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Abstract. In this paper, we revisit three existing types of orthogonal
lattice (OL) attacks and propose optimized cases to solve approximate
common divisor (ACD) problems. In order to reduce both space and
time costs, we also make an improved lattice using the rounding tech-
nique. Further, we present asymptotic formulas of the time complexities
on our optimizations as well as three known OL attacks. Besides, we
give specific conditions that the optimized OL attacks can work and
show how the attack ability depends on the blocksize § in the BKZ-f
algorithm. Therefore, we put forward a method to estimate the concrete
cost of solving the random ACD instances. It can be used in the choice of
practical parameters in ACD problems. Finally, we give the security es-
timates of some ACD-based FHE constructions from the literature and
also analyze the implicit factorization problem with sufficient number
of samples. In the above situations, our optimized OL attack using the
rounding technique performs fastest in practice.
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1 Introduction

1.1 Background

FHE cryptosystems which allow anybody to evaluate any efficiently computable
function over ciphertexts without knowing the decryption key, have significant
applications in the field of cloud computation. In 2009, Gentry [29] designed the
first FHE scheme by making use of hard problems on ideal lattices, which is a
breakthrough work in this area. Subsequently, a wide variety of FHE schemes
were put forward, which can be mainly sorted into three categories relying on
the different hardness assumptions: FHE based on ideal lattices [29, 53, 54, 30],



FHE based on LWE (Learning with Errors) problems and its variants [11,12,
31,32,9,33,10, 13,4] and FHE based on ACD problems [56, 24, 25,17, 23,47, 18,
37,7.

In 2001, Howgrave-Graham [35] first introduced the ACD problem, which
contains two main versions: the general version (GACD problem) and partial
version (PACD problem). For given nonnegative integers 7,7, p such that v >
n > p, a (7,7, p)-GACD problem is defined as follows:

For a random n-bit odd number p, given polynomially (in v, n and p) many
samples from the set

{ai =pqi +ri:q € ZN(0,27/p),r; € ZN(=2°,2°)},

output the approximate common divisor p.

The definition of a (v, 7, p)-PACD problem is almost the same as that of a
(7,m, p)-GACD problem, except the fact that an exact multiple (a ~-bit integer)
of p is given. Apart from the GACD problem and PACD problem, the Chinese
remainder theorem (CRT) version of ACD problems was also proposed to build
FHE schemes [17, 23, 7] and multilinear maps [21, 22].

The computational intractability of ACD problems not only provides a sound
support for constructing FHE schemes and other state-of-the-art designs but
also can be used to discuss the security strength of some intractable problems.
In IEEE-IT 2011, Sarkar and Maitra [49] transformed the implicit factorization
problem [42] introduced by May and Ritzenhofen into the corresponding PACD
problem. Moreover, a faster variant of the Guruswami-Sudan algorithm for list
decoding of Reed-Solomon codes was given by Cohn and Heninger in [20] based
on the idea of ACD. In EUROCRYPT 2015, Cheon and Stehlé [18] presented
a reduction from LWE [48] to a quite natural decision variant of ACD. These
works draw more attention towards ACD problem and show the importance of
this problem.

Chronologically, the first alternative design of ACD based FHE scheme whose
security is based on the hardness of ACD problems was proposed by van Dijk,
Gentry, Halevi and Vaikuntanathan [56]. In this scheme, p is extremely small
compared to 7). Later, Cheon and Stehlé [18] constructed an ACD-based FHE
scheme with three parameter sets, which asymptotically outperforms previously
known proposals based on this problem. In these three parameter sets of (v, 7, p)-
ACD problems, p is no longer extremely small compared to 7.

1.2 Motivation

There may be a gap between exploited parameters of ACD-based scheme and
provable parameters. Hence, many researches are conducted to analyze the ex-
ploited parameters of ACD problem to explain the security of the scheme. Ac-
cording to the analysis of Galbraith, Gebregiyorgis and Murphy in [27], the
orthogonal lattice (OL) attack, first proposed by Nguyen and Stern [43], is the
efficient method to solve ACD problems compared to the other known approaches
for practical analysis.



OL attacks on ACD problems were first analyzed in [56] and later consid-
ered in [24,36,41,18,27]. For given n ACD samples a; = pg; + r;, there are
three types of OL attacks: the first one is to consider the lattice orthogonal

to (a1,...,ay) and (r1,...,7,) [56]; the second one is to focus on the lattice
orthogonal to (1, —%%,...,— %) [56,18,27]; the third one involves the lattice or-
thogonal to (1, —ry,..., —ry,) [24, 36,41]. In essence, these three OL attacks share
the common point of finding vectors orthogonal to unknown vector (qi, ..., qy)

(see Section 2.3).

In fact, the OL attack, commented by Galbraith et al. [27], is the second OL
attack. However, previous works, including [27], do not present the comparison
of three types of OL attacks. Therefore, one does not know which one among
the three OL attacks is the best. Moreover, it is worthwhile to ask what is the
optimized lattice for OL attack. Furthermore, one concerns the needed time
complexity for solving (y,7, p)-ACD problem by using OL attacks.

1.3 Contribution

First, for given n (vy,7,p)-ACD samples ay,...,a,, we discover new linearly
independent vectors orthogonal to unknown vector (qi, ..., q,) and present the
optimized strategies for OL attacks. We get that the second OL attack is almost
close to its first optimization. Compared to the second OL attack and its first
optimization, the second optimization, using the rounding technique (e.g. [8]),
approximately reduces the maximum entries of the input basis matrix from ~y to
(v — p) bits. Hence, the second optimization will perform faster in practice when
(v — p) is relatively small.

Second, we present asymptotic formulas of the time complexities on our op-
timized strategies as well as three known OL attacks. By comparison, we find
out that all these OL attacks have the same asymptotic time complexities when
v > p; the second OL attack and its optimizations are more advantageous than
the first and third OL attacks when (v — p) is relatively small.

Third, utilizing the optimized OL attacks, we depict the expression on the
root-Hermite factor dyg (see the definition in Section 2.2), the number n of
(v,m, p)-ACD samples (i.e., the involved lattice dimension) and parameters 7, n, p.
Further, we give an estimation method of the concrete cost to solve (y, 7, p)-ACD
instances for optimized OL attacks.

