
1

MProve: A Proof of Assets Protocol for Monero
Exchanges

Arijit Dutta, Saravanan Vijayakumaran
Department of Electrical Engineering

Indian Institute of Technology Bombay

Mumbai, India
arijit.dutta@iitb.ac.in, sarva@ee.iitb.ac.in

Abstract

Theft from cryptocurrency exchanges due to cyberattacks or internal fraud is a major problem. Exchanges can

partially alleviate customer concerns by providing periodic proofs of solvency. We describe MProve, a proof of

assets protocol for Monero exchanges which can be combined with a known proof of liabilities protocol to provide

a proof of solvency. MProve also provides a simple proof of non-collusion between exchanges.

Index Terms

Cryptocurrency, Monero, proof of assets

I. INTRODUCTION

Cryptocurrency exchanges represent a tradeoff between convenience and security for their customers. An exchange

provides its customers with a familiar login interface on a website where they can view, transfer, or trade their

cryptocurrency balances. In case customers forget their password, they can recover it using multi-factor authentica-

tion or by contacting the exchange’s customer support. The customer is free from the hassle of storing the private

keys corresponding to their cryptocurrency funds, which are subject to loss and theft. But these conveniences for

the customers come at the risk of their funds being stolen from the exchange due to hacking or internal fraud. The

loss of bitcoins from the Mt. Gox exchange in 2014 is the most infamous embodiment of this risk [1]. Despite

being acutely aware of the need to secure their systems, several cryptocurrency exchanges have failed to prevent

theft of their assets. An estimated $927 million worth of cryptocurrencies were reported as stolen from exchanges

in the first nine months of 2018 [2].

While ensuring security of the systems and protocols used by cryptocurrency exchanges is an important problem,

we do not address it in this work. Instead, we consider protocols by which exchanges can provide proofs of

solvency to their customers. These proofs give the customers assurance that an exchange continues to hold enough

cryptocurrency assets to cover their cumulative liabilities. There are two main benefits of such proofs: (1) they

prevent exchanges from concealing the loss of cryptocurrency funds due to cyberattacks, and (2) they prevent

exchanges from selling cryptocurrency assets to customers without actually owning the required quantities of the

assets.

Monero is a privacy-focused cryptocurrency which uses ring signatures, one-time addresses, and cryptographic

commitments to obfuscate the sources, destinations, and amounts in a transaction [3]. In this paper, we describe

MProve, a proof of assets protocol for Monero exchanges. This protocol can be combined with a known proof of

liabilities protocol to provide a proof of solvency.

II. RELATED WORK

The first known approach for generating a proof of solvency is attributed to Greg Maxwell and Peter Todd

[4]. But this approach revealed the total amount of assets held by an exchange and the cryptocurrency addresses

storing these assets. To address these issues, Dagher et al. proposed a scheme called Provisions which generates

privacy-preserving proofs of solvency for Bitcoin exchanges [5]. It consists of three main protocols and an optional

fourth protocol:

2

1) Proof of assets: The exchange chooses a set P of unspent addresses with known public keys from the Bitcoin

blockchain such that it knows the private keys corresponding to a subset Pknown ⊂ P . The exchange then

creates a Pedersen commitment Cassets [6] to the total amount of bitcoins available in the Pknown addresses.

The commitment Cassets is accompanied by a proof that the exchange included the amount corresponding to

an address in P only if it knows the corresponding private key. The proof preserves the exchange’s privacy in

the sense that the set Pknown is not revealed.

2) Proof of liabilities: The exchange publishes a list of liabilities which contains an entry for each of its

customers. Each entry contains Pedersen commitments to the bits in the binary representation of a particular

customer’s Bitcoin balance. These commitments can be combined (even by a third party) to generate a Pedersen

commitment Ci to the balance of the ith customer. The ith customer can check the correctness of Ci by logging

in to the exchange and obtaining the blinding factor used to generate Ci. Finally, a Pedersen commitment to

the total liabilities of the exchange is computed as Cliabilities =
∑

iCi. This scheme is not foolproof as customer

omissions from the list of liabilities can be detected only if one of the omitted customers checks the list.

