
HIERARCHICAL PATH PLANNING FOR WALKING (ALMOST) ANYWHERE

K. Landmark∗, E. Messel

Norwegian Defence Research Establishment (FFI), P.O. Box 25, 2027 Kjeller, Norway - knut.landmark@ffi.no

Commission IV, WG IV/4

KEY WORDS: Path planning, Clustering algorithms, LiDAR, Terrain mapping, Graph theory, Cost function, Walking, Open data

ABSTRACT:

Computerized path planning, not constrained to transportation networks, may be useful in a range of settings, from search and rescue
to archaeology. This paper develops a method for general path planning intended to work across arbitrary distances and at the level of
terrain detail afforded by aerial LiDAR scanning. Relevant information about terrain, trails, roads, and other infrastructure is encoded
in a large directed graph. This basal graph is partitioned into strongly connected subgraphs such that the generalized diameter of each
subgraphs is constrained by a set value, and with nominally as few subgraphs as possible. This is accomplished using the k-center
algorithm adapted with heuristics suitable for large spatial graphs. A simplified graph results, with reduced (but known) position
accuracy and complexity. Using a hierarchy of simplified graphs adapted to different length scales, and with careful selection of levels
in the hierarchy based on geodesic distance, a shortest path search can be restricted to a small subset of the basal graph. The method
is formulated using matrix-graph duality, suitable for linear algebra-oriented software. Extensive use is also made of public data,
including LiDAR, as well as free and open software for geospatial data processing.

1. INTRODUCTION

The Detailed National Elevation Model, Norway’s biggest land
surveying project, will by 2022 provide an airborne laser scan-
ning (LiDAR) dataset covering the entire country with 2–5 mea-
surements per m2 (Kartverket [Norwegian Mapping Authority],
2018). Authorities are making the data freely and openly avail-
able to the public, and encourage their use in new worthwhile ap-
plications. Similar initiatives are found in, e.g., the UK, where the
Environment Agency is carrying out LiDAR scanning of the en-
tire country and publishing recorded data under an Open Govern-
ment Licence via the data.gov.uk portal, the stated aim of which
is transparency and innovation (Data.gov.uk, 2018).

Such data, we believe, render possible general path planning
and mobility analysis covering any part of a land area, not just
transportation networks; its wide range of applications includ-
ing archeology (Herzog, 2014), public transit planning, physical
exercise and hiking, forestry, and search and rescue operations
(Ciesa et al., 2014). In particular, LiDAR data are used to gener-
ate detailed digital terrain and surface models (DTMs and DSMs)
from which terrain slope, surface roughness, and obstacles can be
determined, information which is crucial for general path plan-
ning. In addition, land cover classification (e.g., tree species) us-
ing aerial LiDAR is currently an emerging field of research, and
also provides important information for mobility analysis.

Automated (computerized) path planning has become a standard
navigational aid in GNSS1-equipped vehicles, and is a critical
component in autonomous systems such as self-driving cars. Path
planning in road networks is routinely solved using graph the-
ory (Balakrishnan and Ranganathan, 2012). In a directed graph
(digraph) with n nodes and m arcs representing road segments,
Dijkstra’s algorithm (Dijkstra, 1959) finds a minimum-cost so-
lution in running time O[m log n]. Exploiting the natural hier-
archical structure of road networks, modern routing applications

∗Corresponding author
1Global Navigation Satellite System

achieve query times orders of magnitude smaller (in large net-
works), see, e.g., (Delling et al., 2009), (Bast et al., 2007). Cross-
country movement presents new challenges; there is no natural
hierarchy, and there are two degrees of freedom instead of one.
This increases graph complexity and, consequently, the compu-
tational load; in two dimensions typically 4 ≤ m/n ≤ 8 with
roughly uniform node density (nodes per unit area). Modeling
cross-country movement is difficult also because mobility, speed,
and efficiency depend highly on the nature of the terrain and the
means of transport, and, moreover, because it is not necessarily
obvious how the data (or which data) should be adapted in the
model.

This paper describes one approach to computing optimum paths
that are not bound to transportation networks. This requires a
regular or random graph that covers the entire land area, is con-
nected to road and pathway networks, and takes into account ter-
rain features, man-made or natural obstacles, and infrastructure in
general. Although cross-country path planning is a many-faceted
problem, we concentrate on three issues: 1) partitioning large,
nearly regular, geographically embedded graphs, 2) using a hi-
erarchy of simplified graphs to reduce computational complex-
ity, and 3) obtaining a cost function for walking humans. The
purpose is to provide brief but sufficient detail to understand the
source code and main algorithms.

In addition we report on the use of open source software and
open data. All aspects of the general path planning problem
can be implemented with a suite of FOSS4G tools, in particu-
lar, the processing of LiDAR (point cloud) data, adaptation of
vector and raster geospatial data, graph representation and stor-
age, and optimum route search. Algorithms for generating and
partitioning graphs are formulated using the matrix representa-
tion of directed graphs, suitable for array-oriented software such
as NumPy/scipy.sparse, Julia, or GNU Octave (also open source
software) as well as MATLABQR and other linear algebra APIs.

Section 2 describes the graph model underlying our routing solu-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-109-2018 | © Authors 2018. CC BY 4.0 License.

109

mailto:knut.landmark@ffi.no

G
1

1
U

G←U

G←U →

IG
1

G

G k

i=1

1
U

1
U
 1

U

1
U

tion. A sequence of graphs G = (G0, G1, . . . , GH−1) represents
the same physical area with decreasing levels of detail. This re-
quires a method for partitioning large graphs. Section 3 develops
a cost function for humans on foot. The mechanics and energet-
ics of walking are complex and not fully understood. Hence em-
pirical results are required, some of which are summarized here.
However, biomechanical principles can be used to constrain the
relation between walking speed (or energy expenditure) and key
parameters such as terrain slope. Section 4 is a brief summary of
the data processing pipeline and preliminary routing service ap-
plication, implemented with open source software. Details on the
datasets on which the graph model is based are also provided.

