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Abstract. Fairness in Secure Multiparty Computation (MPC) is known
to be impossible to achieve in the presence of a dishonest majority. Pre-
vious works have proposed combining MPC protocols with Cryptocur-
rencies in order to financially punish aborting adversaries, providing an
incentive for parties to honestly follow the protocol. This approach also
yields privacy-preserving Smart Contracts, where private inputs can be
processed with MPC in order to determine the distribution of funds given
to the contract. Unfortunately, the focus of existing work is on proving
that this approach is possible and they present monolithic and mostly
inefficient constructions. In this work, we put forth the first modular con-
struction of “Insured MPC”, where the result of the private computation
of parties either yields an output describing how to distribute funds or a
proof that a set of parties has misbehaved, allowing for financial punish-
ments. Moreover, both the output and the proof of cheating are publicly
verifiable, allowing third parties to independently validate an execution.

We present a highly efficient protocol which allows public verification of
cheating behavior during the output stage. This scheme is constructed
using a publicly verifiable homomorphic commitment scheme, for which
we propose an efficient construction. Furthermore, we construct a com-
piler that uses any such scheme together with a Smart Contract to im-
plement Insured MPC. This compiler requires a standard (non-private)
Smart Contract. Our results are proven in the Universal Composability
framework using a Global Random Oracle as the setup assumption. From
a theoretical perspective, our general results provide the first characteri-
zation of sufficient properties that MPC protocols must achieve in order
to be efficiently combined with Cryptocurrencies, as well as insights on
publicly verifiable protocols. On the other hand, all our constructions
and protocols are highly efficient and allow for a fast implementation.
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1 Introduction

Secure Multiparty Computation (MPC) allows a set of mutually distrusting
parties to evaluate an arbitrary function on secret inputs. The participating
parties learn nothing beyond the output of the computation, while malicious
behavior at runtime does not alter the output. An intuitive and in practice often
required feature of MPC is that if a cheating party obtains the output, then all
the honest parties should do so as well. Protocols which guarantee this are also
called fair. In his seminal work, Cleve [19] proved that fair MPC with a dishonest
majority is impossible to achieve in the standard communication model. While
the result can be circumvented for certain, specific functions [24, 3, 4] in the two-
party setting, this barrier prevents MPC from being a useful tool for certain
interesting applications.

With the advent of cryptocurrencies Andrychowicz et al. [2] (and indepen-
dently Bentov & Kumaresan [10]) initiated a line of research that avoids the
aforementioned drawback by imposing financial penalties on misbehaving par-
ties. Such monetary punishments would then incentivize fair behavior of the
protocol participants, assuming that they are rational and that the penalties are
high enough. This is achieved by constructing a protocol which interacts with
a distributed ledger and digital currency, where the overall structure of their
idea is as follows: (i) Each party deposits a collateral on the distributed ledger;
(ii) The parties run the secure computation, but delay the reconstruction of the
output; (iii) The parties reconstruct the output. Each party obtains the collat-
eral back if it can prove that it behaved honestly during the reconstruction; and
(iv) If some parties have cheated, then their share of the collateral is distributed
among the honest participants.

Several works [33, 29, 32] generalized this concept and improved the perfor-
mance with respect to the amount of interaction with the distributed ledger as
well as the collateral that each party needs to deposit. In particular, Kumaresan
et al. [1, 2, 33] introduced the idea of MPC with cash distribution, in which the
inputs and outputs of the parties consist of both data and money. In this latter
case, the distributed ledger is used both to enforce financial penalties as well as
to distribute money according to the output of the secure computation.

1.1 Fair Computation vs. Fair Output Delivery

Regarding a better understanding of our design choices it is worthwhile to discuss
first which adversarial behavior should be punishable: while a fair protocol can
impose fines on any deviation, an adversary aborting before the output phase
will not learn any information about the result. One therefore has to distin-
guish between two types of protocols: those that punish all cheating yield Fair
Computation with Penalties, while the second approach only allows Fair Output
Delivery with Penalties. One can roughly classify the state-of-the-art using this
distinction.
Fair Computation. [2] and [33] follow this line of work, but use heavy zero-
knowledge machinery to achieve their results. As [29] correctly pointed out,



care must be taken when choosing the “inner” MPC protocol (which is com-
piled to have financial penalties): to achieve fair computation with penalties, it
must have a property called Identifiable Abort (ID-MPC, [27]). As [2, 33] use
GMW [23] this works in their case, but not every MPC protocol is suitable. For
an efficient implementation, one can use more efficient ID-MPC protocols such
as [7]. Unfortunately, the best ID-MPC protocols are still significantly slower
than those protocols without that property and the amount of data that current
constructions store on the ledger is highly impractical5.
Fair Output Delivery. This line of work has been independently initiated by
[1, 10] and continued in [2, 31, 32, 34, 11]. Here, the MPC protocol computes a
verifiable secret sharing (VSS) of the output and shares it among the parties.
All of the above protocols perform the reconstruction essentially on the ledger,
and they obtain a reconstruction that only needs a constant number of rounds
per party. This implicitly has identifiable abort due to the use of a VSS and
because all parties can publicly agree if another participant stopped to post on
the ledger. A caveat, both from a theoretical and practical point of view, is that
current protocols compute the sharing of the VSS inside the MPC in a white-box
way, which adds significant computational overhead.

1.2 Our Contributions

In this work, we give the first concrete MPC scheme having a fair output delivery
with penalties. We depart from the current designs to have a cleaner separation
between the different phases, which allows for a modular analysis in the Global
Universal Composability framework (GUC). At the same time, this approach
directly pinpoints the necessary properties of all building blocks involved in our
construction to actually make it work. We now explain our construction and the
contributions more in detail.

New Multiparty Additively Homomorphic Commitment with Delayed Public Ver-
ifiability. These primitive acts as the central hub of our construction. Such com-
mitment schemes are additively homomorphic, allowing one to reveal linear com-
binations between commitments without revealing the individual commitments
themselves. Moreover, they allow for any third party to verify that a message is
a valid opening for a given commitment. These commitments, when combined
with a suitable “Base MPC” protocol, allow us to use a much more efficient and
modular output secret sharing and reconstruction. While such a primitive could
be realized with stand alone security by constructions such as Pedersen Com-
mitments [38], existing constructions that achieve all of these properties do not
have composability guarantees. Instead, we provide an interactive construction
which only needs a small number of Oblivious Transfers (OTs) independent from
the number of commitments and otherwise relies solely on symmetric primitives.
This construction improves on the protocols of [16, 21], which are incompatible
with public verifiability. We believe this construction is of independent interest.

5 One can of course replace the proofs with SNARKs, but this comes with high com-
putation costs to construct these proofs.



Modular Design. Based on such a commitment scheme and a suitable “Base
MPC”, we give a modular approach for constructing “Insured MPC”: first, we
combine the “Base MPC” with the commitment scheme to achieve MPC with
publicly verifiable output. In this step, the protocol moves the shares of the se-
cret sharing consistently out of the MPC. Given an extended standard Smart
Contract functionality and a global clock we can then construct an identifiable
reconstruction phase in a modular way where we let the Smart Contract medi-
ate the reconstruction. In case of disagreement, this Smart Contract can then
identify the cheater as all parties are required to post the openings of their com-
mitted shares to the ledger. By choice of our construction, the steps involved in
the verification process are mostly light-weight due to our commitment scheme.

Efficient Instantiation. We show how to instantiate all sub-protocols with effi-
cient primitives. More specifically, we modify the constant-round MPC protocol
due to [25, 43] to work as the “Base MPC”. The commitment protocol, after a
small number of base OTs using a verifiable OT scheme, only performs Random
Oracle (RO) calls and can be implemented using a cryptographic hash function.
As we use a restricted programmable and observable global RO [13] we are then
still able to prove security of all steps in GUC.

Other Related Work. Recently Choudhuri et al. [18] showed how to circum-
vent the impossibility result of [19] and constructed a fair MPC using a Bulletin
Board. As their work either relies on Witness Encryption (which currently re-
quires Indistinguishability Obfuscation to be constructed) or Trusted Hardware
(which we also deem to be a very strong assumption) it does seem to be an
incomparable alternative. The use of MPC for computing on private data in
permissioned ledgers has been suggested in [9], where the authors suggest that
an MPC protocol can have all of its messages posted on a public ledger for
verification.

As mentioned before, public verifiability and identifiable abort are two crucial
properties to construct fair MPC with penalties. MPC with public verification
was introduced in [6, 41]. Both of protocols come with a significant overhead
during the computation phase and are not suitable in our setting. Ishai et al. [27]
formally studied how to construct ID-MPC using adaptively secure OT and Zero-
Knowledge proofs. Subsequent work [7, 42, 20] then introduced more efficient
protocols. [7, 20] also describe how to modify their approach to have a public
verification procedure.

2 Preliminaries

Let y
$← F (x) denote running the randomized algorithm F with input x and

random coins, and obtaining the output y. When the coins r are specified we
use y ← F (x; r). Similarly, y ← F (x) is used for a deterministic algorithm. For

a set X , let x
$← X denote x chosen uniformly at random from X ; and for a



distribution Y, let y
$← Y denote y sampled according to the distribution Y.

For any k ∈ N we write [k] for the set {1, . . . , k}. A function f(x) is negligi-
ble in x (or negl(x) to denote an arbitrary such function) if f(x) is positive
and for every positive polynomial p(x) ∈ poly(x) there exists a x′ ∈ N such
that ∀x ≥ x′ : f(x) < 1/p(x). Two ensembles X = {Xκ,z}κ∈N,z∈{0,1}∗ and
Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables are said to be statistically
indistinguishable, denoted by X ≈s Y , if for all z it holds that | Pr[D(Xκ,z) =
1]−Pr[D(Yκ,z) = 1] | is negligible in κ for every probabilistic algorithm (distin-
guisher) D. In case this only holds for computationally bounded (non-uniform
probabilistic polynomial-time (PPT)) distinguishers we say that X and Y are
computationally indistinguishable and denote it by ≈c.

Let n be the number of parties in an MPC scheme and A be an adversary.
Throughout this work, we will denote with P = {P1, . . . ,Pn} the set of parties
and with I ( P the set of corrupted parties. The uncorrupted parties will be
I = P \ I. We denote the ideal-world adversary as S. We use τ to denote a
computational and κ for a statistical security parameter.

Vectors of field elements are denoted by bold lower-case letters and matrices
by bold upper-case letters. Concatenation of vectors is represented by ‖ . For
z ∈ Fk, z[i] denotes the i’th entry of the vector, so that e.g. z[1] is the first
element of z. We denote by 0k the column vector of k components where all
entries are 0. We denote the scalar product of a scalar α ∈ F with a vector
x ∈ Fk by α · x = (α · x[1], . . . , α · x[k]). For a matrix M ∈ Fn×k, we let
M[·, j] denote its j’th column and M[i, ·] denote its i’th row. This work focus
on computations on F2, which will be denote as F for conciseness.

2.1 Coding Theory, Interactive Proximity Testing and Linear Time
Building Blocks

We will use the interactive proximity testing technique and corresponding linear
time building blocks introduced in [16]. We adopt the notation and definitions
from [16], reproduced in almost verbatim form in the remainder of this section.

For a vector x ∈ Fn, we denote the Hamming-weight of x by ‖x‖0 = |{i ∈
[n] : x[i] 6= 0}|. Let C ⊂ Fn be a linear subspace of Fn. We say that C is an F-
linear [n, k, s] code if C has dimension k and it holds for every non-zero x ∈ C that
‖x‖0 ≥ s, i.e., the minimum distance of C is at least s. The distance dist(C,x)
between C and a vector x ∈ Fn is the minimum of ‖c− x‖0 when c ∈ C. The
rate of an F-linear [n, k, s] code is k

n and its relative minimum distance is s
n .

A matrix G ∈ Fn×k is a generator matrix of C if C = {Gx : x ∈ Fk}. The
code C is systematic if it has a generator matrix G such that the submatrix given
by the top k rows of G is the identity matrix I ∈ Fk×k. A matrix P ∈ F(n−k)×n of
maximal rank n−k is a parity check matrix of C if Pc = 0 for all c ∈ C. When we
have fixed a parity check matrix P of C we say that the syndrome of an element
v ∈ Fn is Pv. For an F-linear [n, k, s] code C, we denote by C�m them-interleaved
product of C, which is defined by C�m = {C ∈ Fn×m : ∀i ∈ [m] : C[·, i] ∈ C}. In
other words, C�m consists of all Fn×m matrices for which all columns are in C. We
can think of C�m as a linear code with symbol alphabet Fm, where we obtain



codewords by taking m arbitrary codewords of C and bundling together the
components of these codewords into symbols from Fm. For a matrix E ∈ Fn×m,
‖E‖0 is the number of non-zero rows of E, and the code C�m has minimum
distance at least s′ if all non-zero C ∈ C�m satisfy ‖C‖0 ≥ s′. Furthermore, P
is a parity-check matrix of C if and only if PC = 0 for all C ∈ C�m. If C is
an F-linear [n, k, s] code, its square C∗2 is defined as the linear subspace of Fn
generated by all the vectors of the form v ∗w with v,w ∈ C.

Definition 1 (Almost Universal Linear Hashing [16]). We say that a fam-
ily H of linear functions Fn → Fs is ε-almost universal, if it holds for every
non-zero x ∈ Fn that

Pr
H

$←H
[H(x) = 0] ≤ ε,

where H is chosen uniformly at random from the family H. We say that H is
universal, if it is |F|−s-almost universal. We will identify functions H ∈ H with
their transformation matrix and write H(x) = H · x.

The interactive proximity testing technique (as introduced in [16]) consists
in the following argument: suppose we sample a function H from a family of
almost universal linear hash functions (from Fm to F`), and we apply H to each
of the rows of a matrix X ∈ Fn×m, obtaining another matrix X′ ∈ Fn×`; because
of linearity, if X belonged to an interleaved code C�m, then X′ belongs to the
interleaved code C�`. The following Theorem (from [16]) states that we can test
whether X is close to C�m by testing instead if X′ is close to C�` (with high
probability over the choice of the hash function) and moreover, if these elements
are close to the respective codes, the set of rows that have to be modified in each
of the matrices in order to correct them to codewords are the same.

Theorem 1 ([16]). Let H : Fm → F2s+t be a family of |F|−2s-almost universal
F-linear hash functions. Further let C be an F-linear [n, k, s] code. Then for every
X ∈ Fn×m at least one of the following statements holds, except with probability

|F|−s over the choice of H
$← H:

1. XH> has distance at least s from C�(2s+t).
2. For every C′ ∈ C�(2s+t) there exists a C ∈ C�m such that XH> −C′ and

X−C have the same row support.

Remark 1 ([16]). If the first item in the statement of Theorem 1 does not hold,
the second one must and we can efficiently recover a codeword C with distance
at most s− 1 from X using erasure correction, given a codeword C′ ∈ C�(2s+t)

with distance at most s − 1 from XH>. More specifically, we compute the row
support of XH> − C′, erase the corresponding rows of X and recover C from
X using erasure correction6. The last step is possible as the distance between X
and C is at most s− 1.

6 Erasure correction for linear codes can be done efficiently via Gaussian elimination.



2.2 UC Framework and Functionalities

We use the (Global) Universal Composability or (G)UC model [14, 15] for ana-
lyzing security and refer interested readers to the original works for more details.
Several functionalities in this work allow public verifiability. To model this fact,
we follow the approach of Badertscher et al. [5] and allow the set of verifiers V to
be dynamic by adding register and de-register instructions as well as instructions
that allow the adversary to get the list of registered verifiers. All functionalities
with public verifiability include the following instructions (which are omitted
henceforth for simplicity):

– Upon receiving (Register, sid) from some verifier Vi, set V = V ∪ Vi and
return (Registered, sid,Vi) to Vi.

– Upon receiving (Deregister, sid) from some verifier Vi, set V = V \Vi and
return (Deregistered, sid,Vi) to Vi.

– Upon receiving (Is-Registered, sid) from Vi, return (Is-Registered, sid,
b) to Vi, where b = 1 if Vi ∈ V and b = 0 otherwise.

– Upon receiving (Get-Registered, sid) from the ideal adversary S, the
functionality returns (Get-Registered, sid,V) to S.

The above instructions can also be used by other functionalities to register
as a verifier of a functionality with public verifiability. Following the approach
of [5, 29, 28] we use a global clock functionality FClock. We also use the restricted
programmable and observable global random oracle model GrpoRO of [13]. FClock

and GrpoRO are described in Figure 1 and Figure 2, respectively.

Functionality FClock

FClock is parametrized by a variable ν, and sets P of parties and F of functionalities.
It keeps a Boolean variable dJ for each J ∈ P ∪F . All variables are initialized as 0.

Clock Update: Upon receiving a message (Clock-Update) from J ∈ P ∪ F , set
dJ = 1, run RoundUpdate and return (Clock-Update,J ) to S.

Clock Read: Upon receiving a message (Clock-Read) from any entity, answer
that entity with (Clock-Read, ν).

Macro RoundUpdate: If dF = 1 for all F ∈ F and dp = 1 for all honest p ∈ P, then
set ν ← ν + 1 and reset dJ to 0 for all J ∈ P ∪ F .

Fig. 1. Functionality FClock for a Global Clock.

2.3 Authenticated Bulletin Boards and Smart Contracts

Bulletin Boards and Smart Contracts are primitives which form the backbone
of our result. A Bulletin Board is a publicly readable storage for messages which
cannot be erased after been posted. We use an authenticated Bulletin Board.



Functionality GrpoRO

GrpoRO is parameterized by an output size function ` and keeps initially empty lists
ListH,prog.

Query: On input (Hash-Query,m) from party (P, sid) or S, parse m as (s,m′)
and proceed as follows:

1. Look up h such that (m,h) ∈ ListH. If no such h exists, sample h
$← {0, 1}`(τ)

and set ListH = ListH ∪ {(m,h)}.
2. If this query is made by S, or if s 6= sid, then add (s,m′, h) to the (initially

empty) list of illegitimate queries Qs.
3. Send (Hash-Confirm, h) to the caller.

Observe: On input (Observe, sid) from S, if Qsid does not exist yet, set Qsid = ∅.
Output (List-Observe,Qsid) to S.

Program: On input (Program-RO,m, h) with h ∈ {0, 1}`(τ) from S, ignore the
input if there exists h′ ∈ {0, 1}`(τ) where (m,h′) ∈ ListH and h 6= h′. Otherwise, set
ListH = ListH ∪ {(m,h)}, prog = prog ∪ {m} and send (Program-Confirm) to S.

IsProgrammed: On input (IsProgrammed,m) from a party P or S, if the input
was given by (P, sid) then parse m as (s,m′) and, if s 6= sid, ignore this input. Set
b = 1 if m ∈ prog and b = 0 otherwise. Then send (IsProgrammed, b) to the caller.

Fig. 2. Functionality GrpoRO from [13].

This means that messages that are posted can be related to specific parties.
This latter primitive can be implemented from a Bulletin Board and signatures.7

We also assume that there exists a Smart Contract functionality. Such a smart
contract is set up and parameterized by P and obtains further inputs from the
Bulletin Board. To simplify this interaction, we will provide one functionality
FSC which incorporates both the authenticated Bulletin Board and the Smart
Contract. Since the Smart Contract will furthermore have to communicate with
the MPC functionality for verification, we will only define it in Section 3.