3) Proof of solvency: The exchange computes Cdifference = Cassets − Cliabilities and gives a zero-knowledge proof

that Cdifference is a Pedersen commitment to the zero amount.

4) Proof of non-collusion (optional): To prevent exchanges from sharing unspent addresses while generating their

individual proofs of assets, a proof of non-collusion is required. The proof of assets protocol in Provisions

involves publishing a list L1 containing Pedersen commitments to the private keys corresponding to the public

keys in Pknown. Using the same private keys, a second list L2 is computed containing public keys generated

using a base point which is different from the default base point of the secp256k1 elliptic curve used in Bitcoin.

Each exchange gives a zero-knowledge proof that L2 is a permutation of L1 after base change and removal of

blinding factors. If two exchanges were to use the same unspent address, their respective L2 lists would have

an element in common, revealing their collusion. This proof of non-collusion reveals the number of Bitcoin

addresses owned by an exchange. For this reason, it was presented as an optional protocol by the designers

of Provisions.

The proofs of liabilities and solvency in Provisions can be used without modification for Monero exchanges.

But the proof of assets protocol in Provisions cannot be used due to the privacy-focused design of Monero. In

the next section, we give a brief overview of the Monero protocol. After a discussion of the challenges in using

the Provisions proof of assets protocol for Monero exchanges, we describe the MProve protocol in Section IV. By

design, the MProve protocol gives a proof of non-collusion between exchanges which does not reveal the number of

addresses owned by an exchange. In Section V, we briefly discuss the application of MProve to Bitcoin exchanges.

III. OVERVIEW OF MONERO

The design of Monero is based on the CryptoNote protocol [7]. In a Monero transaction, one-time addresses (also

called stealth addresses) are used to hide the recipient of the funds. One-time addresses are just public keys whose

private keys are generated using the recipient’s long-term public keys and a Diffie-Hellman protocol. The source

of funds in a transaction will also be a one-time address which was the destination of a previous transaction. Ring

signatures are used to conceal the sender address among a set of other one-time addresses randomly chosen from the

blockchain. The ring signature in a transaction proves that the signer knows one of the private keys corresponding

to the set of one-time addresses specified in the transaction. The precise one-time address which was the source

of funds is not revealed. To prevent double spending, linkable ring signatures proposed in [8] are used in Monero

with some modifications [9]. Two linkable ring signatures which spend from the same one-time address will have

identical key images revealing the double spend.

The original Monero protocol implementation did not hide the amounts involved in a transaction. To spend from

a one-time address storing a certain amount of Monero, the spender had to create the ring signature using other

one-time addresses from the blockchain which were also storing the same amount. In 2017, the Monero protocol

added confidential transactions [10] which hide the transaction amounts using Pedersen commitments.

In the following subsections, we describe those aspects of Monero addresses and transactions needed to present

our proof of assets protocol.

3

A. Monero Public Keys and One-Time Addresses

Monero public keys are points on the elliptic curve used in EdDSA generated by the base point G = (x, 4/5)
with positive x [7], [11]. The order of G is a prime l which is larger than 2252. Monero private keys are integers

in the set Z+

l = {1, 2, . . . , l − 1}. Let E denote the subgroup of the EdDSA curve generated by the base point G.

We will use additive notation for the group operation on the curve. The public key A ∈ E corresponding to the

private key a ∈ Z
+

l is given by

A = aG = G+ · · ·+G
︸ ︷︷ ︸

a times

.

To receive funds in the Monero system, the recipient shares a pair of public keys (Avk, Ask) with the sender,

where Avk = avkG,Ask = askG. The subscripts vk and sk denote the view key and spend key respectively. The

received funds cannot be spent without knowledge of the private spend key ask. On the other hand, the private view

key avk can be shared with third parties allowing them to view (but not spend) the fund receipts.

