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ABSTRACT: 
 

Computerized path planning, not constrained to transportation networks, may be useful in a range of settings, from search and rescue 
to archaeology. This paper develops a method for general path planning intended to work across arbitrary distances and at the level of 
terrain detail afforded by aerial LiDAR scanning. Relevant information about terrain, trails, roads, and other infrastructure is encoded 
in a large directed graph. This basal graph is partitioned into strongly connected subgraphs such that the generalized diameter of each 
subgraphs is constrained by a set value, and with nominally as few subgraphs as possible.  This is accomplished using the k-center 
algorithm adapted with heuristics suitable for large spatial graphs. A simplified graph results, with reduced (but known) position 
accuracy and complexity. Using a hierarchy of simplified graphs adapted to different length scales, and with careful selection of levels 
in the hierarchy based on geodesic distance, a shortest path search can be restricted to a small subset of the basal graph. The method 
is formulated using matrix-graph duality, suitable for linear algebra-oriented software. Extensive use is also made of public data, 
including LiDAR, as well as free and open software for geospatial data processing. 

 
 

1. INTRODUCTION 
 

The Detailed National Elevation Model, Norway’s biggest land 
surveying project, will by 2022 provide an airborne laser scan- 
ning (LiDAR) dataset covering the entire country with 2–5 mea- 
surements per m2 (Kartverket [Norwegian Mapping Authority], 
2018). Authorities are making the data freely and openly avail- 
able to the public, and encourage their use in new worthwhile ap- 
plications. Similar initiatives are found in, e.g., the UK, where the 
Environment Agency is carrying out LiDAR scanning of the en- 
tire country and publishing recorded data under an Open Govern- 
ment Licence via the data.gov.uk portal, the stated aim of which 
is transparency and innovation (Data.gov.uk, 2018). 

Such data, we believe, render possible general path planning 
and mobility analysis covering any part of a land area, not just 
transportation networks; its wide range of applications includ- 
ing archeology (Herzog, 2014), public transit planning, physical 
exercise and hiking, forestry, and search and rescue operations 
(Ciesa et al., 2014). In particular, LiDAR data are used to gener- 
ate detailed digital terrain and surface models (DTMs and DSMs) 
from which terrain slope, surface roughness, and obstacles can be 
determined, information which is crucial for general path plan- 
ning. In addition, land cover classification (e.g., tree species) us- 
ing aerial LiDAR is currently an emerging field of research, and 
also provides important information for mobility analysis. 

Automated (computerized) path planning has become a standard 
navigational aid in GNSS1-equipped vehicles, and is a critical 
component in autonomous systems such as self-driving cars. Path 
planning in road networks is routinely solved using graph the- 
ory (Balakrishnan and Ranganathan, 2012). In a directed graph 
(digraph) with n nodes and m arcs representing road segments, 
Dijkstra’s algorithm (Dijkstra, 1959) finds a minimum-cost so- 
lution in running time O[m log n]. Exploiting the natural hier- 
archical structure of road networks, modern routing applications 
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achieve query times orders of magnitude smaller (in large net- 
works), see, e.g., (Delling et al., 2009), (Bast et al., 2007). Cross- 
country movement presents new challenges; there is no natural 
hierarchy, and there are two degrees of freedom instead of one. 
This increases graph complexity and, consequently, the compu- 
tational load; in two dimensions typically 4 ≤ m/n ≤ 8 with 
roughly uniform node density (nodes per unit area). Modeling 
cross-country movement is difficult also because mobility, speed, 
and efficiency depend highly on the nature of the terrain and the 
means of transport, and, moreover, because it is not necessarily 
obvious how the data (or which data) should be adapted in the 
model. 

 
This paper describes one approach to computing optimum paths 
that are not bound to transportation networks. This requires a 
regular or random graph that covers the entire land area, is con- 
nected to road and pathway networks, and takes into account ter- 
rain features, man-made or natural obstacles, and infrastructure in 
general. Although cross-country path planning is a many-faceted 
problem, we concentrate on three issues: 1) partitioning large, 
nearly regular, geographically embedded graphs, 2) using a hi- 
erarchy of simplified graphs to reduce computational complex- 
ity, and 3) obtaining a cost function for walking humans. The 
purpose is to provide brief but sufficient detail to understand the 
source code and main algorithms. 

 
In addition we report on the use of open source software and 
open data. All aspects of the general path planning problem 
can be implemented with a suite of FOSS4G tools, in particu- 
lar, the processing of LiDAR (point cloud) data, adaptation of 
vector and raster geospatial data, graph representation and stor- 
age, and optimum route search. Algorithms for generating and 
partitioning graphs are formulated using the matrix representa- 
tion of directed graphs, suitable for array-oriented software such 
as NumPy/scipy.sparse, Julia, or GNU Octave (also open source 
software) as well as MATLABQR   and other linear algebra APIs. 