Finally, we analyze ACD problems from the FHE schemes in [56, 47,18, 37].
Let X refer to the security parameter. According to our estimations based on
using BKZ-3 and sieving to solve the SVP oracle, from the designer’s point
of view in order to achieve £2(\)-bit security, the parameter choices in [56] are
conservative for OL attacks; those in [47,37] are optimistic for OL attacks. We
present these results in Table 1. Moreover, we also point out that the (v, 7, p)-
GACD problem with small (7 — p) proposed as an open problem in [18] can be
easily acquired the partial information of the approximate common divisor p by
using the second OL attack as well as our OL attacks. Besides, we revisit the
implicit factorization problem. In the above situations, the optimized OL attack
utilizing the rounding technique is much faster in practice.



Table 1. The logarithm of asymptotic time complexities to solve (v, 77, p)-ACD prob-

lems by using OL attacks in Section 3, where limy_, o (lcl)Lg)glogA)\ / A)

[56] [47] [37]
-2 og2
'Q()\ lOg )\) 2 (lcl)zglogA)\) 2 (lcl)gglog/\)\)

1.4 Organization

In Section 2, we recall some terminologies, preliminary knowledge and known
OL attacks. In Section 3, we present optimized OL attacks for solving ACD
problems and give the corresponding analyses. We present the attack complexity
and give comparisons with previous works in Section 4. We respectively give the
cryptanalysis of ACD-based FHE schemes and the implicit factorization problem
by using the existing lattice attacks and our methods in Sections 5 and 6. Section
7 concludes the paper.

2 Preliminaries

We write vectors in bold lower-case letters, e.g. a, and matrices in bold upper-
case letters, e.g. A. We write (-,-) for the inner product and || - || for the Io
Euclidean length as usual. We denote the transpose of matrix A as AT, and the
logarithm to base 2 as log. We write |r] for the largest integer not more than
real number r.

2.1 Lattices

A rank-n lattice £ in the m-dimensional space is spanned by n linearly indepen-
dent row vectors by,...,b, in R™,

L= {ikzbz | k; EZ}7
=1

where {by,...,b,} is a basis for £ and B = [bf,... bI]T is the correspond-
ing basis matrix. The rank or dimension and determinant of £ are respectively
denoted as dim £ = n and det £ = /det(BBT). If B is a square matrix, then
det £ = | det(B)].

Definition 1 (Gram Schmidt Orthogonalization). Given a sequence of n
linearly independent vectors by, ..., by, the Gram Schmidt orthogonalization is
the sequence of vectors by, ..., b, defined by

z*b z,ulj

where pi; ; = (bi, bj)/(bj, bj).



_ For a given basis matrix B of £ and the corresponding Gram Schmidt vectors
b; for i = 1,...,n, we have det £ = [, |/b;]|.

Definition 2. Let B be a basis and Bz be its Gram Schmidt vectors and pi; ; =
(b;,b;)/(b;,b;), then the basis B is size-reduced if |p; ;| < 3 for 1 < j <i<n.

2.2 Lattice Reduction

Lattice reduction algorithm is to output a reduced basis consisting of relatively
short and nearly orthogonal vectors, which has plenty of cryptographic applica-
tions [44]. After the publication of celebrated LLL algorithm [40], a number of
lattice reduction algorithms emerged, for example [51,52, 28,15, 46, 5]. In prac-
tice, the Block-Korkine-Zolotarev (BKZ) algorithm proposed by Schnorr and
Euchner [51] has a good performance. In the BKZ algorithm, the running time
and output quality depend on an input parameter—blocksize 8. Hence, such an
algorithm is called BKZ-3. With the increase of 3, the output basis becomes
much reduced but the cost significantly increases. The BKZ-3 proceeds by re-
ducing a lattice basis using an SVP oracle in a smaller dimension 3. Based on
[34], the number of calls to the SVP oracle remains polynomial.

Gama and Nguyen [28] identified the Hermite factor of the reduced basis as
the dominant parameter in the runtime of the lattice reduction and the quality
of the reduced basis. For an n-dimensional lattice £, the Hermite factor

561 _ ||b1|| -
(det £)™

where by is the first reduced basis vector of £ and dg is called as the root-Hermite
factor. Chen [57] gave an expression between the root-Hermite factor dy and the

block size §:
1
2B-1)

Further, we generally assume that the Geometric Series Assumption (GSA)
holds for LLL and BKZ-$ algorithms.

Definition 3 (Geometric Series Assumption [50]). The Fuclidean lengths
of the Gram Schmidt vectors after lattice reduction satisfy

bl = |[by]| - 0" ' for0< @ <landi=1,...,n.
According to Geometric Series Assumption, ||by|| = 7 - (det L)% and det £ =

T, Ibi], it is easy to deduce dy = 6= ("=1/2n > 1,

2.3 Overview of Known OL Attacks

In this subsection, we recall the existing OL attacks, where ay, . .., a, are (v, 7, p)-
ACD samples.



The First OL Attack on ACD problems was proposed by van Dijk, Gentry,
Halevi and Vaikuntanathan [56]. The involved lattice £;(«), first proposed by
Nguyen and Stern [43], is spanned by the row vectors of the following n x (n+1)
matrix

aay 1

aas 1

Qay, 1
where a € Z. Let (o>, u;a;,u1,...,u,) be a reduced basis vector. From
the detailed analysis of [43, Theorem 4], we have Y. jw;a; = 0 when « is
sufficiently large. Since a; = pg; +r;, we have Z?:l u;7; = 0 mod p. Further, one
can obtain Y., u;r; = 0 if vector (u1,...,u,) is short enough. It implies that
(uq,...,uy) is orthogonal to (ai,...,ay,) and (r1,...,7,). Therefore, (ui,..., uy,)

is also orthogonal to (q1,...,qn).

The Second OL Attack on ACD problems also was given by van Dijk, Gen-
try, Halevi and Vaikuntanathan [56] and subsequently revisited in [18,27]. The
involved lattice is spanned by the row vectors of the following n x (n + 1) matrix

aq 2°

a9 20

an 2°
Their core idea is to search the vector (3.1 ; u;a;,u12?,. .., u,2?) orthogonal to
(1,—%,...,—%2). Once it is found out, there is .\ | uja; = Y ;_; u;r;, which
leads to 2?21 w;q; = 0 since a; = pg; + 74, i.e. (uy,...,u,) is orthogonal to
(15, qn)-

The Third OL Attack on ACD problems was presented in [24,36,41]. Es-
sentially, the corresponding lattice is generated by the row vectors of the n x n
matrix

1 ay

1 Gp—1
an

The strategy is to find the vector (u1,...,un—1,> 5 u;a;), which is orthogo-
nal to (—r1,...,—rp,1). That is, >0, w;a; = Y., u;r;, which implies that
St uig; =0, ie. (ug,...,u,) is orthogonal to (g1, ..., qn).