2. METHOD

2.1 Matrix graph duality

Formally we work with a simple, directed, weighted graph, G =
(V, E, w), where V = { v1, v2, . . . , vN } is the set of nodes (or

operation in array-based languages, i.e.,

GU = G(IG→U , IG→U) (6)

where
IG→U ≡ [k1 . . . kR]. (7)

The operation (6) extracts rows k1, . . . , kR and likewise columns
k1, . . . , kR from WG. In NumPy syntax, this would be written
WG[numpy.ix (IG→U , IG→U)]. Note that in NumPy and Julia,
this creates a view (SciPy, 2018) into the original matrix, so ma-
trix values are not copied from the parent graph.

1
U is independent of the order of elements in IG→U , and set op-

erations may be defined on index vectors. For two sets of nodes,
Ua, Ub ⊆ V (G), we write IUa →G ∪ IUb →G = IUa ∪Ub →G, a
concatenated vector with duplicate indices removed. Similarly,
IUa →G ∩ IUb →G = IUa ∩Ub →G is a vector of common indices in
Ua and Ub. Mapping between node indices in the subgraph and
parent graph can be accomplished by defining a (normally sparse) 1

vertices), E is a set of unique ordered pairs (vi, vj) of nodes (the
arcs), where i /= j (no self-loops), and w : E → R is the
weight function. The order of G is n(G) ≡ N . We refer to the
subscript k as the node index of vk . Each node v has a spatial
position, denoted x(v) ∈ R3, as well as other attributes
described below. A simple graph has no parallel arcs and can be represented by a

n(G) × 1 vector I− with non-zero entries given by

I−1 (IG U) ≡ [1 2 . . . R]. (8)

If J is a vector of node indices with respect to G
1

(so max J ≤
R), then

IG→U I−
 (J)

)
= J.

square N × N matrix G = (wij) by setting
(
w(a), if a ≡ (vi, vj) for some arc a ∈ E

G←U

Conversely, if I is a vector of node indices with respect to G (so
max I ≤ N), then

wij ≡ G[i, j] = 0, otherwise.

(1)

I−1

The adjacency matrix AG = (cij) is defined such that cij is the
number of arcs incident out of vi and into vj . For a simple graph

G←U (IG→U (I)) = I.

This construction can be nested. If H ⊆ U ⊆ V (G), and J is a vector of indices with respect to
r
G

1 l1

with positive weights,

AG = [G > 0] (a logical/binary matrix). (2)
ing indices with respect to G are

(

1
U

1
H , then the correspond-

\

In path planning applications N is large while each node is inci-
dent with only about 1–10 arcs, so G and AG are sparse.

A set of R distinct nodes, { vk1 , vk2 , . . . , vkR }, can be identi-
fied with a binary column vector with unity in the kj th row for

and so on.

2.3 Distance

I = IG→U 1
U →H (J) ,

j = 1, 2, . . . , R. In particular, the node vk is a binary vector
with unity only in the kth row, and its neighbors in the matrix
representation are

N (G, vk) = AT v , (3)

i.e., a sparse matrix-vector multiplication, where AT denotes the
transpose matrix. This is a breadth-first search (BFS) step (Kep-
ner, 2011).

2.2 Subgraphs and index maps

We frequently operate on subsets of G, and G itself will be con-
structed by assembling smaller graphs. For a subset of nodes
U = { vk1 , vk2 , . . . , vkR } ⊆ V , a particular subgraph G

1
is

obtained by keeping all edges incident only with nodes in U :

In a simple digraph, G, a path from node s to t is a sequence of
distinct nodes P = (v1 = s, v2, . . . , vR = t) in V (G) such that
each consecutive pair (vi, vi+1) is in E(G). The length of P is
|P | =

),R−1 w(vi, vi+1), and the distance from s to t, denoted
dG(s, t), is the length of a minimum-length path from s to t. For
a spatial graph there is also distance as a function of the two node
positions, i.e., Euclidean or geodesic distance. We use Euclidean
distance in an appropriate projected reference system, as it is fast
and simple to compute, and denote it dEUCL.

For the purpose of partitioning the graph (Section 2.5), we need
a single-source distance-to-all-nodes algorithm, such as Dijkstra
(if w > 0). However, with the clustering algorithm (Section 2.5)
in mind, Dijkstra is modified in a heuristic manner, as in Func-
tion 1: once the set of closed nodes has expanded beyond a cut-
off distance, Λ, the remaining active nodes are assigned the larger

V (G
1
) = U and E(G

1
) = { (u, v) ∈ E(G) : u, v ∈ U }.

(4)
value of dEUCL/c and Λ, where c is a scaling factor. If the weight
function is travel time, then c will be a characteristic speed value.

The matrix representation of G
1
 can be obtained as the sparse As implemented in Function 1, c is determined from the graph

locally, and may vary across the graph. Depending on the appli-
matrix product

GU = UT GU (5)
cation, c could also be a preset global parameter to further speed
up computation. The cut-off distance, Λ, is typically chosen to

where U = [vk1 vk2 . . . vkR] is a sparse, binary N × R ma-
trix and UT is its transpose. We can also view this as an indexing

be a few times the characteristic cluster size of the desired graph
partition (Section 2.5). Although shortest path algorithms can be

1

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-109-2018 | © Authors 2018. CC BY 4.0 License.

