z1/g
W mod p)

Algorithm 2: SETUP in Diffie-Hellman protocol: restoring key by Developer

Thus, the Developer obtains a secret key c2 and nobody is able to obtain it without
the knowledge of the Developer’s secret key x.

2.3 RSA example
In the paper [YY96] there is scheme of a leakage channel implementation into the im-
plementation of the RSA algorithm. The main idea is that the victim’s implementation
generates the RSA parameters in such a way that the attacker, knowing the secret of the
mechanism, is able to effectively solve the factorization problem.

Generation of original RSA parameters includes the generation of two large primes
p, q : #p = #q = m,m > 1024 (#(·) – bit length), these values are the secret parameters.
Public parameter is n = p · q. If an attacker modifies the cryptosystem implementation
so that it can effectively factorize n, he also be able to decrypt any encrypted data. The
scheme proposed in [YY96] based on the trick when RSA secret key is generated using
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Developer’s public key y = gxmodP , where P, y, g – public parameters, #P = #p = m,
g, x, y ∈ F ∗P . The parametersW, t, a, b ∈ F ∗P , hash(·) means the same as for leakage channel
in the Diffie-Hellman protocol, G : F ∗P ×K → {0, 1}m – symmetric encryption K – key
space. Also we need L – small integer and fixed symmetric key k0 ∈ K.

1. Generate randomly c1, t : c1 < P − 1, t ∈ {0, 1}.

2. Compute z as solution of the equation yac1+bgW tz = gc1modP . In order to make a
value z was with a uniform distribution among m-bit values, goto step 1 until z will
be in 2..2m − 1

3. z′ = hash(z)

4. The least significant bit of z′ set to ’1’ (z′ should be odd).

5. Generate a secret parameter (large prime) p that has structure p = z′ + num (num
is the smallest positive integer so that p is prime).

6. For 0 ≤ i ≤ L:

(a) Compute U = G(gc1 , k0 + i).
(b) Generate random R ∈ {0, 1}m.
(c) Solve q and r from the equation [U |R] = pq + r ([·|·] – concatenation of bits,

r < p). Goto step 6b until q will be prime.
(d) Compute n = pq = [U |R]− r
(e) Compute RSA exponents e, d.

Attacker can restore p and q based on secret x as follow:

1. Compute U with n (most significant bits m).

2. For 0 ≤ i ≤ L:

(a) Compute m = G−1(U, k0 + i).
(b) Compute z : mxagb+W tz = m( mod P ).
(c) z′ = hash(z)
(d) The least significant bit z′ set to ’1’ (z′ should be odd).
(e) Compute minimal s, p = z′ + s – prime.
(f) If p|n, attacker factorizes n and gets access to the leakage channel.

If attacker has no access to secret x, the problem of computation z = gc1−W ty−ac1−b

(and p) will be reduced to the DLP.

3 SETUP-resistant cryptosystems
3.1 Complexity model
To assess the security of the kleptography system, it is first necessary to determine
the complexity model. In cryptography, there are several basic models: computational
complexity theory, Shannon’s informational theory, reduction to ideal primitives etc.
These models are not always adequate for kleptography mechanism. For example, if the
complexity of back-door insertion in a symmetric cipher is exponential from internal state
size, but nonetheless, required time for building in is practical, then such a back-door
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deploying method is acceptable for us. On the other hand, if the asymptotic complexity
the back-door detection is a high degree polynomial, but for the given pre conditions this
time is impractical, then we may consider the back-door to be secure in practical sense.

Come Berbain and Henri Gilbert [BG07] describe practice algorithm execution time
based complexity. In current article we suggest to apply a similar model, that is based on
practical time complexity of real algorithm execution.

Definition 1. (Practical ensemble distinguisher) Let’s consider two ensembles E =
{e1, e2, ...} and E′ = {e′1, e′2, ...}, ei, e

′
i ∈ S, S is a finite set. Also, there is additional time

threshold t – it’s a maximal time period for algorithm execution (e.g., t = 280).
Practical ensemble distinguisher is probabilistic algorithm At which is bounded by

execution time t for vector size l, ~ν ∈ El ∪ E′l, that returns:{
At(E,~ν) = 1 ⇔ ~ν ∈ El

At(E′, ~ν) = 1 ⇔ ~ν ∈ E′l

Let’s define advantage for a practical distinguisher in ensemble recognition asAdvAt
(E,E′, l) =

|P{At(E,~ν) = 1} − P{At(E′, ~ν) = 1}|, where ~ν ∈ El ∪ E′l - random vector with size l.