2.4 Secure Multiparty Computation with Punishable Abort and
Cash Distribution

We focus on Secure Multiparty Computation with security against a static, rush-
ing and malicious adversary A corrupting up to n − 1 of the n parties. For
this setting, it is known that fairness cannot be achieved [19]. Instead, we let
the functionality compute the result y without releasing it. To release it, every
party Pi sends coins coins(d) to the functionality, which will hand them back if
every party obtained y. A will be able to block honest parties from obtaining
y, but only at the expense of losing money to the honest parties. We call this

7 There exist impossibility results on realizing this primitive [36, 22], but we avoid
these by assuming that the Bulletin Board is not realized by P. Instead, we use a
public ledger.



MPC with Punishable Abort or Insured MPC. In the case where no party was
punished, we furthermore let the parties obtain coins based on y. To formalize
this step, we define a Cash Distribution Function.

Definition 2 (Cash Distribution Function). Let g : Fm × Nn → Nn be a
function such that, for all y ∈ Fm, t(1), . . . , t(n) ∈ N it holds that

∑
i t

(i) =
∑
i e

(i)

for (e(1), . . . , e(n)) ← g(y, t(1), . . . , t(n)). Then g is called a Cash Distribution
Function.

In Figure 3 we formally define MPC which has both properties.

Functionality FOnline

This functionality interacts with the parties P1, . . . ,Pn and is parametrized by a
timeout limit ρ, a circuit C representing the computation that the parties want to
perform, the compensation amount q and the security deposit d ≥ (n−1)q. S specifies
a set I ⊂ [n] of corrupted parties. Let g be a cash distribution function.

Input: Upon first input (Input, sid, i, x(i)) by Pi and (Input, sid, i, ·) by all other
parties the functionality stores the value (i, x(i)) internally. Every further such mes-
sage with the same sid and i is ignored.

Evaluate: Upon input (Compute, sid) by all parties and if the inputs (i, x(i))i∈[n]
for all parties have been stored internally, compute y = C(x(1), . . . , x(n)). If S sends
(Abort, sid, i) during Input or Evaluate and i ∈ I then send (Abort, sid) to all
parties and stop.

Deposit: After the evaluation is done successfully, wait for each party Pi to send
(Deposit, sid, coins(d+t(i))) containing the d coins of the security deposit, the t(i) ≥
0 coins that the party want to use as financial input in the computation. Send
(Deposited, sid,Pi, d+t(i)) to all parties. If some party fails to lock the coins within
the timeout limit ρ (counting from the the first such deposit), then allow the parties
to reclaim their coins and abort.

Open: After the deposits are done successfully, send (Result, sid,y) to S.
– If S returns (Ok, sid,y), then output (Result, sid,y) to the parties, compute
e(1), . . . , e(n) ← g(y, t(1), . . . , t(n)). Then run Pay(e(1), . . . , e(n)).

– If S returns (Abort, sid, J) and J ⊆ I, J 6= ∅, set e(i) ← d + t(i) + |J | · q for
each party Pi ∈ P \ J and e(i) ← d − q · (n − |J |) + t(i) for each Pi ∈ J . Then
run Pay(e(1), . . . , e(n)).

– If S returns (Abort-With-Result, sid, J) and J ⊆ I, J 6= ∅, set e(i) ← d +
t(i) + |J | · q for each party Pi ∈ P \ J and e(i) ← d− q · (n− |J |) + t(i) for each
Pi ∈ J . Then run Pay(e(1), . . . , e(n)) and send (Result, sid,y) to each Pi ∈ Ia.

Macro Pay(e(1), . . . , e(n)): For each Pi ∈ P send (Payout, sid,Pi, coins(e(i))) to Pi
and (Payout, sid,Pi, e(i)) to each other party.

a This might be counterintuitive but S can always allow the honest parties to obtain
the result and then abort, unless all communication runs via a public ledger.

Fig. 3. Functionality FOnline for Secure Multiparty Computation with Punishable Abort
and Cash Distribution.



3 Compiling Multiparty Computation to Punish Aborts

In the course of this section, we describe our approach for compiling a generic
protocol with publicly verifiable output to a protocol with punishable abort
(FOnline). The compiler will work in the following two steps: (i) We give a func-
tionality FIdent which describes MPC with publicly verifiable output. Here, the
parties can verify that the computation until the output reconstruction was done
correctly. If so, then they run a subcomputation which reconstructs the output
and which furthermore allows to determine if a party aborted or provided in-
correct shares. We furthermore fully describe the functionality FSC which was
already mentioned in Section 2. It contains both the smart contract and the
authenticated bulletin board that we use. For technical reasons, it is defined
using the non-interactive verification interface of FIdent. (ii) Both of these func-
tionalities are then compiled using a global clock functionality FClock into a new
protocol that allows to punish aborts and cheating during the output phase.

3.1 Identifiable Output and How to Compile

FIdent (see Figure 4 and Figure 5) provides a secret-sharing of the output value:
given all shares, any party can use it to obtain the output value while even
n − 1 shares do not reveal any information about it. To reconstruct, a special
function f for the reconstruction process must be used. We call this function
f a Reconstruction Function, whose definition and use was already implicit in
previous work [26, 40].

Definition 3 (Reconstruction Function). Let f : (Fm)n+1 → Fm be a func-
tion. We call f a reconstruction function if for all ȳ ∈ Fm, for all i ∈ [n]

and for all s(1), . . . s(n−1) ∈ Fm, the induced function f̂i : Fm → Fm such that
f̂i(·) = f(ȳ, s(1), . . . , s(i−1), ·, s(i), . . . , s(n−1)) is a bijection which is poly-time
computable in both directions.

The function f depends on FIdent, i.e. the MPC scheme that we use inside the
compiler. FIdent will provide both the advice ȳ and shares s(i) that are necessary
for the reconstruction. In the case of the instantiation presented in Section 5.2,
the reconstruction function is simply the XOR between all the s(i), but more
sophisticated functions might be plausible.

To reliably reconstruct y, each party Pi sends coins(d+t(i)) to FSC. The coins
coins(d) are used to reimburse other parties in case Pi aborts, while coins(t(i))
is the input of Pi into the cash distribution function g. In the next step, FIdent

is used by each party Pi to reveal its share s(i) to all other parties in a reliable
way. We use FClock to determine if all parties opened their shares in time, and
FIdent will allow to externally verify that each share s(i) indeed is the same that
was provided with respect to f,y. If all parties open the correct shares, then
they activate the cash distribution function g of FSC to send the correct payoffs
to all parties. Except for deposing the money and running the cash distribution,
no interaction with FSC is needed in a successful protocol run.



Functionality FIdent (part 1)

This functionality interacts with the parties P and also provides an interface
to register external verifiers V. It is parametrized by a circuit C with inputs
x(1), . . . , x(n) and output y ∈ Fm. S provides a set I ⊂ [n] of parties which he
corrupts. Let f be a reconstruction function.

Throughout Init, Input, Evaluate and Share, S can at any point send (Abort,
sid) to the functionality, upon which it sends (Abort, sid,⊥) to all parties and ter-
minates. Throughout Reveal and Verify, S at any point is allowed to send (Abort,
sid, J) to the functionality. If J ⊆ I then FIdent will send (Abort, sid, J) to all honest
parties and terminate.

Init: Upon first input (Init, sid) by all parties in P initialize the sets
rev, ver, ref(1), . . . , ref(n) ← ∅.
Input: Upon first input (Input, sid, i, x(i)) by Pi and input (Input, sid, i, ·) by all
other parties the functionality stores the value (i, x(i)) internally. Every further such
message with the same sid and i is ignored.

Evaluate: Upon first input (Compute, sid) by all parties in P and if the inputs
(i, x(i))i∈[n] for all parties have been stored internally, compute y ← C(x(1), . . . , x(n))
and store y locally.

Share: Upon first input (Share, sid) by Pi ∈ P and if Evaluate was finished:

1. For each Pi ∈ P sample s(i)
$← Fm uniformly at random and store it locally.

Then send s(i) for each i ∈ I to S.

2. Upon input (Deliver-Share, sid, i) from S for i ∈ I send (Output, sid, s(i)) to
Pi.

3. Sample ȳ ∈ Fm such that f(ȳ, s(1), . . . , s(n)) = y.

4. Send (Output, sid, ȳ) to S. If S sends (Deliver-Output, sid, ȳ) then send
(Output, sid, ȳ) to all Pi ∈ I.

Fig. 4. Functionality FIdent for an MPC Protocol with Publicly Verifiable Output.

If a party cheats during the opening phase, the protocol instructs all parties
to post their shares using FSC within a limited time period (enforced by FClock).
FSC will then contact FIdent to verify the correctness of the openings and verify
if the correct shares were provided or not. An adversary may now withhold his
share or provide an incorrect one, thus preventing both FSC and the honest
parties from obtaining the correct result. In such a case, let J ⊆ I be the set
of aborting or cheating parties, and J = P \ J . Each party from J will be
reimbursed by coins(d−q · |J |+ t(i)), whereas the rest is fairly distributed among
the non-cheating parties, which obtain coins(d + q · |J | + t(i)). FSC is described
in Figure 6.

3.2 The Compiler

We now give a protocol ΠCompiler that implements FOnline in the FIdent,FSC,FClock-
hybrid model.



Functionality FIdent (part 2)

Reveal: Upon input (Reveal, sid, i) by Pi, if i 6∈ rev and ref(i) = ∅ send (Reveal,
sid, i, s(i)) to S.

– If S sends (Reveal-Ok, sid, i) then set rev ← rev ∪ {i}, send (Reveal,
sid, i, s(i)) to all parties in P.

– If S sends (Reveal-Not-Ok, sid, i, J) with J ⊆ I then send (Reveal-Fail,
sid, i) to all parties in P and set ref(i) ← J .

Test Reveal: Upon input (Test-Reveal, sid) from a party in P∪V define ref
(i)

=

ref(i) if i ∈ rev and ref
(i) ← ref(i) ∪ {i} otherwise. Then send (Reveal-Fail,

sid, ref
(1)
, . . . , ref

(n)
) to P and V.

Allow Verify: Upon input (Start-Verify, sid, i) from party Pi ∈ P set ver ←
ver∪{i}. If ver = [n] then deactivate all interfaces except Test Reveal and Verify.

Verify: Upon input (Verify, sid, z(1), . . . , z(n)) by Vi ∈ V with z(j) ∈ Fm:
– If ver 6= [n] then return (Verify-Fail, sid, [n] \ ver).

– If ver = [n] and rev 6= [n] then send to Vi what Test Reveal sends.

– If ver = rev = [n] then compute the set ws← {j ∈ [n] | z(j) 6= s(j)} and return
(Open-Fail, sid, ws).

Fig. 5. Functionality FIdent for an MPC Protocol with Publicly Verifiable Output (con-
tinued).

The compiler protocol, as depicted in ΠCompiler in Figure 7, runs in 4 rounds,
which means that we require FClock to tick 4 times. The first time (between ν = 0
and ν = 1) each party sends the scrambled output y to the bulletin board, which
later can be used to reconstruct the real output by FSC if necessary. If parties
do not agree on the same y or they do not send such a message at all, then FSC

ends. Between ν = 1 and ν = 2 each party locks in its coins using FSC. These
will be returned by FSC if not all parties lock in their coins.

Between ν = 2 and ν = 3 the parties run the Reveal phase of FIdent and
post the correct money distribution to FSC, if all shares are revealed. If not, then
FSC will inform all parties to perform conflict resolution. During this last step
(between ν = 3 and ν = 4) each party then posts its share s(i) to the bulletin
board. FSC will then either obtain the right output y and send the correct coins
according to g to every party (if they all provide the right shares) or punish
cheaters.

For this compiler, the following statement can be shown:

Theorem 2. The protocol ΠCompiler UC-securely implements FOnline in the FIdent,
FSC,FClock-hybrid model against a static, active and rushing adversary corrupt-
ing up to n− 1 parties.

Proof. We construct a simulator S which will interact with the hybrid-world
adversary A in the presence of FOnline. S will simulate a protocol instance of
ΠCompiler and internally run copies of FIdent,FClock and FSC. It therefore simulates



Functionality FSC

FSC interacts with the parties P and the global functionalities FIdent,FClock and is
parametrized by the values of the compensation q and the security deposit d ≥
(n − 1)q. There is a list M of messages posted to the authenticated public bulletin
board, which is initially empty. There exists a reconstruction function f and a cash
distribution function g.

Init: Upon receiving the message (Init, sid) from all parties P send
(Clock-Update, sid) to FClock. Afterwards, ignore all messages for Init.

Lock-in: Upon receiving the first message (Lock-In, sid, coins(d + t(i))) from Pi
containing the d coins of the security deposit and the t(i) ≥ 0 coins that the party
wants to use as monetary input in the computation:
1. Check that each Pi posted (Pi, sid,Output-Scrambled, y). Otherwise reim-

burse Pi and abort.

2. If (Clock-Read, sid) to FClock returns ν 6= 1 then refund Pi. Otherwise, send
(Clock-Update, sid) to FClock.

3. If (Clock-Read, sid) to FClock returns ν = 2 and if (Lock-In, sid, coins(d+ t(j)))
was not sent by every party, then reimburse each party with its coins and stop,
otherwise send (Clock-Update, sid) to FClock.

Agreement on the Output: If (Clock-Read, sid) returns ν = 3 and
(Pi, sid,Payout, (e(1), . . . , e(n))) ∈M for each Pi, then run Pay(e(1), . . . , e(n)).

Conflict Resolution: If (Clock-Read, sid) returns ν = 3 and
(Pi, sid,Payout, (e(1), . . . , e(n))) ∈ M was not posted by each Pi, send
(Conflict-Resolution, sid) to all parties and (Clock-Update, sid) to FClock.
If (Clock-Read, sid) returns ν = 4 then do the following:
1. Check if (Pi, sid,Output-Share,z(i)) ∈ M. If not, let J be the set of parties

for which z(i) is not present. Then run Punish(J) and stop.

2. Send (Verify, sid, z(1), . . . , z(n)) to FIdent.
– If FIdent returns (Verify-Fail, sid, J) then run Punish(J) and stop.

– If FIdent returns (Reveal-Fail, sid, ref(1), . . . , ref(n)) then set J ←⋃
i∈[n] ref

(i). Run Punish(J) and stop.

– If FIdent returns (Open-Fail, sid, J) and J 6= ∅ then run Punish(J) and stop.

3. Compute y ← f(y,z(1), . . . ,z(n)) and (e(1), . . . , e(n))← g(y, t(1), . . . , t(n)). Then
run Pay(d+ e(1), . . . , d+ e(n)).

Post to Bulletin Board: Upon receiving a message (Post, sid,Off,m) from some
party Pi ∈ P, if there is no message (Pi, sid,Off,m′) ∈M, append (Pi, sid,Off,m)
to the listM of authenticated messages that were posted in the public bulletin board.

Read from Bulletin Board: Upon receiving a message (Read, sid) from some
party, return M.

Macro Punish(J): Let J ⊂ [n] and J = [n] \J . Define e(i) as d− q · |J |+ t(i) if i ∈ J
and d+ q · |J |+ t(i) if i ∈ J and then run Pay(e(1), . . . , e(n)).

Macro Pay(e(1), . . . , e(n)): For each Pi ∈ P send (Payout, sid,Pi, coins(e(i))) to Pi
and (Payout, sid,Pi, e(i)) to each other party.

Fig. 6. The stateful contract functionality FSC that is used to enforce penalties on
parties that misbehave in the multiparty computation protocol and to distribute money.



Protocol ΠCompiler

If any party sends (Abort, sid) during Init, Input or Evaluate then abort. Let ρ
be a timeout. Initialize FClock with P and FSC.

Init: All parties send (Init, sid) to FIdent.

Input: Upon input x(i) ∈ F each party Pi sends (Input, sid, i, x(i)) to FIdent. It
furthermore sends (Input, sid, j, ·) for all Pj ∈ P \ {Pi}.
Evaluate: All parties send (Compute, sid) to FIdent. Afterwards, each party Pi
sends (Share, sid) to FIdent and obtains s(i) as well as y.

Deposit:
1. Each Pi sends (Post, sid, ν, output-scrambled,y) to FSC.

2. After time ρ each Pi sends (Clock-Update, sid) to FClock.

3. Send (Lock-In, sid, coins(d+ t(i))) to FSC and (Clock-Update, sid)

4. After time ρ each Pi sends (Clock-Update, sid) to FClock.

5. Send (Read, sid) to FSC to obtain t(1), . . . , t(n). If FSC reimbursed parties because
not all parties locked money, then abort.

Open:
1. Each party Pi sends (Reveal, sid, i) to FIdent.

2. If Pi obtains (Reveal, sid, j, s(j)) for each j ∈ [n] until ρ time passed then locally
compute y ← f(y, s(1), . . . , s(n)) as well as (e(1), . . . , e(n)) ← g(y, t(1), . . . , t(n)).
Then, send (Post, sid,Payout, (e(1), . . . , e(n))) to FSC.

3. After time ρ each Pi sends (Clock-Update, sid) to FClock.

4. If Pi obtains (Conflict-Resolution, sid) from FSC then it sends (Post,
sid,Output-Share, s(i)) to FSC and (Start-Verify, sid, i) to FIdent. After time
ρ it sends (Clock-Update, sid) to FClock.

Fig. 7. The Compiler Protocol ΠCompiler

honest parties to communicate with the functionalities and the parties that are
controlled by A.

Init: Send messages in the name of the honest parties as in the protocol, send
abort message to FOnline if A aborts.

Input: Sample random inputs for the simulated honest parties and input these
into FIdent during the simulation of the protocol. Furthermore, intercept inputs
that A sends to FIdent for the dishonest parties and send these to FOnline. Send
an abort message to FOnline if A aborts.

Evaluate: Run this step as in the protocol and obtain s(i) for each simulated
honest party from FIdent.

Deposit: Run steps 1, 2 honestly. Let the parties run steps 3, 4 honestly. For
each honest party Pi, wait for (Deposited, sid,Pi, d + t(i)) from FIdent and
then use coins(d + t(i)) for the simulated honest party in the protocol. For
each dishonest party Pi, if it sends coins(d + t(i)) to FSC then send (Deposit,



sid, coins(d + t(i))) to FOnline. If a dishonest party does so after step 4 then do
not send the message, but instead reclaim money and abort.

Open: Obtain (Result, sid,y) from FOnline. Let Pj be a simulated honest party,

then using y compute a new share ŝ(j) using the fact that f is a reconstruction
function and fixing all inputs and the output except ŝ(j). Then, run the protocol
honestly and send (Reveal, sid, i) in the name of each simulated honest party

and for each Pi ∈ P to FIdent, but let FIdent change the share of Pj to ŝ(j) for
consistency. Then do the following for repayment:

– If FSC runs Pay in Agreement on the Output or step 3 of Conflict
Resolution then send (Ok, sid,y) to FOnline.

– If the honest parties post Payout-messages during step 2 of Open but
A lets a party abort either during this step or later, then let J be the
set of aborting/cheating parties and send (Abort-With-Result, sid, J) to
FOnline.

