
Cryptanalysis of 2 round Keccak-384

Rajendra Kumar1, Nikhil Mittal1, and Shashank Singh2

1 Center for Cybersecurity, Indian Institute of Technology Kanpur, India
rjndr@iitk.ac.in, mnikhil@iitk.ac.in

2 Indian Institute of Science Education and Research Bhopal
shashank@iiserb.ac.in

Abstract. In this paper, we present a cryptanalysis of round reduced
Keccak-384 for 2 rounds. The best known preimage attack for this
variant of Keccak has the time complexity 2129. In our analysis, we
find a preimage in the time complexity of 289 and almost same memory
is required.

Keywords: Keccak· Sha-3 · Cryptanalysis · Hash Functions · Preim-
age Attack.

1 Introduction

Cryptographic hash functions are the important component of modern cryptog-
raphy. In 2008, U.S. National Institute of Standards and Technology (NIST)
announced a competition for the Secure Hash Algorithm-3 (Sha-3). A total of
64 proposals were submitted to the competition. In the year 2012, NIST an-
nounced Keccak as the winner of the competition. The Keccak hash function
was designed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche [3]. Since 2015, Keccak has been standardized as Sha-3 by the NIST.

The Keccak hash function is based on sponge construction [4] which is dif-
ferent from previous Sha standards. Intensive cryptanalysis of Keccak is done
since its inception [1] [15] [6] [7] [13] [8] [5] [10] [16] [17] [11]. In 2012, Dinur et al.
gave a practical collision attack for 4 rounds of Keccak-224 and Keccak-256
using differential and algebraic techniques [6] and also provided attacks for 3
rounds for Keccak-384 and Keccak-512. They further gave collision attacks
in 2013 for 5 rounds of Keccak-256 using internal differential techniques [7].
In 2016, using linear structures, Guo et al. proposed preimage attacks for 2 and
3 rounds of Keccak-224, Keccak-256, Keccak-384, Keccak-512 and for 4
rounds in case of smaller hash lengths [10]. Recently, in the year 2017, Kumar
et al. gave efficient preimage and collision attacks for 1 round of Keccak [11].
There are hardly any attack for the full round Keccak, but there are many
attacks for reduced round Keccak. Some of the important results are shown in
the Table 1 and Table 2.

Our Contribution: We propose a preimage attack for 2 rounds of round-
reduced Keccak-384. The time complexity of attack is 289 and the memory

2 Kumar et al.

complexity is 287. The attack is not practical, but it outperforms the previous
best-known attack [10], with a good gap. The proposed attack does not affect
the security of full Keccak.

Table 1. Preimage attack results.

No. of rounds Hash length Time Complexity Reference
1 Keccak- 224/256/384/512 Practical [11]
2 Keccak- 224/256 233 [15]
2 Keccak- 224/256 1 [10]
2 Keccak- 384/512 2129/2384 [10]
3 Keccak- 224/256/384/512 297/2192/2322/2484 [10]
4 Keccak- 224/256 2213/2251 [10]
4 Keccak- 384/512 2378/2506 [12]

Table 2. Collision attack results.

No. of rounds Hash length Time Complexity Reference
1 Keccak- 224/256/384/512 Practical [11]
2 Keccak- 224/256 233 [15]
3 Keccak- 384/512 practical [7]
4 Keccak- 224/256 224 [6]
4 Keccak- 224/256 212 [16]
4 Keccak- 384 2147 [7]
5 Keccak- 224 2101 [16]
5 Keccak- 224 Practical [17]
5 Keccak- 256 2115 [7]

2 Keccak Description and Notations

Keccak is a family of sponge hash functions with arbitrary output length. A
sponge construction consists of a permutation function, denoted by f , a param-
eter “rate”, denoted by r, and a padding rule pad. The construction produces a
sponge function which takes as input a bit string N and output length d. It is
described below.