Definition 2. (Practical indistinguishability) Let’s call pair of ensembles E and E′

practical indistinguishable if for given security level t, maximal recognition advantage
for all practical algorithms will be negligible for this security level: Adv(E,E′) =
maxl,At

{AdvAt
(E,E′, l)} < ε(t), where ε(t) – threshold value for ”negligible” probability

(e.g., ε(t) = 2−40 when t = 280).
Further, practical indistinguishability for E and E′ will be denoted as E 't E

′.

3.2 SETUP: formal model
SETUP mechanism was suggested by M.Yung and A.Young [YY97], it isn’t strictly
formalized, that complicates security evaluation process. One of basic crypto systems
is ”challenge-response” protocol scheme, that may describe almost all single- and two-
pass protocols, e.g. cipher based authentication, Diffie-Hellman key agreement. So, it’s
suggested to apply this basic scheme to modeling of kleptography subliminal channel
security.

”Challenge-response” based protocols may be considered as game with N > 1 members,
one of which is an oracle. Kleptography variant of the protocol includes one more member
– Developer, which is considered to be in collusion with one of other members.

Definition 3. (Kleptographic mechanism based on ”challenge-response” protocol) Under
”challenge-response” based kleptographic mechanism we mean 3-members game (Alice,
Bob and Dev) following these rules:

1. Sides Alice and Dev may be in collusion

2. The Alice wait for Bob request, then her response is in format that is preliminary
established with Bob. The Alice’s goals are:

(a) Craft response that contains encoded one bit for Dev side
(b) The encoding must be performed in a way to avoid disclosure by Bob, moreover

Bob mustn’t know that such transmission were performed

3. Bob sends Alice arbitrary challenge request and receives an answer. The Bob’s goal
is to detect fact of additional data bit transmission to Dev

4. Dev passively sniffs traffic between Alice and Bob. His goal is to recover hidden bit
from Alice side analysing intercepted information
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Also, there are such assumptions:

1. Bob isn’t in collusion with Alice neither Dev

2. All communicators use standard base cryptographic functions (ciphers, hashes,
signatures, etc.) without back-doors

3. Alice and Dev don’t use additional steganography channels based on timing, failures,
etc.

From Bob’s point of view, the protocol may be represented as a couple 〈Dt, V, U〉,
where V is a set of Bob’s requests, U – set of Alice’s answers, Dt : V × U → {0, 1} –
probabilistic algorithm that is bounded with execution time t, it verifies oracle’s response
to be comply with preliminary negotiated format.

From Dev side, the couple is extended with Rω
t : V × U → {0, 1} – algorithm, which

extracts bits from subliminal channel between Alice and Dev.

Definition 4. (”Challenge-response” protocol, formal model) Let’s denote ”challenge-
response” protocol as couple 〈Dt, V, U,At〉, where:
Dt : V × U → {0, 1} – probabilistic algorithm with execution time bound t, that verifies
oracle’s response for protocol compliance. Each correct pair of request-response is recognized
with probability 1, so this is Monte Carlo probabilistic algorithm
V – set of Bob’s requests, U – set of Alice oracle’s responses
At : V → U – Alice’s randomized algorithm without subliminal channel: ∀v ∈ V :
Dt(v,At(v)) = 1

Definition 5. (”Challenge-response” based subliminal channel, formal model) Let’s denote
”challenge-response” protocol with subliminal channel couple from model 4 〈Dt, V, U,At, R

ω
t , A

ω
t 〉

which is extended with additional parameters Rω
t and Aω

t (leakage channel), where
Dt, V, U,At have the same sense as in model 4:
Aω

t : V × {0, 1} → U – randomized algorithm of Alice side with hidden bit leakage: ∀v ∈
V, s ∈ {0, 1} : Dt(Aω

t (v, s)) = 1, v
rand
∈ V, s ∈ {0, 1} : P{Rω

t (v,Aω
t (v, s)) = s} > 1/2 + ε(t)

Rω
t : V × U → {0, 1} – probabilistic algorithm, which decodes message from Alice using

secret ω.
Also, there are additional security and undetectability requirements: sets H =

{〈v, u〉|v ∈ V, u ∈ U : u = At(v)}, H0 = {〈v, u〉|v ∈ V, u ∈ U : u = Aω
t (v, 1)} and

H1 = {〈v, u〉|v ∈ V, u ∈ U : u = Aω
t (v, 0)} are pairwise indistinguishable: H 't H0 't H1

Moreover, there is assumption that Dev isn’t able to obtain additional information
from algorithm At output: |P{Rω

t (v,At(v)) = 0} − P{Rω
t (v,At(v)) = 1}| < ε(t).