Suppose Bob wants to send funds to Alice whose public key pair is (Avk, Ask). He chooses a random integer r ∈
Z
+

l and computes the points rAvk and H(rAvk)G, where H : E 7→ Z
+

l is a hash function which maps curve points

to integers. Bob creates and broadcasts a transaction which specifies the one-time address P = H(rAvk)G + Ask

as the destination of the funds. The transaction also contains the point R = rG which will enable Alice to recover

the private key corresponding to P . The transaction will eventually be added to the blockchain as part of a block.

From every transaction which appears on the blockchain, Alice reads the one-time address P and random point

R. Using her private view key avk, she computes the point P ′ = H(avkR)G+Ask. For the transaction Bob created

using Alice’s public key pair, P ′ will be equal to P since rAvk = ravkG = avkR. By checking for this equality,

Alice can identify transactions which are sending funds to her. The private key corresponding to P is given by

H(avkR) + ask. Hence the private view key avk can be safely revealed to third parties to outsource the work of

scanning the blockchain for incoming transactions.

B. Linkable Ring Signatures

While digital signatures prove knowledge of the private key corresponding to a public key, ring signatures prove

knowledge of one of the private keys corresponding to a set of public keys. Suppose Alice wants to spend the

funds from a one-time address P for which she knows the private key. She creates a linkable ring signature on a

message m as follows:

1. She assembles a list of one-time addresses P = (P0, P1, . . . , Pn−1) from the blockchain such that Pj = P for

exactly one j ∈ {0, 1, . . . , n− 1}.

2. Let xi ∈ Z
+

l be the private key corresponding to Pi, i.e. Pi = xiG. Using the private key corresponding to Pj ,

she computes the key image I = xjHp(Pj) where Hp : E 7→ E is a hash function.

3. She picks α and si, i = 0, 1, . . . , n− 1, i 6= j, randomly from Z
+

l . Note that sj has not been chosen.

4. She computes points Lj = αG, Rj = αHp(Pj), and integer cj+1 = Hs(P,m, Lj , Rj) where Hs : {0, 1}
∗ 7→ Z

+

l

is a hash function.

5. Increasing j modulo n, she computes points and integers

Lj+1 = sj+1G+ cj+1Pj+1,

Rj+1 = sj+1Hp(Pj+1) + cj+1I,

cj+2 = Hs(P,m, Lj+1, Rj+1),

...

Lj−1 = sj−1G+ cj−1Pj−1,

Rj−1 = sj−1Hp(Pj−1) + cj−1I,

cj = Hs(P,m, Lj−1, Rj−1).

4

6. Finally, she computes sj = α− cjxj . As Lj and Rj were computed using α in step 4, this implies that

Lj = αG = (sj + cjxj)G = sjG+ cjPj ,

Rj = αHp(Pj) = (sj + cjxj)Hp(Pj)

= sjHp(Pj) + cjI.

7. The linkable ring signature on the message m is given by σ = (I, c0, s0, s1, . . . , sn−1).

Alice includes the linkable ring signature in a transaction spending funds in the address P and broadcasts it onto

the network for inclusion in the blockchain. The message m is the hash of the transaction prefix which consists all

the transaction data except for the signatures. The verification of the linkable ring signature proceeds as follows:

1. The message m which was signed is recreated from the transaction prefix.

2. The one-time addresses P = {P0, P1, . . . , Pn−1} used to create the linkable ring signature are read from the

transaction.

3. Using σ, the integers cj , j = 1, 2, . . . , n− 1, are calculated as

L0 = s0G+ c0P0,

R0 = s0Hp(P0) + c0I,

c1 = Hs(P,m, L0, R0),

...

Ln−2 = sn−2G+ cn−2Pn−2,

Rn−2 = sn−2Hp(Pn−2) + cn−2I,

cn−1 = Hs(P,m, Ln−2, Rn−2).