The bit string N is first padded based on the pad rule. The padded string
is divided into blocks of length r. The function f maps a string of length b to
another of same length. The capacity, denoted by c, is a positive integer such
that r + c = b. The initial state is a b-bit string which is set to all zeros. After
a string N is padded, it undergoes two phases of sponge, namely absorbing and

Cryptanalysis of 2 round Keccak-384 3

Fig. 1. The sponge construction [4]

squeezing. In the absorbing phase, the padded string N ′ is split into r-bit blocks,
say N1, N2, N3, . . . , Nm. The first r bits of initial state are XOR-ed with the first
block and the remaining c bits are appended to the output of XOR. Then it is
given as input to the function f as shown in the diagram given in the Figure 1.
The output of this f becomes the initial state for the next block and the process
is repeated for all blocks of the message. After all the blocks are absorbed, let
the resulting state be P .

In the squeezing phase, an string Z is initialized with the first r bits of the
state P . The function f is applied on the state P and the first r bits of output,
say P ′, is appended to Z. The P ′ is again passed to f and this process is repeated
until |Z| ≥ d. The output of sponge construction is given by the first d bits of
Z.

The Keccak family of hash functions is based on the sponge construction.
The function f , in the sponge construction, is denoted by Keccak-f [b], where b
is the length of input string. Internally Keccak-f [b] consists of a round function
p which is recursively applied to a specified number of times, say nr. More pre-
cisely Keccak-f [b] function is specialization of Keccak-p [b, nr] family where
nr = 12 + 2 l and l = log2(b/25) i.e.,

Keccak-f [b] = Keccak-p [b, 12 + 2l] .

The round function p in Keccak consists of 5 steps, in each of which the
state undergoes transformations specified by the step mapping. These step map-
pings are called θ, ρ, π, χ and ι. A state S, which is a b-bit string, in Keccak
is usually denoted by a 3-dimensional grid of size (5 × 5 × w) as shown in the
Figure 2. The value of w depends on the parameters of Keccak. For example
in the case of Keccak-f [1600], w is equal to 64. It is usual practice to rep-
resent a state in terms of rows, columns, lanes, and slices of the 3-dimensional

4 Kumar et al.

grid. Given a bit location (x, y, z) in the grid, the corresponding row is given by
(S[x+ i (mod 5), y, z] : i ∈ [0, 4]). Similarly the corresponding column is given
by the bits (S[x, y + i (mod 5), z] : i ∈ [0, 4]) and the corresponding lane is given
by (S[x, y, z + i (mod w)] : i ∈ [0, w − 1]). Further the slice corresponding to
a location (x, y, z), consists of (S[x+ j (mod 5), y + i (mod 5), z] : i, j ∈ [0, 4])
bits. It is pictorially shown in the Figure 2.

a row(5-bits)

a column(5-bits)

a lane(w-bits)

a slice(5× 5-bits)

Fig. 2. A state in Keccak

In the following, we provide a brief description of the step mappings. Let A
and B respectively denote input and output states of a step mapping.

1. θ (theta): The theta step XORs each bit in the state with the parities of
two neighboring columns. For a given bit position (x, y, z), one column is
((x− 1) mod 5, z) and the other is ((x+1) mod 5, (z− 1) mod w). Thus, we
have

B[x, y, z] = A[x, y, z]⊕ P [(x− 1) mod 5, z]

⊕ P [(x+ 1) mod 5, (z − 1) mod w] (1)

where P [x, z] = ⊕4
y=0A[x, y, z].

2. ρ (rho): This step rotates each lane by a constant value towards the MSB
i.e.,

B[x, y, z] = A[x, y, z + ρ(x, y) mod w], (2)

where ρ(x, y) is the constant for lane (x, y). The constant value ρ(x, y) is
specified for each lane in the construction of Keccak.

Cryptanalysis of 2 round Keccak-384 5

3. π (pi): It permutes the positions of lanes. The new position of a lane is
determined by a matrix, [

x′

y′

]
=

[
0 1
2 3

]
·
[
x
y

]
, (3)

where (x′, y′) is the position of lane (x, y) after π step.

4. χ (chi): This is a non-linear operation, where each bit in the original state
is XOR-ed with a non-linear function of next two bits in the same row i.e.,

B[x, y, z] = A[x, y, z] ⊕
((A[(x+ 1) mod 5, y, z]⊕ 1) ·A[(x+ 2) mod 5, y, z])) . (4)

5. ι (iota): This step mapping only modifies the (0, 0) lane depending on the
round number i.e.,

B[0, 0] = A[0, 0]⊕RCi, (5)

where RCi is round constant that depends on the round number. The re-
maining 24 lanes remain unaffected.