Definition 6. (algorithm equality) Randomized algorithms At, A
′
t : L1 → L2 with execu-

tion time bounded with t are considered to be equal (At = A′t), if P{At(l) 6= A′t(l)} < ε(t),
l

rand
∈ L1.

Theorem 1. (Leakage channel existence: necessary conditions) If protocol 4 contains a
leakage channel, then ∃At, A

′
t : V → U , A′t 6= At, that P{Dt(v,At(v)) = 1} > 1 − ε(t) i

P{Dt(v,A′t(v)) = 1} > 1− ε(t)

Proof. The proof is by design. Let’s consider an algorithm Aω
0 (v) ≡ Aω(v, 0) and

Aω
1 (v) ≡ Aω(v, 1), v ∈ V . Then such theorem’s requirements are satisfied:

1. P{Dt(Aω
0 (v)) = 1} > 1−ε(t) and P{Dt(Aω

1 (v)) = 1} > 1−ε(t). Really, according to
definition 5 there is channel undetectability requirement, thus ε(t) > Adv(Aω

1 , At) ≥
P{Dt(At(v))} − P{Dt(Aω

1 (v))} = 1 − P{Dt(Aω
1 (v))} ⇒ P{Dt(Aω

1 (v))} > 1 − ε(t)
(the same proof may be applied to Aω

0 ).
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2. Aω
0 6= Aω

1 . Proof by contradiction: let’s suppose Aω
0 = Aω

1 , then P{Aω(v, 0) =
Aω(v, 1)} = 1 − σ, σ ∈ [0, ε(t)) according to definition 6. So, P{Rω(Aω(v, s)) =
0} = P{Rω(Aω(v, s)) = 1} = 1

2 with probability p = 1− σ. However, P{Aω(v, 0) 6=
Aω(v, 1)} = σ that’s why maxs P{Rω(Aω(v, s)) = s} = ξ, ξ ∈ (1/2, 1]. The con-
sequence is that full probability is maxs P{Rω(Aω(v, s)) = s} = 1

2 (1 − σ) + ξσ =
1
2 + σ(ξ − 1

2 ) ∈ [ 1
2 ,

1
2 + ε(t)

2 ), this contradict the probabilistic algorithm properties
Rω

t from 5.

Thus, algorithms Aω
0 and Aω

1 are instances for algorithms A′t and At from theorem’s
requirements, so the theorem is proved by design. C

Consequence. Let’s suppose ∃At,∀v ∈ V : P{Dt(v,At(v)) = 1} = 1 and ∀A′t : A′t 6=
At, P{Dt(v,A′t(v)) = 1} = σ < 1− ε(t). Then no one is able to built in leakage channel.
Moreover, when hidden bit is transmitted, the detection probability is P ≥ 1− σ.

Proof. The consequence of ∃At,∀v ∈ V : P{Dt(v,At(v)) = 1} = 1 and ∀A′t : A′t 6=
At, P{Dt(v,A′t(v)) = 1} = σ < 1 − ε(t) is ∀A′t, A′′t : A′t 6= A′′t , P{Dt(v,A′t(v)) = 1} <
1− ε(t) ∪ P{Dt(v,A′′t (v)) = 1} < 1− ε(t), so sufficient requirement for leakage channel
absence is satisfied.
Further, let’s suppose that such predicates belong to transmission session: Leak ∈ {0, 1}
– there is a fact of hidden data transmission and Detect ∈ {0, 1} – the fact of data
transmission have been detected. Then full detection probability is P = P{Detect =
1|Leak = 0}+P{Detect = 1|Leak = 1}. However, since P{Detect = 1|Leak = 0} = 0 (it’s
impossible to detect the leakage fact if it isn’t happened), then P = P{Detect = 1|Leak =
1} ≥ P{Detect = 1} = Adv(At, A

′
t) ≥ |P{Dt(v,At(v))− P{Dt(v,A′t(v))}| = 1− σ. C

3.3 Nonce generation
This basic scheme demonstrates the external Random Number Generator concept (see
Picture 1).

Let’s consider some protocol which contains step with nonce transmission (e.g., replay
attack countermeasure in authentication protocols). If this sequence is r bits, we have
steganography container with exactly the same bandwidth.