Hence, it is easy to see that the common point of existing OL attacks for
solving ACD problems is to find out vectors orthogonal to (q1, .- ., gn)-



3 Optimization of OL Attacks

In this section, we first present an upper bound of the reduced vector lengths
and then put forward the optimizations of OL attacks.

For (v,n, p)-ACD problem with n given samples a;(i = 1,--- ,n), there are
n equations a; = p * q¢; + r; where p, g;, ; are unknown. Our goal is to recover
common divisor p. Our approach is as follows.

— First, we design a lattice to find vectors orthogonal to unknown vector
(@1, »an).

— Once sufficiently many such vectors are found, we can recover (g1, ,qn)
by soving the corresponding linear equations.

— Then, we obtain r; if n > p as r; = a; mod g;.

— Finally, we get p by computing ged(ay — r1,- -+ ,an — 4).

3.1 Upper Bound of Lengths of Reduced Basis Vectors

Let b; be the i-th BKZ-f3 reduced basis vector of an n-dimensional lattice £ and
b; be the corresponding Gram Schmidt vector. According to Definitions 1 and
2, we get that the reduced basis vectors b; satisfy

i—1 i—1
~ ~ ~ 1 ~
b = (i + > 5 b511* < Ibill + 3 D by 1*-
j=1 j=1
From Definition 3 (Geometric Series Assumption), we have

1] i+ 3
Ib||> < [ 6772 + 1 D072 by ? < - [[by]%.
j=1

Then, based on the Hermite factor ||by|| = §F (det E)%, we obtain

VZ+3 n L
sl < ——— -0 (det £) . 1)

For the case of LLL, we can also get the above inequality. The similar inequality
on the LLL reduced basis has been assumed in [27].

3.2 Finding Vectors Orthogonal to (q1,...,9n,)

For n samples of a (v,n, p)-ACD problem, ay,...,a,, we define a lattice Lo(a)
parameterized by «, which is spanned by the row vectors of the following n x
(n + 1) matrix



where 0 < a < 27 and aq,...,a, are ~-bit integers. It is easy to see that
Ly() is a generalization of the involved lattice in the second OL attack, which
corresponds to the case of a = 2°. We first give the following core lemma.

Lemma 1. Given a vector v= (31", u;ja;, auq, ..., auy) in Lo(a), we have

on—1"

n

o+ /n2P v
|§ uiq;| < ;ﬁ H ”
i=1

Proof. According to a; = pg; + r; for i = 1,...,n, we have p> " | u;q; =
S uia; — Y uirs. Let u = (uq,...,u,) and v = (r1,...,r,). From the
triangle inequality and the Cauchy-Schwartz inequality, we get

n n
P Y wial <D wai| + ]l - [fu.
i=1 i=1

Since p is an 7-bit integer and |r;| < 2° for all 1 <1 < n, we have p > 27! and
lr|]| < +/n2°. Further, we get

2770 Y il < Y wiail + v/n2’||ul|. (2)
i=1 i=1

Note that v= (}_;; wia;, quq, ..., au,) and o > 0, thus, there are | Y ; u;a;] <
[lv] and |Ju]| < ||v]|/a. Plugging these two upper bounds into (2), we have

on—1"

n

a4+ /n2° v
S < YN
i=1

O

Next, we consider the case that the above v is the reduced basis vector of
Lo(ar). Based on Lemma 1, we obtain the following result.

Corollary 1. Let (Z?Zl UG, UG, - . ., QUsp) be the i-th reduced basis vector
of Lo(a) fori=1,...,n. Under the GSA, we have

. o+ /n2P 1 y_
\uﬂql—i—-n—i—umqn\<\/z+3-7\((n+1)21n§g2n 1, (3)

on
Further, by taking o = %2”, we get an asymptotic and optimized bound
lwinq + - 4 tingn| < /(i +3)n - 5277~ =P, (4)
Proof. Under the GSA, we get (1), i.e.

L3 5n(det La(a)) ¥

||(ui1a1 +"'+Uinanaaui1a-~-7auin)” < 2



where n = dim L3(«). Note that the determinant of £o(«) can be computed as
det Lo(a) = a" 1y/a2 +a} + - +a2. Since 0 < @ < 27 and 0 < a; < 27 for
i=1,...,n, we have det L(a) < v/n + 1a" 127, It implies that

w

1+
2

1

“(n+ l)ié(rﬁ%a%.

||(ui1a1 + o Ui Qp,y QUG auln)” <

From Lemma 1, we obtain the bound (3) directly, i.e.
- o+ +/n2f 1 e
‘uﬂ(h + 4 ulnqn‘ < A\1+ 3 . 7{(71_’_ 1)21n6612’7b "7‘
an
Next, we minimize the upper bound of |u;1g1 + -+ + Uings|. Let f(a) =

L‘/fy. As f(«) decreases, the upper bound becomes much tighter for fixed

(0%
v, 1, p and n. Since the derivative of f(a) has the following property:

f'(a) <0 when 0 < a < ay,
f'(@) =0 when a = ay,

f'(a) >0 when a > aq,

n—1

where ag = %2”, we have m>i%f(oz) = f(ag) =mn (T@) " 2", Plugging
f(ap) into (3), we get

~

lwings + - - + Uingn| < Vi+3-g(n)dy2 ;pfnﬂ)v

n—1

where g(n) =n (ﬁ)T (n+ l)ﬁ. Note that g(n) > /n for any fixed n > 2

n—1
and lim,,_, 1o g(n)/y/n =1, the detailed analysis of which is left in Appendix
A. Then we obtain an asymptotic and optimized bound (4), namely,

Jy—p

|uitgr + -+ Uingn| < V(i +3)n - 5527 TP

Since M(«) is a basis matrix of lattice Lo(r) and the lattice vector
n
(Z Uiy, QU1 -, Qi) = U + =+ F U MM,
j=1

where m; is the j-th row vector of M(«) for 1 < j < n, we deduce that all

Ui1, - .., Ui are integers. Further, u;1q1 + - + wingn € Z. In order to make
o

wi1q1 + -+ + UinGn = 0, we expect that /(i + 3)n - 0632 7=t < 1 based on
(4). Finally, we summarize as follows.




