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Abstract

Linear cryptanalysis considers correlations between linear input and output combiners for block ciphers
and stream ciphers. Daeman and Rijmen (2007) had obtained the distributions of the correlations between
linear input and output combiners of uniform random functions and uniform random permutations. Our first
contribution is to generalise these results to obtain the distributions of the correlations between arbitrary
input and output combiners of uniform random functions and uniform random permutations. Recently, Todo
et al. (2018) have proposed nonlinear invariant attacks which consider correlations between nonlinear input
and output combiners for a key-alternating block cipher. In its basic form, a nonlinear invariant attack is a
distinguishing attack. The second and the main contribution of this paper is to obtain precise expressions
for the errors of nonlinear invariant attacks in distinguishing a key-alternating cipher from either a uniform
random function or a uniform random permutation.
Keywords: correlation, uniform random function, uniform random permutation, block cipher,
nonlinear invariant attack, distinguishing attack, error probability.

1 Introduction

Let S : {0, 1}m → {0, 1}n be a function arising in a context of symmetric key cryptography. Two important
examples are the state to keystream map of a stream cipher, and the encryption function of a block cipher, for
which m = n. The goal of a distinguishing attack is to be able to distinguish a real cryptographic primitive from
an idealised primitive. The idealised primitive could be a uniform random function ρ from {0, 1}m to {0, 1}n or,
for m = n, it could be a uniform random permutation π of {0, 1}n.

A distinguishing attack based on correlation between input and output combiners proceeds as follows. Let
φ : {0, 1}m → {0, 1} and ψ : {0, 1}n → {0, 1} be two functions. The function φ serves as a combiner of the input
of S while the function ψ serves as a combiner of the output of S. The correlation between input and output
combiners is the correlation between φ and ψ ◦ S. This correlation is captured by considering the weight of the
function fS : {0, 1}m → {0, 1} defined by fS(α) = φ(α)⊕ ψ(S(α)). Suppose it is possible to find some property
of S such that the function fS has a nature which is different from fρ or fπ. Then such a property forms the
basis of distinguishing S from either ρ or π.

Obtaining the nature of fS requires a considerable amount of ingenuity, and is obtained by carefully studying
the overall design and the internal structure of S. On the other hand, the nature of fρ and fπ are obtained
mathematically. To determine the success probability of an attack, it is important to have sufficient information
about both fS and either fρ or fπ. In this paper, we will be concerned with properties of fρ and fπ.
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Linear cryptanalysis: Distinguishing attacks based on linear cryptanalysis [7] is the classical example of the
above scenario. For such an attack, the functions φ and ψ are linear functions. Linear cryptanalysis has an
extensive history and has been successfully applied to both block and stream ciphers. When φ and ψ are linear
functions, precise distributions of the weights of fρ and fπ have been obtained by Daeman and Rijmen [4]. For
the case of fπ, the distribution was earlier stated without proof in [9]. The results of [4] have formed the basis
for an alternative formulation of the wrong key randomisation hypothesis in linear cryptanalysis [3] and has been
followed up in later works [2, 1].

Nonlinear invariant attack: Nonlinear combiners of inputs and outputs of a key alternating cipher arise in
the context of nonlinear invariant attack which has been introduced by Todo et al. [10]. Suppose n = m and
S is an r-round key alternating cipher EK : {0, 1}n → {0, 1}n. The crux of a nonlinear invariant attack is that
there may exist an n-variable Boolean function g and a class of weak keys K such that for any plaintext P ,
g(P )⊕g(EK(P )) is a constant which is independent of P . Such a g is called a nonlinear invariant. The existence
of nonlinear invariants and weak keys have been shown for practical block ciphers SCREAM, iSCREAM and
Midori64 [10]. Nonlinear approximations have been previously studied by Herpes et al. [5] and Knudsen and
Robshaw [6].

Our Contributions

This work makes two contributions.
The first contribution is to extend the results of Daemen and Rijmen [4] by considering correlation between

arbitrary combiners of the input and output of uniform random functions and uniform random permutations.
In other words, we allow φ and ψ to be arbitrary Boolean functions and obtain the distributions of the weights
of fρ and fπ. For the case of a uniform random function ρ, if the output combiner ψ is balanced, then we prove
that this weight follows the binomial distribution; on the other hand, if the output combiner is not balanced,
then we derive bounds on the probability that the weight deviates from its expected value. In the case of a
uniform random permutation π, we show that the distribution of the weights of f can be expressed in terms of
the hypergeometric distribution.

Our approach to proving the results is different from that in [4]. The proofs in [4] are counting arguments
and essentially consist of counting Boolean functions under certain restrictions. While this approach works when
the input and output combiners are linear functions, we found it difficult to extend this approach for arbitrary
Boolean functions. Instead we have used direct probability arguments. This yields proofs which are simple and
at the same time work for arbitrary combiners.

The second and the main contribution of this work is to perform an analysis of the distinguishing error of
nonlinear invariant attacks. The goal is to be able to distinguish EK from a uniform random permutation π of
{0, 1}n (or, from a uniform random function ρ). Suppose g is a nonlinear invariant for EK . Further, suppose
that distinct plaintexts P1, . . . , PN are used by the distinguisher. Then if K is a weak key, g(P1)⊕ g(EK(P1)) =
· · · = g(PN )⊕ g(EK(PN )). To be able to construct a distinguisher it is required to determine the probability ε
that g(P1)⊕g(π(P1)) = · · · = g(PN )⊕g(π(PN )). The distinguisher can make one-sided error and the probability
of this error is precisely ε.

We consider the following more general problem. (This generalisation has been mentioned in Section 7 of [10].)
Let g0 and gr be any two n-variable Boolean functions. We determine the probability that g0(P1)⊕ gr(π(P1)) =
· · · = g0(PN )⊕gr(π(PN )). This is done in two cases, namely, when P1, . . . , PN are chosen under uniform random
sampling without replacement and when P1, . . . , PN are distinct n-bit values without any randomness. Further,
these probabilities are also computed when π is replaced by a uniform random function ρ. Our analysis provides
expressions for the error probabilities of the corresponding distinguishers. Such an analysis was not performed
in [10]. Some of the consequences of our analysis are as follows.
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1. It turns out that the error probability considered in [10] is that of distinguishing EK from a uniform random
function. The error probability of distinguishing EK from a uniform random permutation is obtained here
for the first time.

2. The general form of the error probabilities are derived without any restriction on g0 and gr. When g0 and
gr are balanced functions, we prove the following two results.

(a) The error in distinguishing from a uniform random function is 1/2N−1.

(b) The error in distinguishing from a uniform random permutation is at least as large as the error in
distinguishing from a uniform random function. This is a consequence of Jensen’s inequality. For
moderate values of N , the error in distinguishing from a uniform random permutation is almost the
same as the error in distinguishing from a uniform random function.

Structure of the Paper

In Section 2, we provide the generalisation of the results of Daemen and Rijmen which appear in [4]. Section 3
provides a background of nonlinear invariant attacks as distinguishing attacks and defines the relevant distin-
guishing errors. Section 4 provides the analysis of the error in distinguishing from a uniform random permutation
while Section 5 provides the analysis of error in distinguishing from a uniform random permutation. Appendix B
provides an alternative expression for the later error. Some computational results are provided in Section 6.

2 Correlation Between Input and Output Combiners

In this section, we consider the distribution of correlation between input and output combiners of uniform random
functions and uniform random permutations. The case of uniform random function is analysed in Section 2.1
and the case of uniform random permutation is analysed in Section 2.2. Before proceeding, we introduce some
basic concepts and notation.

For two binary strings α and β of the same length, α ⊕ β will denote a binary string obtained by bitwise
XOR of α and β. An m-variable Boolean function f is a map f : {0, 1}m → {0, 1}. The support of f , denoted
supp(f), is defined as follows.

supp(f) = {α ∈ {0, 1}m : f(α) = 1}.