Input:

1. Asymmetric cryptosystem with private key space K and public key space Q

2. Sign : K × {0, 1}∗ → B – digital signature without randomizing, B – signatures
space

3. V erify : Q× {0, 1}∗ ×B → {0, 1} – digital signature verifying algorithm

4. Alice’s key pair (kA, pA), kA ∈ K, pA ∈ Q

5. ψ : {0, 1}∗ → {0, 1}∗, ψ0 : Time→ {0, 1}∗ counter increment and initializing.

Algorithm steps:

1. Alice increments her public counter ctri = ψctri−1. If counter isn’t initializes, she
generated it, for example, from time stamp: ctr0 = ψ0(time).

2. Alice calculates nonce = Sign(kA, ctri) and sends ctri|nonce

3. Anybody is able to verify that Alice doesn’t use her own entropy sources: V erify(pA, ctri, nonce) ==
1.

4. If there isn’t an equality, Alice is suspected to be used nonce as steganography
container
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Alice Bob

ctri = ψctri−1

nonce = Sign(kA, ctri)
nonce|i

ctri = ψctri−1?

V erify(pA, ctri, nonce) = 1?
Ok

Figure 1: Nonce generation scheme with steganography container detection

Possible malicious scenarios:

1. Attacker guess random sequence before it’s publication

2. Attacker restores Alice’s private key from captured traffic

3. Developer modifies Alice’s protocol implementation to exploit her nonce as stegano-
graphic container

In the first case, the attacker must first guess the random sequence Ri of the external
generator. Let an intruder intercepts this value at the time of the request by the Alice
side, but before her nonce is published. Then the attacker needs to obtain Sign(kA, Ri)
from Ri and pA, i.e., calculate the digital signature without the secret key knowledge, this
is reduced to digital signature forgery problem.

In the second case, the attacker intercepts open data: Ri, Sign(kA, Ri), pA. Based on
these data, he tries to obtain secret key kA. This can be done either by solving of the
Discrete Logarithm Problem (which is reduced to the restoring private key from public
one) or to extract it from a published digital signature (which is reduced to the restoring
signature key from signature and verification key).

In the third case, the Developer’s algorithm fills a nonce with certain message (steganogram)
M . The Developer’s modification also controls the private key kA. Consequently, the
Developer’s modification, having M (signature value) and kA (secret signature key), and it
should be satisfied Sign(k, ctri) = M . More generalized: the Developer’s modification with
given M should generate k′A and R so that Sign(k′A, R) = M and V erify(pA, R,M) = 1.
It requires at least solving signature forgery problem.

Let’s formalize this protocol using model 5.

Definition 7. (Nonce generation protocol with steganography container detection)
Nonce generation protocol is a couple 〈Dt, V, U,At〉 according to model 4, where:

V – set of counter’s output
U – set of Alice’s output
At ≡ Sign(kA, v), v ∈ V – Alice’s algorithm for challenge processing
Dt ≡ V erify(pA, v, u), u ∈ U

The theorem below will help us to evaluate scheme’s kleptography security.

Theorem 2. Let’s suppose: ∀v ∈ V , ∀At : At(kA, v) 6= Sign(kA, v), P{V erify(pA, v, At(kA, v)) =
1} < ε(t) (i.e., it’s impossible in practice to create pair of different signatures for a certain
message).
Then there is no leakage channel in nonce generation protocol 7.

Proof. In the model 7 distinguisher Dt ≡ V erify(pA, v, u) satisfies sufficient conditions
from consequence 1:
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1. ∀v ∈ V : P{V erify(pA, v, Sign(kA, v)) = 1} = 1 by digital signature basic properties

2. ∀v ∈ V,At(kA, v) 6= Sign(kA, v), P{V erify(pA, v, At(v)) = 1} = σ < ε(t) by our
assumptions that it’s impossible in practice to create pair of different signatures for
a certain message

So, from the consequence 1 and with given assumptions, there is no leakage channel in
protocol 4.
Moreover, in case of hidden data transmission, detection probability is P ≥ 1− σ ⇔ P >
1− ε(t) if the theorem’s 2 assumptions are satisfied.
C

3.4 SETUP free Diffie-Hellman key agreement protocol
Let’s consider secret channel establishment using Diffie-Hellman key agreement protocol
between Alice and Bob, which allows to generate random session key pair with proved
impossibility of secret key leakage (as in SETUP) (see Picture 2).