– For every other abort where FSC runs Punish(J) send (Abort, sid, J) to
FOnline.

It is easy to see that the output which A obtains during the protocol is
consistent with FOnline, and so are the shares as it does not see s(i) for i ∈ I until
the output y is known to the simulator. If the simulated honest parties obtain
all shares during the protocol then no party gets punished by FSC. Therefore,
the simulator lets the real honest parties obtain the output in that situation. If
A makes one of the parties abort or send an incorrect message, then this will be
detected by FSC and S will keep consistency between the protocol and FOnline.
If a dishonest party then wishes to deliver its result but abort, then in this case
the simulator will send the correct message to FOnline. ut

Making the Opening Fully Punishable: Having to run arbitration consumes
extra message space on the bulletin board. In our scheme, it might still happen
that arbitration does not result in punishment of a party, even though it is only
activated if cheating indeed happens. This is a problem, as parties may have to
pay for using space on the bulletin board or for running computations using a
smart contract.

This phenomenon occurs because the Open phase does, for efficiency rea-
sons, not completely operate via the bulletin board, which saves a round of
interaction with the bulletin board in case of agreement. To fix this and punish
any misbehavior during the opening, one can have each party Pi post their share
s(i) after running Reveal instead of posting the payout message (FSC can locally
compute e(1), . . . , e(n)). Parties are then allowed to post disagreement messages
about this opening, and Conflict Resolution can punish parties for either
sending incorrect messages or making false disagreement claims.



4 Multiparty Homomorphic Commitments with Delayed
Public Verifiability

One of the main building blocks of our secure multiparty computation protocol is
a (multiparty) additively homomorphic commitment scheme with delayed public
verifiability, meaning that the receiver can prove that he received a (potentially)
invalid opening to a given commitment after it has been opened. In order to
construct such a scheme efficiently, we depart from the multiparty homomor-
phic commitment scheme of [21], which is in turn realized based on a two-party
homomorphic commitment functionality, an equality testing functionality and
a coin tossing functionality. In order to augment the construction of [21] with
delayed public verifiability, we need to also augment the functionalities it is
based on with similar properties. To that end, we present a two-party homo-
morphic commitment with delayed public verifiability functionality F2HCom, a
publicly verifiable coin tossing functionality FCT and a publicly verifiable equal-
ity testing functionality FEQ. We realize F2HCom with a construction based on
an instantiation of the scheme of [16] with an oblivious transfer with delayed
public verifiability FpOT. We show that FpOT can be realized in the restricted
programmable and observable random oracle model of [13] by the construction
of [39] plus a publicly verifiable (non-homomorphic) commitment functionality
FCom, which is also instrumental in realizing FEQ and FCT.

Public Verification. In our modeling of public verification, we denote the parties
who actively participate in executing a protocol by P and the parties who later
verify the output of an execution of the protocol by V = {V1, . . . ,V`}. In the case
of functionalities with delayed public verification, the functionality’s interface
providing public verification is only activated after a subset of (or all) parties
in P agree with its activation. This delayed activation models the fact that
the protocols realizing these functionalities require that a subset (or all) of P
reveal private information (e.g. private randomness or inputs) in order for the
public verification procedure to be executed given publicly available transcripts
and outputs. All messages broadcast by parties P to parties V in the protocols
described in this section are in fact sent to the smart contract, which makes them
accessible to verifiers at any later point. This eliminates the need for V to be
involved in the protocol execution of P, as V can later retrieve relevant messages
from the smart contract. When a protocol in this section says a message m is
broadcast, the party broadcasting m sends (Post, sid,Off,m) to FSC, posting
the message to a bulletin board and increases the identifier Off. All parties that
expect to receive a broadcast message send (Read, sid) to FSC and retrieve the
message from the contents of the authenticated bulletin board.

4.1 Publicly Verifiable Commitments

In order to adapt the construction of [21], it is necessary to also realize function-
alities FEQ and FCT with delayed public verifiability, which can be done from
simple (non-homomorphic) commitments with public verifiability. We define a



Functionality FCom

FCom keeps an internal (initially empty) list C and interacts with a set of parties
P = {P1, . . . ,Pn}, a set of verifiers V and an adversary S through the following
interfaces:

Commit: Upon receiving (Commit, sid,Pi, cid,x) from Pi ∈ P (where x ∈ Fτ )
check if (cid, ·, ·) ∈ C. If yes, ignore the message, else add (cid,Pi,x) to C and send
a public delayed output (Committed, sid,Pi, cid) to all remaining parties in P.

Open: Upon receiving (Open, sid,Pi, cid) from Pi ∈ P, if (cid,Pi,x) ∈ C, send a
delayed output (Open, sid,Pi, cid,x) to all parties V and all Pj ∈ P for j 6= i.

Verify: Upon receiving (Verify, sid, cid,Pi,x) from Vj ∈ V, if (cid,Pi,x) ∈ C set
f = 1, otherwise, set f = 0. Send (Verified, sid, cid,Pi,x, f) to Vj .

Fig. 8. Functionality FCom for Publicly Verifiable Multiparty Commitments.

Protocol ΠCom

Parties P = {P1, . . . ,Pn} and verifiers V interact with each other and with GrpoRO as
follows:

Commit: On input (Commit, sid,Pi, cid,xi), a party Pi ∈ P uniformly sam-

ples r
$← {0, 1}κ and queries GrpoRO on (sid, cid, r,xi) to obtain c. Pi broadcasts

(Committed, sid,Pi, cid, c). All parties Pj ∈ P for j 6= i output (Committed,
sid,Pi, cid) upon receiving this message.

Open: On input (Open, sid,Pi, cid), Pi broadcasts (Open, sid,Pi, cid, r′,x′i). Upon
receiving (Open, sid,Pi, cid, r′,x′i), each party Pj queries GrpoRO on (sid, cid, r′,x′i)
and checks that the answer is equal to c and that (sid, r′,x′i) is not programmed
by sending (IsProgrammed, sid, cid, r′,x′i) to GrpoRO, aborting if the answer is
(IsProgrammed, sid, 0). Output (Open, sid,Pi, cid,x′i).
Verify: On input (Verify, sid, cid,Pi,x), Vj ∈ V checks that x = x′i in (Open,
sid,Pi, cid, r′,x′i), aborting otherwise. Vj queries GrpoRO on (sid, cid, r′,x′i) and
checks that the answer is equal to c and that (sid, r′,x′i) is not programmed
by sending (IsProgrammed, sid, cid, r′,x′i) to GrpoRO, setting f = 0 if the an-
swer is (IsProgrammed, sid, 0) and, otherwise, setting f = 1. Output (Verified,
sid, cid,Pi,x, f).

Fig. 9. Protocol ΠCom for Publicly Verifiable Multiparty Commitments.

functionality for Publicly Verifiable Commitments FCom in Figure 8 and will
show that this functionality can be realized in the restricted programmable and
observable random oracle model of [13]. The basic insight here is to observe that
the canonical random oracle based commitment scheme proven UC-secure in [13]
is trivially publicly verifiable, since any party can verify the validity of a given
commitment/opening pair by querying the global random oracle. We describe
protocol ΠCom in Figure 9. The security of ΠCom is stated in Theorem 3.

Theorem 3. Protocol ΠCom GUC-realizes FCom in the GrpoRO,FSC hybrid model.



Proof (Sketch). The fact that the Commit and Open steps of protocol ΠCom re-
alize the corresponding interfaces of FCom in the GrpoRO and FAuth hybrid model
(FAuth is the functionality for authenticated channels) is proven in [13]. In our
case FAuth is substituted by the authenticated bulleting board through which
broadcasts are carried out. Public verification follows in a straightforward man-
ner since parties V receive the same messages as parties P and perform the exact
same procedures of an honest receiver to verify the validity of such messages.
Notice that the strategy taken by the simulator described in [13] in exploring
the restricted programmability and observability of GrpoRO allows it to equivo-
cate commitment openings towards V as well. Hence, since GrpoRO is global the
output obtained by V in the public verification procedure is 1 if and only if the
output x was really obtained from a valid opening of the commitment identified
by cid.

Functionality FEQ

FEQ interacts with a set of parties P = {P1, . . . ,Pn}, a set of verifiers V and an
adversary S through the following interfaces:

Equality: Upon receiving (Equal, sid,Pi,xi), where xi ∈ Fm, from each party
Pi ∈ P (or from S in case Pi is corrupted), if x1 = . . . = xn, send (Equal, sid) to
S. Otherwise, send (Not-Equal, sid,x1, . . . ,xn) to S. Proceed as follows according
to the answer of S:

– If S answers with (Deliver, sid), send (Equal, sid) to all parties in P if x1 =
. . . = xn and otherwise send (Not-Equal, sid,x1, . . . ,xn) to them.

– If S answers with (Abort, sid), then send (Abort, sid) to all parties.

Verify: Upon receiving (Verify, sid,x1, . . . ,xn) from Vj ∈ V, if messages (Equal,
sid,Pi,xi) (with xi ∈ Fm) have been received from each Pi ∈ P and S did not
send (Abort, sid) then set f = 1 if x1 = . . . = xn or otherwise set f = 0. Send
(Verified, sid, f) to Vj .

Fig. 10. Functionality FEQ for Publicly Verifiable Equality Testing.

4.2 Publicly Verifiable Equality Testing

The functionality for Equality Testing as defined in [21] but augmented with
Public Verifiability is presented in Figure 10. Notice that this functionality leaks
the inputs of all parties to the adversary after it provides its inputs. Hence, it
must not be used with inputs that must remain private after equality testing is
performed. Nevertheless, this relaxed guarantee is enough for realizing the con-
struction of [21] and the functionality FEQ itself can be realized using FCom. The
basic idea as proposed in [21] is to have all parties commit to the values whose
equality will be tested and, after all commitments are performed, open their
commitments and compare the values locally. Since FCom is publicly verifiable,
the commitments and openings can be publicly verified to check the validity of



the equality test. We describe protocol ΠEQ in Figure 11. The security of ΠCom

is stated in Theorem 4.

Protocol ΠEQ

Parties P = {P1, . . . ,Pn} and verifiers V interact with each other and with FCom as
follows:

Equality: On input (Equal, sid,Pi,xi), each party Pi proceeds as follows:

1. Samples a fresh unused cidi and send (Commit, sid,Pi, cidi,xi) to FCom.
2. After receiving (Committed, sid,Pj , cidj) from FCom for all j ∈ [n] with j 6= i,

send (Open, sid,Pi, cidi) to FCom.
3. Upon receiving (Open, sid,Pj , cidj ,xj) from FCom for all j ∈ [n] with j 6= i,

output (Equal, sid) if x1 = . . . = xn, otherwise, (Not-Equal, sid,x1, . . . ,xn).
If (Open, sid,Pa, cida,xa) is not received for some a ∈ [n], output (Abort, sid).

Verify: On input (Verify, sid,x1, . . . ,xn), Vj ∈ V sends (Verify, sid, cidi,xi) to
FCom for all i ∈ [n]. If Vj receives (Verified, sid, cid,Pi,xi, 1) for all i ∈ [n], it
outputs (Verified, sid, 1) if x1 = . . . = xn. Otherwise, it outputs (Verified, sid, 0).

Fig. 11. Protocol ΠEQ for Publicly Verifiable Equality Testing.

Theorem 4. Protocol ΠEQ GUC-realizes FEQ in the FCom hybrid model.

Proof (Sketch). We’ll sketch a simulator S running an internal copy of the real
world adversary A such that an execution with S and FEQ is indistinguish-
able from an execution of ΠEQ with A to the environment Z. S interacts with
A emulating the honest parties of the protocol and FCom. On inputs (Equal,
sid,Pi,xi), where Pi is a corrupted party, S sends (Committed, sid,Pj , cidj)
from each simulated honest party Pj emulating a commitment to a random
message from FCom to A and waits for A to send a (Commit, sid,Pi, cidi,xi) to
FCom. For each corrupted party Pi, S sends (Equal, sid,Pi,xi) to FEQ. Upon
receiving (Equal, sid) from FEQ, if all commitments from A have been opened
with messages (Open, sid,Pi, cidi) from A to FCom, S opens the emulated com-
mitments from honest parties by sending A a message (Open, sid,Pj , cidj ,x)
with x equal to value xi contained in the messages (Commit, sid,Pi, cidi,xi)
from A to FCom and sends (Deliver, sid) to FEQ. Upon receiving (Not-Equal,
sid,x1, . . . ,xn) from FEQ, if all commitments from A have been opened with
messages (Open, sid,Pi, cidi) from A to FCom, S opens the emulated commit-
ments from honest parties by sending A a message (Open, sid,Pj , cidj ,xj) with
the corresponding xj according to x1, . . . ,xn received from FEQ. Upon receiving
a message (Verify, sid,x1, . . . ,xn) from a party Vi, S emulates ΠEQ exactly,
given the commitment openings programmed into FCom.

4.3 Publicly Verifiable Coin Tossing

The functionality for Coin Tossing as defined in [21] but augmented with Public
Verifiability is presented in Figure 12. This functionality can also be implemented



Functionality FCT

FCT interacts with a set of parties P = {P1, . . . ,Pn}, a set of verifiers V and an
adversary S through the following interfaces:

Toss: Upon receiving (Toss, sid,m,F) from all parties in P where m ∈ N and F is

a description of a field, uniformly sample m random elements x1, . . . , xm
$← F and

send (Tossed, sid,m,F, x1, . . . , xm) to S. Proceed as follows according to the answer
of S:

– If S answers with (Deliver, sid), send (Tossed, sid,m,F, x1, . . . , xm) to all par-
ties in P.

– If S answers with (Abort, sid), then send (Abort, sid) to all parties.

Verify: Upon receiving (Verify, sid,m,F, x1, . . . , xm) from Vj ∈ V, if (Tossed,
sid,m,F, x1, . . . , xm) has been sent to all parties in P set f = 1, otherwise, set
f = 0. Send (Verified, sid,m,F, x1, . . . , xm, f) to Vj .

Fig. 12. Functionality FCT for Publicly Verifiable Coin Tossing.

using FCom. The basic coin tossing interface is realized in the standard manner:
(i) each party Pi ∈ P commits to a random element ri ∈ F (ii) wait for all other
parties to perform their commitments (iii) open the commitment and obtain the
opening of all other parties; and (iv) define the final random element x =

∑
i ri.

The public verifiability is achieved by relying on the public verifiability of FCom,
which allows parties to check that the openings to each commitment were pre-
sented correctly and to locally compute the final random value. We describe the
protocol ΠCT in Figure 13. The security of ΠCom is stated in Theorem 5.

Theorem 5. Protocol ΠCT GUC-realizes FCT in the FSC and FCom hybrid model.

Proof (Sketch). We’ll sketch a simulator S running an internal copy of the real
world adversary A such that an execution with S and FCT is indistinguishable
from an execution of ΠCT with A to the environment Z. S interacts with A em-
ulating the honest parties of the protocol and FCom. On input (Toss, sid,m,F),
S sends (Toss, sid,m,F) to FCT on behalf of the corrupted parties and emulates

commitments from each honest party Pi by uniformly sampling xi,1, . . . , xi,m
$←

F and fresh unused identifiers cidi,k, and sending (Commit, sid,Pi, cidi,k, xi,k)
to A for k ∈ [m]. Upon receiving (Tossed, sid,m,F, x1, . . . , xm) from FCT, if A
opened all of its commitments by sending (Open, sid,Pi, cidi,k) to the emulated
FCom for all corrupted parties Pi and k ∈ [m], S emulates openings from the
honest parties towards A with messages (Open, sid,Pj , cidj,k, xj,k) from FCom

with values xj,k such that xk =
∑n
j=1 xj,k given values xi,k generated by A for

k ∈ [m]. Upon input (Verify, sid,m,F, x1, . . . , xm), S exactly emulates ΠCT

given the openings programmed into the emulated FCom.

4.4 Oblivious Transfer with Delayed Public Verifiability

In order to realize F2HCom, we will require an oblivious transfer functionality with
delayed public verifiability with an interface that, when activated by the receiver,



Protocol ΠCT

Parties P = {P1, . . . ,Pn} and verifiers V interact with each other and with FCom as
follows:

Toss: On input (Toss, sid,m,F) where m ∈ N and F is a description of a field, each
party Pi proceeds as follows:

1. Uniformly sample m random elements xi,1, . . . , xi,m
$← F, and for all k ∈ [m],

sample fresh unused identifiers cidi,k and send (Commit, sid,Pi, cidi,k, xi,k) to
FCom.

2. After receiving (Committed, sid,Pj , cidj,k) from FCom for all k ∈ [m] and all
j ∈ [n] with i 6= j, send (Open, sid,Pi, cidi,k) to FCom for all k ∈ [m].

3. Upon receiving (Open, sid,Pj , cidj,k, xj,k) from FCom for all k ∈ [m] and all
j ∈ [n] with i 6= j, output (Tossed, sid,m,F, x1, . . . , xm) where xk =

∑n
j=1 xj,k.

If a message (Open, sid,Pj , cidj,k, xj,k) is not received for any value of j or k,
outputs (Abort, sid).

Verify: On input (Verify, sid,m,F, x1, . . . , xm), Vj ∈ V sends (Verify, sid,
cidi,k, xi,k) to FCom for i ∈ [n] and k ∈ [m]. If Vj receives (Verified, sid,
cidi,k,Pi, xi,k, 1) for all i and k, and xk =

∑n
j=1 xj,k for k ∈ [m], Vj sets f = 1,

otherwise it sets f = 0. Output (Verified, sid,m,F, x1, . . . , xm, f).

Fig. 13. Protocol ΠCT For Publicly Verifiable Coin Tossing.

Functionality FpOT

FpOT is parameterized by λ ∈ N, which is publicly known. FpOT interacts with a
sender Pi, a receiver Pj , a set of verifiers V and an adversary S, proceeding as
follows:

Transfer: Upon receiving a message (Send, sid,x0,x1) from Pi, where x0,x1 ∈
Fλ, store the tuple (sid,x0,x1) and send (Send, sid) to Pi and Pj . Ignore further
messages from Pi with the same sid.

Choose: Upon receiving a message (Receive, sid, c) from Pj , where c ∈ {0, 1},
check if a tuple (sid,x0,x1) was recorded. If yes, send (sid,xc) to Pj and (Received,
sid) to S, and ignore further messages form Pj with the same sid. Otherwise, send
nothing, but continue running.

Initialize Verification: Upon receiving a message (Verification-Start, sid)
from Pj , ignore all other messages but start responding to messages (Verify,
sid, c,x) in the Public Verification interface.

Public Verification: Upon receiving a message (Verify, sid, c,x) from Vk ∈ V
where c ∈ {0, 1} and x ∈ Fλ, if verification was not activated with a message
(Verification-Start, sid) from Pj or if no (Receive, sid, c) was received from Pj ,
answer with (Verification-Fail, sid,Pj). If there is no tuple (sid,x0,x1) recorded,
send (Verification-Fail, sid,Pi) to Vk. Otherwise, if a message (Receive, sid, c)
was received from Pj and a tuple (sid,x0,x1) where xc = x was recorded, set f = 1,
otherwise, set f = 0. Send (Verified, sid, c,x, f) to Vk.