The weight wt(f) of f is defined to be the cardinality of the support of f , i.e.,

wt(f) = #{α ∈ {0, 1}m : f(α) = 1}.

The function f is said to be balanced if wt(f) = 2m−1.
The imbalance of f will be denoted as Imb(f) and is defined as follows.

Imb(f) =
1

2
(#{α ∈ {0, 1}m : f(α) = 0} −#{α ∈ {0, 1}m : f(α) = 1}) = 2m−1 − wt(f).

Let f, g : {0, 1}m → {0, 1} be two Boolean functions. By f ⊕ g we denote the Boolean function h : {0, 1}m →
{0, 1} where h(α) = f(α)⊕ g(α) for all α ∈ {0, 1}m. The correlation between f and g is denoted as C(f, g) and
is defined to be

C(f, g) =
Imb(f ⊕ g)

2m−1
.

An (m,n) function S is a map S : {0, 1}m → {0, 1}n. Let φ : {0, 1}m → {0, 1} and ψ : {0, 1}n → {0, 1}.
Given S, φ and ψ, we define a Boolean function

fS [φ, ψ] : {0, 1}m → {0, 1}, where fS [φ, ψ](α) = φ(α)⊕ ψ(S(α)). (1)
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The function φ is a combiner of the input of S while the function ψ is a combiner of the output of S. There
are no restrictions on φ and ψ and in particular, they are not required to be linear combiners. Both φ(·) and
ψ(S(·)) are m-variable Boolean functions. So, it is meaningful to talk about the correlation between these two
functions. This correlation will be denoted as CS(φ, ψ) and is equal to

CS(φ, ψ) =
Imb(fS [φ, ψ])

2m−1
= 1− wt(fS [φ, ψ])

2m−1
. (2)

So, CS(φ, ψ) measures the correlation between the combiner of the input as given by φ and the combiner of the
output as given by ψ. From (2), determining CS(φ, ψ) essentially boils down to determining wt(fS [φ, ψ]).

Probability distributions: Ber(p) denotes the Bernoulli distribution with probability of success p; Bin(k, p)
denotes the binomial distribution with k trials and probability of success p; HG(k, k1, s) denotes the hypergeo-
metric distribution corresponding to a population of size k of which k1 are of a specified type and k − k1 are of
a different type and a sample of size s is drawn without repetition.

2.1 Case of Uniform Random Function

Let ρ be a function picked uniformly at random from the set of all functions from {0, 1}m to {0, 1}n. Such an
ρ is a uniform random (m,n) function. An equivalent way to view ρ is the following. Let α0, . . . , α2m−1 be
an enumeration of {0, 1}m. Let Xi = ρ(αi), i = 0, . . . , 2m − 1. Then the random variables X0, . . . , X2m−1 are
independent and uniformly distributed over {0, 1}n.

Proposition 1. Let ρ be a uniform random (m,n) function. Let φ and ψ be m and n-variable Boolean functions
respectively. Let α0, . . . , α2m−1 be an enumeration of {0, 1}m. For 0 ≤ i ≤ 2m − 1, define Wi = fρ[φ, ψ](αi).
Then Wi ∼ Ber(pi), where

pi =
wt(ψ) + φ(αi)(2

n − 2wt(ψ))

2n
. (3)

If ψ is a balanced Boolean function, then Wi ∼ Ber(1/2).

Proof. Let Xi = ρ(αi). Since ρ is a uniform random function, Xi is uniformly distributed over {0, 1}n. We have

Wi = fρ[φ, ψ](αi) = φ(αi)⊕ ψ(ρ(αi)) = φ(αi)⊕ ψ(Xi).

Let Yi = ψ(Xi). Then Yi is a binary valued random variable where Yi takes the value 1 if and only if Xi lies in
the support of ψ. Since Xi is uniformly distributed over {0, 1}n, the probability that Xi lies in the support of ψ
is wt(ψ)/2n. So, Pr[Yi = 1] = wt(ψ)/2n and Pr[Yi = 0] = (2n − wt(ψ))/2n. Consequently,

Pr[Wi = 1] = Pr[φ(αi)⊕ ψ(Xi) = 1]

= Pr[Yi = 1⊕ φ(αi)]

=
(1− φ(αi))wt(ψ) + φ(αi)(2

n − wt(ψ))

2n

=
wt(ψ) + φ(αi)(2

n − 2wt(ψ))

2n
= pi.

This shows that Wi follows Ber(pi). If ψ is a balanced Boolean function, then wt(ψ) = 2n−1 in which case
pi = 1/2 and so Wi follows Ber(1/2).

We are interested in the weight of the function fρ[φ, ψ].
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Proposition 2. Let ρ be a uniform random (m,n) function. Let φ and ψ be m and n-variable Boolean functions
respectively. Let α0, . . . , α2m−1 be an enumeration of {0, 1}m and Wi = fρ[φ, ψ](αi). Let W = wt(fρ[φ, ψ]). Then

W =
∑2m−1

i=0 Wi.

Proof. The following calculation shows the result.

W = wt(fρ[φ, ψ]) = #{αi : fρ[φ, ψ](αi) = 1} = #{i : Wi = 1} =
2m−1∑
i=0

Wi.

Theorem 1. Let ρ be a uniform random (m,n) function. Let φ and ψ be m and n-variable Boolean functions
respectively. If ψ is a balanced Boolean function, then wt(fρ[φ, ψ]) ∼ Bin(2m, 1/2).

Proof. From Proposition 2, wt(fρ[φ, ψ]) = W =
∑2m−1

i=0 Wi where Wi ∼ Ber(pi) with pi given by (3). If ψ is a
balanced Boolean function, then pi = 1/2 and Wi ∼ Ber(1/2). Let α0, . . . , α2m−1 be an enumeration of {0, 1}m
and Xi = ρ(αi) as in Proposition 1. Note

Wi = fρ[φ, ψ](αi) = φ(αi)⊕ ψ(Xi).

Since the random variables X0, . . . , X2m−1 are independent, so are the random variables W0, . . . ,W2m−1. As a
result, W is a sum of 2m independent random variables each of which follows Ber(1/2). So, W ∼ Bin(2m, 1/2).

The special case of Theorem 1 where φ and ψ are non-trivial linear functions was proved in [4].
In the case where ψ is not a balanced function, pi takes either the value wt(ψ)/2n or (2n−wt(ψ))/2n according

as φ(αi) equals 0 or 1. So, the Wi’s are not identically distributed and hence W does not follow the binomial
distribution. In this case, W0, . . . ,W2m−1 is a sequence of 2m Poisson trials. It is possible to use the Chernoff
bound to get an estimate of the probability that W stays close to the mean.

Theorem 2. Let ρ be a uniform random (m,n) function. Let φ and ψ be m and n-variable Boolean functions
respectively. Then the expected value of wt(fρ[φ, ψ]) is

µ =
2mwt(ψ) + 2nwt(φ)− 2wt(φ)wt(ψ)

2n
. (4)

Further, for any 0 < δ < 1

Pr [|wt(fρ[φ, ψ])− µ| ≤ δµ] ≤ 2e−µδ
2/3. (5)

Proof. Let Wi be as in Proposition 1 so that wt(fρ[φ, ψ]) =
∑2m−1

i=0 Wi. From Proposition 1, Wi ∼ Ber(pi) and
so the expected value of Wi is pi. By linearity of expectation, the expected value of wt(fρ[φ, ψ]) equals

2m−1∑
i=0

pi =
2m−1∑
i=0

wt(ψ) + φ(αi)(2
n − 2wt(ψ))

2n

=
2mwt(ψ) + wt(φ)(2n − 2wt(ψ))

2n

=
2mwt(ψ) + 2nwt(φ)− 2wt(φ)wt(ψ)

2n
.