Section 2 describes the graph model underlying our routing solu- 
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tion. A sequence of graphs G = (G0, G1, . . . , GH−1) represents 
the same physical area with decreasing levels of detail. This re- 
quires a method for partitioning large graphs. Section 3 develops 
a cost function for humans on foot. The mechanics and energet- 
ics of walking are complex and not fully understood. Hence em- 
pirical results are required, some of which are summarized here. 
However, biomechanical principles can be used to constrain the 
relation between walking speed (or energy expenditure) and key 
parameters such as terrain slope. Section 4 is a brief summary of 
the data processing pipeline and preliminary routing service ap- 
plication, implemented with open source software. Details on the 
datasets on which the graph model is based are also provided. 

 
2. METHOD 

 
2.1   Matrix graph duality 

 
Formally we work with a simple, directed, weighted graph, G = 
(V, E, w), where V = { v1, v2, . . . , vN } is the set of nodes (or 

operation in array-based languages, i.e., 
 

GU  = G(IG→U , IG→U ) (6) 

where 
IG→U  ≡ [ k1    . . .  kR ]. (7) 

The operation (6) extracts rows k1, . . . , kR and likewise columns 
k1, . . . , kR from WG. In NumPy syntax, this would be written 
WG[numpy.ix (IG→U , IG→U )]. Note that in NumPy and Julia, 
this creates a view (SciPy, 2018) into the original matrix, so ma- 
trix values are not copied from the parent graph. 

1
U is independent of the order of elements in IG→U , and set op- 

erations may be defined on index vectors. For two sets of nodes, 
Ua, Ub ⊆ V (G), we write IUa →G ∪ IUb →G = IUa ∪Ub →G, a 
concatenated vector with duplicate indices removed. Similarly, 
IUa →G ∩ IUb →G = IUa ∩Ub →G is a vector of common indices in 
Ua and Ub. Mapping between node indices in the subgraph and 
parent graph can be accomplished by defining a (normally sparse) 1 

vertices), E is a set of unique ordered pairs (vi, vj ) of nodes (the 
arcs), where i /= j (no self-loops), and w : E → R is the 
weight function. The order of G is n(G) ≡ N . We refer to the 
subscript k as the node index of vk . Each node v has a spatial 
position, denoted x(v) ∈ R3, as well as other attributes 
described below. A simple graph has no parallel arcs and can be represented by a 

n(G) × 1 vector I− with non-zero entries given by 

I−1     (IG   U ) ≡ [ 1 2  . . . R ]. (8) 

If J is a vector of node indices with respect to G
1   

(so max J ≤ 
R), then 

IG→U  I−
 (J )

) 
= J. 

square N × N matrix G = (wij ) by setting 
(
w(a),   if a ≡ (vi, vj ) for some arc a ∈ E 

G←U 

Conversely, if I is a vector of node indices with respect to G (so 
max I ≤ N ), then 

wij ≡ G[i, j] = 0, otherwise.  

(1) 

 
I−1 

The adjacency matrix AG = (cij ) is defined such that cij is the 
number of arcs incident out of vi and into vj . For a simple graph 

G←U (IG→U (I)) = I. 

This construction can be nested. If H ⊆ U ⊆ V (G), and J is a vector of indices with respect to 
r
G

1  l1
 

with positive weights, 
 

AG = [G > 0] (a logical/binary matrix). (2) 
ing indices with respect to G are 

( 

1
U  

1
H , then the correspond- 

\ 
 

In path planning applications N is large while each node is inci- 
dent with only about 1–10 arcs, so G and AG are sparse. 

A set of R distinct nodes, { vk1 , vk2 , . . . , vkR  }, can be identi- 
fied with a binary column vector with unity in the kj th row for 

 
 

and so on. 
 

2.3   Distance 

I = IG→U 1
U →H (J )  , 

j = 1, 2, . . . , R.  In particular, the node vk is a binary vector 
with unity only in the kth row, and its neighbors in the matrix 
representation are 

N (G, vk ) = AT v , (3) 

i.e., a sparse matrix-vector multiplication, where AT denotes the 
transpose matrix. This is a breadth-first search (BFS) step (Kep- 
ner, 2011). 

 
2.2   Subgraphs and index maps 

 
We frequently operate on subsets of G, and G itself will be con- 
structed by assembling smaller graphs.  For a subset of nodes 
U = { vk1 , vk2 , . . . , vkR } ⊆ V , a particular subgraph G

1   
is 

obtained by keeping all edges incident only with nodes in U : 

In a simple digraph, G, a path from node s to t is a sequence of 
distinct nodes P = (v1 = s, v2, . . . , vR = t) in V (G) such that 
each consecutive pair (vi, vi+1) is in E(G). The length of P is 
|P | = 

),R−1 w(vi, vi+1), and the distance from s to t, denoted 
dG(s, t), is the length of a minimum-length path from s to t. For 
a spatial graph there is also distance as a function of the two node 
positions, i.e., Euclidean or geodesic distance. We use Euclidean 
distance in an appropriate projected reference system, as it is fast 
and simple to compute, and denote it dEUCL. 

 
For the purpose of partitioning the graph (Section 2.5), we need 
a single-source distance-to-all-nodes algorithm, such as Dijkstra 
(if w > 0). However, with the clustering algorithm (Section 2.5) 
in mind, Dijkstra is modified in a heuristic manner, as in Func- 
tion 1: once the set of closed nodes has expanded beyond a cut- 
off distance, Λ, the remaining active nodes are assigned the larger 

V (G
1
 ) = U and E(G

1
 ) = { (u, v) ∈ E(G) : u, v ∈ U }. 