Fig. 14. Functionality FpOT For Publicly Verifiable Oblivious Transfer.



allows parties to check that the receiver used a given choice bit (obtaining a given
message). The basic 1-out-of-2 string OT functionality FpOT augmented with
public verifiability is presented in Figure 14. This functionality can be realized
by having the receiver use FCom to commit to all of its randomness (including the
choice bit) before the OT protocol is executed and opening this commitment after
the protocol is complete. In order for this construction to work, the OT protocol
must be such that the receiver cannot generate two alternative randomness values
such that each of these values result in the same (fixed) protocol messages for
the receiver but in different outputs being obtained given the (fixed) sender’s
messages. We will show that the protocol of [39] has this property. Moreover,
since we only require static security and are willing to use a protocol with more
than two rounds, we will show how to use FCT to generate a CRS for the scheme
of [39], which can be done in two extra rounds in the GrpoRO-hybrid model using
Protocol ΠCT to realize FCT. We use the scheme of [39] along with FCom to
construct Protocol ΠpOT presented in Figure 15. The security of ΠpOT is stated
in Theorem 6.

Theorem 6. Protocol ΠpOT GUC-realizes FpOT in the FCom, FSC and FCT hy-
brid model.

Proof (Sketch). We’ll sketch a simulator S running an internal copy of the real
world adversary A such that an execution with S and FpOT is indistinguishable
from an execution of ΠpOT with A to the environment Z. S operates exactly as
the simulator of [39] in order to simulate the steps “2. Choose”, “3. Transfer”
and “4. Choose”. In the “1. Generate CRS” step, if Pi is malicious, S samples

x, y
$← Zp and g0

$← Zp, and emulates FCT in such a way that it outputs
g0, g

y
0 , g

x
0 , g

xy
0 , which will allow the simulator from [39] to extract Pi’s messages.

On the other hand, if Pj is malicious, S samples x0, x1
$← Zp and g0, g1

$← G,
and emulates FCT in such a way that it outputs g0, g1, g

x0
0 , gx1

1 , which will allow
the simulator from [39] to extract Pj ’s choice bit. When simulating the “Start
Verification” step, S allows Pj to open its commitment with the emulated FCom.
In step “Public Verification”, notice that Vi learns sk = r, c from FCom and that
it has also learned (sid, pk = (g, h)) and (sid, ct0, ct1) if those messages have been
sent. Hence, it can trivially check that both Pi and Pj have participated in the
protocol and that Pj has activated the public verification procedure by opening
its commitment. Notice that given a fixed value for pk = (g, h), Pj cannot
claim a different value of sk = (r) and vice versa. Given a fixed value of ctc =
(gsch

t
c, g

sht ·m) and a fixed r (as argued before), the decryption check performed
by Vi only passes if the c obtained from the commitment is the same that was

used in the protocol, which results in the relation gsht·m
(gsch

t
c)
r =

(grc )
s(hrc)

t·m
(gsch

t
c)
r . Hence,

Vi only outputs (Verified, sid, c, x, 1) if Pj has indeed used c and received x in
the session identified by sid.



Protocol ΠpOT

Parties Pi,Pj and verifiers V interact with each other, with FCom and with FCT as
follows:

1. Generate CRS: When first activated, both Pi and Pj send (Toss, sid, 4,G)
to FCT.a If FCT answers with (Tossed, sid,m,G, g0, g1, h0, h1), both Pi and Pj set
crs = (g0, g1, h0, h1). If FCT answers with (Abort, sid), both Pi and Pj output
(Abort, sid) and halt.

2. Choose: On input (Receive, sid, c), Pj uniformly samples a fresh identifier cidj

and r
$← Zp, and sends (Commit, sid,Pj , cidj , c||r) to FCom. Pj computes pk =

(grc , h
r
c), sk = r and broadcasts (sid, pk).

3. Transfer: On input (Send, sid, x0, x1), upon receiving (sid, pk) from Pj , Pi out-
puts (Abort, sid) and halts if it has not received (Committed, sid,Pj , cidj) from

FCom. Otherwise, Pi parses pk = (g, h) and, for c ∈ {0, 1}, samples s, t
$← Zp, com-

putes u = gsch
t
c, v = gsht and ctc = (u,m · v). Pi broadcasts (sid, ct0, ct1).

4. Finalize Transfer: Upon receiving (sid, ct0, ct1) from Pi, Pj parses ctc =

(c̃t0, c̃t1) and computes xc = c̃t1
c̃tsk

0
. Pj outputs (Received, sid).

Initialize Verification: On input (Verification-Start, sid), Pj sends (Open,
sid,Pj , cidj) to FCom.

Public Verification: On input (Verify, sid, c, x), Vk ∈ V outputs
(Verification-Fail, sid,Pj) if it has not received (Open, sid,Pj , cidj , c||r)
from FCom or (sid, pk) from Pj . If it has not received (sid, ct0, ct1) from Pi, Vk
outputs (Verification-Fail, sid,Pi). Otherwise, if it has received (sid, pk) from Pj
and (sid, ct0, ct1) from Pi, and x = c̃t1

c̃tsk
0

, Vk sets f = 1 (otherwise, it sets f = 0) and

outputs (Verified, sid, c, x, f).

a We abuse notation and assume that FCT also handles representations of a group
G, which can be done by Protocols ΠCT and ΠCom using a GrpoRO where the domain
is G.

Fig. 15. Protocol ΠpOT for Publicly Verifiable Oblivious Transfer.

4.5 Homomorphic Two-Party Commitments with Delayed Public
Verifiability

In order to construct homomorphic multiparty commitments with delayed public
verifiability using the construction of [21], we will first need to define homomor-
phic two-party commitments with delayed public verifiability, which will serve
as the main building block. This functionality performs the usual actions of a
two-party homomorphic commitment but is augmented with an interface that,
when activated by the receiver, allows parties to verify that the receiver obtained
a given message from a given valid opening of a commitment. This is described
in functionality F2HCom in Figure 18. We will show how to use the construction
of [16] together with FpOT to efficiently realize F2HCom. The main idea is that the
receiver can reveal his view of the watchlist used by the scheme of [16] (i.e. the
random seeds received from FROT), which can be publicly verified with FROT.



Functionality FROT

FROT interacts with a sender Pi, a receiver Pj , a set of verifiers V and an adversary
S, proceeding as follows:

Both parties are honest: FROT waits for messages (Sender, sid) and (Receiver,

sid) from Pi and Pj , respectively. Then FROT samples random bits (b1, . . . , bn)
$←

{0, 1}n and two random matrices R0,R1
$← {0, 1}n×m with n rows and m columns.

It computes a matrix S such that for i ∈ [n]: S[i, ·] = Rbi [i, ·].
a It sends (sid,R0,R1)

to Pi and (sid, b1, . . . , bn,S) to Pj . That is, for each row-position, Pj learns a row of
R0 or of R1, but Pi does not know the selection. Record tuples (sid,R0,R1) and
(sid, b1, . . . , bn,S).

Pi is corrupted: FROT waits for messages (Receiver, sid) from Pj and

(adversary, sid,R0,R1) from S. FROT samples (b1, . . . , bn)
$← {0, 1}n, sets S[i, ·] =

Rbi [i, ·] for i ∈ [n] and sends (sid, b1, . . . , bn,S) to Pj . Record tuples (sid,R0,R1)
and (sid, b1, . . . , bn,S).

Pj is corrupted: FROT waits for messages (Sender, sid) from Pi and (Adversary,

sid, b1, . . . , bn,S) from S. FROT samples random matrices R0,R1
$← {0, 1}n×m ,

subject to S[i, ·] = Rbi [i, ·], for i ∈ [n]. FROT sends (sid,R0,R1) to Pi. Record
tuples (sid,R0,R1) and (sid, b1, . . . , bn,S).

Initialize Verification: Upon receiving a message (Verification-Start, sid)
from Pj , ignore all other messages but start responding to messages (Verify,
sid, b1, . . . , bn,S) in the Public Verification interface.

Public Verification: Upon receiving a message (Verify, sid, b1, . . . , bn,S) from
Vk ∈ V, if verification was not activated with a message (Verification-Start,
sid) from Pj or if no (Receiver, sid) (resp. (Adversary, sid, b1, . . . , bn,S)) was
received from Pj (resp. S), answer with (Verification-Fail, sid,Pj). If there is no
tuple (sid,R0,R1) recorded, send (Verification-Fail, sid,Pi) to Vk. Otherwise, if
a tuple (sid, b′1, . . . , b

′
n,S

′) where (b′1, . . . , b
′
n,S

′) = (b1, . . . , bn,S) was recorded, set
f = 1, otherwise, set f = 0. Send (Verified, sid, b1, . . . , bn,S, f) to Vk.

a Notice that S can equivalently be specified as S = ∆R1 + (I−∆)R0, where I is
the identity matrix and ∆ is the diagonal matrix with b1, . . . , bn on the diagonal.

Fig. 16. Functionality FROT.

Given the receiver’s view of the watchlist, a commitment and corresponding
opening information, any party can run the procedures of an honest receiver in
the construction of [16] to verify that the commitments were indeed opened to
the messages the receiver claims (or that an invalid opening was given by the
sender).

Random Oblivious Transfer with Delayed Public Verifiability A ran-
dom oblivious transfer functionality that works on matrices suffices for instanti-
ating the commitment protocols described in the remainder of this section. We
will add a public verification interface to the functionality presented in [16] and
show how it can be instantiated in the FpOT-hybrid model following the con-



Protocol ΠROT

We assume that all parties have access to a pseudorandom number generator PRG.
A sender Pi, a receiver Pj and verifiers V interact with each other and with FpOT as
follows:

1. OT Phase: For i ∈ [n], Pi samples random r0,i, r1,i
$← {0, 1}κ and

sends (Send, sidi, r0,i, r1,i) to FpOT, while Pj samples bi
$← {0, 1} and sends

(Receive, sidi, bi) to FpOT.

2. Seed Expansion Phase: For i ∈ [n], Pi sets R0[i, ·] = PRG(r0,i) and R1[i, ·] =
PRG(r1,i), while Pj sets S[i, ·] = PRG(rbi,i). Pi outputs (R0,R1) and Pj outputs
(b1, . . . , bn,S).

Initialize Verification: On input (Verification-Start, sid), Pj sends
(Verification-Start, sid) to FpOT.

Public Verification: On input (verify, sid, b1, . . . , bn,S), Vk ∈ V sends (Verify,
sid, bi,S[i, ·]) to FpOT for i ∈ [n]. Upon receiving (Verification-Fail, sid,Pi) or
(Verification-Fail, sid,Pj) from FpOT for any i ∈ [n], Vk outputs the same message.
Upon receiving (Verified, sid, bi,S[i, ·], 0) for any i ∈ [n], Vk outputs (Verified,
sid, b1, . . . , bn,S, 0). Upon receiving (Verified, sid, bi,S[i, ·], 1) for all i ∈ [n], Vk
outputs (Verified, sid, b1, . . . , bn,S, 1).

Fig. 17. Protocol ΠROT.

struction of [16]. Functionality FROT as defined in [16] is presented in Figure 16.
Protocol ΠROT presented in Figure 17 (and based on the protocol presented
in [16]) realizes FROT in the FpOT-hybrid model. The basic idea is to invoke
several instances of FpOT where the sender inputs short seeds and the receiver
inputs random choices bits. After all instances of FpOT are executed, both parties
use a PRG to extend the seeds they hold. The proof follows trivially from the
proof presented in [16] and the public verifiability of FpOT.

Protocol Π2HCom We describe protocol Π2HCom in Figure 19 and Figure 20.
This protocol is basically the protocol of [16] in almost verbatim form with an
interface for computing linear combinations (instead of individual additions) and
added public verification steps, which are constructed using the public verifica-
tion interfaces of FROT as described above. The security of Π2HCom is stated in
Theorem 7.

Theorem 7. Protocol Π2HCom GUC-realizes F2HCom in the FSC and FROT hybrid
model.

Proof (Sketch). In order to prove this protocol secure we observe that there exists
a simulator S running an internal copy of the real world adversary A such that
an execution with S and F2HCom is indistinguishable from an execution of Π2HCom

with A to the environment Z. S operates exactly as the simulator of [16] in order
to simulate the Commit, Linear Combination and Opening phases. Although



Functionality F2HCom

F2HCom is parameterized by k ∈ N. F2HCom interacts with parties Pi,Pj , a set of
verifiers V and an adversary S (who may abort at any time) through the following
interfaces:

Init: Upon receiving (Init, sid) from parties Pi,Pj , initialize empty lists raw and
actual.

Commit: Upon receiving (Commit, sid, I) from Pi where I is a set of unused iden-
tifiers, send (Commit, sid, I) to S and proceed as follows:
1. If S sends (Corrupt, sid, {(cid,xcid)}cid∈I) and Pi is corrupted, ignore the next

step and proceed to Step 3.

2. If S answers (No-Corrupt, sid, I), for every cid ∈ I, sample xcid
$← Fk.

3. Set raw[cid] = xcid, send (Commit-Recorded, sid, I, {(cid,xcid)}cid∈I) to Pi
and send (Commit-Recorded, sid, I) to Pj and S.

Input: Upon receiving a message (Input, sid,Pi, cid,y) from Pi, if raw[cid] =
xcid 6=⊥, set actual[cid] = y, set raw[cid] =⊥, and send (Input-Recorded,
sid,Pi, cid) to Pj and S. Otherwise broadcast (Abort, sid,) and halt.

Random: Upon receiving a message (Random, sid, cid) from Pi, if raw[cid] =
xcid 6=⊥, set actual[cid] = xcid, set raw[cid] =⊥, and send (Random-Recorded,
sid, cid) to Pj and S. Otherwise broadcast (Abort, sid,) and halt.

Linear Combination: Upon receiving (Linear, sid, {(cid, αcid)}cid∈I ,β, cid′)
where all αcid ∈ F and β ∈ Fk from Pi, if actual[cid] = xcid 6=⊥ for all cid ∈ I
and raw[cid′] = actual[cid′] =⊥, set actual[cid′] = β +

∑
cid∈I αcid ? xcid and send

(Linear-Recorded, sid, {(cid, αcid)}cid∈I ,β, cid′) to Pj and S. Otherwise broad-
cast (Abort, sid) and halt.

Open: Upon receiving (Open, sid, cid) from Pi, if actual[cid] = xcid 6=⊥, send
(Open, sid, cid,xcid) to S. If S does not abort, send (Open, sid, cid,xcid) to Pj
and send (Open, sid, cid) to all verifiers V.

Initialize Verification: Upon receiving (Verification-Start, sid) from Pi and
Pj , stop responding to all messages with this sid in all other interfaces but Public
Verification.

Public Verification: Upon receiving (Verify, sid, cid,x′cid) from a party Vv ∈ V,
if Pi/Pj has not sent a message (Verification-Start, sid), send (Verify-Fail,
sid,Pi)/(Verify-Fail, sid,Pj) to Vv. Otherwise, if a message (Open, sid, cid) has
not been received from Pi, send (Verify-Fail, sid,Pi) to Vv. Otherwise, if a message
(Open, sid, cid) has been received from Pi and actual[cid] = xcid = x′cid, set f = 1
(otherwise set f = 0) and send (Verified, sid, cid, f) to Vv.

Fig. 18. Functionality F2HCom For Homomorphic Two-party Commitment With De-
layed Public Verifiability

the protocol of [16] only handles individual additions, its proof techniques can
be trivially extended to handle a linear combination, which simply consists of
multiple additions of commitments.



The main difference in protocol Π2HCom is that it provides a public verifica-
tion procedure. We will show that this procedure only succeeds if the protocol
was correctly executed and only pinpoints a party as responsible for a failure
if this party indeed disrupted an honest execution. First, we observe that all
the messages exchanged during the protocol are broadcast to the verifier par-
ties V, making it impossible for either Pi or Pj to later provide an alternative
protocol transcript for verification. However, the private view of Pj consisting
of b1, . . . , bn,B is only revealed once the verification procedure is initialized. No-
tice that the public verification procedure of FROT guarantees that Pj ’s view as
broadcast in the verification initialization procedure of Π2HCom is correct. Given
that the protocol transcript received by parties V through the broadcast channel
are immutable and that the values b1, . . . , bn,B are guaranteed by FROT to be
correct, a verifier V following the instructions of an honest receiver Pj will only
output (Verified, sid, cid, f) if a valid opening for the commitment identified
by cid was provided by Pi. Moreover, observing the transcript, any verifier V
can readily check whether Pi has failed to provide valid messages or whether Pj
has claimed an opening that is invalid.

4.6 Homomorphic Multiparty Commitments with Delayed Public
Verifiability

In Figure 21, we present a functionality for multiparty commitments with delayed
public verifiability based on the functionality of [21]. As shown in [21], versions of
F2HCom, FEQ and FCT without delayed public verifiability can be used to realize
a version of FHCom also without delayed public verifiability. We will focus on
showing how delayed public verifiability can be added to the construction of [21]
assuming the underlying functionalities also have this property. Using the same
principle as in the construction of Π2HCom, we show that the public verification
mechanisms of F2HCom, FEQ and FCT can be used to obtain the full view of
the receiving parties (including secret states). Given that the verifiers know the
full transcript of the protocol and are guaranteed to have obtained the view
of the receiving parties, they can run the procedure of honest verifying parties
to check that a commitment was opened to an specific message. We describe
Protocol ΠHCom in Figures 22 and 23 as presented in [21], but add the delayed
public verification mechanism to it. The security of the protocol is stated in
Theorem 8.

Theorem 8. Protocol ΠHCom GUC-realizes FHCom in the F2HCom, FEQ, FSC and
FCT hybrid model.

Proof (Sketch). In order to prove this protocol secure we observe that there
exists a simulator S running an internal copy of the real world adversary A such
that an execution with S and FHCom is indistinguishable from an execution of
ΠHCom with A to the environment Z. S operates exactly as the simulator of [21]
in order to simulate the Commit, Linear Combination and Opening phases.
We will show that public verification holds given that F2HCom, FEQ, FCT also



Protocol Π2HCom (Commitment Phase)

Let C be a systematic binary linear [n, k, s] code, where s is the statistical security
parameter. Let H be a family of linear almost universal hash functions H : {0, 1}m →
{0, 1}`. A sender Pi, a receiver Pj and verifiers V interact with each other and FROT,
proceeding as follows:

Init: On input (Init, sid), Pi initializes empty lists raw = actual = ∅.
Commit: On input (Commit, sid, I), where I = {cid1, . . . , cidm−`}, Pi and Pj
proceed as follows:

1. Pi and Pj send (Sender, sid) and (Receiver, sid) to FpOT, respectively. Pi
receives (sid,R0,R1) from FROT and sets R = R0 + R1. Pj receives (
sid, b1, . . . , bn,S) from FROT and sets the diagonal matrix ∆ such that it con-
tains b1, . . . , bn on the diagonal. R will contain in the top k rows the data to
commit to. Note that R0,R1 form an additive secret sharing of R, and in each
row Pj knows shares from either R0 or R1.

2. Pi now adjusts the bottom n− k rows of R so that all columns are codewords in
C, and Pj will adjust his shares accordingly, as follows: Pi constructs a matrix
W with dimensions as R and 0s in the top k rows, such that A := R+W ∈ C�m

(recall that C is systematic). Pi broadcasts (sid,W) (of course, only the bottom
n− k rows need to be sent).