4. Finally, cn−1 and sn−1 are used to calculate c′0 as

Ln−1 = sn−1G+ cn−1Pn−1,

Rn−1 = sn−1Hp(Pn−1) + cn−1I,

c′0 = Hs(P,m, Ln−1, Rn−1).

5. The signature σ is accepted if c′0 equals the c0 given in σ. Otherwise, it is rejected.

A valid linkable ring signature is a proof that the transaction was created by someone with knowledge of a private

key among the n private keys corresponding to the addresses in P . As the one-time address Pj which is spent

in the transaction is not revealed, Alice can potentially try to double spend from it. But the second transaction’s

linkable ring signature σ will contain the same key image I = xjHp(Pj) leading to its rejection by the network.

This justifies the use of linkable ring signatures instead of regular ring signatures.

C. Pedersen Commitments and Range Proofs

In the current implementation of Monero, transaction amounts are hidden using Pedersen commitments [6]. A

point H ∈ E was generated from the Keccak hash of the base point G to ensure that the discrete logarithm of H
with respect to G is unknown. The Pedersen commitment to an amount a ∈ Zl is given by

C(y, a) = yG+ aH,

where y ∈ Zl is a randomly chosen blinding factor. This commitment scheme is perfectly hiding as C(y, a) is

indistinguishable from a random element in E even to computationally unbounded adversaries. It is computationally

binding as an adversary capable of computing the discrete logarithm of H with respect to G can generate a pair

(y′, a′) 6= (y, a) such that C(y′, a′) = C(y, a). Pedersen commitments to amounts can be added (without knowing

the blinding factors) to generate a commitment to the sum of the amounts, i.e.

C(y1, a1) + C(y2, a2) = C(y1 + y2, a1 + a2).

A key feature of Pedersen commitments is that digital signatures can be used to show that a commitment is hiding

the zero amount without revealing the blinding factor. Note that a commitment to the zero amount C(y, 0) = yG

5

can be viewed as a public key whose corresponding private key is the blinding factor y. If an ECDSA signature

is generated using the private key y, its validity can be verified using the public key C(y, 0). If the commitment

had been to a non-zero amount a, then C(y, a) will contain a contribution from the point H . Since the discrete

logarithm of H with respect to G is unknown, a computationally bounded adversary cannot compute the private

key y′ such that y′G = C(y, a) = yG+ aH .

In a transaction, the sum of the input amounts should be equal to the sum of the output amounts and the

transaction fees. This relation needs to be verifiable by miners without revealing the blinding factors used to

generate the amount commitments. For simplicity, assume that a transaction has one input and two outputs. Let

ain be the input amount, a1out, a
2
out be the output amounts, and f be the transaction fees. These amounts satisfy the

relation

ain = a1out + a2out + f.

The commitment to the input amount C(yin, ain) will be recorded in the blockchain with the blinding factor yin

known to the owner of the input. The input owner will randomly choose blinding factors y1out, y
2
out and create the

output commitments

C(y1out, a
1
out) = y1outG+ a1outH,

C(y2out, a
2
out) = y2outG+ a2outH.

The transaction will contain C(y1out, a
1
out), C(y2out, a

2
out), and the transaction fees f . It will also contain an ECDSA

signature verifiable by the public key

C(yin, ain)− C(y1out, a
1
out)− C(y2out, a

2
out)− fH

=
(
yin − y1out − y2out

)
G+

(
ain − a1out − a2out − f

)
H

= zG+ 0H = C(z, 0)

where the input owner knows the private key z. By calculating the public key C(z, 0) and performing ECDSA

signature verification, the miners are convinced that the difference between the commitments and the fees term is

a commitment to zero.