Theorem 1. Let (Z;;l U@, UG, - - ., Qlp,) e the i-th reduced basis vector of
Lo(a) fori=1,...,n. Take the optimized o = n—\/_ﬁlQ”, Based on the GSA, we

obtain uj1q1 + - - - + Uingn = 0 under the condition

T2 (y— p) + nlog do + log /(i + 3) < 0. 5)

n

Remark 1. Actually, a generalization of the third OL attack also works well for
our analysis. Let L3(a) be the lattice spanned by the row vectors of the matrix

« al
a Ap—1
Qn

Clearly, the corresponding lattice in the third OL attack corresponds to the case
of a = 1. For lattice L3(a), the optimized o = ¥nitnop Upder the GSA, we

n—1
can find out ¢ linearly independent vectors orthogonal to (¢i,. .., ¢,) under the
condition
1L — (5= p) +nlogdo +log (Vi +3) < 0. (6)

The detailed analysis is given in Appendix B.

3.3 Improved Lattice for OL Attack

In order to obtain more optimal space and time complexities, we reduce the
entries in lattice Lo(«r) by using the rounding technique. Let Lo(a) be the lattice
spanned by the row vectors of the following n x (n 4 1) matrix

4] 1
. 2] 1
M(a) = :
EYR

where o > 0. We present the following result, the corresponding proof of which
is similar to that of Theorem 1. The difference is that the rounding operation
is involved in £5(a), which results in the difference between the optimized a in
L(a) and Ly(a).

Theorem 2. Let (327_ uij| 2|, i, ..., uin) be the i-th reduced basis vector of
ﬁg(a) fori=1,...,n. Take o = W%Qp, Based on the GSA, we get
ui1q1 + -+ + Uingn = 0 under the condition (5), namely

TP _ (5~ p) +nlogdy +log v/n(i + 3) < 0.

n

10



3.4 Recovering q1,...,q, and p

Suppose that the desired n — 1 linearly independent equations on g¢i,...,q,
are obtained, like u;1q1 + -+ + Uing, = 0 for &+ = 1,...,n — 1. Let integer
d = up1q1 + - + Unngp and matrix U = (u;j)nxn, then we have det U = +1
and with an overwhelming probability d = +1 (the unimodularity of U is not a
probabilistic result), which are analyzed in Appendix C. Therefore, it follows that
U(q,---q0)" = (0,...,0,£1)T. Further, (¢1,...,¢,)7 = U1(0,...,0,£1)T.

Since qi, ..., qn are all nonnegative integers, let the last column of matrix U~—!
be (Win, - ., Wnn)T, we have
(QIa sy Qn) = (‘wln|a sy |wnn|) .

The Case of GACD. From a,, = pq,, +r,, we get {Z—"J =p+ LZ—"J . Note that
ay, is a v-bit integer, p is an n-bit integer, |r;| < 2 and v > n > p, we have
Tn

qn

< 9p=(y=1-m) — gn=(v=p-1)

Tn

If v > n+ p, we have < 1, ie., {QJJ = 0. Thus, we recover p due to

p= LZ—WJ If v < 1n+ p, we obtain that the (v — p — 1) most significant bits of p

are respectively equal to those of H—J .

The Case of PACD. Without loss of generality, let a,, = pgq,, then r, = 0.
Therefore, after the desired (g1, ..., ¢,) is obtained, we can directly recover p =

an
qn’

Remark 2. Even to recover p, it is actually enough to obtain a single relation
from a lattice, if we repeat the attack: Choose N = 2n samples a;’s and select an
n-elements subset I from them. Then the attack gives a relation among the ¢;’s
with ¢ € I. Repeat with new I’s until we have enough such relations (Here we
need to heuristically assume that there exist N — 1 linear independence relations
on N many ¢;’s).

4 Attack Complexity and Comparisons

In the section, we present the attack complexity and the corresponding compar-
isons.

4.1 Attack Complexity

The dominant calculation of OL attacks is the lattice reduction for finding n —1

linearly independent homogeneous equations on ¢y, ..., q,. Based on the condi-
tion (5), we expect that
,y_p—(n—p)+nlog(5@+log\/n2+2n<O. (7)
n

11



Since dp > 1 according to the GSA (see Section 2.2), the optimized OL attacks
in Section 3 can work when
TP
n>-—.:
n—p
(m=p) _ y=p _ logvnZ+2n
n n

e , which is equivalent

According to (7), we get log dg <

to
log 6o < —(v — p) 1o n-p 2+(7’_p)2—10g~"2+2n
0 TR0 T 2y =) 4(y—p) n '

When n = 2(y — p)/(n — p), the above expression is optimized as

m—p?* n-p n—p v=p\> v-p
log 6o < - - )~log<< ) —I—np). (8)

dvy=p) 20v—p) Aly—vp n—p
Remark 3. For the case of Remark 2, we need the condition

TP
n

_(n_p)+nlog60+log\/@<0, 9)

the result of which is that we can reduce the logarithm term on n in (7), improv-
ing the attack slightly. Similar to the above analysis, taking n = 2(y — p)/(n — p),
this condition is optimized as

2
_ 3(p — _ _

m—p)?* 3n—p) n—p Jog 1P (10)

dy=p) Alv—p 4v-0p) n—p

It is worth noting that we need to implement at least N —1 = 2n — 1 attacks in

Remark 2 in order to get sufficient linear independence on N many g¢;’s.

log dp <

Based on the lemma from Albrecht, Player and Scott:

Lemma 2 ([3]). The log of the time complezity to achieve a root-Hermite factor

b0 with BKZ-§ is
0 log(1/log do)
log dg

if one SVP oracle costs 205,
We give the following asymptotic complexity estimations.

Theorem 3. The time complexity for solving (v,n, p)-ACD instances is
20((77—7/:;2 log (nv:ﬂ‘;Q)

by running BKZ-8 to achieve a root-Hermite factor 0y such that (8) or (10)
holds if one SVP oracle costs 208

Proof. From (8) or (10), it is easy to see that logdy < f&’;fzj) (1 —o(1)). Hence,

(1/10g do) - 1og(1/log 8o) = 2 (25 log (25 ). O

12



Theorem 4. For given (v,n, p)-ACD instances and some sufficiently large se-
curity parameter X\, if the condition

A
>0 2 (n—p)?
= (bgAO7 m:>+p

holds, then the time complexity for solving (v,n, p)-ACD instances is 2* by run-
ning BKZ-f if one SVP oracle costs 207,

Proof. According to Theorem 3, the log of the time complexity for solving
(7,7, p)-ACD instance is 2 ((n PE log = p)Q) by running BKZ-3 if one SVP

oracle costs 29 Further, there exists some constant ¢ > 0 such that

Y—p V=P N TP e TPy
”(mp)?logwp)?)“"(np>21g<np)2 Aay

Let the function f(z) = ;7. Then f(z) is continuous and monotone increasing
when z > e. Moreover, f(z) > 5o ~ 1.88 for z > e. If we set A > e ¢, then we
have W > 2 (otherwise 1f 7 )2 <2, from A=c¢- W log L W we obtain