Thus a round in Keccak is given by Round(A, ir) = ι(χ(π(ρ(θ(A)))), ir),
where A is the state and ir is the round index. In the Keccak-p[b, nr], nr
iterations of Round(·) is applied on the state A.

The Sha-3 hash function is Keccak-p[b, 12 + 2 l], where w = b/25 and l =
log2(w). The value of b is 1600, so we have l = 6. Thus the f function in Sha-3
is Keccak-p[1600, 24].

The Keccak team denotes the instances of Keccak by Keccak[r, c], where
r = 1600 − c and the capacity c is chosen to be twice the size of hash output
d, to avoid generic attacks with expected cost below 2d. Thus the hash function
with output length d is denoted by

Keccak-d = Keccak[r := 1600− 2d, c := 2d], (6)

truncated to d bits. The Sha-3 hash family supports minimum four different
output length d ∈ {224, 256, 384, 512}. In the Keccak-384, the size of c =
2 · d = 768 and the rate r = 1600− c = 1600− 768 = 832 = 13 · 64.

3 Preimage Attack for 2 Rounds of Round Reduced
Keccak-384

In this section, we present a preimage attack for a round reduced Keccak. We
will show that the preimage can be found in 288 time and 287 memory for 2
rounds of round-reduced Keccak-384. Although it is not a practical attack, but
it is an improvement over the existing best attack, for 2 rounds of Keccak-384,
which takes 2129 time [10].

6 Kumar et al.

3.1 Notations and Observations

In the analysis, we will represent a state by the lanes. There are in total 5 × 5
lanes. Each lane in a state will be represented by a variable which is a 64-bit
array. A variable with a number in round bracket “(.)” represents the shift of
the bits in array towards MSB. A variable with a number in square bracket
“[.]” represents the bit value of the variable at that index. If there are multiple
numbers in the square bracket then it represents the corresponding bit values.

We are going to use the following observations in our analysis.

1. Observation 1: The χ is a row-dependent operation. Guo et al. in [10],
observed that if we know all the bits of a row then we can invert χ for that
row. It is depicted in the Figure 3.

a0 a1 a2 a3 a4 a′0 a′1 a′2 a′3 a′4
χ−1

Fig. 3. Computation of χ−1

a′i = ai ⊕ (ai+1 ⊕ 1) · (ai+2 ⊕ (ai+3 ⊕ 1) · ai+4) (7)

2. Observation 2: When only one output bit is known after χ step, then the
corresponding input bits have 24 possibilities. Kumar et al. [11] gave a way
to fix the first output bit to be the same as input bit and the second bit as
1. It is shown in the Figure 4.

a0 ∗ ∗ ∗ ∗ a0 1 ∗ ∗ ∗
χ−1

Fig. 4. Computation of χ−1

3.2 Description of the Attack

The Keccak-384 outputs 384 bits hash value, which is represented by the first
6 lanes in the state obtained in the start of the squeezing phase. The diagram in
the Figure 5 represents this state. The values of remaining lanes are represented
by ? and we do not care these values. We are interested in finding a preimage
for which 6 lanes of corresponding state matches. We will call this state as final

Cryptanalysis of 2 round Keccak-384 7

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

h5 ? ? ? ?

h0 h1 h2 h3 h4

0 1 2 3 4
x

0

1

2

3

4

y

Fig. 5. Final State

state. Furthermore, we can ignore the ι step without the loss of generality, as
it does not affect the procedure of the attack. However it should be taken into
account while implementing the attack.

We further note that the initial state, which is fed to Keccak-f function,
is the first message block which is represented by 25 − 2 · 6 i.e., 13 lanes. The
remaining 12 lanes are set to 0. Pictorially, this state is represented by the
diagram in the Figure 6. We call this state initial state. Our aim is to find the
values of a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1 and e0, e1 in the initial state which
lead to a final state having first six lanes as h0, h1, h2, h3, h4 and h5.