3. Pi sets A0 = R0,A1 = R1 + W and Pj sets B = ∆W + S. Note that now we
have

A = A0 + A1, B = ∆A1 + (I−∆)A0, A ∈ C�m ,

i.e., A is additively shared and for each row index, Pj knows either a row from
A0 or from A1.

4. Pj chooses a seed H ′ for a random function H ∈ H and broadcasts (sid,H ′), we
identify the function with its matrix (recall that all functions in H are linear).

5. Pi computes T0 = A0H,T1 = A1H and broadcasts (sid,T0,T1). Note that
AH = A0H + A1H = T0 + T1, and AH ∈ C�`. So we can think of T0,T1 as
an additive sharing of AH, where again Pj knows some of the shares, namely
the rows of BH.

6. Pj checks that ∆T0 + (I−∆)T1 = BH and that T0 + T1 ∈ C�`. If any check
fails, he aborts.

7. We sacrifice some of the columns in A to protect Pi’s privacy: Note that each
column j in AH is a linear combination of some of the columns in A, we let A(j)
denote the index set for these columns. Now for each j the parties choose an index
a(j) ∈ A(j) such that all a(j)’s are distinct. Pi and Pj now discard all columns
in A,A0,A1 and B indexed by some a(j). For simplicity in the following, we
renumber the remaining columns from 1.

8. Pi saves A,A0 and A1, and Pj saves B and ∆ (all of which now have m − `
columns). Pi stores the k top rows of each column A[·, ı] in rawi[cidı] and Pj sets
rawj [cidı] = > and actualj [cidı] =⊥, for ı ∈ [m− `].

Fig. 19. Protocol Π2HCom (Commitment Phase)



Protocol Π2HCom (Linear Combination, Opening and Public Verification)

After the Commit phase, the parties proceed as follows:

Input: On input (Input, sid,Pi, cid,xcid), if raw[cid] 6=⊥, Pi computes w = xcid−
rawi[cid], sets actuali[cid] = rawi[cid], sets rawi[cid] =⊥, and broadcasts (Input,
sid, cid,w). Upon receiving (Input, sid, cid,w) from Pi, Pj sets rawj [cid] =⊥ and
actualj [cid] = w.
Rand: On input (Random, sid, cid), if raw[cid] 6=⊥, Pi sets actuali[cid] = rawi[cid]
and rawi[cid] =⊥, and broadcasts (Random, sid, cid). Upon receiving (Input,
sid, cid,w) from Pi, if rawj [cid] = >, Pj sets rawj [cid] =⊥, actualj [cid] = 0k.
Linear Combination:
1. On input (Linear, sid, {(cidı, αcidı)}ı∈[m′],β, cid′) where m′ is the current num-

ber of columns in A,A0,A1 and all αcid ∈ F and β ∈ Fk, if actuali[cidı] =
xcidı 6=⊥ for ı ∈ [m′] and cid′ is unused, Pi appends column C(β)+

∑
ı∈[m′] αcidı ·

A[·, ı] to A where C(β) is an encoding of β under C, likewise appending to A0

and A1 the corresponding linear combination of columns. Pi broadcasts (Linear,
sid, {(cidı, αcidı)}ı∈[m′],β, cid′).

2. Upon receiving (Linear, sid, {(cidı, αcidı)}ı∈[m′],β, cid′) from Pi, if
actualj [cidı] = xcidı 6=⊥ for ı ∈ [m′] and cid′ is unused, Pj computes
actualj [cid′] = β+

∑
ı∈[m′] αcidı ·actual

j [cidı] appends C(β)+
∑
ı∈[m′] αcidı ·B[·, ı] to

B. Note that this maintains the properties A = A0+A1, B = ∆A1+(I−∆)A0,

and A ∈ C�m′ , where m′ is the new current number of columns.
Opening Phase:
1. To open the commitment identified by cidı, Pi broadcasts (sid,A0[·, ı],A1[·, ı]).
2. Pj checks that A0[·, ı] + A1[·, ı] ∈ C and that for  ∈ [n], it holds that B[, ı] =

Ab [, ı] (recall that b is the ’th entry on the diagonal of ∆). If this check fails,
Pj aborts outputting (sid,⊥). Otherwise, Pj computes xcid, the first k entries in
A0[·, ı] + A1[·, ı] + actualj [cid] ‖0n−k, and outputs (Open, sid, cid,xcid).

Initialize Verification: On input (Verification-Start, sid), Pj sends
(Verification-Start, sid) to FROT and broadcasts (sid, b1, . . . , bn,B).
Public Verification: On input (Verify, sid, cidı,x

′
cidı), a party Vv ∈ V

outputs (Verification-Fail, sid,Pj) if (sid, b1, . . . , bn,B) has not been broad-
cast by Pj . Otherwise, Vv sends (Verify, sid, b1, . . . , bn,B) to FROT. Upon re-
ceiving (Verification-Fail, sid,Pi) or (Verification-Fail, sid,Pj) from FROT

for any i ∈ [n], Vv outputs the same message. Upon receiving (Verified,
sid, b1, . . . , bn,S, 0) from FpOT, Vv outputs (Verification-Fail, sid,Pj). Otherwise,
if a message (sid,A0[·, cidı],A1[·, cidı]) has not been broadcast by Pi, output
(Verification-Fail, sid,Pi). Otherwise, Vv executes the procedures of an honest
Pj using b1, . . . , bn,S and the messages broadcast throughout protocol execution
in order to verify that the commitment identified by cidı was correctly opened
to x′cidı . If any of the checks performed in the steps of an honest Pj fail, output
(Verification-Fail, sid,Pi). If all of the checks performed in the steps of an hon-
est Pj succeed but the opened message is xcidı such that x′cidı 6= xcidı , set f = 0.
Otherwise, if x′cidı = xcidı , set f = 1. Output (Verified, sid, cidı, f).

Fig. 20. Protocol Π2HCom (Linear Combination, Opening and Public Verification)



Functionality FHCom

FHCom is parameterized by k ∈ N. FHCom interacts with a set of parties P =
{P1, . . . ,Pn}, a set of verifiers V and an adversary S (who may abort at any time)
through the following interfaces:

Init: Upon receiving (Init, sid) from parties P, initialize empty lists raw and actual.

Commit: Upon receiving (Commit, sid, I) from Pi ∈ P where I is a set of unused

identifiers, for every cid ∈ I, sample a random xcid
$← Fk, set raw[cid] = xcid and

send (Commit-Recorded, sid, I) to all parties P and S.

Input: Upon receiving a message (Input, sid,Pi, cid,y) from Pi ∈ P and messages
(Input, sid,Pi, cid) from every party in P other than Pi, if a message (Commit,
sid, I) was previously received from Pi and raw[cid] = xcid 6=⊥, set raw[cid] =⊥, set
actual[cid] = y and send (Input-Recorded, sid,Pi, cid) to all parties in P and S.
Otherwise broadcast (Abort, sid) and halt.

Random: Upon receiving a message (Random, sid, cid) from all parties P,
if raw[cid] = xcid 6=⊥, set actual[cid] = xcid, set raw[cid] =⊥ and send
(Random-Recorded, sid, cid) to all parties P and S. Otherwise broadcast (Abort,
sid) and halt.

Linear Combination: Upon receiving (Linear, sid, {(cid, αcid)}cid∈I ,β, cid′)
where all αcid ∈ F and β ∈ Fk from all parties P, if actual[cid] = xcid 6=⊥ for
all cid ∈ I and raw[cid′] = actual[cid′] =⊥, set actual[cid′] = β +

∑
cid∈I αcid · xcid

and send (Linear-Recorded, sid, {(cid, αcid)}cid∈I ,β, cid′) to all parties P and S.
Otherwise broadcast (Abort, sid) and halt.

Open: Upon receiving (Open, sid, cid) from all parties P, if actual[cid] = xcid 6=⊥,
send (Open, sid, cid,xcid) to S. If S does not abort, send (Open, sid, cid,xcid) to all
parties P.

Check Opening: Upon receiving (Check-Not-Open, sid, cid) from Pi ∈ P ∪ V,
if parties {p̂1, . . . , p̂k} ⊂ P did not send (Open, sid, cid), send (Check-Not-Open,
sid, {p̂1, . . . , p̂k}) to Pi.
Initialize Verification: Upon receiving a message (Verification-Start, sid,Pi)
from a party Pi ∈ P, send (Verification-Start, sid,Pi) to all parties P and
V and ignore all messages with this sid in all other interfaces but messages
(Check-Not-Open, sid, cid) in the Check Opening interface and messages (Verify,
sid, cid,x′cid) in the Public Verification interface.

Public Verification: Upon receiving (Verify, sid, cid,x′cid) from a party Vj ∈ V,
if a set of parties {P ′1, . . . ,P ′m} ⊆ P has not sent a message (Verification-Start,
sid), send (Verify-Fail, sid, {P ′1, . . . ,P ′m}) to Vj . Otherwise, if a message (Open,
sid, cid) has been received from all parties P and actual[cid] = xcid = x′cid, set f = 1
(otherwise set f = 0) and send (Verified, sid, cid, f) to Vj .

Fig. 21. Functionality FHCom For Homomorphic Multiparty Commitment With De-
layed Public Verifiability

have delayed public verification interfaces. Notice that all the secret state kept
by the receiving parties consists of random values sent through F2HCom, FEQ,
FCT. Hence, when this state is revealed in the verification initialization phase,



the verifying parties can check that all its components were correctly obtained
from F2HCom, FEQ, FCT. Moreover, all the protocol transcript is received by
the verifying parties V through the broadcast mechanism, guaranteeing that
no parties can later provide alternative version. Using the secret states of the
receiving parties and the protocol transcript obtained through broadcast, the
verifying parties can then run the procedures of an honest receiving party in
order to verify that a given commitment was opened to a specific message.

4.7 Efficiency

The commitment phase in ΠHCom requires n2 calls to F2HCom’s commitment
phase and then n2 commitments to γ + κ arbitrary messages through F2HCom,
where n is the number of parties. Each call to F2HCom phase amounts to n′ calls
FpOT, where s is the security parameter and the underlying code is C[n′, k, s].
This amounts to a concrete communication complexity of roughly (6n′|B| +
(γ + 5s)n′ + (γ + k) ∗ s)n2 considering protocols ΠpOT and Π2HCom for realizing
functionalities FpOT and F2HCom, respectively. the cost of the underlying commit-
ments when realized by ΠCom is small since it employs random oracles to achieve
commitments of constant communication complexity. Notice that the commu-
nication cost of the commitment phase can be amortized over many messages,
but it is still prohibitive given that our protocols need to store the messages
on a public ledger for verification. In order to solve this issue, we can define a
compact representation of the messages in the commitment phase of ΠHCom by
observing that all messages sent in this phase are random. Hence, instead of
having all parties post their messages on the public bulletin board we instead
have them commit uniformly random seeds with ΠCom. Since ΠCom generates
compact commitments, the total size of this initial commitment to seeds will
be simply the output size of the underlying random oracle times the number of
parties. The parties then stretch these seeds using a PRG to generate the public
coins of the protocols. Moreover, each party commits to the messages generate
from private coins that it would post to the public ledger using ΠCom, posts only
the compact commitment to the public ledger and sends the messages directly
to the other parties. Upon receiving the messages, each party checks that they
correspond to the commitments posted in the public ledger, aborting otherwise.
Later on, the parties can open the commitments in order to allow for public
verification.

5 MPC with Publicly Verifiable Output

In this section we provide an implementation of FIdent, the MPC scheme with
a publicly verifiable output as defined in Section 3. We construct it from a
functionality FMPC−SO that captures MPC with secret-shared output and that
supports linear operations on the secret sharing. We describe this functionality in
Figure 24, which uses the XOR function over Fm as the reconstruction function,



Protocol ΠHCom (Commitments)

Parties P = {P1, . . . ,Pn} and verifiers V interact with each other and F2HCom, FEQ

and FCT, proceeding as follows:

Init: On input (Init, sid), each pair of parties Pi and Pj invoke the command (Init,
sid) of functionality F2HCom to initialize an instance denoted by F i,j2HCom.

Commit: On input (Commit, sid, I) where I = {cid1, . . . , cidγ} parties P proceed
as follows:
1. All parties P agree on a set of γ + κ unused identifiers I′.
2. For all j 6= i, Pi sends (Commit, sid, I′) to F i,j2HCom, receiving

(Commit-Recorded, sid, I′, {(cid,xcid)}cid∈I′) in response and proceeding af-
ter receiving (Commit-Recorded, sid, I′) from Fj,i2HCom for every j 6= i.

3. For all cid ∈ I′ and every j ∈ [n], j 6= i, party Pi samples xi
$← Fk, sends

(Input, sid,Pi, cid,xi) to F i,j2HCom and waits for (Input-Recorded, sid,Pj , cid)
from Fj,i2HCom.

4. All parties P agree on sets I and K such that |I| = γ, |K| = κ, I ∩ K = ∅ and
I ∪ K = I′.

5. All parties P send (Toss, sid, κ · γ,F) to FCT. Parties P continue to the next
step upon receiving (Tossed, sid, κ · γ,R) where R ∈ Fκ×γ from FCT.

6. Identifying each column of R with a unique cid ∈ I, for every q ∈ K, every party
Pi samples a fresh identifier cid′q and, for every j ∈ [n], j 6= i, sends (Linear,
sid, {{(cid,R[q, cid])}cid∈I},0k, cid′q) to F i,j2HCom, waits for (Linear-Recorded,
sid, {{(cid,R[q, cid])}cid∈I},0k, cid′) from Fj,i2HCom, sends (Open, sid, cid′q) to
F i,j2HCom and waits for (Open, sid, cid′q, s

j
q) from Fj,i2HCom.

7. For every q ∈ K, each party Pi computes ciq =
∑
j∈[n] s

j
q and sends (Equal,

sid,Pi, ciq) to FEQ. Upon receiving (Abort, sid) or (Not-Equal, sid, c1q, . . . , c
n
q )

from FEQ, Pi aborts. Otherwise Pi outputs (Committed, sid, I), sets rawi[cid] =
> and actuali[cid] =⊥ for cid ∈ I.

Input: On input (Input, sid, cid,y) for Pi and input (Input, sid,Pj , cid) for every
Pj for j 6= i, parties P proceed as follows:

1. For every j ∈ [n], j 6= i, Pj aborts if rawj [cid] 6= >. Otherwise, Pj sends (Open,
sid, cid) to Fj,i2HCom.

2. Upon receiving (Open, sid, cid,xj) from Fj,i2HCom for every j ∈ [n], j 6= i, Pi
computes xcid =

∑
j∈[n] x

j
cid, wcid = y−xcid and broadcasts (sid,Pi, cid,wcid).

3. Every party Pi sets rawj [cid] =⊥ and actualj [cid] = wcid.

Random: On input (Random, sid, cid), if rawi[cid] = >, each party Pi sets
rawi[cid] =⊥ and actuali[cid] = 0k. Otherwise output (Abort, sid) and halt.

Fig. 22. Protocol ΠHCom (Commitments)

but can be generalized to other functions easily. We then present a protocol
ΠIdent which implements FIdent in Section 5.1 and a proof that a slightly modified
version of the BMR-protocol of Hazay et al. [25] realizes FMPC−SO in Section 5.2.



Protocol ΠHCom (Linear Combination, Opening and Public Verificationn)

Linear Combination: On input (Linear, sid, {(cid, αcid)}cid∈I ,β, cid′) where all
αcid ∈ F and β ∈ Fk, if actuali[cid] 6=⊥ for all cid ∈ I and cid′ is unused, each party
Pi ∈ P computes actuali[cid′] = β +

∑
cid∈I αcid · actual

i[cid] and sends (Linear,

sid, {(cid, αcid)}cid∈I ,β, cid′) to F i,j2HCom . Otherwise broadcast (Abort, sid) and halt.

Open: On input (Open, sid, cid), each party Pi sends (Open, sid, cid) to F i,j2HCom for
j ∈ [n], j 6= i. Upon receiving (Open, sid, cid,xj) from Fj,i2HCom for every j ∈ [n], j 6= i,
Pi computes y =

∑
j∈[n] x

j
cid + actuali[cid] and outputs (Open, sid, cid,y).

Check Opening: On input (Check-Not-Open, sid, cid), j, i ∈ [n], j 6= i, each
party Pi adds Pj to set P̂ if it did not receive (Open, sid, cid,xj) or (Open, sid, cid)
from Fj,i2HCom and outputs (Check-Not-Open, sid, cid, {p̂}p̂∈P̂).

Initialize Verification: On input (Verification-Start, sid), each party Pi ∈ P
sends (Verification-Start, sid) to F2HCom, FEQ and FCT. Moreover, each party
Pi ∈ P broadcasts R and sjq for j 6= i.

Public Verification: On input (Verify, sid, cid,x′cid), a party Vj ∈ V first uses
the public verification interfaces of F2HCom, FEQ and FCT to check that the Commit
phase was successfully completed. If any of these functionalities return (Verify-Fail,
sid,P ′), for each of these cases Vj adds P ′ to set P̂ and if F i,j2HCom returns (Verified,
sid, cid, 0) upon receiving (Verify, sid, cid,xicid) (where xicid is obtained from the
opening broadcasts), add Pj to P̂. If P̂ 6= ∅, Vj outputs (Verify-Fail, sid, P̂).
Otherwise, return (Verified, sid, cid, 1)

Fig. 23. Protocol ΠHCom (Linear Combination, Opening and Public Verification)

5.1 Protocol ΠIdent

We construct a protocol ΠIdent which implements FIdent (with the XOR func-
tion over Fm as the reconstruction function) in the FMPC−SO,FHCom,FCT-hybrid
model. In it, the parties obtain shares of the output as well as advice, such that
the actual output can be obtained by combining all of these values. To make this
verifiable, the parties use FHCom to make them available in a publicly verifiable
way. As parties may cheat during the commitment phase, we check consistency
by computing random linear combinations both on the commitments and the
shares inside FMPC−SO and testing for equality. The protocol is described in Fig-
ure 31 and Figure 32. Note that for this application FCT must not be publicly
verifiable. For z ∈ F, we use êz to denote the vector in Fk that is z in all k
positions.

An important part of the proof is to show that the commitments that each
party Pi gives are indeed well-formed. To establish this, we will later need the
following lemma.

Lemma 1. Fix values r1, . . . , rm, s1, . . . , sκ ∈ F and r1, . . . , rm, s1, . . . , sκ ∈
Fk. Then pick αh,j

$← F for h ∈ [m], j ∈ [κ] uniformly at random. If for all
j ∈ [κ] there is a tj such that

tj = sj +
∑
h∈[m]

αh,j · rh and êtj = sj +
∑
h∈[m]

αh,j · rh ,



then rh = êrh for all h ∈ [m] and sj = êsj for all j ∈ [κ], except with probability
O(2−κ).

Proof. For the sake of argument, assume that the conclusion is false. Then there
are three mutually distinct cases:

1. There exists h ∈ [m], ` ∈ [k − 1] such that rh[`] 6= rh[`+ 1].
2. There exists h ∈ [m] such that rh = êz for z = 1− rh.
3. For all h ∈ [m] it holds that rh = êrh but there exists j ∈ [κ] such that
sj 6= êsj .