(4) 
value of dEUCL/c and Λ, where c is a scaling factor. If the weight 
function is travel time, then c will be a characteristic speed value. 

The matrix representation of G
1
 can be obtained as the sparse As implemented in Function 1, c is determined from the graph 

locally, and may vary across the graph. Depending on the appli- 
matrix product 

GU  = UT GU (5) 
cation, c could also be a preset global parameter to further speed 
up computation.  The cut-off distance, Λ, is typically chosen to 

where U = [ vk1    vk2     . . .  vkR ] is a sparse, binary N × R ma- 
trix and UT is its transpose. We can also view this as an indexing 

be a few times the characteristic cluster size of the desired graph 
partition (Section 2.5). Although shortest path algorithms can be 

1 
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Function 1 Distance function (modified Dijkstra) 
 

 

Require: G, a finite, simple, positive-weight (w), spatial digraph 
Require: s ∈ V (G), the source node 
Require: Geographical distance function dEUCL : V × V → R 
Require: Λ > 0, cut-off distance 

 
1:  function DISTANCE(G,s,Λ) 
2:         U ← V (G)  r> active nodes 
3:        for all v ∈ U do r> standard Dijkstra initialization 
4: dG(s, v) = ∞ 
5:        dG(s, s) ← 0 
6:        c ← 0 

 
7:        while U not empty do 
8: u ← node v ∈ U with minimum distance dG(s, v) 
9: U ← U \ { u } 

 
 

Function 2 Adjacency matrix, graph partition 
 

 

Require: G, a finite, simple digraph 
Require: L, label vector for partition of G 

 
1:   function ADJACENCY(AG,L) 
2:         K ← max L  r> number of nodes 
3:          A1  ← SPARSE(K, K) r> empty K × K matrix 
4:        for c ← 1, . . . , K do 
5: V  ← (L == c) r> nodes in partition c 
6: A1

r
UNIQUE(L[AT

 

7: A1[c, UNIQUE(L[AG · V ])] ← 1 
8: A1[c, c] ← 0 r> no self-loops 
9:         return  A1 

 
 

 
For example, if V (G) = { v1, v2, v3, v4 }, U1  = { v2, v3 }, and 
U2  = { v1, v4 }, then V (G) = U1 ∪ U2  and L = [ 2 1 1 2 ]. 

10: c  N 
N −1 

c + 1 dG(s, u)/dEUCL(x(s), x(u)) Two nodes  Ui and Uj in G1 are adjacent if there is an arc 
11: if dG(s, u) > Λ then 
12: break r> exit main loop 
13: for all v ∈ N (G, u) ∩ U do 
14: dG(s, v) = min(dG(s, u) + w(u, v), dG(s, v)) 

 
15: for all v ∈ U do 
16: dG(s, v) = max(Λ, c−1dEUCL(x(s), x(v))) 
17: return  dG(s, :), c 

(u, v) ∈ E(G) such that u ∈ Ui and v ∈ Uj or vice versa. 
The adjacency matrix can be obtained from L and AG with 
Function 2.  For a vector V , the function unique(V ) returns 
a new vector holding the elements of V without repetitions (e.g., 
numpy.unique). There are different ways to represent sparse 
matrices, and in Function 2 one should use a format that is effi- 
cient for constructing matrices (e.g., row-based linked list), and 
later convert to a format supporting fast matrix-vector operations, 

   see, e.g., (SciPy, 2017). 

formulated in pure linear algebraic language (Kepner and Gilbert, 
2011), this is not essential here. 

 
The distance algorithm is implemented with a standard heap- 
based min-priority queue (not shown in Algorithm 1) to obtain 
the minimum-distance node efficiently in each iteration of the 
loop (line 8). Using matrices, we only require that the distance 
function returns an N -element vector with distances correspond- 
ing to node indices. When using the transposed adjacency matrix 
to obtain the neighbors N (G, v) ∩ U (line 13), where U is the set 
of active nodes, as in (3), the column of the active node is set to 
zero in each iteration of the loop: 

while U not empty do 
. . . 
A(G)T [ : , u] = 0 
for all v ∈ AT u do 

. . . 

If G
1 

is (di)connected, its size can be characterized by a ra- 
dius and a diameter: For a node u ∈ U ⊆ V (G), the eccen- 
tricity with respect to U is e(u) =  max{ dG(u, v) : v ∈ U }, 
and the radius of U is the minimum eccentricity, i.e., r(U ) = 
min{ e(u) : u ∈ U }. The diameter of U ⊆ V (G) is similarly 
defined as the maximum distance between pairs of nodes in U : 

 
diam(U ) = max{ dG(u, v) : u, v ∈ U }. 