The receiver of the outputs in a transaction needs to know the blinding factors and amounts in order to verify

receipt and subsequently spend the received funds. These are securely communicated to the receiver using the same

shared secret rAvk = avkR which was used to generate the one-time address. To communicate a blinding factor yout

and amount aout, the sender stores yout ⊕HK(rAvk) and aout ⊕HK(HK(rAvk)) in the transaction where ⊕ denote

bitwise XOR and HK is the Keccak hash function. As the point R is contained in the transaction, the receiver can

use avk to recover the blinding factor and amount.

As lG is the identity of the group E , we have C(y, l + a) = C(y, a). To prevent this relation from being

exploited to inflate the amount stored in an input commitment, range proofs are used to prove that the amounts in

a commitment are in the range {0, 1, . . . , 264 − 1}. This particular range is of interest since the maximum number

of piconeros (the smallest unit of currency in Monero) which can come into existence is limited to 264 − 1. Since

l > 2252, a range proof will exclude the possibility of a commitment being interpreted as hiding an amount l + a.

IV. MPROVE PROOF OF ASSETS PROTOCOL

The main obstacle to using the proof of assets protocol proposed in Provisions [5] for Monero exchanges stems

from a fundamental difference between unspent transaction outputs in Bitcoin and Monero. In Bitcoin, the unspent

outputs can be identified by reading the blockchain. In Monero, ring signatures are used to hide the specific one-

time address which is being spent in a transaction. Each Monero transaction specifies an anonymity set of one-time

addresses which contains the address being spent. It only contains the key image of the address being spent to

avoid double spending. So the set of unspent outputs cannot be identified by reading the Monero blockchain. This

prevents us from using the Provisions proof of assets protocol which begins by assembling a set of unspent outputs

which contain the exchange-owned outputs as a subset.

A fundamental requirement of any proof of assets protocol for Monero is that it should, explicitly or implicitly,

reveal the key images of the exchange-owned one-time addresses which contribute to the total assets commitment

Cassets. If this requirement is not met, then we cannot detect the usage of already spent one-time addresses to

6

generate Cassets. Protocols which explicitly reveal the key images have the benefit of providing an automatic proof

of non-collusion as one-time addresses shared between exchanges will be revealed. This proof of non-collusion

does not suffer the drawback of revealing the number of one-time addresses owned by an exchange, unlike the

optional proof of non-collusion proposed in the Provisions paper. But a drawback on explicitly revealing the key

images is that a future transaction spending from an exchange-owned address will reveal that it was owned by the

exchange (see Section IV-F). MProve suffers from this drawback and removing it is an open problem for now.

A. Ring Signatures

Our proposed proof of assets protocol uses both linkable and regular ring signatures. While the regular ring

signature creation and verification algorithms (as defined in [12]) are similar to their linkable counterparts, we

present them here for clarity.

Suppose Alice wants to sign a message m using a ring signature involving the public keys P = (P0, P1, . . . , Pn−1)
where she knows the private key xj corresponding to Pj . She creates the ring signature as follows:

1. She picks α and si, i = 0, 1, . . . , n− 1, i 6= j, randomly from Z
+

l .

2. She computes points Lj = αG and integer cj+1 = Hs(P,m, Lj) where Hs : {0, 1}
∗ 7→ Z

+

l is a hash function.

3. Increasing j modulo n, she computes points and integers

Lj+1 = sj+1G+ cj+1Pj+1,

cj+2 = Hs(P,m, Lj+1),

...

Lj−1 = sj−1G+ cj−1Pj−1,

cj = Hs(P,m, Lj−1).

4. Finally, she computes sj = α− cjxj . As Lj was computed using α in step 2, this implies that

Lj = αG = (sj + cjxj)G = sjG+ cjPj .

5. The ring signature on the message m is given by γ = (c0, s0, s1, . . . , sn−1).

To check the validity of a ring signature, a verifier does the following:

1. Using the public key list P = (P0, P1, . . . , Pn−1), the message m, and the ring signature γ = (c0, s0, s1, . . . , sn−1),
the verifier calculates the integers cj , j = 1, 2, . . . , n− 1, as

L0 = s0G+ c0P0,

c1 = Hs(P,m, L0),

...