As in the proof of Theorem 1, W0, . . . ,W2m−1 are independent and since Wi ∼ Ber(pi), these random variables
form a sequence of Poisson trials. The Chernoff bound applies (see Section A) leading to (5).
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2.2 Case of Uniform Random Permutation

Let m = n and we consider the set of all bijections from {0, 1}n to itself, i.e., the set of all permutations of
{0, 1}n. There are 2n! such permutations.

Proposition 3. Let S be any permutation of {0, 1}n; let φ and ψ be n-variable Boolean functions. Let x be an
integer such that 0 ≤ x ≤ min(wt(φ),wt(ψ)). Then

#{α : φ(α) = 1 and ψ(S(α)) = 1} = x

if and only if
wt(fS [φ, ψ]) = wt(φ) + wt(ψ)− 2x.

Proof. Define

A0,0 = {α : φ(α) = 0, ψ(S(α)) = 0};
A0,1 = {α : φ(α) = 0, ψ(S(α)) = 1};
A1,0 = {α : φ(α) = 1, ψ(S(α)) = 0};
A1,1 = {α : φ(α) = 1, ψ(S(α)) = 1}.

The sets A0,0, A0,1, A1,0 and A1,1 are mutually disjoint; A0,0∪A0,1 = {α : φ(α) = 0}; A1,0∪A1,1 = {α : φ(α) = 1}
and so

#A0,0 + #A0,1 = 2n − wt(φ),
#A1,0 + #A1,1 = wt(φ).

(6)

Further, A0,0 ∪ A1,0 = {α : ψ(S(α)) = 0}. Since S is a permutation, {α : ψ(S(α)) = 0} = {β : ψ(β) = 0}. So,
A0,0 ∪A1,0 = {β : ψ(β) = 0} and similarly, A0,1 ∪A1,1 = {β : ψ(β) = 1} leading to

#A0,0 + #A1,0 = 2n − wt(ψ),
#A0,1 + #A1,1 = wt(ψ).

(7)

Equations (6) and (7) imply that #A1,1 = x if and only if #A0,1 + #A1,0 = wt(φ) + wt(ψ)− 2x.
Note that the support of fS [φ, ψ] is A0,1 ∪ A1,0 and A1,1 = {α : φ(α) = 1, ψ(S(α)) = 1}. So, #{α : φ(α) =

1, ψ(S(α)) = 1} = x if and only if wt(fS [φ, ψ]) = wt(φ) + wt(ψ)− 2x.

From Proposition 3, given the functions φ and ψ, the possible weights that fS [φ, ψ] can take for any permu-
tation S of {0, 1}n are the elements of the set

{wt(φ) + wt(ψ)− 2x : 0 ≤ x ≤ min(wt(φ),wt(ψ))}. (8)

Suppose π is picked uniformly from the set of all permutations of {0, 1}n. We are interested in the probability
that fπ[φ, ψ] takes a value from the set given by (8).

Theorem 3. Let π be a uniform random permutation of {0, 1}n; let φ and ψ be n-variable Boolean functions.
Then for 0 ≤ x ≤ min(wt(φ),wt(ψ)),

Pr[wt(fπ[φ, ψ]) = wt(φ) + wt(ψ)− 2x] =

(wt(φ)
x

)(2n−wt(φ)
wt(ψ)−x

)(
2n

wt(ψ)

) . (9)

If both φ and ψ are balanced functions, then

Pr[wt(fπ[φ, ψ]) = wt(φ) + wt(ψ)− 2x] =

(
2n−1

x

)2(
2n

2n−1

) . (10)
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Proof. Let α0, . . . , α2n−1 be an enumeration of {0, 1}n and let Xi = π(αi). Unlike the case where π is a uniform
random function, the random variables X0, . . . , X2n−1 are not independent. Instead, it is more convenient to
view these random variables in the following manner. Consider an urn containing balls labelled α0, . . . , α2n−1.
Balls are picked one by one from the urn without replacement and we number the trials from 0 to 2n − 1. Then
the random variable Xi is the label of the ball picked in trial number i.

Consider the random Boolean function g(α) = ψ(π(α)). A Boolean function is defined by its support. So,
it is sufficient to choose wt(ψ) balls from the urn and let the labels of these balls define the support of g.
From Proposition 3, the probability that wt(fπ[φ, ψ]) = wt(φ) + wt(ψ)− 2x is equal to the probability that the
cardinality of the set

A1,1 = {α : φ(α) = 1 and ψ(π(α)) = 1} = {α : φ(α) = 1 and g(α) = 1}

is x.
To obtain this probability, we consider the following equivalent random experiment. As before, consider the

urn containing balls labelled α0, . . . , α2n−1. Further, say that a ball labelled αi is ‘red’ if φ(αi) = 1 and otherwise
it is ‘black’. Now, consider that wt(ψ) balls are drawn from this urn which defines the support of g. The event
that we are interested in is that x of these wt(ψ) are ‘red’ while the other wt(ψ)− x are ‘black’. The probability
of this event is the probability that #A1,1 = x which is given by the right hand side of (9). From Proposition 3,
it follows that wt(fπ[φ, ψ]) = wt(φ) + wt(ψ)− 2x if and only if #A1,1 = x. This shows (9).

In the case where both φ and ψ are balanced functions, both their weights are equal to 2n−1. So, substituting

2n−1 for wt(φ) and wt(ψ) in (9) and using
(

2n−1

2n−1−x
)

=
(
2n−1

x

)
yields (10).

The expression given on the right hand side of (9) is the probability mass function of the hypergeometric
distribution. In the special case where φ and ψ are non-trivial linear functions, the distribution given by (10)
was proved in [4].

3 Nonlinear Invariant Attack

We provide a brief description of the nonlinear invariant attack for key alternating ciphers. Our description
follows the suggestion in Section 7 of [10] where the nonlinear invariants are allowed to be different for the
different rounds. Let EK : {0, 1}n → {0, 1}n be a key alternating block cipher which iterates a round function
R : {0, 1}n → {0, 1}n over r rounds. For an n-bit string L, define RL : {0, 1}n → {0, 1}n as RL(α) = R(α ⊕ L).
For a plaintext P , let the ciphertext C be C = EK(P ) which is obtained in the following manner. The secret
key K is used to obtain the round keys K0, . . . ,Kr−1. Then

C = (RKr−1 ◦RKr−2 ◦ · · · ◦RK0)(P ).

Suppose there are functions g0, . . . , gr : {0, 1}n → {0, 1} and constants c0, . . . , cr−1 ∈ {0, 1}, such that there
are round keys K0, . . . ,Kr−1 for which

gi+1(R(α⊕Ki)) = gi(α⊕Ki)⊕ ci = gi(α)⊕ gi(Ki)⊕ ci (11)

for all α ∈ {0, 1}n. Then g0, . . . , gr are called nonlinear invariants with associated constants c0, . . . , cr−1. The
round keys K0, . . . ,Kr−1 are called weak keys.

The primary requirement in a key invariant attack is the property given in the following proposition. This
property has been derived in [10] for the case where the functions g0, . . . , gr are all equal. The extension to
possibly different g0, . . . , gr is quite straightforward and is given by the following result.
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Proposition 4. Let EK : {0, 1}n → {0, 1}n be an r-round key alternating cipher. Suppose g0, . . . , gr are nonlinear
invariants with associated constants c0, . . . , cr−1 such that there are weak round keys K0, . . . ,Kr−1 obtained from
a key K. Then for any α ∈ {0, 1}n,

fEK
[g0, gr](α) = g0(α)⊕ gr(EK(α)) (12)

is a constant which is independent of α.