 
To turn G1 into a weighted graph, the distance between all pairs 
of adjacent sets (Ui, Uj ) ∈ E(G1) must be determined. Again 
anticipating the cluster algorithm (Section 2.5), we pick a node 
vhi ∈ Ui in each subset, referred to as the cluster representa- 
tive (CR). Since by assumption G is diconnected there is a path 
between every pair of CRs, and G1 can be defined as the K × K 
matrix with elements (

dG(vh , vh  )   if AG  [i, j] = 1 
2.4 Partitions G1[i, j] = i j 1

 (9) 

Two nodes u and v in a graph G are (di)connected if there is a 
finite-length path from u to v and from v to u, and G0 is strongly 
connected if any pair of nodes are diconnected. We will assume 
that G is strongly connected, since otherwise each component of 
G can be considered and processed separately. A collection of 
non-empty disjoint subsets (Ui)K 

0 otherwise, 
 

The set of CRs is denoted H = { vh1 , vh2 , . . . , vhK }, with in- 
dices IG→H  = [ h1    h2     . . .  hK ]. 

The principle of simplyfying graphs is shown in Figure 1. Typi- 
cally one seeks partitions that minimize the number of arcs be- 
tween components (Buluç et al., 2016). However, we would 
rather use graph distance (closeness) as optimization criterion, 

1. V (G) = ∪K   Ui so that the distance between nodes in each subgraph G
1
 can be 

2. G
1
 
i 

is diconnected for each i = 1, . . . , K, controlled. 
 

2.5 Clustering 
is a partition of G into K smaller, connected components. From 
this partition a simplified, unweighted graph, G1, can be con- 
structed by defining V (G1) = { U1, . . . , UK }. Using arrays 
again, the partition is specified by an n(G) length label vector L 
with 

L(IG→Ui ) = i, for i = 1, . . . , K. 

 
Hence it is natural to choose CRs with minimum eccentricity, 
or, conversely, given a set of maximally dispersed nodes H = 
{ vh1 , vh2 , . . . , vhK }, define the partition subsets by proximity 
to H. For any node v ∈ V (G), dG(v, H) = minh∈H dG(v, h) 
denotes the distance of v from H. The maximum distance to a CR 
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Figure 1. Graph partitioning and clustering. Two disjoint sets of 
nodes, Ui (red) and Uj (blue), form two nodes connected by a 

single pair of arcs in the simplified graph G1 on the right. 
 
 

is d∞(G, H) = maxv∈V (G) dG(v, H), and should be as small 
as possible. We seek a partition based on one of the following 

 
 

Function 3 k-center clustering, adapted to spatial graph 
 

 

Require: G, a finite, simple, diconnected, spatial digraph 
Require: Kmax ≤ n(G) ≡ N , maximum number of clusters 
Require: R > 0, Λ > R, cluster size, cut-off distance 

 
function  KCLUSTER(G,Kmax,R,Λ) 

H  ← ZEROS(Kmax, 1) r> CR indices 
C  ← ZEROS(Kmax, 1) r> scaling factors 
L ← ONES(N, 1) r> cluster labels 
S ← SPARSE(Kmax, N )   r> distance to CRs 
D ← ∞ · ONES(N, 1)  r> distance to nearest CR 
H[1] ← RANDINT(N ) r> random index, first CR 
I, J ← ZEROS(N, 1, dtype=bool)  r> logical arrays 

 
for k = 1, . . . , Kmax do 

d, c ← DISTANCE(G, H[k], Λ) 
rmax ← 0, h ← 1 
for n = 1, . . . , N do 

I[n] ← d[n] ≤ D[n] 
J [n] ← d[n] ≤ Λ 
D[n] ← min (D[n], d[n]) 
if D[n] > rmax then 

rmax ← D[n] 
two criteria: V (G) = ∪K

 Uk , each G
1
 

k 
is diconnected, and h ← n 

S[k, J ] ← d[J ] r> distance to neighborhood 
L[I] ← k r> assign nodes to kth cluster 

C1:  K is minimum such that max1≤k≤K r(Uk ) ≤ R for some 
fixed radius R. H[k] ← h r> node index of kth cluster 

C2:  R is the smallest radius such that max1≤k≤K r(Uk ) ≤ R 
for a fixed number K. 

 

Both criteria belong to a class of NP-hard optimization prob- 
lems known as k-center problems. There is an approximate solu- 
tion, k-center clustering, that works as follows (Har-Peled, 2008, 
Ch. 4): Starting with a random node, H1 = { h1 } (in index nota- 
tion), the CRs are added one at a time (one per iteration of a loop). 
Each new CR, hk+1, is chosen such that it has maximal distance 
to the current set of CRs, i.e., dG(vhk+1 , Hk )  =  d∞(G, Hk ) 
where Hk = { h1, . . . , hk }. 

This requires K one-to-all shortest path computations. For the 
purpose of forming the simplified graph G1 we must also obtain 
the inter-CR distances, cf. Eqn. (9). Therefore, in the present 
implementation (Function 3) we maintain two distance arrays: D 
is an N element vector that holds the distance of each node to the 
currently nearest CR, 

 
D[i] = min dG(vi, vh); 

h∈H 
 

S is a sparse K × N matrix that stores the distances from each 
CR to all nodes inside a cut-off distance, 

(
dG(vh  , vi)    if dG(vh  , vi) < Λ 

C[k] ← c 
 

if rmax < R then 
break r> d∞(G, H) < R, goal achieved 

return H[1:k], L, S[1:k, :], C[1:k] 
 

 

 
inner loop that should be executed in fast, low-level code. The 
running time of Function 3 is O(KN + KOSP), where OSP is the 
running time of the shortest path (distance) algorithm. Point-to- 
point Euclidean distance, dEUCL(u, v), can be computed in con- 
stant time; if dEUCL were used in Function 3 it could be moved in- 
side the inner loop and the total running time would be O(KN ). 
Instead a middle way is taken: to speed up clustering of large spa- 
tial graphs the heuristic version of Dijkstra (Function 1) is used. 