Ln−2 = sn−2G+ cn−2Pn−2,

cn−1 = Hs(P,m, Ln−2).

2. Finally, cn−1 and sn−1 are used to calculate c′0 as

Ln−1 = sn−1G+ cn−1Pn−1,

c′0 = Hs(P,m, Ln−1).

3. The signature γ is accepted if c′0 equals the c0 given in γ. Otherwise, it is rejected.

B. Proof Generation

The MProve proof of assets protocol proceeds as follows:

1. The exchange chooses a list of one-time addresses P = (P1, P2, . . . , PN) from the Monero blockchain such that

it knows the private keys corresponding to a subset1 Pknown of P . The list P is made public by the exchange.

1Even though P is a list, we will sometimes find it convenient to interpret it as a set.

7

2. For each Pi ∈ P , the exchange can read the corresponding Pedersen commitment Ci from the blockchain. Let

Ci be the commitment to an amount ai with blinding factor yi, i.e.

Ci = C(yi, ai) = yiG+ aiH. (1)

For Pi ∈ Pknown, the exchange knows yi and ai. For Pi /∈ Pknown, the exchange may know yi and ai if it was

the party which sent funds to Pi. In general, the exchange will not know yi and ai for Pi /∈ Pknown.

3. For each Pi ∈ P , the exchange randomly picks zi ∈ Zl and generates C ′

i as

C ′

i =

{

ziG if Pi ∈ Pknown,

ziG+ Ci if Pi /∈ Pknown.
(2)

4. For each i = 1, 2, . . . , N , the exchange publishes a regular ring signature γi on a message m verifiable by the

pair of public keys (C ′

i, C
′

i − Ci). The calculation of γi is described in Appendix A.

5. For each i = 1, 2, . . . , N , the exchange publishes a linkable ring signature σi on a message m verifiable by the

pair of public keys (Pi, C
′

i − Ci). The calculation of σi is described in Appendix B.

6. The exchange publishes a commitment Cassets which satisfies the equation

N∑

i=1

Ci = Cassets +

N∑

i=1

C ′

i. (3)

The exchange claims that Cassets is a Pedersen commitment to the amount of Monero it owns.

The intuition behind the protocol construction is as follows. Let Iknown = {i | Pi ∈ Pknown} be the set of indices i
such that the exchange knows the private key corresponding to Pi. The left hand side of (3) is a commitment to the

amount
∑N

i=1
ai. Ideally, we want the Cassets term on the right hand side of (3) to be a commitment to

∑

i∈Iknown
ai

and the
∑N

i=1
C ′

i term to be a commitment to the remaining amount.

If Pi /∈ Pknown, then the exchange does not know the private key corresponding to Pi. To create the ring signature

σi, the exchange has to then use the private key zi where C ′

i−Ci = ziG. This implies that C ′

i−Ci is a commitment

to zero whenever Pi /∈ Pknown. So the commitments Ci and C ′

i on both sides of (3) commit to the same amounts

whenever Pi /∈ Pknown and there is no transfer of funds (in the form of the aiH terms) from the corresponding Ci

terms to the Cassets term.

If there were no constraint on C ′

i for Pi ∈ Pknown, then an exchange can inflate the amount committed in Cassets

using a single such C ′

i. For example, suppose P1 ∈ Pknown. Then the exchange can set

C ′

1 = z1G+ C1 + (l − b)H,

C ′

i = ziG+ Ci for i = 2, 3, . . . , N, (4)

Cassets = −

N∑

i=1

ziG+ bH,

and still satisfy the equation in (3) for some arbitrary amount b ∈ Zl. We could force every C ′

i for i ∈ Iknown to be

commitment to the zero amount by requiring a signature verifiable by the public key C ′

i. While this would ensure

the transfer of funds (in the form of the aiH terms) from Ci to the Cassets term in (3), it would also reveal the set