’/}h< 2 - ¢). Hence, there ex1sts some A > e such that f(\) = 102,\/ = (::pp)z.
en,

TEtog I = F) g ) = X (1-

log log X) -y
m=p3? " (—p)

log '

From A =c¢- (n 5

increasing for z > e, we get Iz = f(X\) > f(A/c) which is equivalent to
7>(/\/(C10g%)) (n— p)? + p. That is, 7>Q(log/\(77 p) )—f—p- 0

) log X =L p)27 we deduce A’ > A\/c. Since that f(x) is monotone

Finally, we analyze the concrete security estimation. For given parameters
v, n and p, we first compute the right hand side of the expressions (8) or (10),
then determine the appropriate maximum dg, which corresponds to the minimal

B

2me

block size 8 according to Jy = ( (ﬂe)ﬁ) 2([171), and finally plug the dg into

the conditions (7) or (9), and derive the corresponding minimal n. Once such
n, B are determined, we can estimate the cost of solving (7,7, p)-ACD instances
by using BKZ-3, which is estimated to ¢ - n - 2029264164 clock cycles by using
sieving [6, 38] for some small constant ¢ according to [57, Figure 4.6]. Further, ¢
takes 8 in [1,2]. Note that the input of BKZ-0 is the LLL-reduced basis. Hence,
the main cost of BKZ-$ is occupied by LLL for a small 8. The running time of
LLL (expressed in number of clock cycles) based on fplll-4.0.4 [14] is estimated
t0 0.00127-n>18.p1-83 (41 Page 92] for the case of OL attacks on ACD problem,
where by,.x refers to the maximum bit-length of the involved lattice.
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4.2 Comparisons

In this subsection, we give concrete comparisons with known attack methods.

Comparison of OL Attacks in Section 3. According to the analysis in
Section 4.1, it is easy to see that OL attacks in Sections 3.2 and 3.3 have the
same asymptotic time complexity. Note that the entries of input basis matrix
of the OL attack in Section 3.3 are approximately reduced by p bits compared
to that in Section 3.2. Hence, the OL attack in Section 3.3 will be faster in
practical cryptanalysis. In typical scenarios, the OL attack in Section 3.3 only
achieves a constant improvement of the overall attack complexity. Based on the
time complexity in the paper [45], the speed-up that results from reducing the
number of bits by p is 1 — (p/7). This improvement could be quite significant in
practice.

Comparison with Existing OL Attacks. We present the comparisons on
three known OL attacks as well as OL attacks in Section 3, the detailed analysis
of which is presented in Appendix D. The corresponding conclusions are as
follows: all these OL attacks for solving the (v,7,p)-ACD problem have the
same asymptotic time complexities when v > p; the second OL attack and
its optimizations are more advantageous than the first and third OL attacks
when (v — p) is relatively small; the second OL attack is almost close to its
optimizations.

For the security parameter A, van Dijk et al. [56] gave the asymptotic condi-
tion to thwart the first and second attacks: v > 2(An?) (see [41, Page 89]). Later,

Cheon and Stehlé [18] improved the above condition into v > Q(log)\ (n—p)?).
A

In this paper, we point out that the condition v > (5 (n— p)?) + p is needed
to prevent the second OL attack and the optimized (%L attacks in Section 3.
Compared to the condition v > Q(@(n —p)?) in [18], v > Q(log/\ n—p)2)+p
is better in the case that (y — p) is relatively small.

In [27], Galbraith et al. showed the success condition of the second OL attack
based on the LLL algorithm. In this paper, we analyze the optimized OL attacks
in Section 3 as well as three known OL attacks based on the BKZ- algorithm and
give the expression on ACD parameters -, 7, p, the number n of ACD samples
and the root-Hermite factor dyg. This expression can be used for estimating the
concrete security of ACD-based schemes.

Comparison with the SDA Algorithm. The simultaneous Diophantine ap-
proximation (SDA) algorithm, proposed by Lagarias in [39], is also an efficient
lattice method for solving ACD problems. Van Dijk et al. [56] and Galbraith et
al. [27] pointed out that the SDA algorithm and the second OL attack for solv-
ing ACD problems have similar performances. Hence, the OL attack in Section
3.3 is the fastest since it employs the input basis matrix with smaller entries,
especially when (v — p) is small. This fact is confirmed by our experiments.

Comparison with Multivariate Polynomial Approach. The first analy-
sis of ACD problems was given by Howgrave-Graham by using Coppersmith’s
technique [35]. Then, Cohn and Heninger generalized their works to the multi-
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variate setting by using many samples [19], which is known as the multivariate
polynomial approach. Later, Takayasu and Kunihiro further improved the result
of Cohn and Heninger by taking into account the sizes of error terms r; [55].
The multivariate polynomial approach was also considered in [41,27]. However,
the common drawback of these works is that the dimensions and entries of the
involved lattices are quite large, which affects the speed of the algorithm.

In [27], Galbraith et al. pointed out that the multivariate polynomial ap-
proach is not better than the second OL attack for practical cryptanalysis.
Hence, the OL attacks in Sections 3.2 and 3.3 have more advantageous than
the multivariate polynomial approach.

Comparison with the Chen-Nguyen Method. Chen and Nguyen proposed
a clever exhaustive search method on error terms r; through certain polyno-
mials [16]. Their method only needs two samples and the corresponding time
complexity is (9(237” v) for (v,n, p)-GACD problems. With the same parameters
that were given in the FHE scheme [24], their attack method is faster than the
multivariate polynomial approach in [19]. Later, the Chen-Nguyen attack was
revisited in [25,41]. However, such algorithms become futile as p increases.
Based on the analysis in [27], the Chen-Nguyen Method and its variant [16,
25] are important for ACD problems from early FHE schemes, but are less related
for Cheon-Stehlé ACD problems [18]. In this paper, we get that the asymptotic

. . . Q(% log Lf’z)
time complexity to solve (7,7, p)-ACD problems is 27"\ (1=») -2/ for the
case of optimized OL attacks. Hence, these attacks are more suitable for solving
(7,m, p)-ACD problems where p is no longer extremely smaller than 7.

Comparison with Pre-processing Technique. In [27], Galbraith et al. uti-
lized the similar idea of BKW algorithm and proposed a pre-processing technique
to reduce the size of the ACD samples so that the lattice attacks are applicable
to them.