Proof. There are n-bit strings α1, . . . , αr−1 such that α0 = α; αi+1 = RKi(αi) = R(αi ⊕Ki) for i = 0, . . . , r − 1;
and β = αr = EK(α). The following holds.

gr(β) = gr(R(αr−1 ⊕Kr−1))

= gr−1(αr−1)⊕ gr−1(Kr−1)⊕ cr−1
= (gr−1(R(αr−2 ⊕Kr−2)))⊕ gr−1(Kr−1)⊕ cr−1
= gr−2(αr−2)⊕ (gr−2(Kr−2)⊕ gr−1(Kr−1))⊕ (cr−2 ⊕ cr−1)
...

= g0(P )⊕

(
r−1⊕
i=0

gi(Ki)

)
⊕

(
r−1⊕
i=0

ci

)
.

So,

g0(α)⊕ gr(β) =

(
r−1⊕
i=0

gi(Ki)

)
⊕

(
r−1⊕
i=0

ci

)
. (13)

The right hand side of (13) is determined by the functions g0, . . . , gr−1, the constants c0, . . . , cr−1 and the round
keys K0, . . . ,Kr−1. In particular, it is independent of α.

Proposition 4 shows that if g0, . . . , gr are nonlinear invariants for some weak keys K0, . . . ,Kr−1, then for all
2n n-bit strings α, g0(α) ⊕ gr(EK(α)) is a constant. We next consider the following question. Suppose g0 and
gr are any two n-variable Boolean functions, α1, . . . , αN and β1, . . . , βN are arbitrary n-bit strings, what is the
maximum value of N such that g0(α1)⊕ gr(β1) = · · · = g0(αN )⊕ gr(βN ) holds?

Proposition 5. Let g0, gr : {0, 1}n → {0, 1}. Let α1, . . . , αN and β1, . . . , βN be n-bit strings such that

g0(α1)⊕ gr(β1) = · · · = g0(αN )⊕ gr(βN ).

Then N ≤ N, where

N = max
(
min(2n + w0 − wr, 2n − w0 + wr),min(w0 + wr, 2

n+1 − w0 − wr)
)
. (14)

Here w0 = wt(g0) and wr = wt(gr). If w0 = wr, then the right hand side of (14) is equal to 2n.

Proof. The condition g0(α1) ⊕ gr(β1) = · · · = g0(αN ) ⊕ gr(βN ) can occur in two ways, namely that all of the
individual expressions are equal to 0 or, all of these are equal to 1.

Consider the maximum possible value of N such that g0(α1) ⊕ gr(β1) = · · · = g0(αN ) ⊕ gr(βN ) = 0. An
individual relation g0(αi)⊕gr(βi) can be 0 in two possible ways, either g0(αi) = gr(βi) = 0 or g0(αi) = gr(βi) = 1.
Suppose there are N0 αi’s such that g0(αi) = gr(βi) = 0 and there are N1 αi’s such that g0(αi) = gr(βi) = 1.
Since g0(αi) = 1 for N1 i’s, it follows that N1 ≤ w0 and similarly, N1 ≤ wr so that N1 ≤ min(w0, wr). A similar
argument shows that N0 ≤ min(2n − w0, 2

n − wr). Since N = N0 + N1, we have N ≤ min(w0, wr) + min(2n −
w0, 2

n − wr).
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Now consider the maximum possible value of N such that g0(α1)⊕ gr(β1) = · · · = g0(αN )⊕ gr(βN ) = 1. An
argument similar to the above shows that N ≤ min(2n − w0, wr) + min(w0, 2

n − wr).
The maximum value of N such that g0(α1) ⊕ gr(β1) = · · · = g0(αN ) ⊕ gr(βN ) is either the maximum

value of N such that g0(α1) ⊕ gr(β1) = · · · = g0(αN ) ⊕ gr(βN ) = 0 or the maximum value of N such that
g0(α1)⊕ gr(β1) = · · · = g0(αN )⊕ gr(βN ) = 1. This shows that

N ≤ max (min(w0, wr) + min(2n − w0, 2
n − wr),min(w0, 2

n − wr) + min(2n − w0, wr)) . (15)

A simple argument shows that the right hand side of (15) is equal to the right hand side of (14).

Remark: Consider Propositions 4 and 5 together. If g0, . . . , gr are nonlinear invariants, then for all 2n n-bit
strings α, g0(α) ⊕ gr(EK(α)) is a constant. So, if N < 2n, then there are no choices of Boolean functions
g1, . . . , gr−1, such that g0, g1, . . . , gr−1, gr are nonlinear invariants.

Notation: For the convenience of the ensuing description, we introduce some notation.

� For a Boolean function f and α = (α1, . . . , αN ) where αi ∈ {0, 1}n for i = 1, . . . , N , define Ψ(f, α) =
(f(α1), . . . , f(αN )).

� For 0 ≤ w ≤ 2n, let Fw be the set of all n-variable Boolean functions having weight w.

� Given g0, for 0 ≤ ` ≤ N , let P`[g0] be the set of all α = (α1, . . . , αN ), αi ∈ {0, 1}n such that g0(αi) = 1
for exactly ` of the αi’s, i.e., P` = {α = (α1, . . . , αN ) : #{i : g0(αi) = 1} = `}. When g0 is clear from the
context we will simply write P` instead of P`[g0].

Lemma 1. Let P = (P1, . . . , PN ) where P1, . . . , PN are chosen from {0, 1}n under uniform random sampling
without replacement. Then

Pr[P ∈ P`[g0]] =

(
w0

`

)(
2n−w0

N−`
)(

2n

N

) , (16)

where w0 = wt(g0).

Proof. The event P ∈ P` occurs if exactly ` of the Pi’s fall in the support of g0 while the other N − ` of the
Pi’s fall outside the support of g0. Let us call strings in the support of g0 to be red and the strings outside
the support of g0 to be black. So, there are w0 red strings and 2n − w0 black strings. The random experiment
consists of choosing N distinct strings from 2n strings such that ` are red and N − ` are black. This is the setting
of hypergeometric distribution and the required probability is given by the right hand side of (16).

3.1 Building Distinguishers

Proposition 4 provides a structural property for a key alternating cipher EK . Suppose g0, . . . , gr are nonlinear
invariants (with associated constants c0, . . . , cr−1) and K is such that K0, . . . ,Kr−1 are weak keys, then for any
plaintext P , g0(P )⊕gr(EK(P )) is a constant. To be able to distinguish EK from a uniform random permutation
π (resp. a uniform random function ρ), it is required to obtain the probability that g0(P ) ⊕ gr(π(P )) (resp.
g0(P )⊕ gr(ρ(P ))) is a constant.

The availability of a single plaintext is not sufficient to construct a meaningful distinguisher. So, suppose
plaintexts P1, . . . , PN are used by the distinguishing algorithm. Since it is not useful to repeat plaintexts, without
loss of generality, we may assume P1, . . . , PN to be distinct. From Proposition 4, we have that

fEK
[g0, gr](P1) = fEK

[g0, gr](P2) = · · · = fEK
[g0, gr](PN ). (17)
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Distinguishing from a uniform random permutation: Since a block cipher EK is a bijective map, the
appropriate goal would be to distinguish EK from a uniform random permutation π of {0, 1}n. To build a
distinguisher, it is required to know the probability of the following event.

Eπ : fπ[g0, gr](P1) = fπ[g0, gr](P2) = · · · = fπ[g0, gr](PN ).

The event Eπ can be written as the disjoint union of two events Eπ0 and Eπ1 , i.e., Eπ = Eπ0 ∪ Eπ1 , where

Eπ0 : fπ[g0, gr](P1) = 0, fπ[g0, gr](P2) = 0, . . . , fπ[g0, gr](PN ) = 0;
Eπ1 : fπ[g0, gr](P1) = 1, fπ[g0, gr](P2) = 1, . . . , fπ[g0, gr](PN ) = 1.