Pknown. To avoid this, we require a regular ring signature γi verifiable by the pair of public keys (C ′

i, C
′

i −Ci) for

all i = 1, 2, . . . , N . For i /∈ Iknown, γi can be generated using the same private key (corresponding to C ′

i−Ci) which

was used to generate σi. For i ∈ Iknown, if the private key corresponding to C ′

i −Ci is used to generate γi then C ′

i

and Ci commit to the same amount. Consequently, C ′

i cannot contain any H term beyond that contributed by Ci

and cannot be used to inflate the Cassets term as illustrated in (4). On the other hand, if for some i ∈ Iknown the

private key corresponding to C ′

i is used to generate γi then this implies that C ′

i is a commitment to zero ensuring

that the aiH terms from Ci are included in Cassets.

While the above discussion considers a potentially malicious exchange, the following theorem assures us that an

honest exchange can correctly generate a commitment to its assets.

Theorem 1. If an exchange follows the MProve protocol honestly, then Cassets will be a commitment to the amount

aowned =
∑

i∈Iknown

ai. (5)

8

Proof: Consider the definition of C ′

i given in (2).

• If Pi ∈ Pknown, C ′

i is a commitment to zero. Hence
∑

i∈Iknown
C ′

i is a commitment to the zero amount.

• If Pi /∈ Pknown, C ′

i−Ci is a commitment to zero. Let Iunknown = {i | 1 ≤ i ≤ N,Pi /∈ Pknown} denote the set of

indices i such that the exchange does not know the private key corresponding to Pi. Then
∑

i∈Iunknown
(C ′

i−Ci)
is a commitment to the zero amount.

Rearranging (3), we get ∑

i∈Iknown

Ci = Cassets +
∑

i∈Iknown

C ′

i +
∑

i∈Iunknown

(C ′

i − Ci). (6)

As the last two sums on the right hand side are commitments to zero, Cassets and
∑

i∈Iknown
Ci must be commitments

to the same amount. Since
∑

i∈Iknown

Ci =
∑

i∈Iknown

(yiG+ aiH)

= aownedH +
∑

i∈Iknown

yiG, (7)

Cassets is a commitment to aowned.

C. Proof Verification

The output of an exchange in the MProve protocol consists of the following:

• A list of one-time addresses P1, P2, . . . , PN .

• The commitments C ′

1, C
′

2, . . . , C
′

N created by the exchange.

• The regular ring signatures γi = (di0, t
i
0, t

i
1) for i = 1, 2, . . . , N .

• The linkable ring signatures σi = (Ii, c
i
0, s

i
0, s

i
1) for i = 1, 2, . . . , N .

• The message m used to create γi and σi.
• The commitment Cassets which the exchange claims to be a commitment to its total assets.

Verification involves the following operations:

1. The verifier checks that none of the key images Ii published by the exchange as part of the signatures σi appear

in any of the transactions in the blockchain. If a key image appears in a transaction, the verifier rejects the proof

of assets as it implies that the funds in the corresponding one-time address Pi have already been spent. If none

of the key images have appeared on the blockchain, the verifier continues with proof verification.

2. The verifier reads the commitments Ci corresponding to the Pis from the blockchain.

3. The public key C ′

i − Ci is computed for each i.
4. The public key pair (C ′

i, C
′

i − Ci) is used to verify the regular ring signatures γi.
5. The public key pair (Pi, C

′

i − Ci) is used to verify the linkable ring signatures σi.
6. Equality in (3) is verified using the Cis, C ′

is, and Cassets.

7. The verifier also checks that none of the key images Ii published by the exchange appear in the signatures

published by other exchanges. If a key image is common to the signatures published by two different exchanges,

collusion is declared.

As observed in [5], the exchanges need to generate their proofs after the same block for collusion to be detectable.