We follow the basic idea of the attack, given in the paper [15]. We start the
attack by setting variables in the initial state which ensures zero column parity.
This is done by imposing the following restrictions.

a2 = a0 ⊕ a1, b2 = b0 ⊕ b1, c2 = c0 ⊕ c1
d1 = 0, d0 = 0 and e1 = e0. (8)

This type of assignment to the initial state will make the θ step mapping,
an identity mapping. Even though we have put some restrictions to the initial
state, we still find the input space of Keccak-384 (with 1 message block) large
enough to ensure first 6 lanes of output state, the given hash value. We explain
the details of the analysis below.

Note that the output of attack is an assignment to the variables a0, a1, a2,
b0, b1, b2, c0, c1, c2, d0, d1 and e0, e1, which gives the target hash value. Recall
that we are mounting an attack on the 2-Round Keccak-384 (see the diagram in
Figure 7). The overall attack is summarized in the diagram given in the Figure 8.
The State 2, in the Figure 8, represents the state after π ◦ ρ ◦ θ is applied to
the State 1. The θ-mapping becomes identity due to the condition (Equation 8)
imposed on the initial state. The ρ and π mappings are, nevertheless, linear.

We are given with a hash value which is represented by first 6 lanes in the
State 4 [Figure 8]. It represents the final state (Round 2) of Keccak-384. The

8 Kumar et al.

0 0 0 0 0

0 0 0 0 0

a1 b1 c2 0 0

a2 b2 c1 d1 e1

a0 b0 c0 d0 e0

Fig. 6. Setting of Initial State in the Attack

Round 1
θ, ρ, π, χ, ι

Round 2
θ, ρ, π, χ, ι

Intial State Final StateIntermediate State

Fig. 7. Two round of Keccak-384

state can be inverted by applying χ−1 ◦ ι−1 mapping. The ι−1 is trivial and
χ−1 can be computed using the Observations 1 and 2. The first 7 lanes of the
output is {h′0, h′1, h′2, h′3, h′4, h′5, h′6, 1}. We do not care the remaining lanes. Then
the mappings π−1 and ρ−1 are applied, which are very easy to compute, to get
the State 3 [Figure 8]. Note that, at this point, the blank lanes in the State 3,
of the Figure 8, could take any random value and this does not affect the target
hash value. The number shown in round brackets along with the variable, in the
State 2 and State 3 [Figure 8], is due to ρ step mapping. On applying θ ◦ ι ◦ χ,
operation on the State 2, the output should match with the State 3 [Figure 8]. In
the State 3, there are 7 lanes whose values are fixed. This will impose a total of
7× 64 conditions on the variables we have set in the initial state. As mentioned
earlier, we have also set 6 conditions (see the Equation 8) on the initial state
variable and this will further add 6× 64 conditions. So there are in total 13× 64
conditions. Since the number of variables and the number of conditions is equal,
we can expect to find one solution and it is indeed the case. In the rest of this
section, we provide an algorithm to get the unique solution. Our method is based
on the technique proposed by Naya-Plasencia et al. in the paper [15].

We aim to find the assignment of bits to the initial state which leads to a
target hash value. We proceed as follows. We start with all possible assignments
in the groups successive 3 slices. Using the constraints (transformation from

Cryptanalysis of 2 round Keccak-384 9

0 0 0 0 0

0 0 0 0 0

a1 b1 c2 0 0

a2 b2 c1 d1 e1

a0 b0 c0 d0 e0

c0(62) d1(55) 0 0 0

e0(27) a2(36) b1(10) 0 0

b0(1) c1(6) 0 0 0

d0(28) e1(20) a1(3) 0 0

a0(0) b2(44) c2(43) 0 0

h′4(50)

h′3(43)

h′2(21)

h′1(20) 1

h′0(0) h′5(36)

h5

h0 h1 h2 h3 h4

State 1 State 2

State 3State 4

θ, π, ρ

χ, ι, θ

ι−1, χ−1

π−1, ρ−1

Fig. 8. Diagram for 2-round preimage attack on Keccak-384

State 2 to State 3 [Figure 8]), we discard some of the assignments, and store
the remaining ones, out of which one would be a part of the solution. This is
done for every 3-slice. Next step is to merge the two successive 3-slices. Again
we do discard certain choices of assignments and keep the remaining ones. This
process is continued to fix a set of good assignments to the 6-slices, 12-slices,
16-slices, 24-slices and 48-slice. In the last, after combining all the assignments
we are left with a unique assignment, which is the required preimage. We explain
the details in the Section 3.3 below.