 
Once the partition, defined by the label vector L, has been com- 
puted with Function 3, the adjacency matrix of the simplified 
graph, A(G1) can be found with Function 2. The matrix rep- 
resentation of the simplified graph is 

 
G1  = S[1:K, H] ∗ A(G1) (10) 

where K  = length(H) =  length(UNIQUE(L)) is the number 
of clusters and ∗ denotes element-wise matrix multiplication. De- 
pending on the cut-off parameter Λ in Function 3, some distances 
(weights) in G1 must be computed separately; missing distances S[k, i] = k k

 

0 otherwise. 
 

In principle all KN distances could be saved in a dense matrix, 
but this would require much more memory. Again Λ should be 
(a few times) larger than the characteristic cluster size (although 
it need not be identical to the cut-off distance in Function 1). 

 
Function 3 halts when either Kmax clusters have been formed or 
all nodes are within a distance R from a CR, d∞(G, H) < R. 
Vectorized expressions on the N -element arrays (D, d, I, and J ) 
are avoided here because all operations can be fused into a single 

correspond to true (1) elements in the element-wise exclusive-or 
operation G1 ⊕ A(G1). 

One option not shown in Algorithm 3 is to allow each CR to be 
chosen according to a list of priorities. This means that each node 
in G may be given a priority value p, say p = 1 for road nodes 
(highest priority), p = 2 for path nodes, and p = 3 for terrain 
nodes (lowest priority). A new CR is then chosen not as the far- 
thest node from H, but as the node with highest priority within 
the set { v ∈ V (G) \ H | d(v, H) ≥ rmax − R }, where rmax is 
defined as in Function 3 and R is the characteristic cluster size. 

CRj 

CRi 

Ui 
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∞ min 

g 

g 

2.6 Hierarchical graphs 
 

To solve the shortest path problem in large graphs, covering ar- 
bitrary distances and level of detail, we use a sequence of graphs 
G = (G0, G1, . . . , GH−1) that represent the same physical area 
with decreasing levels of detail (complexity). G0 is the most de- 
tailed graph, the basal graph; it contains all information and is 
formed by merging graphs representing networks (roads, trails, 
etc.) and terrain, respectively. The sequence G can be viewed as 
a hierarchical structure with height H where each new level is 
a simplification of the previous. Gk is obtained by partitioning 
Gk−1 using Function 3. This yields a many-to-one map between 
nodes in consecutive graphs, Mk : V (Gk−1) → V (Gk ). Each 
edge in Gk represents many possible paths in Gk−1; each node 

Considering the other side of the trade-off, complexity, there 
should be as few clusters as possible for a given resolution — 
this is what we aim to achieve with the criteria C1–C2. Given 
an exact solution to C1 or C2, the maximum distance to any of 
the K CRs is minimum, say dK (G). If the set of CRs, H, is 
computed with the k-center algorithm, it is possible to show that 

d  (G, H) ≤ 2dK  (G). (12) 

The approximation bound (12) is normally proved for metric 
spaces, which requires symmetry, i.e., dG(u, v) = dG(v, u) for 
any pair of nodes u, v ∈ V (G). However, examining the alterna- 
tive proof in (Har-Peled, 2008), it appears that only the triangle 
inequality is required, i.e., 

in Gk represents a connected subgraph in Gk−1. If u ∈ V (G), 
then the corresponding node in Gk is M (U ; k) = Mk ◦ Mk−1 ◦ dG(u, v) ≤ dG (u, r) + dG (r, v) (13) 

. . . ◦ M1(s), where ◦ denotes composition of functions. 

Each step up in the sequence G reduces position accuracy. An 
optimum path between two nodes s and t in G0 is sought by first 
finding a path between corresponding nodes in a simpler graph 
Gh, where 0 ≤ h < H. The optimum path between sh and th 

is computed with a standard shortest path algorithm. This path 
defines connected subgraphs, gk,h(s, t; Gk ) ⊆ Gk , 0 ≤ k < h, 
in all the lower-level graphs. In a two-level search, we find the 
optimum path in Gh and subsequently in g0,h(s, t), a subgraph 
of the basal graph G0. However, a search can be carried out at 
intermediate levels too.  For example, in three-level search, let 
0 < h1 < h. Then the optimum path in gh1 ,h(s, t; Gh1 ) defines 
a smaller subgraph in G0, where the final search is carried out. 

 
A series of shortest path problems in low-complexity subgraphs 
thus replaces a single problem in the high-complexity graph G0. 
The path is, effectively, adjusted iteratively to take into account 
more and more terrain features. 