(18)

So,

Pr[Eπ] = Pr[Eπ0 ] + Pr[Eπ1 ]. (19)

Suppose DO be a distinguisher which distinguishes EK from π using a nonlinear invariant attack. On input
P1, . . . , PN , DO returns either real indicating that its oracle O is EK ; or it returns rnd indicating that its oracle
is a uniform random permutation π. The distinguisher DO invokes O on inputs P1, . . . , PN obtaining in return
C1 = O(P1), . . . , CN = O(PN ). If g0(P1) ⊕ gr(C1) = · · · = g0(PN ) ⊕ gr(CN ), then DO returns real, else DO
returns rnd.

If O = EK for a weak key K, then D always returns real and hence makes no error. On the other hand, if
O = π, then the correct answer should be rnd, but, it is possible that D makes an error and returns real. So, the
error that D can make is one-sided and the probability that D returns real when O = π is exactly Pr[Eπ].

Uniform random function: Considering a block cipher to be a map from n-bit strings to n-bit strings, a
weaker goal would be to distinguish EK from a uniform random function ρ from {0, 1}n to {0, 1}n. The events
Eρ, Eρ0 and Eρ1 are defined in a manner similar to Eπ, Eπ0 and Eπ1 respectively with π replaced by ρ. To build a
distinguisher, it is required to obtain the probability of Eρ. As in the case of uniform random permutation, a
distinguisher can make only one-sided error and the probability of this error is Pr[Eρ].

Choice of plaintexts: On being provided with distinct plaintexts P1, . . . , PN , the distinguisher can make an
error. The error probability depends on the manner in which P1, . . . , PN are chosen. We will analyse the error
probability under the following two possible scenarios.

Uniform random sampling without replacement: In this analysis, we assume that P1, . . . , PN are chosen
from {0, 1}n using uniform random sampling without replacement.

Fixed values: In this analysis, it is assumed that P1, . . . , PN are fixed n-bit strings, i.e., there is no randomness
in the plaintexts. Suppose (P1, . . . , PN ) ∈ P`[g0], i.e., there are exactly ` Pi’s such that g0(Pi) = 1. We
show that the probability of error depends on `.

We introduce the following notation to denote the four different kinds of error probabilities that can occur.

� επ,$ is the error probability of distinguishing EK from a uniform random permutation π when P1, . . . , PN
are chosen under uniform random sampling without replacement, i.e., επ,$ = Pr[Eπ] when P1, . . . , PN are
chosen under uniform random sampling without replacement.

� επ,` is the error probability of distinguishing EK from a uniform random permutation π when (P1, . . . , PN ) ∈
P`, i.e., επ,` = Pr[Eπ] when (P1, . . . , PN ) ∈ P`.

� ερ,$ is the error probability of distinguishing EK from a uniform random function ρ when P1, . . . , PN are
chosen under uniform random sampling without replacement, i.e., ερ,$ = Pr[Eρ] when P1, . . . , PN are chosen
under uniform random sampling without replacement.
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� ερ,` is the error probability of distinguishing EK from a uniform random function ρ when (P1, . . . , PN ) ∈ P`,
i.e., ερ,` = Pr[Eρ] when (P1, . . . , PN ) ∈ P`.

4 Error Probability for Uniform Random Function

In this section, we obtain expressions for ερ,$ and ερ,`. The expression for ερ,$ is given in Theorem 5 with Lemma 2
leading up to it. Corollary 4 to Lemma 2 provides the expression for ερ,`.

Lemma 2. Let g0 and gr be two n-variable Boolean functions. Let ρ be a uniform random function and F =
fρ[g0, gr] = g0 ⊕ (gr ◦ ρ). Let α = (α1, . . . , αN ) where α1, . . . , αN are distinct n-bit strings. Then

Pr[Ψ(F, α) = (0, . . . , 0)] =
N∏
i=1

(
wr
2n
g0(αi) +

2n − wr
2n

(1− g0(αi))
)

=
(wr

2n

)`(2n − wr
2n

)N−`
; (20)

Pr[Ψ(F, α) = (1, . . . , 1)] =

N∏
i=1

(
2n − wr

2n
g0(αi) +

wr
2n

(1− g0(αi))
)

=
(wr

2n

)N−`(2n − wr
2n

)`
. (21)

where wr = wt(gr) and ` is such that α ∈ P`.
Further, if gr is balanced, then Pr[Ψ(F, α) = (0, . . . , 0)] = Pr[Ψ(F, α) = (1, . . . , 1)] = 1/2N .

Proof. Consider Ψ(F, α) = (0, . . . , 0) which is the following event:

gr(ρ(α1)) = g0(α1), . . . , gr(ρ(αN )) = g0(αN ).

Since α1, . . . , αN are distinct and ρ is a uniform random function, the n-bit strings X1 = ρ(α1), . . . , XN = ρ(αN )
are independent and uniformly distributed over {0, 1}n. Let pi = Pr[gr(ρ(αi)) = g0(αi)] = Pr[gr(Xi) = g0(αi)]
for i = 1, . . . , N . Since X1, . . . , XN are independent, so are the events gr(X1) = g0(α1), . . . , gr(XN ) = g0(αN ).
Consequently,

Pr[Ψ(F, α) = (0, . . . , 0)] = Pr[gr(X1) = g0(α1), . . . , gr(XN ) = g0(αN )]

= p1 · · · pN .

Since Xi is uniformly distributed over {0, 1}n, the event gr(Xi) = 1 occurs if and only if Xi falls within the
support of gr and the probability of this is wr/2

n. Similarly, the event gr(Xi) = 0 occurs with probability
(2n − wr)/2n.

pi = Pr[gr(Xi) = g0(αi)] =

{
Pr[gr(Xi) = 1] = wr/2

n if g0(αi) = 1;
Pr[gr(Xi) = 0] = (2n − wr)/2n if g0(αi) = 0.

This can be compactly written as

pi =
wr
2n
g0(αi) +

2n − wr
2n

(1− g0(αi).

Let α ∈ P`. Then for exactly ` of the αi’s we have g0(αi) = 1 while for the other N − ` of the αi’s, we have
g0(αi) = 0. This consideration leads to (20).

The proof for (21) is similar. If gr is balanced, then wr = 2n−1 which shows the last part of the theorem.

Corollary 4. Let g0 and gr be two n-variable Boolean functions. Let ρ be a uniform random function and
F = fρ[g0, gr] = g0 ⊕ (gr ◦ ρ). Let P = (P1, . . . , PN ) ∈ P`. Then

ερ,` = Pr[Eρ] =
(wr

2n

)`(2n − wr
2n

)N−`
+
(wr

2n

)N−`(2n − wr
2n

)`
. (22)

Further, if gr is balanced, then ερ,` = 1/2N−1.
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Theorem 5. Let g0 and gr be two n-variable Boolean functions. Let ρ be a uniform random function from
{0, 1}n to {0, 1}n and F = fρ[g0, gr] = g0 ⊕ (gr ◦ ρ). Let P = (P1, . . . , PN ) where P1, . . . , PN are chosen from
{0, 1}n under uniform random sampling without replacement and these are independent of F . Then

Pr[Eρ0 ] = Pr[Ψ(F, P ) = (0, . . . , 0)] =
N∑
`=0

(wr
2n

)`(2n − wr
2n

)N−`
·
(
w0

`

)(
2n−w0

N−`
)(

2n

N

) ;

Pr[Eρ1 ] = Pr[Ψ(F, P ) = (1, . . . , 1)] =
N∑
`=0

(
2n − wr

2n

)` (wr
2n

)N−`
·
(
w0

`

)(
2n−w0

N−`
)(

2n

N

) .