It is easy to see that the third case is impossible, so we will only consider the
first two.

In the first case, w.l.o.g. let h = ` = 1, then r1[1]+r1[2] = 1. By assumption,

s1[1] +
∑
h∈[m]

αh,1 · rh[1] = s1[2] +
∑
h∈[m]

αh,1 · rh[2]

and therefore

α1,1 +
∑

h∈[m]\{1}

αh,1 · (rh[1] + rh[2]) = s1[1] + s1[2].

Assume that for h ∈ [m]\{1}, j ∈ [κ] the values αh,j would be fixed ahead of the
above experiment. Then

∑
h∈[m]\{1} αh,j · (rh[1] + rh[2]) + sj [1] + sj [2] uniquely

predetermines the κ uniformly random values α1,j . This holds with probability
at most 2−κ and choosing αh,j for h ∈ [m]\{1}, j ∈ [κ] randomly after r·, s· are
fixed does not increase the chance of winning the above game.

In the second case, this immediately implies that also sj ∈ {ê0, ê1}. By
letting r̂h, ŝj ∈ F such that êr̂h = rh and êŝj = sj , we then have that

ŝj +
∑

h∈[m]
αh,j · r̂h = sj +

∑
h∈[m]

αh,j · rh.

Now there must exist a h ∈ [m] such that rh 6= r̂h. By the same argument as in
case one, this boils down to predicting all αh,j which is true with probability at
most 2−κ. ut

Using the above lemma, we now prove security of ΠIdent.

Theorem 9. Protocol ΠIdent UC-securely implements FIdent (with the XOR func-
tion over Fm as the reconstruction function) against a static malicious adversary
corrupting up to n − 1 parties in the FMPC−SO,FHCom,FCT-hybrid model with
broadcast.

We first define a simulator S which will simulate FCT,FHCom globally and
FMPC−SO locally (meaning the former two functionalities can be global func-
tionalities) and which itself simulates an execution of protocol ΠIdent with A.
We then argue why no environment Z using A can distinguish the distribution
generated by ΠIdent and A from S which uses FIdent.



Functionality FMPC−SO

This functionality interacts with the parties P. It is parametrized by a circuit C with
inputs x(1), . . . , x(n) and output y = (y1, . . . , ym) ∈ Fm. S provides a set I ⊂ [n] of
parties which it corrupts. Let the reconstruction function f be the XOR function
over F. S can at any point send (Abort, sid) to the functionality, upon which it
sends (Abort, sid,⊥) to all parties and terminates.

Input: Upon input (Input, sid, i, x(i)) by Pi and input (Input, sid, i, ·) by all other
parties the functionality stores the value (sid, i, x(i)) internally. Every further such
message with the same sid and i is ignored.

Evaluate: Upon input (Compute, sid) by all parties in P and if the in-
puts (sid, i, x(i))i∈[n] for all parties have been stored internally, compute y =

(y1, . . . , ym)← C(x(1), . . . , x(n)) and store (sid,y) locally.

Share Output: Upon input (Share-Output, sid) and if Evaluate was finished:
1. For each h ∈ [m], pick an unused cidh and send (Request-Shares,

sid, {cidh}h∈[m]) to S. For each i ∈ I S sends (Output-Shares,

sid, {(cidh, s(i)cidh)}h∈[m]). Then for i ∈ I sample s
(i)
cidh

$← F, store

(sid, cidh, i, s
(i)
cidh

) and send (Output-Shares, sid, {(cidh, s(i)cidh)}h∈[m]) to Pi.

2. For each h ∈ [m], sample zcidh ∈ F such that f(zcidh , s
(1)
cidh

, . . . , s
(n)
cidh

) = yh and
store (sid, cidh, zcidh). Send (Share-Advices, sid, {(cidh, zcidh)}h∈[m]) to S. If
S sends (Deliver-Advices, sid, {cidh}h∈[m]), then send (Share-Advices, sid,
{(cidh, zcidh)}h∈[m]) to all Pi ∈ I.

Share Random Value: Upon input (Share-Random, sid), pick z
$← F and an

unused cid, set zcid = 0 and send (Request-Shares, sid, cid) to S. For each i ∈ I
S sends (Share, sid, cid, s

(i)
cid). Afterwards sample s

(i)
cid

$← F for i ∈ I subject to the

condition that f(zcid, s
(1)
cid, . . . , s

(n)
cid) = z, store (sid, cid, i, s

(i)
cid) and send (Share, sid,

cid, s
(i)
cid) to Pi.

Linear Combination: Upon input (Linear, sid, {(cid, αcid)}cid∈I , cid′) from all
parties P, if all αcid ∈ F, all cid ∈ I have stored values and cid′ is un-
used, set s

(i)

cid′ ←
∑
cid∈I αcid · s

(i)
cid for each i ∈ [n], zcid′ ←

∑
cid∈I αcid ·

zcid, record {(sid, cid′, i, s(i)cid′)}i∈[n], (sid, cid′, zcid′), and send (Linear-Recorded,
sid, {(cid, αcid)}cid∈I , cid′) to all parties P and S.

Reveal: Upon input (Reveal, sid, cid, i) by Pi, send (Reveal, sid, cid, i, s
(i)
cid) to S.

If S sends (Deliver-Reveal, sid, cid, i), send (Reveal, sid, cid, i, s
(i)
cid) to all parties.

Private Reveal: Upon input (Reveal, sid, cid, i, j) by Pi:
– if Pi ∈ I or Pj ∈ I then send (Reveal, sid, cid, i, s

(i)
cid) to S. If S sends

(Deliver-Reveal, sid, cid, i, j), send (Reveal, sid, cid, i, s
(i)
cid) to Pj .

– else send (Reveal, sid, cid, i, s
(i)
cid) to Pj .

Fig. 24. Functionality FMPC−SO for an MPC with Secret-Shared Output and Linear
Secret Share Operations.

Proof. The simulator S proceeds as follows in the different phases of the protocol:



Protocol ΠIdent

The parties evaluate the circuit C with inputs x(1), . . . , x(n) and m outputs
y1, . . . , ym. For the commitment functionality FHCom we assume that k ≥ max{κ,m}.
Let êz ∈ {0, 1}k be the vector that is z in all k positions. The reconstruction function
f associated with FMPC−SO is the XOR function over F and the one obtained by the
protocol is the XOR function over Fm.

Init: The parties set up the functionality FHCom by sending (Init, sid).

Input: Each Pi sends (Input, sid, i, x(i)) to FMPC−SO.

Evaluate: Each Pi sends (Compute, sid) to FMPC−SO.

Share: The parties generate a random blinding of the output and commitments:
1. Each Pi sends (Share-Output, sid) to FMPC−SO and waits to get the re-

sponses (Output-Shares, sid, {(cidh, s(i)cidh)}h∈[m]) and (Share-Advices, sid,
{(cidh, zcidh)}h∈[m]).

2. The parties send n(m + κ) messages (Share-Random, sid) to FMPC−SO to get
shares of random values. We order the secret-shared values such that (m + κ)

distinct values are associated with each party Pi. Let cid
(i)
r,h for h ∈ [m] and cid

(i)
s,j

for j ∈ [κ] denote the respective identifiers. Let I be the set of all cid obtained
in this step. Each Pi sends (Commit, sid, I) to FHCom.

3. For i ∈ [n], each party P` sends messages (Reveal, sid, ·, `, i) to FMPC−SO for all

cid
(i)
r,h, h ∈ [m] and all cid

(i)
s,j , j ∈ [κ] to open the shares towards Pi. Pi uses the

reconstruction function f to get the secret-shared values. Let r
(i)
h for h ∈ [m] and

s
(i)
j for j ∈ [κ] denote the respective secret-shared values.

4. For h ∈ [m] each party Pi sends (Input, sid,Pi, cid(i)r,h, êr(i)
h

) to FHCom. Moreover,

each Pi for j ∈ [κ] sends (Input, sid,Pi, cid(i)s,j , ês(i)j
) to FHCom.

5. Each Pi sends (Toss, sid,m · κ,F) to FCT. They obtain bits {αh,j}h∈[m],j∈[κ].

6. For i ∈ [n], j ∈ [κ] set lini,j ← {cid(i)r,h, αh,j}h∈[m] ∪ {cid(i)s,j , 1}. Each party

sends (Linear, sid, lini,j , ê0, cid
(i)
b,j) to FHCom and (Linear, sid, lini,j , cid

(i)
b,j) to

FMPC−SO.

7. For i ∈ [n], j ∈ [κ] each party P` (a) sends (Open, sid, cid
(i)
b,j) to FHCom, which

outputs o
(i)
j . If o

(i)
j = êz for some z ∈ F then set out

(i)
j = z, otherwise abort;

and (b) sends (Reveal, sid, cid
(i)
b,j , `) to FMPC−SO and after getting the shares of

all parties reconstruct the value using the reconstruction function f and denote
the reconstructed element as out

(i)
j .

8. If for any i ∈ [n], j ∈ [κ] it holds that out
(i)
j 6= out

(i)
j then abort.

9. For each h ∈ [m], set linh ← {cid(i)r,h,−1}i∈[n] ∪ {cidh, 1}. Each party sends
(Linear, sid, linh, cidyh) to FMPC−SO. Then each party Pi sends (Reveal,
sid, cidyh , i) to FMPC−SO and after receiving all shares uses the reconstruction

function f to obtain yh. Pi sets its share of the output as r(i) ← (r
(i)
1 , . . . , r

(i)
m )

and the advice as y ← (y1, . . . , ym).

Fig. 25. Protocol ΠIdent Implementing FIdent.



Protocol ΠIdent (continuation)

Reveal: Combine the commitments and open them unreliably. Each party Pi for
each j ∈ [n], h ∈ [m] sends (Open, sid, cid

(j)
r,h) to FHCom. Each Pi eventually learns

ê
r
(i)
h

and reconstructs r
(i)
h using the first element of the vector.

Test Reveal: Run Reveal() and return its output.

Allow Verify: Each party Pi sends (Verification-Start, sid) to FHCom.

Verify: Party Vi ∈ V with input (z(1), . . . , z(n)),z(i) ∈ Fm does the following:

1. For j ∈ [n], h ∈ [m] send (Verify, sid, cid
(j)
r,h, êz(j)[h] ∈ Fk) to FHCom.

2. If FHCom returns (Verify-Fail, sid, J) then return (Verify-Fail, sid, J). Other-

wise, for each j ∈ [n], h ∈ [m] FHCom it returns (Verified, sid, cid
(j)
r,h, f

(j)
h ).

3. Let (J(1), . . . , J(n)) ← Reveal(). If ∅ 6=
⋃
i∈[n] J

(i) then return (Reveal-Fail,

sid, J(1), . . . , J(n)). Else, return (Open-Fail, sid, {i ∈ [n] | ∃h ∈ [m] : f
(i)
h = 0}).

Procedure Reveal :
1. For each i ∈ [n], h ∈ [m] send (Check-Not-Open, sid, cid

(i)
r,h) to FHCom and

obtain (Check-Not-Open, sid, J
(i)
h ). Set J(i) =

⋃
h∈[m] J

(i)
h .

2. Return (J(1), . . . , J(n)).

Fig. 26. Protocol ΠIdent Implementing FIdent (continued).

Init: Set up FHCom,FCT for the simulation. Initialize FMPC−SO with the set I of
corrupted parties.

Input: S simulates the execution of the input phase of ΠIdent with A and for-
wards the messages that A sends to the simulated FMPC−SO to FIdent.

Evaluate: S simulates the execution of the evaluate phase of ΠIdent with A and
forwards the messages that A sends to the simulated FMPC−SO to FIdent.

Share: Obtain the r(i)-shares of dishonest parties from FIdent and simulate the
protocol to get these and yh right.

1. Start by simulating FMPC−SO to generate the random shares r
(i)
h , s

(i)
j hon-

estly. If all parties obtain their shares, send (Share, sid) in the name of all
dishonest parties to FIdent.

2. Upon obtaining r(i) ∈ Fm for Pi ∈ I from FIdent, fix an honest party and

change its share of r
(i)
h for h ∈ [m] such that r

(i)
h = r(i)[h].

3. Run the opening of the values r
(i)
h , s

(i)
j honestly with the adjusted share of one

honest party. For any Pi ∈ I, if A does not reveal the necessary values using
FMPC−SO, then send (Abort, sid) to FIdent, otherwise send (Deliver-Share,
sid, i) to FIdent.

4. For the simulated honest parties Pi use FHCom to commit to ê
r
(i)
h

, ê
s
(i)
j

as in

the protocol using FHCom. If A commits to a value that is inconsistent with
the values obtained from FMPC−SO then set abort← >.

5. Run steps 5− 8 honestly, but if abort = >, then abort in step 8.



6. Obtain (Output, sid,y) with y = (y1, . . . , ym) from FIdent. For each yh
adjust one of the shares of a simulated honest party according to the value to
be revealed and simulate the opening using FMPC−SO. If A do not reveal the
necessary values using FMPC−SO, then send (Abort, sid) to FIdent, otherwise
send (Deliver-Output, sid,y) to FIdent.

Reveal: Simulate correct opening of the shares to be consistent. Obtain (Reveal,
sid, i, r(i)) from FIdent and then:
1. If i ∈ I then S equivocates in FHCom for all h ∈ [m] the values associated

with cid
(i)
r,h so that the open to the correct values and keep this consistent

with Verify.

2. Let J (i) be the set of parties that did not send (Open, sid, cid
(i)
r,h) to FHCom

for some h ∈ [m]. If J (i) = ∅ then send (Reveal-Ok, sid, i) to FIdent, else
send (Reveal-Not-Ok, sid, i, J (i)).

Test Reveal: Send (Test-Reveal, sid) to FIdent and output what it outputs.

Allow Verify: For each dishonest Pi ∈ I that sends (Verification-Start,
sid,Pi) to FHCom send (Start-Verify, sid, i) to FIdent. For each simulated hon-
est party, send (Verification-Start, sid,Pi) to FHCom.

Verify: Do the same as in the protocol.

We now argue why each individual part of the protocol simulation is indistin-
guishable.

Init, Input, Evaluate: Trivially a perfect simulation.

Share: The adversary obtains output from FIdent instead of FMPC−SO, but the
values are equally distributed. There are special cases in which S aborts where
it differs from the protocol, but observe that this is a superset of those cases in
which the protocol would abort. We first show that the difference in the abort
probability is negligible. The protocol aborts in case that A commits towards
FHCom to a value which differs from the value it should commit to according to
ΠIdent (i.e. if abort = >). By Lemma 1 we observe that in this case the protocol
will only continue after passing step 8 with probability at most O(2−κ). Con-
cerning the values which A obtains during the protocol, ŷ is the same as y that
is also provided by FIdent to the real honest parties in the protocol. Furthermore,
the shares r(i) which A obtains are consistent with those from FIdent. The values

out(i), out
(i)

which A obtains during the simulation are identical, as the simula-
tor otherwise aborted before. Each such out(i) contains a linear combination of
secret values r

(i)
h , XOR-ed with a uniformly-random but secret s

(i)
j and therefore

leaks no information about r
(i)
h .

Reveal: The values r(i) for i ∈ I are consistent with those of FIdent in any further
interaction. They differ from what the simulated parties committed originally
but each r(i) is equally likely, as any previously opened value that was derived

from r(i) was blinded by a uniformly random s
(i)
j .

Test Reveal: The sets that are provided by FIdent are identical with those of
FHCom by construction.



Allow Verify: There is no output that A obtains in this step.

Verify: Due to Allow Verify, the parties that activated verification are identi-
cal in both FIdent,FHCom and (Verify-Fail, sid) is sent with the same content by
both. The same holds for the parties that aborted openings as this information
is provided to FIdent during the simulation of Reveal, so also (Reveal-Fail,
sid)-messages coincide. Moreover, the shares of the honest parties from FIdent

have been programmed into FHCom, thus also (Open-Fail, sid)-messages are
consistent. Therefore, the output of FIdent,FHCom is identical.

ut

5.2 Instantiating FMPC−SO

We now show that a slightly modified version of the BMR-protocol due to Hazay
et al. [25] realizes FMPC−SO in the FOffline-hybrid model.

The MPC protocol evaluates a circuit C over F on inputs x(1), . . . , x(n) ∈ F
as a preprocessing protocol which consists of three phases: (i) a constant-round
circuit-independent offline phase which depends on |C|, τ, κ, (ii) a constant-round
circuit-dependent offline phase which depends on C and the previous phase;
and (iii) a constant-round online phase which depends on x(1), . . . , x(n) and the
previous phases. The first part of our protocol is identical with that of HSS, who
run a multiparty version of the TinyOT [37, 35, 12] MPC scheme (see below).
This TinyOT protocol is then used to generate a garbled circuit in a distributed
way, while the online phase evaluates this garbled circuit on the actual inputs. In
the following, we will describe the structure of this garbling that is generated in
the circuit-dependent preprocessing as well as some necessary information about
computations with the TinyOT MPC scheme. Using this, we will describe the
online phase of our protocol. The security of the circuit-dependent preprocessing
can be found in Appendix 5.2.

Representations A value x ∈ F is called additively shared if each party Pi has
a value x(i) such that x =

∑
i x

(i). Each party Pi has a private secret ∆(i) ∈ Fτ .
We define the [·]-representation of x as

[x] =
(
x(i), {χ(i)

j ,ψ
(i)
j }j∈[n]\{i}

)
i∈[n]

where χ
(i)
j = ψ

(j)
i + x(i) ·∆(j). In the [x]-representation the party Pi holds x(i)

together with the n−1 MACs χ
(i)
j as well as n−1 keys ψ

(i)
j protecting the share

x(j) of each other party Pj using Pi’s secret key ∆(i). It is easy to see that this
representation is linear: given

[x] = (x(i), {χ(i)
j ,ψ

(i)
j }), [y] = (y(i), {χ̂(i)

j , ψ̂
(i)

j }),

the sharing [x+ y] can be computed without interaction as

[x+ y] = (x(i) + y(i), {χ(i)
j + χ̂

(i)
j ,ψ

(i)
j + ψ̂

(i)

j })



Similarly, for [x], c ∈ F if

P1 sets (x(1) + c, {χ(1)
j ,ψ

(1)
j }j∈[n]\{1})

and each Pi, i 6= 1 sets

(x(i), {(χ(i)
1 ,ψ

(i)
1 + c ·∆(i))} ∪ {χ(i)

j ,ψ
(i)
j }j∈[n]\{1,i})

then this is a valid sharing of [x + c] and obtained with local operations only.
Multiplications of two [·]-shared values are also possible (using preprocessed data
from TinyOT), but we will only introduce and use the necessary protocol ΠMult

in Appendix 5.2. For the online phase, we only need to be able to reliably open
[x]-representations, i.e. open them such that sending incorrect shares can be
detected.

Protocol ΠOpen

The parties open a sharing [x] publicly.

1. Each party Pi broadcasts x(i) and sends χ
(i)
j to Pj for each i 6= j.

2. Each party Pi checks for all j 6= i that χ
(j)
i = ψ

(i)
j +x(j) ·∆(i) and broadcasts ⊥

otherwise.

3. Each party computes x←
∑
i x

(i).