 
2.7 Accuracy 

 
By accuracy we mean that length of the hierarchical graph so- 
lution should be close to the length of an optimum path in G0, 
which in turn should be close to the length of a truly optimum 
path in nature. The accuracy of the iterative solution depends on 

for any three nodes r, u, v ∈ V (G). This inequality holds by def- 
inition for the graph-theoretical distance dG, but not necessarily 
for the heuristic distance (Function 1). 

 
3. WEIGHT FUNCTION 

 
The primary factors that determine energy consumption and 
walking speed are mass and load, stature and leg length, slope 
(gradient), and ground condition (roughness, compliance, vege- 
tation, friction). To our knowledge, there is no theoretical model 
that accurately predicts the metabolic cost or optimum walking 
speed across the range of key parameters.  This would require 
a more complete understanding of both the complicated transfer 
of mechanical energy between body parts, and how efficiently 
metabolic energy is converted to mechanical energy. For exam- 
ple, on rough ground more muscular effort is required to maintain 
posture, which reduces effciency. The effect is seen experimen- 
tally (Voloshina et al., 2003), but is difficult to describe analyti- 
cally. However, several useful empirical results have been estab- 
lished. 

The gross mass-specific energy cost of walking a unit distance is 
here denoted Cg [J/kg·m]. The proportion of this energy trans- 
ferred to mechanical energy is one kind of efficiency, 

Wtot 
adjustable parameters, in particular the choice of search levels 
0 < h1 < . . . < h and the ratio between cluster sizes in consec- 

 g  = , (14) 
Cg 

utive graphs (i.e., the stepwise decrease in position accuracy up 
the hierarchy). The starting level h is a trade-off between accu- 
racy and computational complexity; it is determined by the graph 
size and the geodesic distance (constant-time estimate) between 
the source and target nodes, s and t. Consider two extreme cases: 
if h = 0, then the exact solution is found directly on the complete 
basal graph G0, at high computational cost. On the other hand, 
suppose that sh and th are adjacent nodes in Gh. This implies 
that the uncertainty of the distance estimate dGh (sh, th) has the 
same order of magnitude as the true distance dG0 (s, t). 

where Wtot is the total mechanical work performed by the mus- 
cles per unit mass and unit distance. In general we expect that 
the efficiency g varies with both speed, slope, and ground condi- 
tions. The gross metabolic rate Pg is the energy consumed by the 
body per unit time, which can be accurately determined by mea- 
suring oxygen consumption. (Pandolf et al., 1977) found the fol- 
lowing empirical formula for Pg [W] in terms of walking speed 
V [m/s], body mass M [kg], load L [kg], and gradient G > 0 
[%]: 

  
L  2 

If there is an upper bound on diam(U ) in the level h partition, 
say diam(Ui) ≤ 2R for i = 1, . . . , K, and if the shortest path 

P Pa  = 1.5M +2.0(M +L) 
M 

+η(M +L)(1.5V 2+0.35V G). 

from s to t intersects M sets in the partition, then 

dEUCL(s, t) 

max c ;S dG(s, t) ;S M diam(U ). (11) 

where c is the spatially varying scaling factor found with Func- 
tion 3. The simple relation (11) can be used to choose h such that 

For simplicity we set L = 0 (no load) in the following. Note 
that the numerical coefficients are dimensionful quantities. For 
negative gradients (Santee et al., 2003) later added a correction 
factor, as reproduced in (Potter and Brooks, 2013), so that (for 
L = 0) 

( 
the spatial uncertainty, determined by diam(U ) is small com- 
pared to the (expected) distance travelled. 

Pg = 
P Pa, G ≥ 0 
P Pa − η

r V GM − (G + 6)2 + 25V 2
l
,   G < 0. (15) 

g 3.5 
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The Pandolf equation is useful because it parametrizes the ef- 20 
fect of ground conditions by the terrain coefficient η, for which 
experiment-based values exist (Soule and Goldman, 1972). The 
terrain coefficient varies from η = 1 for asphalt to about η = 3 15 
for deep snow. 

If we make the dimensions explicit, equation (15) for G > 0 may 
be rewritten as 10 

dE 
(V ; τ, α) = 1.5 

W 
+ ηV  

1.5 
V + 3.6 g sin α , (16) 

dt kg 1 s 
5 

where E is the metabolic energy per unit mass, α is the in- 
clination angle of the slope with respect to the horizontal, and 
g = 9.81 m/s2 is the gravitational acceleration. The constant g 
is introduced here as a useful scale factor because g sin α is the 
component of the gravitational force per unit mass against which 
the muscles must work along the slope. 

 
Equation (16) has a form very similar to a power balance equation 
(van Ingen Schenau and Cavanagh, 1990), and gη(1.5/1 s)V 2 

may be interpreted as a “friction power” term. Dividing (16) with 
V gives the gross energy cost per unit distance, 

 
 
 

0 
-20 -10 0 10 20 

Gradient [%] 
 

Figure 2. The simplest weight function per unit distance (gross 
metabolic cost of walking). The correction term in (15) has been 

computed assuming a mass of M = 70 kg. 