(23)

Here w0 = wt(g0) and wr = wt(gr).
Consequently,

ερ,$ = Pr[Eρ] =
N∑
`=0

((wr
2n

)`(2n − wr
2n

)N−`
+

(
2n − wr

2n

)` (wr
2n

)N−`)
·
(
w0

`

)(
2n−w0

N−`
)(

2n

N

) . (24)

Further, if gr is balanced, then ερ,$ = 1/2N−1.

Proof. Consider the event Eρ0 .

Pr[Eρ0 ] = Pr[Ψ(F, P ) = (0, . . . , 0)]

=

N∑
`=0

Pr[Ψ(F, P ) = (0, . . . , 0), P ∈ P`]

=
N∑
`=0

∑
α∈P`

Pr[Ψ(F, P ) = (0, . . . , 0), P = α]

=
N∑
`=0

∑
α∈P`

Pr[Ψ(F, α) = (0, . . . , 0), P = α]

=
N∑
`=0

∑
α∈P`

Pr[Ψ(F, α) = (0, . . . , 0)] · Pr[P = α] (since F and P are independent)

=
N∑
`=0

∑
α∈P`

(wr
2n

)`(2n − wr
2n

)N−`
· Pr[P = α] (from Lemma 2)

=

N∑
`=0

(wr
2n

)`(2n − wr
2n

)N−` ∑
α∈P`

Pr[P = α]

=

N∑
`=0

(wr
2n

)`(2n − wr
2n

)N−`
Pr[P ∈ P`]

=
N∑
`=0

(wr
2n

)`(2n − wr
2n

)N−`
·
(
w0

`

)(
2n−w0

N−`
)(

2n

N

) (from Lemma 1).

The probability of the event Eρ1 is similarly obtained. Since Eρ is the disjoint union of Eρ0 and Eρ1 , we obtain (24).
If gr is balanced, wr = 2n−1 and we have

ερ,$ =
1

2N−1

N∑
`=0

(
w0

`

)(
2n−w0

N−`
)(

2n

N

) =
1

2N−1
.
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The last equality holds since
(
w0

`

)(
2n−w0

N−`
)
/
(
2n

N

)
is the probability that a random variable X equals ` where X

follows HG(2n, w0, N) and so
∑N

`=0 Pr[X = `] = 1.

Remarks:

1. From Corollay 4 and Theorem 5, we have that if gr is balanced, then ερ,` = ερ,$ = 1/2N−1, i.e., the error
probability of the distinguisher is determined only by the number of distinct plaintexts that are used and
not on whether these are fixed or chosen using uniform random sampling without replacement.

2. It has been mentioned in [10] that the distinguishing error of a nonlinear invariant attack is 1/2N−1. The
above analysis shows that this is the error in distinguishing from a uniform random function.

5 Error Probability for Uniform Random Permutation

In this section, we obtain expressions for επ,$ and επ,`. The expression for επ,$ is given in Theorem 7. Lemmas 3
and 1 are intermediate steps to proving the theorem. Corollary 6 (to Lemma 3) provides the expression for επ,`.
Using the results of Section 2.2, it is possible to obtain a different expression for επ,$. This expression is derived
in Appendix B.

Lemma 3. Let g0 and gr be n-variable Boolean functions. Let π be a uniform random permutation and F =
fπ[g0, gr] = g0 ⊕ (gr ◦ π). Let α1, . . . , αN be distinct n-bit strings such that #{i : g0(αi) = 1} = `. Denote
α = (α1, . . . , αN ). Then

Pr[Ψ(F, α) = (0, . . . , 0)] =

(
2n−wr

N−`
)(
wr

`

)(
2n

N

)(
N
`

) and Pr[Ψ(F, α) = (1, . . . , 1)] =

(
wr

N−`
)(

2n−wr

`

)(
2n

N

)(
N
`

) , (25)

where wr = wt(gr).

Proof. Consider the first statement. It is given that g0(αi) = 1 for exactly ` of the αi’s.
Let us start with the special case where g0(α1) = · · · = g0(α`) = 1 and g0(α`+1) = · · · = g0(αN ) = 0. Then

the event Ψ(F, α) = (0, . . . , 0) holds if and only if gr(π(α1)) = · · · = gr(π(α`)) = 1 and gr(π(α`+1)) = · · · =
gr(π(αN )) = 0. Since α1, . . . , αN are distinct n-bit strings and π is a uniform random permutation of {0, 1}n,
the random quantities π(α1), . . . , π(αN ) can be thought of as being chosen from {0, 1}n using uniform random
sampling without replacement. Further, gr(π(αi)) = 1 (resp. 0) if and only if π(αi) falls within (resp. outside)
the support of gr.

From the above considerations, the probability that gr(π(α1)) = 1 is wr/2
n; the probability that gr(π(α2)) =

1 given that gr(π(α1)) = 1 is (wr − 1)/(2n − 1); continuing, the probability that gr(π(α`)) = 1 given that
gr(π(α1)) = 1, . . . , gr(π(α`−1)) = 1 is (wr − ` + 1)/(2n − ` + 1); the probability that gr(π(α`+1)) = 0 given
that gr(π(α1)) = 1, . . . , gr(π(α`)) = 1 is (2n − wr)/(2n − `); the probability that gr(π(α`+2)) = 0 given that
gr(π(α1)) = 1, . . . , gr(π(α`)) = 1 and gr(π(α`+1)) = 0 is (2n − wr − 1)/(2n − ` − 1); continuing, the probability
that gr(π(αN )) = 0 given that gr(π(α1)) = 1, . . . , gr(π(α`)) = 1 and gr(π(α`+1)) = 0, . . . , gr(π(αN−1)) = 0 is
(2n − wr − (N − `) + 1)/(2n −N − 1). So,

Pr[Ψ(F, α) = (0, . . . , 0)]

=
wr(wr − 1) · · · (wr − `+ 1)(2n − wr)(2n − wr − 1) · · · (2n − wr − (N − `)− 1)

2n(2n − 1) · · · (2n −N + 1)
. (26)

Consider now the general case where there are exactly ` values of i such that g0(αi) = 1 and these are not
necessarily the first ` αi’s. Following the argument given above for the special case, it is not difficult to see that
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the probability of Ψ(F, α) = (0, . . . , 0) in the general case is also given by (26). In particular, the argument
shows that the numerator of the probability in the general case is a reordering of the numerator of (26) while
the denominator remains the same. So, in all cases the probability of Ψ(F, α) = (0, . . . , 0) is given by (26).
Multiplying the numerator and denominator of (26) by `!(N − `)!N ! and some simplifications, we obtain

Pr[Ψ(F, α) = (0, . . . , 0)] =

(
2n−wr

N−`
)(
wr

`

)(
2n

N

)(
N
`

) .

This shows the first statement. The other statement is obtained similarly.

Corollary 6. Let g0 and gr be two n-variable Boolean functions. Let π be a uniform random permutation and
F = fπ[g0, gr] = g0 ⊕ (gr ◦ π). Let P = (P1, . . . , PN ) ∈ P`. Then

επ,` = Pr[Eπ] =

(
2n−wr

N−`
)(
wr

`

)(
2n

N

)(
N
`

) +

(
wr

N−`
)(

2n−wr

`

)(
2n

N

)(
N
`

) , (27)

where wr = wt(gr).