3.3 Finding Partial Solutions

We focus on the two intermediate states of the attack i.e., the State 2 and the
State 3 (see the Figure 9 below). Note that, since d0 and d1 are set to 0 in the
beginning, we are now left with 11 lane variables a0, a1, a2, b0, b1, b2, c0, c1, c2, e0
and e1 only. We can ignore the ι mapping in the transformation form State 2 to
State 3, without the loss of generality. The χ-mapping depends only on the row,
so it will not get affected by the bit values of the other slices. It is θ-mapping

10 Kumar et al.

c0(62) 0 0 0 0

e0(27) a2(36) b1(10) 0 0

b0(1) c1(6) 0 0 0

0 e1(20) a1(3) 0 0

a0(0) b2(44) c2(43) 0 0

h′4(50)

h′3(43)

h′2(21)

h′1(20) 1

h′0(0) h′5(36)

State 2 State 3

χ, ι, θ

Fig. 9. Intermediate States in 2-round preimage attack on Keccak-384

that depends on the values in the two slices; the slice on its original bit position
and a slice just before it.

Possible solutions for 3-slices In a 3-slice there are 3 · 11 = 33 bit variables
for which we have to find the possible assignments.

Note that the bit variables, for example take a0[i], a1[i] and a2[i], are related
(a2 = a0 ⊕ a1), but due to rotation, they do not appear together when the suc-
cessive 3 slices are considered. Similarly, the other variables are also independent
when restricted to a 3-slice. This can be explained using the following example. If
we take the first three slices then we get the following 33 independent variables,
given in the Equation 9.

a0[0, 1, 2], a1[3, 4, 5], a2[36, 37, 38],

b0[1, 2, 3], b1[10, 11, 12], b2[44, 45, 46],

c0[62, 63, 0], c1[6, 7, 8], c2[43, 44, 45],

e0[27, 28, 29], e1[20, 21, 22].

(9)

None of these variables have any dependency despite the initial restriction, given
by Equation 8. So we have an input space of 33 independent variables in a given
3-slice.

Given a 3-slice in the State 2, we need to apply θ ◦ ι ◦ χ mapping to get an
output in the State 3. Since the θ mapping depends on the values of two slices;
the current slice and one preceding it, we will only able to get the correct output
for two slices. In the State 3, we have the values of 7 lanes available with us. So
for the two slices, we have 7 · 2 fixed bit values. For each of 233 assignments in a
3-slice of the State 2, we compute the output of θ ◦ ι ◦ χ mapping and match it
to the 14 bit locations, the values of which are available in the State 3. Thus for
each 3-slice, we get 233−14 = 219 solutions. This is repeated for 16 consecutive
3-slices, other than last 16 slices. We use the fact that the time complexity of

Cryptanalysis of 2 round Keccak-384 11

building the list is given by the size of the list as stated in Section 6.4 of [15].
Thus the required time and memory complexity is of the order 16 · 219 = 223.

Possible solutions for 6-slices The possible solutions for a 6-slice are ob-
tained by merging the possible solutions of its constituents two 3-slices. The
variables restricted to the 6-slice is again independent. This can be explained in
the following manner. Consider the rotated lanes a0(0), a1(3) and a2(36). Since
the lane variable a2 is rotated by 36 and a1 is rotated by 3, the corresponding
bits of original lanes are still 33 places apart. Similarly e0 is rotated by 27 and
e1 is rotated by 20, the corresponding bits are again 7 places apart, so there is
no repetitions of bits (remember initial condition e0 = e1). Since the difference
between the rotation of related variables is more than 6, the bit variables in
a 6-slice are also independent. So we have 219·2 = 238 possibilities for the bit
variables in a 6-slice.

We have already noted that the θ-mapping cannot be computed for the first
slice of a given 3-slice. But, when we are merging two consecutive 3-slices, θ-
mapping for the first slice of second 3-slice can be computed and this will pose
an additional restriction (of 7 bits) for the input space of the 6-slice. As an
example consider a group of slices (0, 1, 2) and another group of slices (3, 4, 5).
Note that the θ-mapping, on the slice 3, depends on the slice 3 and 2. So when
we are merging these two 3-slices, we will have to satisfy the bits corresponding
to slice 3, in the State 3.