Fig. 27. Protocol ΠOpen To Open A [·]-Representation Publicly.

To achieve this, we use the protocols ΠOpen as described in Figure 27 and
ΠPOpen from Figure 28.

Protocol ΠPOpen

The parties open a sharing [x] in private to party Pj .

1. Each party Pi sends x(i),χ
(i)
j to party pj .

2. Party Pj checks if, for all i 6= j it holds that χ
(i)
j = ψ

(j)
i + x(i) ·∆(j). Otherwise,

it broadcasts ⊥.

3. Pj locally computes x←
∑
i x

(i).

Fig. 28. Protocol ΠPOpen To Open A [·]-Representation Privately.

Multiparty Free-XOR Garbling We assume that the circuit C, which is
evaluated by our MPC protocol, consists of n input wires and m output wires as
well as a set of gates G. C can be viewed as a directed acyclic graph where the
edges are wires and the vertices are the gates. Each gate g ∈ G is either an AND-



or a XOR-gate and has two input wires u, v as well as one output wire w, which
may be input to multiple subsequent gates. Each input wire of a gate is either
one of the n input wires of C or an output wire of another gate. Evaluating C in
plain is done by assigning x(1), . . . , x(n) ∈ F to the n input wires and recursively
applying the gate function for each gate that has inputs assigned to its input
wires. Then, the values that are assigned to the m output wires y(1), . . . , y(m)

form the output of C when evaluated on this specific input.
To garble C classically with only one garbler, it first permutes the truth-table

of the function of each gate, assigns keys kh,a ∈ {0, 1}τ to each h ∈ {u, v, w}, a ∈
{0, 1} according to the wire h and the truth-value a as denoted in the truth-table,
and then encrypts for each row of the truth table each output key kw,· (based on
the output bit of this row) under the two appropriate input keys ku,·,kv,· [44,
8]. It was shown in [30] that by fixing kh,0 + kh,1 = ∆ to a constant value for
the whole garbled circuit, one only has to garble the AND-gates and can obtain
the garbled XOR-gates by linearity.

For n parties with individual global differences ∆(i) ∈ {0, 1}τ , the garbling
for AND-gates in HSS then works as follows: for each AND-gate g ∈ G, let
u, v be the input wires and w be the output wire, λu, λv, λw ∈ {0, 1} be secret
wire masks (that encrypt the actual value of the truth values of a gate), and

k
(i)
u,a,k

(i)
v,b,k

(i)
w,0 ∈ {0, 1}τ be keys known to Pi. The garbling information for a

gate g can be computed as the 4n values

d
(i)
a,b(g) =

(∑n

j=1
F
k
(j)
u,a,k

(j)
v,b

(g ‖ i)
)

+ k
(i)
w,0+(

∆(i)((λu + a)(λv + b) + λw)
)
,

where (a, b) ∈ {0, 1}2, i ∈ [n] and F is a double-keyed 2-correlation robust Pseu-
dorandom Function (PRF)8. Choosing keys, wire masks as well as computing the

values d
(i)
a,b(g) is done during the circuit-dependent preprocessing phase FOffline

as depicted in Figure 29 and Figure 30. In Appendix 5.2, we then describe how
to implement FOffline in the FTinyOT-hybrid model, as our FOffline differs from the
version provided in HSS.

Intuition of the Online Phase We now describe how to use the encryptions

d
(i)
a,b(g) from the offline phase, which are known to each party in the protocol, to

perform a secure multiparty computation.

For each input ` ∈ [n] the input keys k
(1)
w`,Λw`

, . . . ,k
(n)
w`,Λw`

are published

by the respective parties, which works as follows: first, party Pi that holds the
input computes the encrypted wire value Λw` based on its actual input x(`) and
the permutation bit λw` as Λw` = λw` + x(`). Here, λw` is fixed for input `
and known to Pi in advance. Pi then broadcasts Λw` to all parties, whereupon

8 This stronger requirement is necessary to support the garbling-free XOR gates. We
do not give a definition for this primitive in this work as we will invoke the security
proof of [25] for these details. See [17] for more information on these special PRFs.



Functionality FOffline (part 1)

This functionality is used by a set of parties P and the adversary S specifies a set
I ⊂ P of corrupt parties. Let F be a circular 2-correlation robust PRF. The circuits
that are generated consist of AND- and XOR-gates.

Init: On input (Init, sid) from all parties P1, . . . ,Pn and if this message has not
been sent before for this sid:
1. Wait for S to send ∆(i) for each Pi ∈ I.

2. Choose strings ∆(i) $← Fτ uniformly at random for each honest party Pi ∈ I.

Garble: On input (Garble, sid, C) from all parties where C is a circuit with the
set of wires W and the set of AND-gates G and if Init was run before but Garble
was not, the functionality does the following:
1. For each wire w ∈W in the circuit C we do the following:

– If w is an input wire of C or the output wire of an AND-gate then sample

λw
$← F uniformly at random. For each Pi ∈ I wait for k

(i)
w,0 ∈ Fτ from S,

and choose k
(i)
w,0

$← Fτ uniformly at random for each honest party Pi ∈ I.

Then for each i ∈ [n] set k
(i)
w,1 ← k

(i)
w,0 +∆(i).

– If w is the output wire of an XOR-gate, where the input wires u, v are already
assigned, then set λw ← λu+λv. Moreover, for i ∈ [n] set k

(i)
w,0 ← k

(i)
u,0 +k

(i)
v,0

and k
(i)
w,1 ← kw,0 +∆(i).

2. For every AND-gate g ∈ G compute the garbled gate as

d
(i)
a,b(g) =

(∑n
j=1 Fk

(j)
u,a,k

(j)
v,b

(g ‖ i)
)

+ k
(i)
w,0 +(

∆(i)((λu + a)(λv + b) + λw)
)

for each a, b ∈ {0, 1} and i ∈ [n]. Then set da,b(g) = (d
(1)
a,b(g) ‖ · · · ‖d(n)

a,b (g)).

3. For each wire w ∈W send k
(i)
w,0 to each honest party Pi ∈ I.

4. For each input wire wi wait until S sends (Ok, sid, wi). Then send λwi to Pi.
5. For each output wire wh of the circuit C with permutation bit λwh :

(a) Let S input λ
(i)
wh

for each i ∈ I.

(b) Sample uniformly random λ
(i)
wh

$← F for each honest Pi subject to the con-

straint λwh =
∑
i λ

(i)
wh

.

(c) Run [λwh ]← Bracket(λ
(1)
wh
, . . . , λ

(n)
wh

) and output [λwh ].

Fig. 29. Functionality FOffline For The Preprocessing Of The MPC Protocol.

each party Pj reacts by broadcasting its key k
(j)
w`,Λw`

. Once the input keys and

encrypted wire values for each input of the circuit have been provided, these
can be used to evaluate the garbled circuit: for each gate g with input wires u, v

and respective encrypted wire values a, b as well as known keys {k(i)u,a,k(i)v,b}i∈[n]



Functionality FOffline (part 2)

Open Garbling: On input (Open-Garbling, sid) from all parties, if Garble was
run successfully and Open Garbling was not run before:
1. Send da,b(g) for all g ∈ G to S.

2. If S sends an additive error e = {ea,b(g)} for a, b ∈ {0, 1}, g ∈ G then output
d̃a,b(g) = ea,b(g) + da,b(g) to all honest parties, otherwise send da,b(g).

Generate Random: On input (Random, sid, `) by each Pi and if Init was run

before send (Random, sid, `) to S. Upon input b
(i)
j for j ∈ [`], i ∈ I by S sample

b
(i)
j

$← F for each i ∈ I, j ∈ [`], compute [bj ] ← Bracket(b
(1)
j , . . . , b

(n)
j ) for j ∈ [`] and

output ([b1], . . . , [b`]).

Macro Bracket: On input x(1), . . . , x(n) compute [x] for each Pi
– if i ∈ I then ∀j ∈ [n] \ {i} wait for χ

(i)
j from S, then compute ψ

(j)
i ← χ

(i)
j +

x(i) ·∆(j)

– if i ∈ I then ∀j ∈ I wait for ψ
(j)
i from S and choose ψ

(j)
i honestly for all

j ∈ I \ {i}. Then compute χ
(i)
j ← ψ

(j)
i + x(i) ·∆(j).

Output (x(i), {χ(i)
j ,ψ

(i)
j }j∈[n]\{i}) to each Pi.

Key Queries: Upon receiving (i,∆) for i ∈ [n] from the adversary and if Init was
run before, return 1 if ∆ = ∆(i) and 0 otherwise.

Fig. 30. Functionality FOffline For The Preprocessing Of The MPC Protocol (contin-
ued).

each party locally then computes the encrypted wire value c as well as the keys

{k(i)w,c}i∈[n] for the output wire w as follows:

– If g is an XOR gate then set c← a+ b and k
(i)
w,c ← k

(i)
u,a +k

(i)
v,b for all i ∈ [n].

– If g is an AND gate then for all i ∈ [n] compute

k(i)w,c ← d̃
(i)

a,b(g) +
∑
j∈[n]

F
k
(j)
u,a,k

(j)
v,b

(g ‖ i).

Then set c = 0 if k
(i)
w,c = k

(i)
w,0 and c = 1 otherwise9.

Ultimately, each party obtains the output keys {k(i)w1,γ1
, . . . ,k

(i)
wm,γm

}i∈[n].
These keys represent an encryption γ1, . . . , γm of the actual outputs y1, . . . , ym
of the circuit, and the actual outputs can be recovered using the (secret) per-
mutation bits of the outputs.

The Protocol We now specify the protocol ΠHSS which implements FMPC−SO in
the FOffline-hybrid model. The reconstruction function f (according to Definition
3) that we use in this protocol is the XOR-function. The protocol uses auxiliary
subprotocols ΠOpen, ΠPOpen as given in Figure 27, Figure 28 to open either a

9 We assume here that d̃
(i)

a,b(g) was generated correctly.



[·]-share in public or privately, but verifiably. The specific construction of Share
Output is an artifact of the generality of FMPC−SO - as its definition shall also
capture MPC protocols that e.g. have a secret-sharing based online phase.

Protocol ΠHSS (part 1)

The parties evaluate the circuit C with inputs x(1), . . . , x(n) and m outputs y =
(y1, . . . , ym).

Init: Set up functionalities and garble.
1. The parties set up the functionality FOffline. They send (Init, sid,) to FOffline and

in return each Pi obtains ∆(i) from FOffline.

2. Send (Garble, sid, C) to FOffline. Each Pi obtains the 0-keys k
(i)
w,0 for all wires as

well as λw` for its input wires. Moreover, the parties obtain sharings [λw` ] of the
output permutation bits λw` .

Input: Send input keys. For each input wire ` ∈ [n]:
1. The party Pi that holds that input bit x(`) computes the encrypted wire value

as Λw` = λw` + x(`) and broadcasts it to all parties.

2. Each party Pj broadcasts k
(j)
w`,Λw`

.

Evaluate: Exchange garbling and evaluate.

1. The parties send (Open-Garbling, sid) to FOffline to obtain d̃
(i)

a,b(g) for i ∈ [n], g ∈
G, a, b ∈ {0, 1}.

2. Traverse the circuit in topological order. For each gate g with inputs u, v having
the public values a, b and keys k

(i)
u,a,k

(i)
v,b we compute the assignment c to the

output wire w as well as the keys k
(i)
w,c as follows:

– If g is an XOR gate then set c← a+ b and k
(i)
w,c ← k

(i)
u,a +k

(i)
v,b for all i ∈ [n].

– If g is an AND gate then for all i ∈ [n] compute k
(i)
w,c ← d̃

(i)

a,b(g) +∑
j∈[n] Fk

(j)
u,a,k

(j)
v,b

(g ‖ i). Pi checks if k
(i)
w,c ∈ {k(i)

w,0,k
(i)
w,0 +∆(i)}. If so then Pi

sets c = 0 if k
(i)
w,c = k

(i)
w,0 and c = 1 otherwise. Afterwards set (k

(1)
w,c, . . . ,k

(n)
w,c)

as keys of the wire w. If instead k
(i)
w,c 6∈ {k(i)

w,0,k
(i)
w,0 + ∆(i)} then Pi sends

abort to all parties.

3. Let w1, . . . , wm be the output wires of the circuit. Each party Pi holds output
keys k

(i)
w1,γ1

, . . . ,k
(i)
wm,γm

as well as public values γ1, . . . , γm.

Fig. 31. Protocol ΠHSS Implementing FMPC−SO.

Theorem 10. The protocol ΠHSS UC-securely implements FMPC−SO against a
static malicious adversary corrupting up to n − 1 parties in the FOffline-hybrid
model with broadcast.

We first define a simulator S which will simulate FOffline locally. We then
argue why no environment Z using A can distinguish the distribution generated
by ΠHSS and A from S which uses FMPC−SO.



Protocol ΠHSS (part 2)

Share Output:
1. Send (Random, sid,m) to FOffline. Let these sharings be {[rh]}h∈[m].

2. Run ΠOpen of [λwh + rh]← [λwh ] + [rh] for each h ∈ [m] to obtain γ̂h.

3. Output [rh] and γh + γ̂h for each h ∈ [m].

Share Random Value: Send (Random, sid, 1) to FOffline to obtain the sharing [z]
for a fresh cid.

Linear Combination: The parties locally compute [scid′ ]←
∑
cid∈I αcid · [scid].

Reveal: To open the share s
(i)
cid of the sharing cid to all parties:

1. Party Pi broadcasts x(i) and sends χ
(i)
j to Pj for each i 6= j.

2. Each party Pj ∈ P \ {Pi} checks that χ
(i)
j = ψ

(j)
i + x(i) ·∆(j) and broadcasts ⊥

otherwise.

Private Reveal: The party Pi opens the share s
(i)
cid of the sharing cid to party Pj .

1. Party Pi sends x(i),χ
(i)
j to party Pj .

2. Party Pj checks if it holds that χ
(i)
j = ψ

(j)
i +x(i) ·∆(j). Otherwise, it broadcasts

⊥.

Fig. 32. Protocol ΠHSS Implementing FMPC−SO (continued).

Proof. Define the following simulator S:

Init: Set up FOffline for the simulation. Initialize FOffline with the set I of cor-
rupted parties.
1. Start simulating an honest protocol instance with A where the inputs of the

honest parties are 0. Keep the values ∆(i), i ∈ I which A provides for the
corrupted parties.

2. Run (Garble, sid, C) in FOffline with the adversary for the circuit C with
wires W and gates G. Therefore, for all w ∈ W that is output of an AND-

gate or an input wire record k
(i)
w,0 which was provided for each Pi ∈ I by A.

Moreover, sample uniformly random λw
$← F.

3. For each input wire wi: if A sends (Ok, sid, wi) then forward λwi which was
chosen above.

4. For each output wire wh run the interaction with FOffline and keep track of
[λwh ].

Input: Extract inputs and send these to FMPC−SO. Therefore, run the protocol
with A.
– For each honest party Pi send (Input, sid, i, ·) to FMPC−SO in the name of

the dishonest parties. Then send Λwi = λwi as well as honestly sampled

k̃
(j)

wi,Λwi
for j ∈ I to A. Store each obtained k̃

(j)

wi,Λwi
for j ∈ I from A.

– For each dishonest party Pi the adversary sends Λwi . Set x(i) ← Λwi + λwi
and send (Input, sid, i, x(i)) for Pi and (Input, sid, i, ·) for all Pj , j ∈ I \{i}.



Keep the values k̃
wi,Λ

(j)
wi

for j ∈ I provided by A and sample k̃
(j)

wi,Λwi
for j ∈ I

honestly.

After this step, all the input keys k̃
(j)

wi,Λwi
that should be used during evaluation

as well as the public wire values Λwi are fixed.

Evaluate:
1. For each honest party Pi and for each output wire of an AND-gate w ∈ W

sample k
(i)
w,Λw

$← Fτ .

2. For every output wire w of an AND-gate sample Λw
$← F.

3. For every XOR-gate with input wires u, v and output wire w we set Λw ←
Λu +Λv. Moreover, set k

(i)
w,0 ← k

(i)
u,0 + k

(i)
v,0 as well as k

(i)
w,1 ← k

(i)
w,0 +∆(i) for

all i ∈ [n].

4. For the outputs10 of the circuit wh compute γh ← Λwh .

5. Next, we generate the keys that are observed by A when evaluating the
circuit. Therefore, for each AND-gate g with public values (Λu, Λv) compute

d
(j)
Λu,Λv

(g)← k
(j)
w,Λw

+
∑

i∈[n]
F
k
(i)
u,Λu

,k
(i)
v,Λv

(g ‖ j)

d
(j)
1−Λu,Λv (g),d

(j)
Λu,1−Λv (g),d

(j)
1−Λu,1−Λv (g)

$← Fτ

for all j ∈ [n]. Then for a, b ∈ {0, 1} we set da,b(g)← d
(1)
a,b(g) ‖ . . . ‖d(n)a,b (g).

6. On input (Open-Garbling, sid) by A we send {da,b(g)} for a, b ∈ {0, 1}, g ∈
G. Obtain the additive error e = {ea,b(g)} and set d̃a,b(g)← da,b(g)+ea,b(g).

7. Evaluate the circuit defined by d̃a,b(g) using the public inputs Λwi as well

as the input keys k̃
(j)

wi,Λwi
for i, j ∈ [n]. During evaluation, for every wire w

obtained check if for each i ∈ I the key k
(i)
w,Λw

is the pre-programmed key
from above for this public value.

Share Output: Make a new randomized sharing of the output.
1. Send (Share-Output, sid) to FMPC−SO and obtain {cidh}h∈[m] from it.

2. Send (Random, sid,m) for all simulated honest parties to FOffline and observe

which bij A sends. Then send (Output-Shares, sid, {(cidh, b(i)cidh)}) for i ∈ I
to FMPC−SO.

3. Obtain the share advices zcidh for h ∈ [m] from FMPC−SO.

4. Simulate ΠOpen for each [λwh+rh] by adjusting the opened share of one simu-
lated honest party, such that the honestly reconstructed result is γh+zcidh . If
the dishonest parties follow the protocol honestly, send (Deliver-Advices,
sid, {cidh}h∈[m]) to FMPC−SO. Otherwise send (Abort, sid).

10 These values cannot simply be chosen at random as the simulation might then be
inconsistent. This can happen e.g. if the outputs of two AND-gates are XOR-ed
together two times, where both XORs are outputs of the circuit. If the public values
of the XORs were chosen at random, then this cannot be reached during correct
evaluation of the circuit.



Share Random Value:
1. Send (Share-Random, sid) in the name of the dishonest parties to FMPC−SO.

2. Upon receiving cid from FMPC−SO run Generate Random of FOffline hon-
estly. Extract the shares b(i) for i ∈ I that A sends to FOffline and send
(Share, sid, cid, b(i)) to FMPC−SO for each i ∈ I.

Linear Combination: Send (Linear, sid, {(cid, αcid)}cid∈I , cid′) for all i ∈ I
to FMPC−SO. Then apply the linear operation to the shares of the simulated
honest parties locally.

Reveal: Send (Reveal, sid, cid, i) for the dishonest parties to FMPC−SO.
– If i ∈ I simulate the protocol honestly with A. If A sends incorrect shares,

then send (Abort, sid) to FMPC−SO, otherwise send (Deliver-Reveal,
sid, cid, i) to FMPC−SO.