Their iterative algorithm is as follows: For given n ACD samples ay, ..., Gy,
one first generate m random sums Si, ..., Sy, of d elements of {a1,...,a,}, i.e.,
S = Zle ap; where k =1,...,m, then sorts Sj to obtain the order statistics
S(k), further computes m — 1 neighbouring differences S;41) — S(x) and stores 7
middle neighbouring differences as the input of next iteration. The corresponding
analysis shows that the average size of the resulting samples after i iterations
is (%ﬁ)iQV’l. Moreover, the total number of iterations is less than 7, otherwise
the error terms in ACD samples become too large to determine p. Hence, if one
intends to reduce the size of samples to n bits approximately for the (v, 7, p)-

ACD problem, then one should set n ~ i10g2(4mﬁ) +~—1. Plugging the optimal

1 &~ 7 into this relation, one can deduce that the involved m is close to 27,
However, such an m is so large for the (vy,n, p)-ACD problem in [25] that this
technique is not practical in this situation.

The aim of both the technique of pre-processing and the approach in Section
3.3 is to reduce the entries of the lattices that are processed, even though the
ideas are different. Note that the method of pre-processing the ACD samples is
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implemented before the lattice attacks perform and our strategy in Section 3.3
is to improve the OL attacks. Hence, one may be able to try to use this pre-
processing technique and then carry out the approach in Section 3.3 to solve the
ACD problems. In this paper, we do not consider employing the preprocessing
method before OL attacks. We will try it in the future work.

5 Cryptanalysis of ACD-based FHE Schemes

In this section, we analyze ACD problems in the FHE schemes [56, 47, 18, 37].
The DGHYV Scheme was proposed by van Dijk, Gentry, Halevi and Vaikun-
tanathan [56], which is the first ACD-based FHE scheme. The authors set pa-
rameters in [56, Section 3] as follows:

p=X\n=0601og?)),y = 2(N\log* \).

According to Theorem 3 in Section 4.1 and (19) in Appendix D, the asymptotic
time complexity for solving (v, 7, p)-ACD instances are summarized as Table 2.

Table 2. The log of the time complexities with the parameters in the DGHV scheme.

First OL |Second OL|Third OL|OL Attacks in Section 3
2(Xlog N)| 2(Alog M) |2(Alog A) 2(Alog N)

According to Table 2, we get that such parameters are conservative to get
£2(X\)-bit security for the case of OL attacks. Further, according to Theorem 4,
one can use vy = Q(IOQAUQ) instead of v = 2(A\n?) in order to achieve \-bit
security.

The Nuida-Kurosawa Scheme was given by Nuida and Kurosawa [47]. This
is an ACD-based FHE scheme for non-binary message spaces. The authors set

p=6(Mlogloglog \),n = O(X\2loglog \),y = O(A\*1og? ).

Based on Theorem 3 in Section 4.1 and (19) in Appendix D, we present the
corresponding asymptotic time complexities in Table 3.

Table 3. The log of the time complexities with the parameters in the Nuida-Kurosawa
scheme.

First OL | Second OL | Third OL |OL Attacks in Section 3
log? A log? \ log? \ log? A
2 ( logglog A ) 2 (logglog A ) 2 (logglog A ) 2 ( logglog A >
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2
Note that limy_, o (%/A) = 0. Hence, the above parameter choices

are optimistic to achieve f2(\)-bit security for the case of OL attacks. Fur-
A® (log log \)?
Py

Tog ) instead of

thermore, based on Theorem 4, one can take v = O(

v = O(Mlog? \) for obtaining A-bit security.

The Kim-Tibouchi Scheme was put forward by Kim and Tibouchi in [37].
This is based on the Nuida-Kurosawa Scheme. The authors studied the depen-
dence of the message size ) and gave the following parameters:

p=6(\logloglog \),n = O(Q> loglog ),y = O(Q%\*log? \).

Similar to the analysis of the Nuida-Kurosawa Scheme, we give the corresponding
asymptotic time complexities in Table 4. It is easy to see that such @) does not
effect the asymptotic time complexities of OL attacks compared to the case of
the Nuida-Kurosawa Scheme. Therefore, the corresponding parameter choices
are also optimistic to achieve {2(\)-bit security for the case of OL attacks.

Table 4. The log of the time complexities with the parameters in the Kim-Tibouchi
scheme.

First OL | Second OL | Third OL |OL Attacks in Section 3
log? A log? A log? A log? A
2 (logglogk) 2 (log%og)\) 2 (logglogk) 2 (logglogk)

The Cheon-Stehlé Scheme was designed by Cheon and Stehlé [18] based on
(v,m, p)-ACD problems with n—p = Llog A where L > 0 is chosen to provide the
desired functionality. Because this scheme is relatively slow compared to those
based on Ring-LWE, the variant with truncated ciphertexts were proposed in
[18, Section 5] in order to accelerate. The authors point out a guess attack as
follows: Given a (7,7, p)-ACD sample a; = pg; + r;, one first guesses the (v —n)
bits of ¢; and then compute |2¢] = p + [7£]. Since 7 < 20=(7=P)  one can
obtain the (v — p) most significant bits of approximate common divisor p from a
(v,m, p)-GACD sample, which is significant from the view of security. To prevent
the above attack, one can set A = (v — 7). Note that n — p = Llog A, one gets
vy—p=(y—n)+(n—p) = A+ Llog A\, which raised the question of taking
GACD instances with small (7 — p). The authors put forward the following open
problem in [18, Section 1].

If vy — p = A+ 2(log \) turns out to be safe, then the ciphertext bit-sizes of
the variant scheme based on truncation can be made quite small.

In fact, the authors do not explicitly give the parameter set of this variant
scheme. According to the analysis in [18], the relation vy > Q(@(n -0
should be satisfied in order to prevent from lattice-based attacks. Hence, one

17



can take the following parameter set

{(v,m.p) | v=02(L*NogA),n =~ — X, p=n—Llog A} (12)

According to Theorem 3 in Section 4.1 and (19) in Appendix D, we get the
asymptotic time complexities to obtain the (v — p) most significant bits of p
about Parameter Set (12) for OL attacks. We present the corresponding result
in Table 5. It is easy to see that the second OL attack and OL attacks in Section
3 have more advantages.

Table 5. The log of the time complexities with Parameter Set (12).

Guess Attack [18]|First OL|Second OL|Third OL|OL Attacks in Section 3
A 20 [ 205z [ 20 (i)

log A log A

6 Cryptanalysis of the Implicit Factorization Problem

In this section, we give the corresponding comparisons for solving the implicit
factorization problem [42], which was first introduced in PKC 2009 by May and
Ritzenhofen. This problem is stated as follows:

Suppose n y-bit integers a; = x;y; are given fori=1,...,n, where xy,...,Ty,
are n-bit primes and y1,...,y, are (v — n)-bit primes. Given that certain por-
tions of the bit pattern in x1,x2,...,T, are common, the question is under what
condition it is possible to factor ay,...,a, efficiently.