So we get a total 219·2−7 = 231 solutions. There are 8 number of 6-slices. The
cost of this step is 8 · 231 in both time and memory. Note that the merging of
two lists is done using the instant matching algorithm described in [14] by the
method described in the Section 6.4 of the paper [15]. This method will be used
in the following steps also, where the time complexity will be bounded by the
number of solutions obtained. Thus this step has time and memory complexity
of 8 · 231 = 234.

Possible solutions for 12-slices For computing the possible solutions for a
12-slice, we merge two of its constituents 6-slices, in a manner similar to what we
did for a 6-slice. In this case, the number of repeated bits in merge is 5, because
the corresponding bits in e0 and e1 are set 7 places apart by the rotation in the
State 2. Thus total number of possible solutions for a 12-slice is 231·2−5−7 = 250.
There are 4 groups of 12 slices, so it has time and memory complexity of 4 ·250 =
252.

Possible solutions for 24-slices Similar to the previous cases, we merge each
of its two consecutive 12-slices. In this case, the number of repeated bits is
24 − 7 = 17, out of which 5 · 2 = 10 has already been considered, during the
construction of possible solutions of 12-slices. So the number of new repeated
bit variables are 7. Hence, the total number of possible solutions for this case is
250·2−7−7 = 286. Note that the removal of addition seven bits is due to merg-
ing. There are 2 groups of 24 slices, so it has time and memory complexity of

12 Kumar et al.

2 · 286 = 287.

Possible solutions for 48-slice Finally, we merge the two groups of 24 slices.
We have 2 sets of 24 slices as

1st group :
a0 → 0, 1, 2, . . . , 23

a1 → 3, 4, 5, . . . , 26

a2 → 36, 37, 38, . . . , 59

 (10)

2nd group :
a0 → 24, 25, 26, . . . , 47

a1 → 27, 28, 29, . . . , 50

a2 → 60, 61, 62, . . . , 19

 . (11)

After Merging these two groups [Equation (10) and Equation (11)] of 24
slices, we get

a0 → 0, 1, 2, . . . , 47

a1 → 3, 4, 5, . . . , 50

a2 → 36, 37, . . . , 63, 0, 1, . . . , 19

 . (12)

Here the common variables for 〈a0, a1, a2〉 are the bits with positions 36, 37, . . . , 47
and 3, 4, . . . , 19. They are total 29 in number. It will impose 29 conditions on the
input space for the 48-slice. Similarly for the lanes 〈b0, b1, b2〉, we get 23 condi-
tions and for 〈c0, c1, c2〉, we get 24 such conditions. On the other hand, there are
7 new repeated bits in the lanes e0 and e1. Thus the total number of solutions
turns out to be 286·2−(29+23+24+7)−7 = 282. Since, there is only one 48-slices, so
it has time and memory complexity of 282.

Possible solutions for remaining 16 slices For finding solutions for the
remaining 16 slices, we first find solutions for the 12 rightmost slices, the same
way as before, and obtaining 250 possible solutions. Next, we obtain the possible
solutions for the remaining 4 slices, we have 44 variables and none of them are
repeated. Since we can get the output of θ-mapping for the last 3 slices out of the
4. We have 244−7·3 = 223 possible solutions for this 4-slice. Now, we can merge
12-slice and 4-slice to obtain possible solutions for the last 16 slices. Between
12-slice and 4-slice, there are 4 repetitions (due to e0 and e1) and there are
additional 7 bits of restrictions due to merging. This gives us 250+23−4−7 = 262

possible solutions.

Final Solution(s) and attack complexity Now, we have to merge the solu-
tions for the group of first 48 slices and the group of last 16 slices. They have in
common 35 bits from a0, a1 and a2, 41 bits from b0, b1 and b2, 40 bits from c0,
c1 and c2 and 14 bits from e0 and e1. Additionally, in merging, we can compute

Cryptanalysis of 2 round Keccak-384 13

the θ mapping of the remaining two slices, in turn get the additional restriction
of 2 · 7 bits. Thus the total number of possible solutions, we are left with, is
282+62−(35+41+40+14)−2·7 = 20 = 1. This step has time complexity 282.