110

G · V]), c
l
← 1

← N

G

1
U

i=1 ⊆ V (G) such that

i=1 1
U

1
U

Function 1 Distance function (modified Dijkstra)

Require: G, a finite, simple, positive-weight (w), spatial digraph
Require: s ∈ V (G), the source node
Require: Geographical distance function dEUCL : V × V → R
Require: Λ > 0, cut-off distance

1: function DISTANCE(G,s,Λ)
2: U ← V (G) r> active nodes
3: for all v ∈ U do r> standard Dijkstra initialization
4: dG(s, v) = ∞
5: dG(s, s) ← 0
6: c ← 0

7: while U not empty do
8: u ← node v ∈ U with minimum distance dG(s, v)
9: U ← U \ { u }

Function 2 Adjacency matrix, graph partition

Require: G, a finite, simple digraph
Require: L, label vector for partition of G

1: function ADJACENCY(AG,L)
2: K ← max L r> number of nodes
3: A1 ← SPARSE(K, K) r> empty K × K matrix
4: for c ← 1, . . . , K do
5: V ← (L == c) r> nodes in partition c
6: A1

r
UNIQUE(L[AT

7: A1[c, UNIQUE(L[AG · V])] ← 1
8: A1[c, c] ← 0 r> no self-loops
9: return A1

For example, if V (G) = { v1, v2, v3, v4 }, U1 = { v2, v3 }, and
U2 = { v1, v4 }, then V (G) = U1 ∪ U2 and L = [2 1 1 2].

10: c N
N −1

c + 1 dG(s, u)/dEUCL(x(s), x(u)) Two nodes Ui and Uj in G1 are adjacent if there is an arc
11: if dG(s, u) > Λ then
12: break r> exit main loop
13: for all v ∈ N (G, u) ∩ U do
14: dG(s, v) = min(dG(s, u) + w(u, v), dG(s, v))

15: for all v ∈ U do
16: dG(s, v) = max(Λ, c−1dEUCL(x(s), x(v)))
17: return dG(s, :), c

(u, v) ∈ E(G) such that u ∈ Ui and v ∈ Uj or vice versa.
The adjacency matrix can be obtained from L and AG with
Function 2. For a vector V , the function unique(V) returns
a new vector holding the elements of V without repetitions (e.g.,
numpy.unique). There are different ways to represent sparse
matrices, and in Function 2 one should use a format that is effi-
cient for constructing matrices (e.g., row-based linked list), and
later convert to a format supporting fast matrix-vector operations,

 see, e.g., (SciPy, 2017).

formulated in pure linear algebraic language (Kepner and Gilbert,
2011), this is not essential here.

The distance algorithm is implemented with a standard heap-
based min-priority queue (not shown in Algorithm 1) to obtain
the minimum-distance node efficiently in each iteration of the
loop (line 8). Using matrices, we only require that the distance
function returns an N -element vector with distances correspond-
ing to node indices. When using the transposed adjacency matrix
to obtain the neighbors N (G, v) ∩ U (line 13), where U is the set
of active nodes, as in (3), the column of the active node is set to
zero in each iteration of the loop:

while U not empty do
. . .
A(G)T [: , u] = 0
for all v ∈ AT u do

. . .

If G
1

is (di)connected, its size can be characterized by a ra-
dius and a diameter: For a node u ∈ U ⊆ V (G), the eccen-
tricity with respect to U is e(u) = max{ dG(u, v) : v ∈ U },
and the radius of U is the minimum eccentricity, i.e., r(U) =
min{ e(u) : u ∈ U }. The diameter of U ⊆ V (G) is similarly
defined as the maximum distance between pairs of nodes in U :

diam(U) = max{ dG(u, v) : u, v ∈ U }.

To turn G1 into a weighted graph, the distance between all pairs
of adjacent sets (Ui, Uj) ∈ E(G1) must be determined. Again
anticipating the cluster algorithm (Section 2.5), we pick a node
vhi ∈ Ui in each subset, referred to as the cluster representa-
tive (CR). Since by assumption G is diconnected there is a path
between every pair of CRs, and G1 can be defined as the K × K
matrix with elements (

dG(vh , vh) if AG [i, j] = 1
2.4 Partitions G1[i, j] = i j 1

 (9)

Two nodes u and v in a graph G are (di)connected if there is a
finite-length path from u to v and from v to u, and G0 is strongly
connected if any pair of nodes are diconnected. We will assume
that G is strongly connected, since otherwise each component of
G can be considered and processed separately. A collection of
non-empty disjoint subsets (Ui)K

0 otherwise,

The set of CRs is denoted H = { vh1 , vh2 , . . . , vhK }, with in-
dices IG→H = [h1 h2 . . . hK].

The principle of simplyfying graphs is shown in Figure 1. Typi-
cally one seeks partitions that minimize the number of arcs be-
tween components (Buluç et al., 2016). However, we would
rather use graph distance (closeness) as optimization criterion,

1. V (G) = ∪K Ui so that the distance between nodes in each subgraph G
1
 can be

2. G
1

i

is diconnected for each i = 1, . . . , K, controlled.

2.5 Clustering
is a partition of G into K smaller, connected components. From
this partition a simplified, unweighted graph, G1, can be con-
structed by defining V (G1) = { U1, . . . , UK }. Using arrays
again, the partition is specified by an n(G) length label vector L
with

L(IG→Ui) = i, for i = 1, . . . , K.

Hence it is natural to choose CRs with minimum eccentricity,
or, conversely, given a set of maximally dispersed nodes H =
{ vh1 , vh2 , . . . , vhK }, define the partition subsets by proximity
to H. For any node v ∈ V (G), dG(v, H) = minh∈H dG(v, h)
denotes the distance of v from H. The maximum distance to a CR

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-109-2018 | © Authors 2018. CC BY 4.0 License.