First, we follow the idea about transforming the implicit factorization prob-
lem into the ACD problem in [49]. Suppose that 7-bit integers 1, ..., z, share
7 MSBs for larger values of n. We write x1 — x; = z; for ¢ = 1,...,n where
|z;| < 2779, Further, we have a; = 2;9; = (x1 — 2;)y;. Let p = 21, ¢; = ; and
r; = —y;2; for all 1 < ¢ < n. We rearrange the above equations and get

a; =pg;+r;fori=1,....n (13)

Note that aq,...,a, are v-bit integers, p is a n-bit integer, 7y = 0 and |r;| =
lyizi| < 20=mM+0=7) = 297 Therefore, the system (13) can be regarded as a
(v,m,7 — 7)-PACD problem, of which n samples are given. Once (13) is solved,
since p = x1, we can factor a;. Moreover, we can also recover r; = a; mod p
if y—7 <n (ie. 7>~ —mn). Further, we factor a; (2 < i < n) by computing
ged(ag, 7;), which implies that the implicit factorization problem is solved.
Next, we utilize the attack in Section 3.3 and the second OL attack to solve
(13). According to the required condition (7), we get that the (vy,n,v—7)-PACD
problem can be solved when T + (y — 7 — 7) 4+ nlog do + log v/n? +n < 0. Since
we focus on the number of shared bits in the implicit factorization problem, we
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simplify the above condition as ~ + (y — 7 — 7) < 0, which implies that the
number § of shared MSBs in py, ..., p, should satisfy 7 > 25 (y — 7).

Finally, let us compare our work with previous results in [26, 49]. For the case
of [26], the number of shared MSBs should not be less than —+(y—7)+6 for n >
3. For the situation of [49], the number of shared bits is greater than 2 (y—7),
which is obtained by solving (13) according to the SDA algorithm. It is easy
to see that our theoretical result and the work of [49] are almost the same and

slightly better than the result of [26].

Experimental Results. The experiments are implemented in the Sage 7.4 on
Linux Ubuntu 16.04 on a laptop with Intel(R) Xeon(R) CPU E5-2670 v3 @
2.30GHz, 3 GB RAM and 3 MB Cache. We respectively use the method in
Section 3.3, the second OL attack and the method of [49] based on the LLL
algorithm to solve the implicit factorization problem.* In the experiments, the
desired (g1, ..., gn) can be recovered successfully. Further, the implicit factoriza-
tion problem is solved. We give the concrete comparisons in Table 6. It is clear
that the attack in Section 3.3 is the most efficient in practice.

Table 6. Cryptanalysis of the implicit factorization problem instances by the attack
in Section 3.3, the second OL attack and the work in [49] based on the LLL algorithm.

y n,y—n T n [Section 3.3|Second OL| [49]
(bit-size of a;)|(bit-size of x;,y;)|(shared MSBs)|(exp.)| (seconds) | (seconds) |(seconds)
774, 250 264 42 0.094 0.531 1.516
724, 300 314 61 <1 <1 1.39
1024 674, 350 364 88 <1 1.42 5.57
624, 400 414 95 1.26 2.0 7.15
574, 450 464 101 1.73 2.48 9.69
524, 500 514 108 2.14 3.44 13.27
1398, 650 668 84 3.92 9.18 14.76
1348, 700 718 99 2.81 6.37 23.41
2048 1298, 750 768 129 5.98 13.59 54.46
1248, 800 816 141 7.79 17.24 73.36
1198, 850 867 146 9.22 21.08 86.48
1148, 900 919 150 11.80 23.88 100.85

7 Conclusion

In this paper, orthogonal lattice attacks for solving ACD problems were revisited,
the optimized OL attacks were proposed, and the theoretical proofs as well as
the informative experimental results were presented to support our analyses.

* According to the experimental results in [49], the method in [49] is much faster than
that in [26] for larger values of n. Thus, we omit the corresponding experiments in
[26].
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Then, we used the optimized OL attacks and the existing methods to analyze
the security estimates of some ACD problems from FHE schemes. Moreover, we
also utilized these methods to solve the implicit factorization problem. In our
optimized OL attack using the rounding operation, the entries of the involved
lattice are reduced so that it becomes the fastest and the most efficient till date
in practice.
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A Analysis on the function g(n)

n—1

According to g(n) =n <ﬂ) " (n+ l)ﬁ, we have

1
n 1 /n+1\2
n—— " . (n—1)n )

—1

1 ()

N‘H

n

1
For any fixed n > 2, we have (n — 1)% > 1 and (”TH) 2n > 1. Hence, we get
1
L\/%) > 1. Furthermore, since lim,,_ oo (n — 1)% =1 and lim,— 4 ("—H) m =1

n
we obtain lim, 4. g(n)/v/n = 1.

3

B Optimization of the Third OL Attack

We first consider a generalized lattice L3(a). Without loss of generality, assume
an, = max{a,...,a,} and 0 < a < a,,. Then we give the following lemma.

Lemma 3. Given a vector v = (auy,...,Qun_1, y i, wia;) in L3(a), then

n
a+2°PvVn? +2n  ||v
S g < 2V ]

o on—1°
i=1
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Proof. Let u = (uy,...,up), * = (r1,...,7,) and v, = >+, u;a;. Similar to the
analysis of Lemma 1, we can also get (2), i.e.

n
LY wial < Joul +Vn2? - Jul.
=1

Then let us bound |v,| and [Ju||. Obviously |v,| < ||v|| and (/u? +---+u2_; <

lv]|/e. From v, = Z?:l i, We have tn = (Un — U181 — -+ — Un_18n_1)/an.
Then we get
‘un| = U"‘1_(0‘“1)‘%_(1‘;—(@'%71).“na—l

12+ al 2+ + An— 1
\/ =) ( \/v (qu1)? + -+ (Qup_1)?