Total time complexity of the attack is given by 233+234+252+287+263+282,
which is of the order 288. The total memory required is 287. This confirms that
there exists a set of values for the variables such that the preimage can be
obtained from the hash value for the Keccak-384.

Remark: In our attack, we have fixed d0, d1 lanes to be equal to 0 as shown in
Equation (8) because otherwise, these variables would have increased the number
of solutions, due to shifting by ρ. And this would have increased the complexity of
the attack. We chose to eliminate their effects by setting them to 0. For further
implementation details, we refer to the Section 6.4 of the paper [15]. Also due
to the padding rule on the message, the assignment to the c1[63] bit should be 1.
This happens with probability 1

2 . On failure we can repeat the attack by setting
any value to d0,d1 which satisfies d0[i] = d1[i].
In view of the above remark, the overall cost of the attack is 2 · 288 i.e., 289.

4 Conclusion and Future works

In this paper, we have presented a preimage attack on the 2 rounds of round-
reduced Keccak-384. The attack is not yet practical but it is much better
than the existing best-known attack in term of the time complexity. The basic
idea of the attack can be used to mount a practical preimage attack on the
Keccak[r := 400 − 192, c := 192] and Keccak[r := 800 − 384, c := 384]. We
are working on their implementations. We will make the source code public, once
it is ready. Further, in future, we will try to explore a practical attack for the 2
or more rounds of round-reduced Keccak-384.

Acknowledgement

We thank the reviewers of Indocrypt-2018 for providing comments which helped
in improving the work. In particular, we thank an anonymous reviewer for sug-
gesting us to implement the attack on the Keccak[r := 400−192, c := 192] and
also providing insights to further improve the attack. We take it as the future
work.

References

1. Bernstein, D.J.: Second preimages for 6 (7?(8??)) rounds of keccak. NIST mailing
list (2010)

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: The keccak reference. online at
http://keccak. noekeon. org/keccak-reference-3.0. pdf (2011)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Sub-
mission to NIST (Round 2) (2009)

14 Kumar et al.

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponges.
online] http://sponge. noekeon. org (2011)

5. Chang, D., Kumar, A., Morawiecki, P., Sanadhya, S.K.: 1st and 2nd preimage at-
tacks on 7, 8 and 9 rounds of keccak-224,256,384,512. In: SHA-3 workshop (August
2014) (2014)

6. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on keccak-224 and keccak-256.
In: Fast Software Encryption. pp. 442–461. Springer (2012)

7. Dinur, I., Dunkelman, O., Shamir, A.: Collision attacks on up to 5 rounds of
sha-3 using generalized internal differentials. In: International Workshop on Fast
Software Encryption. pp. 219–240. Springer (2013)

8. Dinur, I., Dunkelman, O., Shamir, A.: Improved practical attacks on round-reduced
keccak. Journal of cryptology 27(2), 183–209 (2014)

9. Dworkin, M.J.: Sha-3 standard: Permutation-based hash and extendable-output
functions. Federal Inf. Process. Stds.(NIST FIPS)-202 (2015)

10. Guo, J., Liu, M., Song, L.: Linear structures: Applications to cryptanalysis of
round-reduced keccak. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 249–274. Springer (2016)

11. Kumar, R., Rajasree, M.S., AlKhzaimi, H.: Cryptanalysis of 1-round keccak. In:
International Conference on Cryptology in Africa. pp. 124–137. Springer (2018)

12. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-
reduced keccak. In: International Workshop on Fast Software Encryption. pp. 241–
262. Springer (2013)

13. Morawiecki, P., Srebrny, M.: A sat-based preimage analysis of reduced keccak hash
functions. Information Processing Letters 113(10-11), 392–397 (2013)

14. Naya-Plasencia, M.: How to improve rebound attacks. In: Annual Cryptology Con-
ference. pp. 188–205. Springer (2011)

15. Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-round kec-
cak. In: International Conference on Cryptology in India. pp. 236–254. Springer
(2011)

16. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced keccak.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 216–243. Springer (2017)

17. Song, L., Liao, G., Guo, J.: Non-full sbox linearization: applications to collision
attacks on round-reduced keccak. In: Annual International Cryptology Conference.
pp. 428–451. Springer (2017)