111

k=1 1
U

Uj

Uj

Ui

Figure 1. Graph partitioning and clustering. Two disjoint sets of
nodes, Ui (red) and Uj (blue), form two nodes connected by a

single pair of arcs in the simplified graph G1 on the right.

is d∞(G, H) = maxv∈V (G) dG(v, H), and should be as small
as possible. We seek a partition based on one of the following

Function 3 k-center clustering, adapted to spatial graph

Require: G, a finite, simple, diconnected, spatial digraph
Require: Kmax ≤ n(G) ≡ N , maximum number of clusters
Require: R > 0, Λ > R, cluster size, cut-off distance

function KCLUSTER(G,Kmax,R,Λ)

H ← ZEROS(Kmax, 1) r> CR indices
C ← ZEROS(Kmax, 1) r> scaling factors
L ← ONES(N, 1) r> cluster labels
S ← SPARSE(Kmax, N) r> distance to CRs
D ← ∞ · ONES(N, 1) r> distance to nearest CR
H[1] ← RANDINT(N) r> random index, first CR
I, J ← ZEROS(N, 1, dtype=bool) r> logical arrays

for k = 1, . . . , Kmax do

d, c ← DISTANCE(G, H[k], Λ)
rmax ← 0, h ← 1
for n = 1, . . . , N do

I[n] ← d[n] ≤ D[n]
J [n] ← d[n] ≤ Λ
D[n] ← min (D[n], d[n])
if D[n] > rmax then

rmax ← D[n]
two criteria: V (G) = ∪K

 Uk , each G
1

k
is diconnected, and h ← n

S[k, J] ← d[J] r> distance to neighborhood
L[I] ← k r> assign nodes to kth cluster

C1: K is minimum such that max1≤k≤K r(Uk) ≤ R for some
fixed radius R. H[k] ← h r> node index of kth cluster

C2: R is the smallest radius such that max1≤k≤K r(Uk) ≤ R
for a fixed number K.

Both criteria belong to a class of NP-hard optimization prob-
lems known as k-center problems. There is an approximate solu-
tion, k-center clustering, that works as follows (Har-Peled, 2008,
Ch. 4): Starting with a random node, H1 = { h1 } (in index nota-
tion), the CRs are added one at a time (one per iteration of a loop).
Each new CR, hk+1, is chosen such that it has maximal distance
to the current set of CRs, i.e., dG(vhk+1 , Hk) = d∞(G, Hk)
where Hk = { h1, . . . , hk }.

This requires K one-to-all shortest path computations. For the
purpose of forming the simplified graph G1 we must also obtain
the inter-CR distances, cf. Eqn. (9). Therefore, in the present
implementation (Function 3) we maintain two distance arrays: D
is an N element vector that holds the distance of each node to the
currently nearest CR,

D[i] = min dG(vi, vh);

h∈H

S is a sparse K × N matrix that stores the distances from each
CR to all nodes inside a cut-off distance,

(
dG(vh , vi) if dG(vh , vi) < Λ

C[k] ← c

if rmax < R then
break r> d∞(G, H) < R, goal achieved

return H[1:k], L, S[1:k, :], C[1:k]

inner loop that should be executed in fast, low-level code. The
running time of Function 3 is O(KN + KOSP), where OSP is the
running time of the shortest path (distance) algorithm. Point-to-
point Euclidean distance, dEUCL(u, v), can be computed in con-
stant time; if dEUCL were used in Function 3 it could be moved in-
side the inner loop and the total running time would be O(KN).
Instead a middle way is taken: to speed up clustering of large spa-
tial graphs the heuristic version of Dijkstra (Function 1) is used.

Once the partition, defined by the label vector L, has been com-
puted with Function 3, the adjacency matrix of the simplified
graph, A(G1) can be found with Function 2. The matrix rep-
resentation of the simplified graph is

G1 = S[1:K, H] ∗ A(G1) (10)

where K = length(H) = length(UNIQUE(L)) is the number
of clusters and ∗ denotes element-wise matrix multiplication. De-
pending on the cut-off parameter Λ in Function 3, some distances
(weights) in G1 must be computed separately; missing distances S[k, i] = k k

0 otherwise.

In principle all KN distances could be saved in a dense matrix,
but this would require much more memory. Again Λ should be
(a few times) larger than the characteristic cluster size (although
it need not be identical to the cut-off distance in Function 1).

Function 3 halts when either Kmax clusters have been formed or
all nodes are within a distance R from a CR, d∞(G, H) < R.
Vectorized expressions on the N -element arrays (D, d, I, and J)
are avoided here because all operations can be fused into a single

correspond to true (1) elements in the element-wise exclusive-or
operation G1 ⊕ A(G1).

One option not shown in Algorithm 3 is to allow each CR to be
chosen according to a list of priorities. This means that each node
in G may be given a priority value p, say p = 1 for road nodes
(highest priority), p = 2 for path nodes, and p = 3 for terrain
nodes (lowest priority). A new CR is then chosen not as the far-
thest node from H, but as the node with highest priority within
the set { v ∈ V (G) \ H | d(v, H) ≥ rmax − R }, where rmax is
defined as in Function 3 and R is the characteristic cluster size.

CRj

CRi

Ui

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-109-2018 | © Authors 2018. CC BY 4.0 License.

112

min

∞ min

g

g

2.6 Hierarchical graphs

To solve the shortest path problem in large graphs, covering ar-
bitrary distances and level of detail, we use a sequence of graphs
G = (G0, G1, . . . , GH−1) that represent the same physical area
with decreasing levels of detail (complexity). G0 is the most de-
tailed graph, the basal graph; it contains all information and is
formed by merging graphs representing networks (roads, trails,
etc.) and terrain, respectively. The sequence G can be viewed as
a hierarchical structure with height H where each new level is
a simplification of the previous. Gk is obtained by partitioning
Gk−1 using Function 3. This yields a many-to-one map between
nodes in consecutive graphs, Mk : V (Gk−1) → V (Gk). Each
edge in Gk represents many possible paths in Gk−1; each node

Considering the other side of the trade-off, complexity, there
should be as few clusters as possible for a given resolution —
this is what we aim to achieve with the criteria C1–C2. Given
an exact solution to C1 or C2, the maximum distance to any of
the K CRs is minimum, say dK (G). If the set of CRs, H, is
computed with the k-center algorithm, it is possible to show that

d (G, H) ≤ 2dK (G). (12)

The approximation bound (12) is normally proved for metric
spaces, which requires symmetry, i.e., dG(u, v) = dG(v, u) for
any pair of nodes u, v ∈ V (G). However, examining the alterna-
tive proof in (Har-Peled, 2008), it appears that only the triangle
inequality is required, i.e.,

in Gk represents a connected subgraph in Gk−1. If u ∈ V (G),
then the corresponding node in Gk is M (U ; k) = Mk ◦ Mk−1 ◦ dG(u, v) ≤ dG (u, r) + dG (r, v) (13)

. . . ◦ M1(s), where ◦ denotes composition of functions.