Preconditions:

1. Asymmetric cryptosystem (for digital signature) includes private key space K̃ and
public key space Q̃

2. Diffie-Hellman asymmetric cryptosystem: G – generator, K,Q – private and public
key space, ′·′ : K ×Q→ Q – agreement function (exponent function)

3. Symmetric cryptosystem (E,D) with key space S, and bijective functions E : S×B →
B (encryption), D : ∀s ∈ S, ∀b ∈ B,Ds(Es(b)) = b (decryption)

4. Sign : K̃ × {0, 1}∗ → B – randomness-free digital signature function, B – signature
space

5. V erify : Q̃× {0, 1}∗ ×B → {0, 1} – digital signature verification function

6. Alice’s asymmetric key pair (kA, pA), kA ∈ K̃, pA ∈ Q̃

7. Bob’s asymmetric key pair (kB , pB), kB ∈ K, pB ∈ Q

8. ψ : {0, 1}∗ → {0, 1}∗, ψ0 : Time→ {0, 1}∗ counter increment and initializing.

9. Cryptographic hash functions h1 : B → K, h2 : Q→ S

Algorithm’s steps:

1. Alice increments her public counter ctri = ψctri−1. If counter isn’t initializes, she
generated it, for example, from time

2. Alice:

• Generates session private key q = Sign(kA, ctri|Alice|Bob)
• Channel symmetric key: s = h2(h1(q) · pB)
• Sends public session key, block’s id and communicator’s ids: W = h1(q) ·
G, (W, i,Alice,Bob)→ Bob

3. Bob calculates shared symmetric key: s = h2(kB ·W )

4. Alice sends her private session key via secure channel: Es(q)→ Bob

5. Bob decrypts key q. He verifies, is the key generated from public counter or no:
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Alice Bob

ctri = ψ(ctri−1)
q = Sign(kA, ctri|A|B), pq = h1(q) ·G

pq

Ok
s = h2(h1(q) · pB) = h2(kB · pq)

Es(q|i)

ctri = ψ(ctri−1)?
V erify(pA, (ctri|A|B), q) = 1?

Ok

Figure 2: Diffie-Hellman key agreement resistant to SETUP

• Verify ctri = ψ(ctri−1) or ctr0 = ψ0(Time) (if i = 0).
• Verify h1(q) · G == W . If it’s false, the key is considered to be incorrect,
connection should be closed
• Verify V erify(pA, ctri|Alice|Bob, q) = 1. If it’s false, session private key is
generated from unknown source, leakage channel is suspected, connection is
untrusted.

Security analysis. Possible malicious scenarios:

1. Attacker forecasts session secret key Alice.

2. Attacker restores private key Alice analysing captured public traffic.

3. Bob as an attacker – he tries to use obtained session key as his own key for commu-
nication with third-party

4. Developer modifies Alice implementation to get access to data be sent to public
channel and use them for leakage channel base (secret key or session private key).

Two first scenarios where considered in 3.3.
In the third case, the Bob side receives the private session key Alice during the protocol

normal working and then tries to use it to key agreement with the other side (say Dev
side). However, then Bob should send along with the public key IDs Alice and Bob, it’s
recognized by Dev side as an invalid session. When Bob sends the identifiers to Alice and
Dev, the Dev detects failure in digital signature validation stage: V erify(pA, (ctri|A|B), q)

Let the modifier of the Developer pass some kind of encoded secret to an open channel.
In the case that additional public messages will be used (in addition to the public key),
it may be detected by an external observer that violates the first SETUP property (see
Definition 2.1), and therefore the loophole will be exposed.

So, in this case, the Developer’s modification can only control a couple of session keys
(denote their (r,R), R = r ·G)), while having access to the private key kA of the side Alice.
Additional conditions imposed by the protocol: V erify(pA, (S|A|B), r) = 1,where S is
the counter value.This means that the maximal number of possible public keys that can
generated by Developer’s modification is equal to the number of possible generated public
counters and therefore it is impossible in practice to fixate a random secret key.