Theorem 7. Let g0 and gr be two n-variable Boolean functions. Let π be a uniform random permutation of
{0, 1}n and F = fπ[g0, gr] = g0⊕ (gr ◦π). Let P = (P1, . . . , PN ) where P1, . . . , PN are chosen from {0, 1}n under
uniform random sampling without replacement and these are independent of F . Then

Pr[Eπ0 ] = Pr[Ψ(F, P ) = (0, . . . , 0)] =

N∑
`=0

(
2n−wr

N−`
)(
wr

`

)(
2n

N

)(
N
`

) ·
(
w0

`

)(
2n−w0

N−`
)(

2n

N

) ;

Pr[Eπ1 ] = Pr[Ψ(F, P ) = (1, . . . , 1)] =
N∑
`=0

(
wr

N−`
)(

2n−wr

`

)(
2n

N

)(
N
`

) ·
(
w0

`

)(
2n−w0

N−`
)(

2n

N

) .

(28)

Here w0 = wt(g0) and wr = wt(gr). Consequently,

επ,$ = Pr[Eπ] =
N∑
`=0

(
2n−wr

N−`
)(
wr

`

)
+
(
wr

N−`
)(

2n−wr

`

)(
2n

N

)(
N
`

) ·
(
w0

`

)(
2n−w0

N−`
)(

2n

N

) . (29)

If both g0 and gr are balanced, then επ,$ is the expectation of 2p(X)/
(
N
X

)
, i.e.,

επ,$ = E

[
2p(X)(
N
X

) ] (30)

where X follows HG(2n, 2n−1, N) and for ` = 0, . . . , N , p(`) is the probability that X = `.
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Proof. Consider Pr[Eπ0 ].

Pr[Ψ(F, P ) = (0, . . . , 0)]

=

N∑
`=0

∑
α∈P`

Pr[Ψ(F, P ) = (0, . . . , 0), P = α]

=
N∑
`=0

∑
α∈P`

Pr[Ψ(F, α) = (0, . . . , 0), P = α]

=
N∑
`=0

∑
α∈P`

Pr[Ψ(F, α) = (0, . . . , 0)] · Pr[P = α] (since F and P are independent)

=
N∑
`=0

∑
α∈P`

(
2n−wr

N−`
)(
wr

`

)(
2n

N

)(
N
`

) · Pr[P = α] (from Lemma 3)

=
N∑
`=0

(
2n−wr

N−`
)(
wr

`

)(
2n

N

)(
N
`

) ∑
α∈P`

Pr[P = α]

=

N∑
`=0

(
2n−wr

N−`
)(
wr

`

)(
2n

N

)(
N
`

) Pr[P ∈ P`]

=
N∑
`=0

(
2n−wr

N−`
)(
wr

`

)(
2n

N

)(
N
`

) ·
(
w0

`

)(
2n−w0

N−`
)(

2n

N

) (from Lemma 1).

Pr[Eπ1 ] is obtained similarly. Further, the probability of Eπ is obtained from (19).
If both g0 and gr are balanced, then w0 = wr = 2n−1 and we have

επ,$ =
N∑
`=0

2
(
2n−1

N−`
)(

2n−1

`

)(
2n

N

)(
N
`

) ·
(
2n−1

`

)(
2n−1

N−`
)(

2n

N

) =
N∑
`=0

2p(`)(
N
`

) · (2n−1

`

)(
2n−1

N−`
)(

2n

N

) = E

[
2p(X)(
N
X

) ] .

The next result shows that when g0 and gr are balanced, the distinguishing error for uniform random per-
mutations is at least as large as that for uniform random functions.

Theorem 8. Let g0 and gr be two balanced n-variable Boolean functions. Let π be a uniform random permutation
of {0, 1}n and ρ be a uniform random function from {0, 1}n to {0, 1}n. Define Fπ = fπ[g0, gr] = g0⊕ (gr ◦π) and
Fρ = fρ[g0, gr] = g0 ⊕ (gr ◦ ρ). Let P = (P1, . . . , PN ) where P1, . . . , PN are chosen from {0, 1}n under uniform
random sampling without replacement and these are independent of Fρ or Fπ. Let

επ,$ = Pr[Eπ] = Pr[Eπ] + Pr[Eπ0 ] = Pr[Ψ(Fπ, P ) = (0, . . . , 0)] + Pr[Ψ(Fπ, P ) = (1, . . . , 1)];

ερ,$ = Pr[Eρ] = Pr[Eρ] + Pr[Eρ0 ] = Pr[Ψ(Fρ, P ) = (0, . . . , 0)] + Pr[Ψ(Fρ, P ) = (1, . . . , 1)].

Then επ,$ ≥ ερ,$.

Proof. It is given that g0 and gr are both balanced. From Theorem 5, it follows that ερ,$ = 1/2N−1. From

Theorem 7, we have that επ,$ is the expectation of 2p(X)/
(
N
X

)
, i.e., επ,$ = E[2p(X)/

(
N
X

)
], where X follows

HG(2n, 2n−1, N) and for ` = 0, . . . , N , p(`) is the probability that X = `.
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Let Y = 2p(X)/
(
N
X

)
. Using Jensen’s inequality, we obtain

1

E[Y ]
≤ E

[
1

Y

]
= E

[ (
N
X

)
2p(X)

]

=
N∑
`=0

(
N
`

)
2p(`)

· Pr[X = `]

=
N∑
`=0

(
N
`

)
2p(`)

· p(`)

= 2N−1.

Noting επ,$ = E[Y ] and ερ,$ = 1/2N−1 gives the desired result.

6 Computational Results

This section gives a summary of the computations done with the expressions of the error probabilities of non-
linear invariant attack presented in Section 4 and 5. For computing επ,$ which is the error probability for
distinguishing from a uniform random permutation, we have used the expression given by (29).

In our computations we have used the following Stirling’s approximation to compute the binomial coefficients.(
k

i

)
≈ 1
√

2πk(i/k)i+
1
2 (1− i/k)k−i+

1
2

.

The computations were done for n = 16, 32, 48 and 64; and N = 2n for n = 2, 4, 8 and 16, except that the
case N = 216 was not considered when n = 16. Further, we have considered balanced g0 and gr, i.e., wt(g0) =
wt(gr) = 2n−1. As a result, ερ,$, which is the error probability of distinguishing from a uniform random function,
is equal to 1/2N−1.

Comparison between επ,$ and ερ,$. Table 1 gives the value of επ,$ and the ratio επ,$/ερ,$ = 2N−1επ,$ for
different values of n and n. It may be noted that the last column of the table confirms Theorem 8 which shows
that for balanced g0 and gr, επ,$ ≥ ερ,$ = 1/2N−1. Further, the ratio is close to 1. This may be explained by
referring to the proof of Theorem 8. The result επ,$ ≥ 1/2N−1 is obtained using Jensen’s inequality to the convex
function f(x) = 1/x. It is known that Jensen’s inequality is tight when the convex function is a straight line.
In the range of x where Jensen’s inequality is applied, it turns out that f(x) behaves almost like a straight line.
Consequently, the inequality is almost tight in this range of applicability.

7 Conclusion

In this paper, we have obtained the distributions of the correlations between arbitrary input and output combiners
of uniform random functions and uniform random permutations. These generalise earlier results by Daeman and
Rijmen [4] who had considered only linear combiners. Correlation between nonlinear input and output combiners
arise in the context of nonlinear invariant attacks. We have performed a detailed analysis of the distinguishing
error of such attacks.
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n n επ,$ 2N−1 × επ,$

16

2 0.133739 1.069910

4 0.000031 1.017414

8 1.728943×10−77 1.000990

32

2 0.133739 1.069908

4 0.000031 1.017415

8 1.728930×10−77 1.000982

16 9.982420×10−19729 1.000004

48

2 0.133739 1.069908

4 0.000031 1.017415

8 1.728930×10−77 1.000982

16 9.982420×10−19729 1.000004

64

2 0.133739 1.069908

4 0.000031 1.017415

8 1.728930×10−77 1.000982

16 9.982420×10−19729 1.000004

Table 1: Comparison between επ,$ and ερ,$ = 2−(N−1).
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[2] Céline Blondeau and Kaisa Nyberg. Joint data and key distribution of simple, multiple, and multidimensional
linear cryptanalysis test statistic and its impact to data complexity. Des. Codes Cryptography, 82(1-2):319–
349, 2017.