Each step up in the sequence G reduces position accuracy. An
optimum path between two nodes s and t in G0 is sought by first
finding a path between corresponding nodes in a simpler graph
Gh, where 0 ≤ h < H. The optimum path between sh and th

is computed with a standard shortest path algorithm. This path
defines connected subgraphs, gk,h(s, t; Gk) ⊆ Gk , 0 ≤ k < h,
in all the lower-level graphs. In a two-level search, we find the
optimum path in Gh and subsequently in g0,h(s, t), a subgraph
of the basal graph G0. However, a search can be carried out at
intermediate levels too. For example, in three-level search, let
0 < h1 < h. Then the optimum path in gh1 ,h(s, t; Gh1) defines
a smaller subgraph in G0, where the final search is carried out.

A series of shortest path problems in low-complexity subgraphs
thus replaces a single problem in the high-complexity graph G0.
The path is, effectively, adjusted iteratively to take into account
more and more terrain features.

2.7 Accuracy

By accuracy we mean that length of the hierarchical graph so-
lution should be close to the length of an optimum path in G0,
which in turn should be close to the length of a truly optimum
path in nature. The accuracy of the iterative solution depends on

for any three nodes r, u, v ∈ V (G). This inequality holds by def-
inition for the graph-theoretical distance dG, but not necessarily
for the heuristic distance (Function 1).

3. WEIGHT FUNCTION

The primary factors that determine energy consumption and
walking speed are mass and load, stature and leg length, slope
(gradient), and ground condition (roughness, compliance, vege-
tation, friction). To our knowledge, there is no theoretical model
that accurately predicts the metabolic cost or optimum walking
speed across the range of key parameters. This would require
a more complete understanding of both the complicated transfer
of mechanical energy between body parts, and how efficiently
metabolic energy is converted to mechanical energy. For exam-
ple, on rough ground more muscular effort is required to maintain
posture, which reduces effciency. The effect is seen experimen-
tally (Voloshina et al., 2003), but is difficult to describe analyti-
cally. However, several useful empirical results have been estab-
lished.

The gross mass-specific energy cost of walking a unit distance is
here denoted Cg [J/kg·m]. The proportion of this energy trans-
ferred to mechanical energy is one kind of efficiency,

Wtot
adjustable parameters, in particular the choice of search levels
0 < h1 < . . . < h and the ratio between cluster sizes in consec-

 g = , (14)
Cg

utive graphs (i.e., the stepwise decrease in position accuracy up
the hierarchy). The starting level h is a trade-off between accu-
racy and computational complexity; it is determined by the graph
size and the geodesic distance (constant-time estimate) between
the source and target nodes, s and t. Consider two extreme cases:
if h = 0, then the exact solution is found directly on the complete
basal graph G0, at high computational cost. On the other hand,
suppose that sh and th are adjacent nodes in Gh. This implies
that the uncertainty of the distance estimate dGh (sh, th) has the
same order of magnitude as the true distance dG0 (s, t).

where Wtot is the total mechanical work performed by the mus-
cles per unit mass and unit distance. In general we expect that
the efficiency g varies with both speed, slope, and ground condi-
tions. The gross metabolic rate Pg is the energy consumed by the
body per unit time, which can be accurately determined by mea-
suring oxygen consumption. (Pandolf et al., 1977) found the fol-
lowing empirical formula for Pg [W] in terms of walking speed
V [m/s], body mass M [kg], load L [kg], and gradient G > 0
[%]:

L 2

If there is an upper bound on diam(U) in the level h partition,
say diam(Ui) ≤ 2R for i = 1, . . . , K, and if the shortest path

P Pa = 1.5M +2.0(M +L)
M

+η(M +L)(1.5V 2+0.35V G).

from s to t intersects M sets in the partition, then

dEUCL(s, t)

max c ;S dG(s, t) ;S M diam(U). (11)

where c is the spatially varying scaling factor found with Func-
tion 3. The simple relation (11) can be used to choose h such that

For simplicity we set L = 0 (no load) in the following. Note
that the numerical coefficients are dimensionful quantities. For
negative gradients (Santee et al., 2003) later added a correction
factor, as reproduced in (Potter and Brooks, 2013), so that (for
L = 0)

(
the spatial uncertainty, determined by diam(U) is small com-
pared to the (expected) distance travelled.

Pg =
P Pa, G ≥ 0
P Pa − η

r V GM − (G + 6)2 + 25V 2
l
, G < 0. (15)

g 3.5

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-109-2018 | © Authors 2018. CC BY 4.0 License.

113

M
et

ab
ol

ic
 c

os
t [

W
/k

g
m

]

The Pandolf equation is useful because it parametrizes the ef- 20
fect of ground conditions by the terrain coefficient η, for which
experiment-based values exist (Soule and Goldman, 1972). The
terrain coefficient varies from η = 1 for asphalt to about η = 3 15
for deep snow.

If we make the dimensions explicit, equation (15) for G > 0 may
be rewritten as 10

dE
(V ; τ, α) = 1.5

W
+ ηV

1.5
V + 3.6 g sin α , (16)

dt kg 1 s
5

where E is the metabolic energy per unit mass, α is the in-
clination angle of the slope with respect to the horizontal, and
g = 9.81 m/s2 is the gravitational acceleration. The constant g
is introduced here as a useful scale factor because g sin α is the
component of the gravitational force per unit mass against which
the muscles must work along the slope.