Let’s perform reduction to model 5 for formal proving of leakage channel absence.
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Definition 8. (Key agreement protocol without leakage channel)
So, key agreement protocol without leakage channel is a couple 〈Dt, V, U,At〉 from

model 4, where:
V – set of possible counter outputs
U – set of possible Alice’s outputs
At ≡ h1(q) ·G)|e – Alice’s protocol implementation, q = h1(Sign(kA, v)), e = Es(q), v ∈ V
Dt(v, u) ≡ V erify(pA, v, getq(u)) ∗ I(getp(u) = h1(Dgets(u)(gete(u))) · G, u ∈ U , where
functions getq, getp, gets, gete are calculated as follow:
getp(u) = h1(q) ·G,
gete(u) = e,
gets(u) = h2(kB · getp(u)),
getq(u) = Dgets(u)(gete(u)).

Such theorem allows us to evaluate protocol’s kleptography security

Theorem 3. Let’s accept such assumptions:

1. ∀v ∈ V , ∀At : At(kA, v) 6= Sign(kA, v), P{V erify(pA, v, At(kA, v)) = 1} < ε(t) (so,
crafting pair of different signatures for the same message is impossible in practice).

2. Functions getq, getp, gets, gete require negligible execution time

There is no leakage channel in the Diffie-Hellman key agreement protocol modification 8.

Proof. Let’s make sure that sufficient condition for leakage channel absence is satisfied
using the theorem’s consequence 1. The distinguisher Dt from the model 8 satisfies
sufficient from the theorem’s consequence 1:

1. ∀v ∈ V : P{Dt(pA, v, At(v)) = 1} = 1. Really, algorithm Dt works as follow:

(a) Obtain q, h1(q) · G, s, e from u using functions getq, getp, gets, gete, success
probability is p = 1.

(b) Evaluate indicator’s value I(getp(u) = h1(Dgets(u)(gete(u))) ·G. In case of hon-
est protocol, h1(Dgets(u)(gete(u)))·G = h1(Dgets(u)(Es(q)))·G = h1(Ds(Es(q)))·
G = h1(q) ·G, so indicator’s value is 1 with probability 1

(c) Verify signature V erify(pA, v, getq(u)) = V erify(pA, v, q) = 1 with probability
1 according to digital signature’s general properties

2. Le’s A′t 6= At, i.e. ∃v ∈ V : A′t(v) 6= At(v), At(v) = h1(q) · G|e, A′t(v) = w · G|e′.
We’ll evaluate distinguisher Dt recognition probability A′t. So, there are such three
cases:

(a) h1(q) ·G 6= w ·G ∧ e = e′. Then s 6= s′, s′ = h2(w · kB ·G)⇒ Ds′(e) = q′ 6= q,
P{V erify(pA, v, q

′) = 1} < ε(t) (according to one of the theorem’s assumptions)
(b) h1(q) ·G = w ·G ∧ e 6= e′. Then q′ = Ds(e′) 6= Ds(e) (because of bijectivity of

functions (E,D)), P{V erify(pA, v, q
′) = 1} < ε(t)

(c) h1(q) ·G 6= w ·G ∧ e 6= e′. Then q′ = Ds′(e′). If q′ 6= q, P{V erify(pA, v, q
′) =

1} < ε(t). If q′ = q probability P{V erify(pA, v, q
′) = 1} = 1. According to the

protocol, algorithm Dt verifies w ·G = h1(q′) ·G, which contradict the property
h1(q) ·G 6= w ·G ∧ e 6= e′

Thus, maximal probability is P{Dt(v,A′t(v)) = 1} = σ < ε(t)

Thus, from the consequence 1 with given assumptions follows that in protocol 4 there is
no leakage channel.
Moreover, if there is a fact of hidden data transmission, the detection probability is
P ≥ 1− σ ⇔ P > 1− ε(t) (based on theorem’s 3 assumptions). C
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Conclusions
In this articles the authors suggested formal model for particular but the most widespread
class of SETUP protocols. This model allowed to formulate and prove sufficient conditions
for SETUP-free protocol design. Moreover, it were suggested two protocols based on
these approaches (nonce generation and SETUP-free improvement of Diffie-Hellman key
agreement protocol) that were proved to be resistant against secret key leakage.

It was also suggested the new concept of protocols design which includes usage of
digital signature from public counter values instead of usage of random sources. It allows
actors of communication verify that their opponents don’t use internal random sources and
thus detect malicious injection in protocol implementations monitoring potential hidden
data leakage channels.
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