[3] Andrey Bogdanov and Elmar Tischhauser. On the Wrong Key Randomisation and Key Equivalence Hy-
potheses in Matsui’s Algorithm 2. In Fast Software Encryption, pages 19–38. Springer, 2014.

[4] Joan Daemen and Vincent Rijmen. Probability distributions of correlation and differentials in block ciphers.
J. Mathematical Cryptology, 1(3):221–242, 2007.

[5] Carlo Harpes, Gerhard G. Kramer, and James L. Massey. A generalization of linear cryptanalysis and
the applicability of matsui’s piling-up lemma. In Louis C. Guillou and Jean-Jacques Quisquater, editors,



A CHERNOFF BOUND 18

Advances in Cryptology - EUROCRYPT ’95, International Conference on the Theory and Application of
Cryptographic Techniques, Saint-Malo, France, May 21-25, 1995, Proceeding, volume 921 of Lecture Notes
in Computer Science, pages 24–38. Springer, 1995.

[6] Lars R. Knudsen and Matthew J. B. Robshaw. Non-linear approximations in linear cryptanalysis. In Ueli M.
Maurer, editor, Advances in Cryptology - EUROCRYPT ’96, International Conference on the Theory and
Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of
Lecture Notes in Computer Science, pages 224–236. Springer, 1996.

[7] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryptology–
EUROCRYPT’93, pages 386–397. Springer, 1993.

[8] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Chapman & Hall/CRC, 2010.

[9] Luke O’Connor. Properties of linear approximation tables. In Bart Preneel, editor, Fast Software Encryption:
Second International Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings, volume 1008 of Lecture
Notes in Computer Science, pages 131–136. Springer, 1994.

[10] Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear invariant attack: Practical attack on full SCREAM,
iSCREAM and Midori64. Journal of Cryptology, 2018. https://doi.org/10.1007/s00145-018-9285-0.

A Chernoff Bound

We briefly recall the Chernoff bound. This result can be found in standard texts [8].

Theorem 9. Let X1, X2, . . . , Xλ be a sequence of independent Poisson trials such that for 1 ≤ i ≤ λ, Pr [Xi = 1] =
pi. Then for X =

∑λ
i=1Xi and µ = E [X] =

∑λ
i=1 pi the following bounds hold:

For any 0 < δ ≤ 1, Pr [X ≥ (1 + δ)µ] ≤ e−µδ2/3. (31)

For any 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−µδ2/2. (32)

B Alternative Expression for επ,$

Lemma 4. Let P = (P1, . . . , PN ) where P1, . . . , PN are chosen from {0, 1}n under uniform random sampling
without replacement. Let f : {0, 1}n → {0, 1} be of weight w. Then

Pr[Ψ(f, P ) = (0, . . . , 0)] =
(2

n−w
N )

(2
n

N )
and Pr[Ψ(f, P ) = (1, . . . , 1)] =

(w
N)

(2
n

N )
. (33)

Proof. Consider the first statement. We need to consider f(P1) = 0, . . . , f(PN ) = 0. This holds if and only
if all of P1, . . . , PN fall outside the support of f . The probability that P1 falls outside the support of f is
(2n − w)/2n; given that P1 falls outside the support of f , the probability that P2 falls outside the support of f
is (2n−w− 1)/(2n− 1); given that P1, P2 falls outside the support of f , the probability that P3 falls outside the
support of f is (2n − w − 2)/(2n − 2) and so on. As a result we obtain

Pr[Ψ(f, P ) = (0, . . . , 0)] =
2n − w

2n
· 2n − w − 1

2n − 1
· 2n − w − 2

2n − 2
· · · 2

n − w −N + 1

2n −N + 1

=
(2n − w)(2n − w − 1) · · · (2n − w −N + 1))

2n(2n − 1) · · · (2n −N + 1)
· (2n −N)!

(2n −N)!
· (2n − w −N)!

(2n − w −N)!

=

(
2n−w
N

)(
2n

N

) .
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The other statement is obtained similarly.

Lemma 5. Let F be a random (but, not necessarily uniform random) Boolean function. Let P = (P1, . . . , PN )
where P1, . . . , PN are chosen from {0, 1}n under uniform random sampling without replacement and these are
independent of F . Then

Pr[Ψ(F, P ) = (0, . . . , 0)] =

2n∑
w=0

(
2n−w
N

)(
2n

N

) · Pr[F ∈ Fw];

Pr[Ψ(F, P ) = (1, . . . , 1)] =
2n∑
w=0

(
w
N

)(
2n

N

) · Pr[F ∈ Fw].

(34)

Proof. Consider the first statement.

Pr[Ψ(F, P ) = (0, . . . , 0)]

=

2n∑
w=0

∑
f∈Fw

Pr[Ψ(F, P ) = (0, . . . , 0) ∧ F = f ]

=
2n∑
w=0

∑
f∈Fw

Pr[Ψ(f, P ) = (0, . . . , 0) ∧ F = f ]

=

2n∑
w=0

∑
f∈Fw

Pr[Ψ(f, P ) = (0, . . . , 0)] Pr[F = f ] (since F and P are independent)

=
2n∑
w=0

∑
f∈Fw

(
2n−w
N

)(
2n

N

) · Pr[F = f ] (from Lemma 4)

=

2n∑
w=0

(
2n−w
N

)(
2n

N

) ∑
f∈Fw

Pr[F = f ]

=
2n∑
w=0

(
2n−w
N

)(
2n

N

) · Pr[F ∈ Fw].

The other statement is obtained similarly.

Theorem 10. Let g0 and gr be two n-variable Boolean functions. Let π be a uniform random permutation of
{0, 1}n and F = fπ[g0, gr] = g0⊕ (gr ◦π). Let P = (P1, . . . , PN ) where P1, . . . , PN are chosen from {0, 1}n under
uniform random sampling without replacement and these are independent of F . Then

Pr[Eπ0 ] = Pr[Ψ(F, P ) = (0, . . . , 0)] =

m∑
x=0

(
2n−w0−wr+2x

N

)(
2n

N

) ·
(
w0

x

)(
2n−w0

wr−x
)(

2n

wr

) ;

Pr[Eπ1 ] = Pr[Ψ(F, P ) = (1, . . . , 1)] =
m∑
x=0

(
w0+wr−2x

N

)(
2n

N

) ·
(
w0

x

)(
2n−w0

wr−x
)(

2n

wr

) .

(35)

Here w0 = wt(g0), wr = wt(gr) and m = min(w0, wr). Consequently,

επ,$ = Pr[Eπ] =

m∑
x=0

(
2n−w0−wr+2x

N

)
+
(
w0+wr−2x

N

)(
2n

N

) ·
(
w0

x

)(
2n−w0

wr−x
)(

2n

wr

) . (36)
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Proof. From Theorem 3, the possible values of the weight of F are w0 + wr − 2x for x = 0, . . . ,m and for
w = w0 + wr − 2x, Pr[F ∈ Fw] =

(
w0

x

)(
2n−w0

wr−x
)
/
(
2n

wr

)
.

Consider Pr[Eπ0 ]. From Lemma 5,

Pr[Eπ0 ] = Pr[Ψ(F, P ) = (0, . . . , 0)] =

2n∑
w=0

(
2n−w
N

)(
2n

N

) · (w0

x

)(
2n−w0

wr−x
)(

2n

wr

)
=

m∑
x=0

(
2n−w0−wr+2x

N

)(
2n

N

) ·
(
w0

x

)(
2n−w0

wr−x
)(

2n

wr

) .

The other statement is obtained similarly. Further, the probability of Eπ is obtained from (19).