Equation (16) has a form very similar to a power balance equation
(van Ingen Schenau and Cavanagh, 1990), and gη(1.5/1 s)V 2

may be interpreted as a “friction power” term. Dividing (16) with
V gives the gross energy cost per unit distance,

0
-20 -10 0 10 20

Gradient [%]

Figure 2. The simplest weight function per unit distance (gross
metabolic cost of walking). The correction term in (15) has been

computed assuming a mass of M = 70 kg.

Cg =

1.5 W/kg + η V

1.5

V + 3.6 g sin α
1 s

(17)

thereby the structure of the hierarchical graph, only a single rep-
resentative and not highly accurate weight function is required.

Setting ∂Cg/∂V = 0 and solving for V yields the speed that
minimizes Cw ,

4. DATA

Vmin =
1

1 m

η s
, (18) Before applying the methods of Section 2, the basal graph G0

must be constructed. The completed hierarchical graph is stored
i.e., Vmin = 1.0 m/s on a hard even surface. Several research
teams have found quadratic relationships between metabolic
power and walking speed, similar to (16), but the numerical val-
ues are not quite consistent. The constant (intercept) term in (16),
1.5 W/kg, is usually interpreted as the the energy cost of stand-
ing still (without load), which is somewhat higher than the basal
(resting condition) metabolic rate of Pb ≈ 1.1 W/kg for healthy
adults (Weyand et al., 2010). It is, however, not straightforward
to extrapolate a quadratic fit to values obtained in walking con-
dition down to standing (V = 0) condition. Depending on what
data are used, the value of Vmin varies and may be larger than 1.0
m/s on a hard surface; data from, e.g., (Bastien et al., 2005) gives
Vmin = 1.3 m/s.

Nevertheless, inserting Vmin from (18) in (17) and integrating
Cg (Vmin) along arcs in the graph, we obtain a weight function
for energy cost per unit mass as a function of terrain type and
gradient:

r

in a spatial database. Key tools include PDAL (Point Data Ab-
straction Library) (Bell et al., 2018), GDAL (Geospatial Data Ab-
straction Library) (GDAL/OGR contributors, 2018), the PostGIS
spatial database (PostGIS contributors, 2018), and the pgRouting
PostGIS extension (pgRouting contributors, 2014).

4.1 LiDAR data

LiDAR data are available from the Norwegian Mapping Author-
ity via its Høydedata (elevation data) web portal (Kartverket,
2016). Data products include preprocessed DEMs and DSMs
as well as point cloud data arranged by survey project. Point
cloud data were processed with PDAL to extract ground, surface
returns, and statistics about returns in the lower stratums above
ground. From the latter a preliminary measure of vegetation den-
sity can be determined.

4.2 Vector data

W (a) = Cg (Vmin; η, α) dx(a), a ∈ E(G). (19)
a

Vector data are included to take into account infrastructure,
transportation networks, inaccessible areas, and land cover/land

W (a) is given in J/kg. This simple weight function (Figure 2)
depends on the optimum speed (18) consistent with the Pandolf
equation. However, while Vmin is constant for G ≥ 0, the spon-
taneous walking speed of humans decreases on steep slopes both
uphill and downhill, where optimum efficiency is not attained. In
further work we will obtain an alternative to (15) and a gradient-
dependent speed.

This weight function is symmetric with respect to ground condi-
tions, but not with respect to gradient. However, any path will
be traversible in both directions. This implies that all connected
subgraphs are in fact strongly connected (diconnected). Note
also that for the purpose of computing the graph partitions, and

use. For path and road networks, we have used OpenStreetMap
(OSM) (OpenStreetMap Foundation, 2018) and Elveg, a road
database maintained by the Norwegian Mapping Authority.
Elveg is an open access-no restrictions dataset. Road surfaces
are encoded in detailed land use data, and can be integrated di-
rectly into a fine basal terrain mesh. However, due to the primary
role of transportation networks, we also build subgraphs for roads
and paths based on line geometries (road center lines in the case
of Elveg). A network line geometry has nodes at intersections,
with intermediate vertices defining its shape. Vertices are con-
verted to nodes at a regular interval, hence additional arcs are
inserted, to increase the number of connections between the net-
work graph and the basal mesh. Any remaining self-intersections

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-109-2018 | © Authors 2018. CC BY 4.0 License.

114

are removed. When the weight of an arc is computed, the com-
plete line geometry (all vertices) is taken into account.

Land cover data, which describe static physical properties of a
land area (at the surface), is taken from AR5, a 1:5000 scale na-
tional map maintained by the Norwegian Institute for Bioecon-
omy Research (Nibio). A land cover class in AR5 is a unique
combination of four categorical variables: area type (12 different
values), soil condition (8 values), wood type (6 values), and forest
site quality (7 values). The translation of these variables into a ter-
rain coefficient in the weight function is not straightforward and
at the present time only based on qualtitative assessments with the
original coefficients of (?) as guideline. Buildings, properties,
and infrastructure are taken from FKB (Felles Kartdatabase), a
database of high-resolution base maps maintained by the Norwe-
gian Mapping Authority. Both AR5 and FKB have access restric-
tions. For AR5 an application, and proper attribution, is required.
FKB contains the most accurate Norwegian data, but good results
can also be achieved with, e.g., OSM.

4.3 Basal graph

To compute the weights of the basal graph, each arc and vertex (a
large number) must be checked for intersections with land cover
polygons, infrastructure, etc. This is a slow computational ge-
ometry operation, repeated many times within a loop and with
overhead. For this reason most vector features are rasterized at 1
m resolution using the GDAL API. Checking a vertex against a
categorical rasterized dataset is fast (computing the nearest grid
point). With proper indexing many vertices [O(106) or more]
can be checked in a single vectorized operation, and objects can
be dilated with a simple morphological operator.