 
Cg = 

 
1.5 W/kg + η V 

  
1.5 

V + 3.6 g sin α 
1 s 

 
(17) 

thereby the structure of the hierarchical graph, only a single rep- 
resentative and not highly accurate weight function is required. 

 
Setting ∂Cg/∂V  = 0 and solving for V yields the speed that 
minimizes Cw , 

 
4. DATA 

Vmin = 
1 

1 m 
 

η s 
, (18) Before applying the methods of Section 2, the basal graph G0 

must be constructed. The completed hierarchical graph is stored 
i.e., Vmin = 1.0 m/s on a hard even surface. Several research 
teams have found quadratic relationships between metabolic 
power and walking speed, similar to (16), but the numerical val- 
ues are not quite consistent. The constant (intercept) term in (16), 
1.5 W/kg, is usually interpreted as the the energy cost of stand- 
ing still (without load), which is somewhat higher than the basal 
(resting condition) metabolic rate of Pb ≈ 1.1 W/kg for healthy 
adults (Weyand et al., 2010). It is, however, not straightforward 
to extrapolate a quadratic fit to values obtained in walking con- 
dition down to standing (V = 0) condition. Depending on what 
data are used, the value of Vmin varies and may be larger than 1.0 
m/s on a hard surface; data from, e.g., (Bastien et al., 2005) gives 
Vmin  = 1.3 m/s. 

 
Nevertheless, inserting Vmin from (18) in (17) and integrating 
Cg (Vmin) along arcs in the graph, we obtain a weight function 
for energy cost per unit mass as a function of terrain type and 
gradient: 

r 

in a spatial database. Key tools include PDAL (Point Data Ab- 
straction Library) (Bell et al., 2018), GDAL (Geospatial Data Ab- 
straction Library) (GDAL/OGR contributors, 2018), the PostGIS 
spatial database (PostGIS contributors, 2018), and the pgRouting 
PostGIS extension (pgRouting contributors, 2014). 

 
4.1 LiDAR data 

 
LiDAR data are available from the Norwegian Mapping Author- 
ity via its Høydedata (elevation data) web portal (Kartverket, 
2016). Data products include preprocessed DEMs and DSMs 
as well as point cloud data arranged by survey project. Point 
cloud data were processed with PDAL to extract ground, surface 
returns, and statistics about returns in the lower stratums above 
ground. From the latter a preliminary measure of vegetation den- 
sity can be determined. 

 
4.2 Vector data 

W (a) = Cg (Vmin; η, α) dx(a), a ∈ E(G). (19) 
a 

Vector  data  are  included  to  take  into  account  infrastructure, 
transportation networks, inaccessible areas, and land cover/land 

W (a) is given in J/kg. This simple weight function (Figure 2) 
depends on the optimum speed (18) consistent with the Pandolf 
equation. However, while Vmin is constant for G ≥ 0, the spon- 
taneous walking speed of humans decreases on steep slopes both 
uphill and downhill, where optimum efficiency is not attained. In 
further work we will obtain an alternative to (15) and a gradient- 
dependent speed. 

 
This weight function is symmetric with respect to ground condi- 
tions, but not with respect to gradient. However, any path will 
be traversible in both directions. This implies that all connected 
subgraphs are in fact strongly connected (diconnected). Note 
also that for the purpose of computing the graph partitions, and 

use. For path and road networks, we have used OpenStreetMap 
(OSM) (OpenStreetMap Foundation, 2018) and Elveg, a road 
database maintained by the Norwegian Mapping Authority. 
Elveg is an open access-no restrictions dataset. Road surfaces 
are encoded in detailed land use data, and can be integrated di- 
rectly into a fine basal terrain mesh. However, due to the primary 
role of transportation networks, we also build subgraphs for roads 
and paths based on line geometries (road center lines in the case 
of Elveg). A network line geometry has nodes at intersections, 
with intermediate vertices defining its shape. Vertices are con- 
verted to nodes at a regular interval, hence additional arcs are 
inserted, to increase the number of connections between the net- 
work graph and the basal mesh. Any remaining self-intersections 
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are removed. When the weight of an arc is computed, the com- 
plete line geometry (all vertices) is taken into account. 

Land cover data, which describe static physical properties of a 
land area (at the surface), is taken from AR5, a 1:5000 scale na- 
tional map maintained by the Norwegian Institute for Bioecon- 
omy Research (Nibio). A land cover class in AR5 is a unique 
combination of four categorical variables: area type (12 different 
values), soil condition (8 values), wood type (6 values), and forest 
site quality (7 values). The translation of these variables into a ter- 
rain coefficient in the weight function is not straightforward and 
at the present time only based on qualtitative assessments with the 
original coefficients of (?) as guideline. Buildings, properties, 
and infrastructure are taken from FKB (Felles Kartdatabase), a 
database of high-resolution base maps maintained by the Norwe- 
gian Mapping Authority. Both AR5 and FKB have access restric- 
tions. For AR5 an application, and proper attribution, is required. 
FKB contains the most accurate Norwegian data, but good results 
can also be achieved with, e.g., OSM. 