Qan

Accordlng to the Cauchy — Schwartz inequality)

01 )2 (”'271)2
~ iy o S v

< %HVH (Slnce 0 < a<a, =max{a,...,ap})

From the above inequality and y/u? + - +u2_ | < ||v||/a, we deduce ||ul| =

\/(u% 4o uZ_ ) +u2 < Y vl Plugging these two bounds of |v,| and

|lu]| into (2), we obtain

n
a+2°vVn2+n |v
S ] < SETVEER ]

i=1 @ 2=t
O
Based on Lemma 3, we present the following result.
Corollary 2. Let v; = (a1, ..., QU -1, Z?:l uija;) be the i-th reduced basis

vector of L3(a) where 1 < i <mn. From the GSA, we have

o« + 2° \/
1S wggl < ViTE CEEVE oz (14)

j=1

Further, by choosing o = 7V:;i'*1'” 27, we obtain an asymptotic and optimized bound

|Zuijqj\ < \/i+3-7’b(582%8_(n_p). (15)

j=1

Proof. Under the GSA, we have
Vi+3
2

lvil| < 53 (det L3(a)) ™ <
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According to Lemma 3, we can directly deduce the bound (14). Then, let us

minimize the right side of (14) by taking o = 7%2;) and get | Y7, uijq;] <
» -1

Vi+3-t(n)dp27="~(1=°) where t(n) = n ( v "2+") . Since t(n) ~ n, we get

n—1

(15). O

Finally, we present the following theorem.

Theorem 5. Let v; = (au1, ..., QU n_1, 27:1 u;ja;) be the i-th reduced basis

vector of L3(a). Take the optimized o = 7w29. From the GSA, we find out
Ui1q1 + - -+ + Uingn, = 0 under the condition

’Y;p —(n —p) +nlogdg + log (n\/i+3) <0.

C Analysison detU = +1 and d = £1

Here we only analyze the case of lattice £s(a), since that of £o(a) is similar.
Let U = (¢j;)nxn- We rewrite the system of equation

u1,1q1 + -+ U1 g, =0

Up—1,191 + -+ Up—1,nqn = 0
Un,191 +- Un,ndn = d

as
U-(q1,--,q.)" =(0,...,0,d)". (16)

Noting that M(«) is a basis matrix on L£o(«) and U-M(«) is the reduced basis
matrix on Ls(a). Hence, U is an unimodular matrix, i.e., U is an integer matrix
and det U = +1.

Further, the inverse matrix U~! is also an unimodular matrix. Left multi-
ply U~! to both sides of (16) and get (q1,...,q,)T = U1 (0,...,0,d)T. Let
(Win, - - -, Wnn)T be the n-th column vector of U™, we can deduce

(q17~-->Qn) :d'(wln;---awnn)7

which implies that d is a common divisor of ¢, - -+, g,. Since integers ¢y, -- -,
@n are randomly chosen from [0,27/p), then ged(qr, ..., ¢,) = 1 holds with the
asymptotic probability 1/¢(n), where ((n) = Y 7o, 1/k™ is the Euler-Riemann
zeta function. In other words, it is very likely to be true that d = +1.
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D Comparison of Known OL Attacks

We first give work conditions that depend on the root-Hermite factor dy for
existing OL attacks. Then we present the corresponding comparison.

The First OL Attack. We have the following result and proof.

Theorem 6. Let (« Z?:1 WijQj, Uil, - - -, Uin) be the i-th reduced basis vector of
L1 (a) where a is some sufficiently large integer. Based on the GSA, we obtain
Z;;l ui;r; =0 fori=1,...,n —1 under the condition

n_lf(nfp)Jr(nf1)10g50+log\/n2+2n<0. (17)
Proof. Let £+ be the lattice orthogonal to (ay,...,a,). According to [43, The-
orem 4], when « is sufficiently large, (u;1, ..., u;,) is the reduced basis vector of
L+ fori =1,...,n — 1. Hence, we have 2?21 ugja; = 0. From a; = pg; + 75
for all 1 < j < n, we have Y7 | uja; = pY_7_; wijq; + Y5, wijr;. Hence,
we get 2?21 u;;r; = 0 mod p. The goal is to generate 2?21 uzjr; = 0 for all
1<i<n—1.

Let u; = (w1,...,%p) and r = (r1,...,7,). Clearly, ||r|| < v/n2°. Accord-
ing to the Cauchy-Schwartz inequality, we have |E?:1 wiri| < fug - ] <
/n2P||u;||. Since Z?Zl u;jr; = 0 mod p and p > 277!, we deduce Z;L:1 uir; =0

—p—1
2"\/%

Note that u; is the i-th reduced basis vector of £1-. Based on dim £+ =n—1
and det £+ < \/aZ+ -~ + a2 < \/n27, we have ||u,|| < YiE3. 1 Ip 2 2T
under the GSA. Hence, in order to get 2?21 ui;r; =0forall 1 <i<n—1, we

under the condition ||u;| <

V2 | sn—1_smery 9ty 2n—r 7t ; ; ;
expect Y= <00 T 2D 2R L Vo Rearranging this expression, we get

2 — (n—p) + (n—1)log &y + log h(n) < 0, where h(n) = (n* + 2n)%n2<"1*1>.
1
Since h(n) ~ (n? + 2n)?, we have the simplified condition —2= — (n — p) + (n —

n—1
1)log o + log vn? 4+ 2n < 0.
O

The Second OL Attack. In fact, the involved lattice is £5(27), which is a
particular case of Lo(«) appeared in Section 3.2. Plugging o = 2° into the
condition (3) and rearranging it, we get that n — 1 linear independent vectors
orthogonal to (g1, ...,q,) approximately under the condition (7), i.e.

7;p—(n—p)+nlogéo+log\/n?+72n§0.

It implies that the second OL attack is almost same as the optimized situation.
In other words, the second OL attack and the OL attack in Section 3.2 have
similar performances.

The Third OL Attack. It is clear that the involved lattice in the third OL at-
tack is £3(1), which is a concrete case of L3(«) given in Remark 1 and Appendix
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B. Plugging o = 1 into the condition (14) and re-expressing it, we deduce that
n — 1 linear independent vectors orthogonal to (g1, ..., ¢,) approximately under
the condition

E_(n—p)—f—nlogdo—klog\/MSo- (18)

Comparison. Similar to the analysis of Theorem 3 in Section 4.1, from (17),
(7) and (18), we respectively get the time complexities to solve (vy,n, p)-ACD
instances by running BKZ-£ if one SVP oracle costs 2°(5):

2”(<njp>2 log (7sz)2) The First OL Attack

2”(@7—7:)2 log (nw:;SQ) The Second OL Attack (19)
Q(% log %) :

27\ =n (n—=p) The Third OL Attack

Hence, the first and third OL attacks have the same asymptotic complexity;
the second OL attack and OL attacks in Section 3 have the same asymptotic
complexity. When v > p, the asymptotic complexities of all these OL attacks
are the same. When (v — p) is relatively small, the second OL attack and OL
attacks in Section 3 are more advantageous than the first and third ones.
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