The basal graph mesh can be regular, semi-regular, or random.
The random mesh was initially conceived as a way to keep the
number of nodes as small as possible, by distributing nodes ac-
cording to a probability density function (PDF) over space, deter-
mined by terrain properties (less nodes in areas requiring fewer
course changes). Regular meshes have maximum spatial resolu-
tion everywhere, but with the hierarchcal method this becomes
feasible. Regular meshes are simple to construct, compactly rep-
resented in computer memory, and directly compatible with ras-
terized vector datasets.

The mesh is merged with the transportation network subgraphs,
and the weights are computed as the line integral of the weight
function along each arc.

4.4 Database and services

Once computed, the pre-processed hierarchical graph G is stored
in a spatial PostgreSQL database with PostGIS extension. Stan-
dard shortest path algorithms are available with the pgRouting
extension. There is also a prototype WPS service deployed on an
open source Zoo WPS server (Fenoy et al., 2013). PostgreSQL
and PostGIS provide immediate solutions to issues such as scala-
bility, spatial indexing, and load balancing, which are required for
graphs covering large areas, as well as data access, updating, and
more. If a part of the graph is to re-processed with array-based
algorithms, the relevant geographical subset can be checked out
of the database and transformed to matrix form.

5. DISCUSSION AND CONCLUSION

There are two main challenges in cross-country path planning.
First, obtaining a realistic weight function and deciding how to

adapt data in the graph. Consider, for example, how to incorpo-
rate a stream in the model: is it traversable, and if so, at what
cost (weight)? The answer may not be readily found using map
data only or even LiDAR, and may depend highly on season and
weather, yet it can critically influence route choice. The second
challenge is the computational cost of constructing, maintaining,
and searching very large graphs. This paper emphasizes the latter
problem and proposes a concrete solution based on a hierarchy
of graph partitions. The main point has been to develop a gen-
eral method that works for arbitrary levels of detail, down to the
sub-meter resolution of aerial LiDAR, across arbitrarily large dis-
tances and with good accuracy.

Accuracy is an issue in any (not just hierarchical) graph-based
approach to path planning in two or more dimensions. Even the
basal graph is a discrete, approximate representation of a physical
area, the fundamental limitation being that nodes and arcs consti-
tute a finite set of positions and movements. Moving from place
A to B is treated in the computer program as moving between the
two nodes closest to A and B. Using the hierarchical approach,
we can afford to make the basal mesh arbitrarily fine, thus in prin-
ciple eliminating the uncertainty at this level. The price of this
approach is the pre-processing step of computing partitions, and
the need to carefully select levels in the hierarchy to ensure that
the subgraph g0 ⊆ G0 contains an actual best route in G0. Due
to the relation between resolution levels and estimated distance,
each level Gk in the hierarchy can be thought of as character-
izing a certain length scale, although this scale may vary across
geographical areas.

The method has been tested in several areas around Oslo. Un-
like problems where there is a type of benchmark or ground truth
to compare with, it is difficult to measure directly the quality of
computer solutions. However, based on our acquaintance with
the test areas and understanding of the topography, the computed
paths seem natural. Two available measures are the differences
in path length and running time using a hierarchy of graphs and
using the full basal graph directly. Such a comparison will be the
objective of more systematic experiments.

Besides obvious applications in, e.g., forestry, public transit plan-
ning, search and rescue, and military manoeuvres, we believe
general path planning is also of wider public and scientific in-
terest, for example as a potential tool for better understanding
ancient road networks and pathways. Aerial image and LiDAR
data have become important resources for archeologists uncover-
ing such networks, often seen to trace out natural and economical
lines in the terrain (Knapton, 2017).

A pertinent question is to what extent open data can be used to
make a graph model for realistic path planning. The example of
(Schultz et al., 2017) demonstrates that extensive land cover in-
formation can be obtained from OSM when combined with freely
available remote sensing data. There are also dedicated public
land cover datasets, such as CORINE Land Cover from the Eu-
ropean Environment Agency. For our Norwegian test areas, we
nevertheless see that certain access-restricted, government and
municipal datasets on land cover and infrastructure provide im-
portant details and distinctions not readily available from other
sources. Sufficiently high-resolution data on ground conditions,
vegetation, and forest yield, for example, are to our knowledge
only available from national competent authorities. However,
open LiDAR data not only provide adequate DEMs and DSMs
for path planning, but also yield useful information on vegetation
and more, thereby reducing the need for high-resolution vector
data.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-109-2018 | © Authors 2018. CC BY 4.0 License.

115

ACKNOWLEDGEMENTS (OPTIONAL)

The authors thank the Norwegian Defence Research Establish-
ment (FFI) for support and permission to publish this work.

REFERENCES

Balakrishnan, R. and Ranganathan, K., 2012. A textbook of graph
theory. Universitext, 2 edn, Springer, New York.

Bast, H., Runke, S., Sanders, P. and Schultes, D., 2007. Fast
routing in road networks with transit nodes. Science 316(5824),
pp. 56.

Bastien, G. J., Willems, P. A., Schepens, B. and Heglund, N. C.,
2005. Effect of load and speed on the energetic cost of human
walking. Eur. J. Appl. Physiol. 94, pp. 76–83.

Bell, A., Chambers, B., Butler, H., Gerlek, M. et al., 2018.
PDAL—Point Data Abstraction Library. https://www.pdal.io/.
BSD licence.

Buluç, A., Meyerhenke, H., Safro, I., Sanders, P. and Schulz, C.,
2016. Recent advances in graph partitioning. In: L. Kliemann
and P. Sanders (eds), Algorithm Engineering, Lecture Notes in
Computer Science, vol 9220, Springer, Cham, pp. 117–158.