4.3 Basal graph 
 

To compute the weights of the basal graph, each arc and vertex (a 
large number) must be checked for intersections with land cover 
polygons, infrastructure, etc. This is a slow computational ge- 
ometry operation, repeated many times within a loop and with 
overhead. For this reason most vector features are rasterized at 1 
m resolution using the GDAL API. Checking a vertex against a 
categorical rasterized dataset is fast (computing the nearest grid 
point). With proper indexing many vertices [O(106) or more] 
can be checked in a single vectorized operation, and objects can 
be dilated with a simple morphological operator. 

The basal graph mesh can be regular, semi-regular, or random. 
The random mesh was initially conceived as a way to keep the 
number of nodes as small as possible, by distributing nodes ac- 
cording to a probability density function (PDF) over space, deter- 
mined by terrain properties (less nodes in areas requiring fewer 
course changes). Regular meshes have maximum spatial resolu- 
tion everywhere, but with the hierarchcal method this becomes 
feasible. Regular meshes are simple to construct, compactly rep- 
resented in computer memory, and directly compatible with ras- 
terized vector datasets. 

The mesh is merged with the transportation network subgraphs, 
and the weights are computed as the line integral of the weight 
function along each arc. 

4.4 Database and services 
 

Once computed, the pre-processed hierarchical graph G is stored 
in a spatial PostgreSQL database with PostGIS extension. Stan- 
dard shortest path algorithms are available with the pgRouting 
extension. There is also a prototype WPS service deployed on an 
open source Zoo WPS server (Fenoy et al., 2013). PostgreSQL 
and PostGIS provide immediate solutions to issues such as scala- 
bility, spatial indexing, and load balancing, which are required for 
graphs covering large areas, as well as data access, updating, and 
more. If a part of the graph is to re-processed with array-based 
algorithms, the relevant geographical subset can be checked out 
of the database and transformed to matrix form. 

 
5. DISCUSSION AND CONCLUSION 

 
There are two main challenges in cross-country path planning. 
First, obtaining a realistic weight function and deciding how to 

adapt data in the graph. Consider, for example, how to incorpo- 
rate a stream in the model: is it traversable, and if so, at what 
cost (weight)? The answer may not be readily found using map 
data only or even LiDAR, and may depend highly on season and 
weather, yet it can critically influence route choice. The second 
challenge is the computational cost of constructing, maintaining, 
and searching very large graphs. This paper emphasizes the latter 
problem and proposes a concrete solution based on a hierarchy 
of graph partitions. The main point has been to develop a gen- 
eral method that works for arbitrary levels of detail, down to the 
sub-meter resolution of aerial LiDAR, across arbitrarily large dis- 
tances and with good accuracy. 

Accuracy is an issue in any (not just hierarchical) graph-based 
approach to path planning in two or more dimensions. Even the 
basal graph is a discrete, approximate representation of a physical 
area, the fundamental limitation being that nodes and arcs consti- 
tute a finite set of positions and movements. Moving from place 
A to B is treated in the computer program as moving between the 
two nodes closest to A and B. Using the hierarchical approach, 
we can afford to make the basal mesh arbitrarily fine, thus in prin- 
ciple eliminating the uncertainty at this level. The price of this 
approach is the pre-processing step of computing partitions, and 
the need to carefully select levels in the hierarchy to ensure that 
the subgraph g0 ⊆ G0 contains an actual best route in G0. Due 
to the relation between resolution levels and estimated distance, 
each level Gk in the hierarchy can be thought of as character- 
izing a certain length scale, although this scale may vary across 
geographical areas. 

The method has been tested in several areas around Oslo. Un- 
like problems where there is a type of benchmark or ground truth 
to compare with, it is difficult to measure directly the quality of 
computer solutions. However, based on our acquaintance with 
the test areas and understanding of the topography, the computed 
paths seem natural. Two available measures are the differences 
in path length and running time using a hierarchy of graphs and 
using the full basal graph directly. Such a comparison will be the 
objective of more systematic experiments. 

Besides obvious applications in, e.g., forestry, public transit plan- 
ning, search and rescue, and military manoeuvres, we believe 
general path planning is also of wider public and scientific in- 
terest, for example as a potential tool for better understanding 
ancient road networks and pathways. Aerial image and LiDAR 
data have become important resources for archeologists uncover- 
ing such networks, often seen to trace out natural and economical 
lines in the terrain (Knapton, 2017). 

A pertinent question is to what extent open data can be used to 
make a graph model for realistic path planning. The example of 
(Schultz et al., 2017) demonstrates that extensive land cover in- 
formation can be obtained from OSM when combined with freely 
available remote sensing data. There are also dedicated public 
land cover datasets, such as CORINE Land Cover from the Eu- 
ropean Environment Agency. For our Norwegian test areas, we 
nevertheless see that certain access-restricted, government and 
municipal datasets on land cover and infrastructure provide im- 
portant details and distinctions not readily available from other 
sources. Sufficiently high-resolution data on ground conditions, 
vegetation, and forest yield, for example, are to our knowledge 
only available from national competent authorities. However, 
open LiDAR data not only provide adequate DEMs and DSMs 
for path planning, but also yield useful information on vegetation 
and more, thereby reducing the need for high-resolution vector 
data. 
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