– If i 6∈ I then obtain (Reveal, sid, cid, i, s
(i)
cid) from FMPC−SO. Simulate Pi to

consistently open s
(i)
cid to all parties. If A aborts then send (Abort, sid) to

FMPC−SO, otherwise send (Deliver-Reveal, sid, cid, i).

Private Reveal:
– If i ∈ I, j ∈ I send (Reveal, sid, cid, i, j) to FMPC−SO and run the protocol

with A. If A sends incorrect values send (Abort, sid) to FMPC−SO, otherwise
send (Deliver-Reveal, sid, cid, i, j).

– If i ∈ I, j ∈ I then obtain s
(i)
cid from FMPC−SO. Then simulate the honest

party in the protocol to open s
(i)
cid consistently. If A aborts, send (Abort,

sid) to FMPC−SO, otherwise send (Deliver-Reveal, sid, cid, i, j).

We will argue why each individual protocol part is indistinguishable.

Init: A only obtains outputs so this is trivially indistinguishable.

Input: All public values Λwi as well as keys k
(j)
wi,Λwi

which A obtains are dis-

tributed as they are in the protocol, as these are there also chosen uniformly at
random.

Evaluate: Our simulation for evaluation is built on top of the simulator of
[25], and performs the exact same computation (except for hard-wiring different
output values). This allows us to deduce directly that the garbled circuit which
is generated is distributed correctly if no party aborts, meaning that all honest
parties obtain the same output values if they do not abort (which is the output
γ1, . . . , γm). This follows directly from [25, Lemma 5.4, 5.5 and 5.6] and F being
a 2-correlation robust PRF. See the referenced works for details.

Share Output: The adversary obtains output from FMPC−SO instead of FOffline,
but the values are equally distributed. There are special cases in which S aborts
where it differs from the protocol, but observe that this is a superset of those
cases in which the protocol would abort. We first show that the difference in the
abort probability is negligible. The abort happens whenever A sends incorrect
shares during ΠOpen, ΠPOpen. It follows from the security of the TinyOT protocol
that this only happens with probability 2−τ , as A would have to guess ∆(i) of



an honest party Pi correctly. As we take the shares s
(i)
cidh

that A uses in ΠHSS

and input them into FMPC−SO these will be consistent. We open each [λwh + rh]
such that the outputs obtained by A are consistent with the advice obtained
from FMPC−SO.

Share Random Value: As we take the shares s
(i)
cid that A sends to FOffline and

input them into FMPC−SO these shares will be consistent.

Linear Combination: This operation is entirely local.

Reveal: In the simulation, if the opened share comes from an honest party
then we open to the value that FMPC−SO provides which makes the simulation
consistent with the functionality. If Pi is controlled by A then we abort whenever
A sends a value which it did not obtain from FOffline or which it did not derive
correctly, which is distinguishable from ΠHSS only if A could have guessed a
∆(j).

Private Reveal: This is the same as for the case of Reveal.

ut

In the above we were actually a bit inaccurate, as what is proven is that ΠHSS

implements FMPC−SO with a Key Query functionality (whereas FMPC−SO as such
has no such property). This gives an additional distinguishing advantage of q/2τ

to the environment, where q is the number of Key Queries which A can do
(which is polynomial in κ). This additional advantage is thus negligible in the
computational security parameter.

Implementing the Offline Functionality We present here an implemen-
tation of the functionality FOffline. For this, we use a multiparty version of the
TinyOT MPC protocol FTinyOT [37, 35, 12], which is depicted in Figure 33. These
works implement this functionality using the same building blocks as the com-
mitments from Section 4 (namely secure equality testing, commitments and OT)
as well as hash functions. Therefore, we can reuse FpOT,FEQ,FCom in the con-
struction. In practice, one would choose lighter variants as public verifiability is
not necessary to implement FTinyOT.

It was observed in [25, 43] that a [x]-representation (like the random [·]-shares
generated by Random Bits) can be converted into additive shares r(1), . . . , r(n)

of x ·∆(i) for each i ∈ [n] as

Pi sets r(i) = x(i) ·∆(i) +
∑

k∈[n],k 6=i

ψ
(i)
k

Pj , i 6= j sets r(j) = χ
(j)
i

This is then repeated to obtain shares for each product x ·∆(i) of x with all
secrets ∆(i).

Proposition 1. A representation [x] can be converted locally into additive shares
of x ·∆(i) for each i ∈ [n] by the above method.



Functionality FTinyOT

This functionality interacts with parties P and an adversary S. Let I ⊂ P denote
the set of dishonest parties chosen by S.

Setup: On input (Setup, sid)
1. Receive ∆(i) ∈ Fτ for each i ∈ I from S.

2. For each honest party Pi ∈ I sample ∆(i) $← Fτ and send it to Pi.
Random Bits: On input (Bits, sid, k) from all parties

1. For i ∈ I, j ∈ [k] wait for b
(i)
j ∈ F from S.

2. For i ∈ I, j ∈ [k] sample b
(i)
j

$← F.

3. For j ∈ [k] run [bj ]← Bracket(b
(1)
j , · · · , b(n)j ).

Triples: On input (Triples, sid, k) from all parties

1. For i ∈ I, j ∈ [k] wait for a
(i)
j , b

(i)
j , c

(i)
j ∈ F from S.

2. For i ∈ I, j ∈ [k] sample a
(i)
j , b

(i)
j

$← F at random and c
(i)
j

$← F with the constraint

that (
∑
i∈[n] a

(i)
j ) · (

∑
i∈[n] b

(i)
j ) =

∑
i∈[n] c

(i)
j .

3. For j ∈ [k] run [aj ] ← Bracket(a
(1)
j , . . . , a

(n)
j ), [bj ] ← Bracket(b

(1)
j , . . . , b

(n)
j ) and

[cj ]← Bracket(c
(1)
j , . . . , c

(n)
j ).

Macro Bracket: On input x(1), . . . , x(n) compute [x] for each Pi
– if Pi ∈ I then ∀j ∈ [n] \ {i} wait for χ

(i)
j from S, then compute ψ

(j)
i = χ

(i)
j +

x(i) ·∆(j).

– if Pi ∈ I then ∀j ∈ I wait for ψ
(j)
i from S and choose ψ

(j)
i honestly for all

j ∈ I \ {i}. Then compute χ
(i)
j = ψ

(j)
i + x(i) ·∆(j).

Output (x(i), {χ(i)
j ,ψ

(i)
j }j∈[n]\{i}) to each Pi.

Key Queries: Upon receiving (i,∆) for i ∈ [n] from S and if Setup was run before
return 1 if ∆ = ∆(i) and 0 otherwise.

Fig. 33. Functionality FTinyOT For The Multiparty Computation Protocol TinyOT.

Proof. See e.g. [25, Claim 4.1] ut

Our preprocessing protocol ΠOffline is a modified version of [25]. We never-
theless provide a full proof here.

Theorem 11. The protocol ΠOffline UC-securely implements FOffline against a
static, malicious adversary corrupting up to n− 1 parties in the FTinyOT-hybrid
model with a broadcast channel.

Proof. To prove this statement, we construct a simulator S in the presence of
FOffline which interacts with the PPT real-world adversary A, and show that any
PPT environment Z cannot distinguish the setting S,A,FOffline from A, ΠHSS,
FTinyOT. The adversaryA corrupts a set I ⊂ [n] at the beginning of the execution,
and S will simulate honest parties as well as an instance of FTinyOT. As S sees the



Protocol ΠMult

Let ([a], [b], [c]) be a triple such that c = a · b. On input [x], [y] the parties compute
a sharing [z] such that z = x · y as follows.

1. Each party locally computes [ρ] = [a] + [x] as well as [τ ] = [b] + [y].
2. Run ΠOpen to open both ρ, τ reliably.
3. Each party locally computes [z] = [c] + ρ · [b] + τ · [a] + ρ · τ .

Fig. 34. Protocol ΠMult For The Multiplication Of Two [·]-Representations Using Mul-
tiplication Triples.

random string which A obtains from the environment, S internally simulates the
messages that we would expect the parties in I to send, but of course security
does not rely on this as A may send arbitrary messages.
S simulates honest parties throughout the protocol, and then adjusts the

output obtained during Open Garbling accordingly. It works as follows:

Init:
1. Set up an instance of FTinyOT and simulate it honestly, except for every Key

Query of A to FTinyOT which S forwards to FOffline.

2. Forward the set of corrupted parties I to this functionality and to FOffline.
Send (Setup, sid) from all honest parties to FTinyOT and forward any such
messages from A.

3. Wait for ∆(i) from A for each Pi ∈ I and store these internally. Keep ∆(i)

for the honest Pi as obtained from FTinyOT.

4. Send (Init, sid) from all dishonest parties to FOffline. Then send ∆(i) for each
i ∈ I.

Garble:
1. Send (Garble, sid, C) in the name of all dishonest parties to FOffline. Denote

with W the set of wires and G the set of AND-gates.

2. For each w ∈ W that is an input wire or an output wire of an AND-gate,
send (Bits, sid, 1) to FTinyOT in the name of the simulated honest parties
to obtain the shares of [λw]. If w instead is an output of a XOR-gate, set
[λw]← [λu] + [λv] where u, v are the input wires.

3. For the PRF-keys k
(i)
w,· for each w ∈W , if w is an input wire or an output of

an AND-gate then choose a uniformly random k
(i)
w,0

$← Fτ for each simulated

honest Pi and compute k
(i)
w,0 of the dishonest Pi from the input tape of the

party. Then, set k
(i)
w,1 = k

(i)
w,0 +∆(i) for each i ∈ [n].

4. For each AND-gate g ∈ G with input wires u, v and output wire w do the
following:
(a) Send (Triples, sid, 1) from each simulated honest party to FTinyOT, then

obtain shares of the triple ([a], [b], [c]).

(b) Run ΠMult as in ΠOffline to compute [λuv]. During either instance of ΠOpen

in ΠMult, abort if A provides shares for any dishonest party which are



Protocol ΠOffline (part 1)

The parties P start by running an instance of FTinyOT. For the circuit C we let G
be the set of gates. Let G : Fτ → F4nτ |G| be a PRG and F : F2τ × Fτ → Fτ be a
circular 2-correlation robust PRF.

Init: If this has not been run before, then all parties send (Setup, sid) to FTinyOT.
Party Pi obtains ∆(i).

Garble: If this has not been run before and Init ran successfully, then all parties
do the following:
1. All parties go through the wires of the circuit C topologically. For each wire w

they do the following:
– If w is an input wire of the circuit or an output wire of an AND-gate, then

all parties send (Bits, sid, 1) to FTinyOT and obtain a value [λw]. Then each

party Pi samples k
(i)
w,0

$← Fτ and sets k
(i)
w,1 ← k

(i)
w,0 +∆(i).

– If w is the output of a XOR-gate with input wires u, v then the parties set
[λw] ← [λu] + [λv]. Moreover, each Pi sets k

(i)
w,0 ← k

(i)
u,0 + k

(i)
v,0 as well as

k
(i)
w,1 ← k

(i)
w,0 +∆(i).

2. For each AND-gate g ∈ G with input wires u, v and output wire w the parties
do the following
(a) The parties send (Triples, sid, 1) to FTinyOT to obtain a triple ([a], [b], [c]).

Then, they run ΠMult with (([a], [b], [c]), [λu], [λv]) to compute [λuv] and set
[λuv + λw]← [λuv] + [λw] afterwards.

(b) For each j ∈ [n] the parties use Proposition 1 to convert [λu], [λv], [λuv +λw]

into additive shares of λu ·∆(j), λv ·∆(j), (λuv + λw) ·∆(j). Write r
(i)
u,j for

the share that Pi holds of λu ·∆(j), and similarly define r
(i)
v,j , r

(i)
uv+w,j .

(c) For each j ∈ [n] and a, b ∈ {0, 1} each Pi sets

ρ
(i)
a,b,j(g)←

{
a · r(i)v,j + b · r(i)u,j + r

(i)
uv+w,j if i 6= j

a · r(i)v,j + b · r(i)u,j + r
(i)
uv+w,j + a · b ·∆(i) if i = j

3. For each AND-gate g ∈ G, each a, b ∈ {0, 1} and each j ∈ [n] party Pi computes

its share of (d
(j)
a,b(g))(i) as

(d
(j)
a,b(g))(i) ←

ρ
(i)
a,b,j + F

k
(i)
u,a,k

(i)
v,b

(g ‖ j) + k
(i)
w,0 if i = j

ρ
(i)
a,b,j + F

k
(i)
u,a,k

(i)
v,b

(g ‖ j) else

4. For each party Pi let wi be the input wire corresponding to its input. Then run
ΠPOpen on [λwi ] towards Pi.

5. For each wh ∈ W which is an output wire of the circuit, define [λwh ] to be the
sharing of the permutation bit λwh .

Fig. 35. Protocol ΠOffline Implementing The Offline Phase FOffline.

inconsistent with the shares of [a+λu] = [a]+[λu] and [b+λv]+ [b]+ [λv]
which A obtained from FTinyOT.



Protocol ΠOffline (part 2)

Open Garbling: This can only be run once and if Garble ran successfully. Each
Pi has a share C̃(i) = {(d(j)

a,b(g))(i)}j,a,b,g of length 4nτ |G| from Garble.

1. Each Pi samples n− 1 random seeds s
(i)
j = Fτ for all j 6= i and sends s

(i)
j to Pj .

2. Each Pi computes S
(i)
i =

∑
i 6=j G(s

(i)
j ) and S

(j)
i = G(s

(j)
i ) for j 6= i.

3. For i ∈ [n] \ {1} the party Pi sends T (i) = C̃(i) +
∑n
j=1 S

(j)
i to P1.

4. P1 computes C̃ ← C̃(1) +
∑n
j=1 S

(j)
1 +

∑n
i=2 T

(i) and broadcasts it to all parties.

Generate Random: If Init ran successfully, then each party sends (Bits, sid, `)
to FTinyOT to obtain the ` shares ([r1], . . . , [r`]).

Fig. 36. Protocol ΠOffline Implementing The Offline Phase FOffline(continued).

(c) If no abort due to the above event occurred, then set the shares [λuv +
λw] = [λuv] + [λw] for each simulated honest party.

5. If no abort occurred, then send k
(i)
w,0 for each i ∈ I and each w ∈W which is

either an input-wire or the output of an AND-gate to FOffline.

6. For each input wire w do the following:
– If w belongs to an honest party, wait for the shares of [λw] that A sends

during ΠPOpen. If any of these are inconsistent with the shares that it
should have, then abort. Else, send (Ok, sid, w) to FOffline.

– If w belongs to a dishonest party, then send (Ok, sid, w) to FOffline to

obtain λw. If λw =
∑
i λ

(i)
w where λ

(i)
w is the share of Pi of [λw] then run

ΠPOpen correctly as in the protocol. Else, for one simulated honest party
Pj adjust the share and the MACs such that the above equation holds
based on ∆(i) of the dishonest parties that S has, and then run ΠPOpen.

7. For each output wire w of the circuit C:

(a) For each dishonest party Pi compute λ
(i)
w as well as {χ(i)

j ,ψ
(i)
j }j∈[n]\{i}}

based on the values that Pi obtained from FTinyOT, ΠMult.

(b) Send λ
(i)
w to FOffline as shares of the permutation bit λw. During Bracket

send {χ(i)
j ,ψ

(i)
j }j∈[n]\{i}} for each dishonest Pi.

Open Garbling:
1. Based on the random tapes of the dishonest parties as well as the outputs

that A obtained from FTinyOT and during ΠMult compute the share C̃(i) of
each dishonest Pi as in the protocol.

2. For each j ∈ I, i ∈ I sample S
(j)
i

$← Fτ uniformly at random and send these
to A.

3. Send (Open-Garbling, sid) for all dishonest parties to FOffline, and obtain
C̃ in return.

4. For i ∈ I sample uniformly random shares C̃(i) subject to the constraint that
C̃ =

∑
j∈[n] C̃

(j). Then use these shares to run the protocol honestly.



5. In the protocol, P1 broadcasts the circuit Ĉ. Compute ea,b(g) from C̃ + Ĉ
and send it to FOffline.

Generate Random: Obtain inputs A sends to FTinyOT, then forward these to
FOffline.
1. Send (Bits, sid, `) to FTinyOT for all simulated honest parties. Let (x

(i)
r ,

{χ(i)
j,r,ψ

(i)
j,r}j∈[n]\i) be the values that A provides for Pi ∈ I to generate

the rth random bit via Bracket in FTinyOT for r ∈ [`].

2. Send (Random, sid, `) for all dishonest parties to FOffline. For each Pi ∈ I

and for r ∈ [`] send (x
(i)
r , {χ(i)

j,r,ψ
(i)
j,r}j∈[n]\i) to FOffline.

We now argue indistinguishability of the outputs, both to the honest parties
of FOffline and to A.

Init: Only the honest parties receive outputs, and these have the same distri-
bution in both cases.

Garble: While we run S with A we essentially run ΠOffline with simulated par-
ties, thus every output that A obtains has the same distribution as in the pro-
tocol. The permutation bits of the inputs which the dishonest parties obtain are
consistent with FOffline and the adversary can abort also in the simulation by
providing incorrect openings. The shares of the permutation bits of the outputs
are consistent as in the simulation the shares of A as well as the MACs and keys
are provided to FOffline, and the global difference ∆(i) of dishonest parties is the
same both in FTinyOT and FOffline.

Open Garbling: Both in the simulation an the real protocol, the seeds of the
PRG have the same distribution. In both cases, the shares of the circuit sum up to
the correct output, constrained on the shares of the circuit which the adversary
has. Moreover, in case of more than one honest party the shares individually
appear uniformly random in the protocol as Z then does not see at least one
PRG seed. The error ea,b(g), which is introduced by A, is moreover identical in
both cases.

Generate Random: Here, the adversary only gives inputs. Moreover, the shared
values are uniformly random in both cases and the distribution of the shares,
MACs and MAC keys which the honest parties obtain is the same for both
FOffline,FTinyOT, also constrained of the values that A possesses.

S has two remaining differences to ΠOffline when considering its abort behav-
ior, namely with respect to ΠOpen and the Key Queries. We show that a hybrid
argument allows to remove these:

1. In the first hybrid where we depart from the original S, change S to always
return 0 to A if queried for ∆(i) an honest party. This is within distance
(q + 1)/2τ of S (where q is the number of Key Queries), which is negligible
for any PPT A.

2. In the next step, remove the aborting constraint in case A provides incorrect
shares during ΠOpen, ΠPOpen and only abort if the equations do not match. It



is easy to see that this amounts toA correctly guessing∆(i) of a Pi ∈ I, which
was chosen uniformly at random. As the number of openings throughout the
protocol is polynomial, this hybrid is statistically close to the previous one.

3. Now forward all key queries to FTinyOT. As argued before, this is statistically
close to the previous hybrid. Moreover, this is now the identical setting as in
ΠOffline.

ut

The offline functionality allows garbling to happen only once for a fixed
instance of FTinyOT, but one can change the functionality and the security proof
to allow to generate multiple garblings for the same FTinyOT-instance.
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