Ciesa, M., Grigolato, S. and Cavalli, R., 2014. Analysis on ve-
hicle and walking speeds of search and rescue ground crews in
mountainous areas. Journal of Outdoor Recreation and Tourism
5-6, pp. 48–57.

Data.gov.uk, 2018. Data.gov.uk. https://data.gov.uk/.

Delling, D., Sanders, P., Schultes, D. and Wagner, D., 2009. En-
gineering route planning algorithms. In: J. Lerner, D. Wagner and
K. A. Zweig (eds), Algorithmics of large and complex networks,
Springer, Berlin, Heidelberg, pp. 117–139.

Dijkstra, E. W., 1959. A note on two problems in connexion with
graphs. Numerische Mathematik 1(1), pp. 269–271.

Fenoy, G., Bozon, N. and Raghavan, V., 2013. ZOO-Project: the
open WPS platform. Applied Geomatics 5(1), pp. 19–24.

GDAL/OGR contributors, 2018. The GDAL/OGR Geospatial
Data Abstraction software Library. The Open Source Geospatial
Foundation. MIT/X licence.

Har-Peled, S., 2008. Geometric Approximation Algorithms.
University of Illinois http://citeseerx.ist.psu.edu/viewdoc/-
download?doi=10.1.1.110.9927&rep=rep1&type=pdf.

Herzog, I., 2014. Least-cost paths—some methodological issues.
Internet Archaeology (36), doi: https://doi.org/10.11141/ia.36.5.

Kartverket, 2016. Hoydedata. https://hoydedata.no/LaserInnsyn/.

Kartverket [Norwegian Mapping Authority], 2018. Nasjonal
detaljert høydemodell. In Norwegian. Last accessed 2018- 04-
03. https://www.kartverket.no/Prosjekter/Nasjonal-detaljert-
hoydemodell/.

Kepner, J., 2011. Graphs and matrices. In: J. Kepner and
J. Gilbert (eds), Graph algorithms in the language of linear al-
gebra, SIAM.

Kepner, J. and Gilbert, J. (eds), 2011. Graph algorithms in the
language of linear algebra. Software, Environments, and Tools,
SIAM, Philadelphia.

Knapton, S., 2017. Lost Roman roads could be found as En-
vironment Agency laser scans whole of England from air. The
Telegraph https://www.telegraph.co.uk/science/2017/12/30/lost-
roman-roads-could-found-environment-agency-laser-scans/.

OpenStreetMap Foundation, 2018. OpenStreetMap.
https://www.openstreetmap.org/. Open Database license.

Pandolf, K. B., Givoni, B. and Goldman, R. F., 1977. Predicting
expenditure with loads while standing or walking very slowly. J.
Appl. Physiol. Respir. Environ. Exerc. Physiol. 43, pp. 577–581.

pgRouting contributors, 2014. pgRouting, Version 2.5.1.
http://pgrouting.org/. GNU GPLv2 license.

PostGIS contributors, 2018. PostGIS. Spatial and Geographic
objects for PostgreSQL. https://postgis.net/. GNU GPL licence.

Potter, A. and Brooks, K., 2013. Comparative analysis of
metabolic cost equations: A review. Journal of Sport and Hu-
man performance 1(3), pp. 34–42.

Santee, W. R., Blanchard, L. A., Speckman, K. L., Gonzalez,
J. A. and Wallace, R. F., 2003. Load carriage model development
and testing with field data. Technical note TN03-3, U.S. Army
Research Institute of Environmental Medicine.

Schultz, M., Voss, J., Auer, M., Carter, S. and Zipf, A., 2017.
Open land cover from OpenStreetMap and remote sensing. Inter-
national Journal of Applied Earth Observation and Geoinforma-
tion 63, pp. 206 – 213.

SciPy, 2017. SciPy sparse matrices (scipy.sparse). SciPy.org ref-
erence https://docs.scipy.org/doc/scipy/reference/sparse.html.

SciPy, 2018. numpy.ndarray.view. SciPy.org NumPy reference
https://docs.scipy.org/doc/numpy/reference/generated/numpy.-
ndarray.view.html.

Soule, R. G. and Goldman, R. F., 1972. Terrain coefficients for
energy cost prediction. Journal of Applied Physiology 32(5),
pp. 706–708.

van Ingen Schenau, G. J. and Cavanagh, P. R., 1990. Power
equations in endurance sports. Journal of Biomechanics 23(9),
pp. 865–881.

Voloshina, A. S., Kuo, A. D., Daley, M. A. and Ferris, D. P.,
2003. Biomechanics and energetics of walking on uneven terrain.
Journal of Experimental Biology 216, pp. 3963–3970.

Weyand, P. G., Smith, B. R., Puyau, M. R. and Butte, N. F., 2010.
The mass-specific energy cost of human walking is set by stature.
Journal of Experimental Biology 213, pp. 3972–3979.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-109-2018 | © Authors 2018. CC BY 4.0 License.

116

http://www.pdal.io/
http://citeseerx.ist.psu.edu/viewdoc/-
http://www.kartverket.no/Prosjekter/Nasjonal-detaljert-
http://www.kartverket.no/Prosjekter/Nasjonal-detaljert-
http://www.telegraph.co.uk/science/2017/12/30/lost-
http://www.telegraph.co.uk/science/2017/12/30/lost-
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://pgrouting.org/
http://pgrouting.org/

	Commission IV, WG IV/4
	ABSTRACT:
	1. INTRODUCTION
	2. METHOD
	2.3 Distance
	2.2 Subgraphs and index maps
	2.4 Partitions
	2.5 Clustering
	2.6 Hierarchical graphs
	2.7 Accuracy
	3. WEIGHT FUNCTION
	Gradient [%]
	4. DATA
	4.1 LiDAR data
	4.2 Vector data
	4.3 Basal graph
	4.4 Database and services
	5. DISCUSSION AND CONCLUSION
	ACKNOWLEDGEMENTS (OPTIONAL)
	REFERENCES