D. Security Properties

We consider two security properties of the MProve proof of assets protocol: inflation resistance and address

privacy. We will model computationally bounded entities as probabilistic polynomial-time (PPT) algorithms. The

inflation resistance property prevents a PPT exchange from creating a commitment to an amount which is greater

than its total assets. The address privacy property prevents a PPT adversary from identifying the addresses owned

by the exchange from the information provided as output of the proof of assets.

Theorem 2. Suppose an exchange can create a proof of assets with commitment Cassets = C(y, a) such that

(i) it knows the blinding factor y ∈ Zl and amount a ∈ Zl,

(ii) the amount a is greater than aowned defined in (5), and

9

(iii) the proof is accepted by the verification procedure in Section IV-C.

Then the exchange can calculate the discrete logarithm of H with respect to G with overwhelming probability.

Proof: As the exchange was successful in creating the linkable ring signatures σi, it knows wi ∈ Zl such

that wiG = C ′

i − Ci for i ∈ Iunknown, i.e. Pi /∈ Pknown, with overwhelming probability. This is because creating σi
without knowing either of the private keys corresponding to the public keys {Pi, C

′

i −Ci} amounts to a forgery of

the linkable ring signature which is possible only with negligible probability.

As the exchange was successful in creating the regular ring signatures γi, it knows wi ∈ Zl such that wiG is

equal to either C ′

i or C ′

i−Ci for i ∈ Iknown, i.e. Pi ∈ Pknown, with overwhelming probability. Let I1, I2 be a partition

of the set Iknown such that wiG = C ′

i for i ∈ I1 and wiG = C ′

i − Ci for i ∈ I2.

As Iunknown ∪ I1 ∪ I2 = {1, 2, . . . , N}, we can rearrange the terms in (3) to get
∑

i∈I1

Ci = Cassets +
∑

i∈I1

C ′

i +
∑

i∈Iunknown∪I2

(C ′

i − Ci)

= Cassets +

N∑

i=1

wiG. (8)

Since I1 ⊆ Iknown, the exchange knows the blinding factors yi and amounts ai such that Ci = yiG + aiH for all

i ∈ I1. By the theorem hypothesis, it also knows y and a such that Cassets = yG + aH . Substituting these values

in (8), we get

∑

i∈I1

(yiG+ aiH) = yG+ aH +

N∑

i=1

wiG (9)

=⇒

(
∑

i∈I1

yi −

N∑

i=1

wi − y

)

G =

(

a−
∑

i∈I1

ai

)

H (10)

The exchange can then calculate the discrete logarithm of H with respect to G as
(

a−
∑

i∈I1

ai

)
−1(

∑

i∈I1

yi −

N∑

i=1

wi − y

)

. (11)

The multiplicative inverse of a−
∑

i∈I1
ai exists because it is a non-zero element in the prime field Fl. This follows

from the assumption that a > aowned =
∑

i∈Iknown
ai ≥

∑

i∈I1
ai.

If we assume that a PPT entity cannot calculate the discrete logarithm of H except with negligible probability,

Theorem 2 assures us that a PPT exchange cannot use MProve to output a commitment to an amount which is

greater than the total assets it owns.

We define the address privacy of the MProve protocol using the following experiment (which we call AddrPriv).

Let C′ = (C ′

1, C
′

2, . . . , C
′

N), Γ = (γ1, γ2, . . . , γN), Σ = (σ1, σ2, . . . , σN) be vectors containing the commitments

and signatures output by the MProve protocol. Let C = (C1, C2, . . . , CN) be the commitments corresponding to

the list of one-time addresses in P . Let m be the message which is signed to create the signatures. The value of

Cassets is determined by C and C
′ according to (3).

1. The exchange chooses an index j such that Pj ∈ P is a one-time address whose private key is known to it.

2. The exchange chooses a bit b uniformly from {0, 1}.

3. If b = 0, the exchange uses the MProve protocol to create a proof of assets where the linkable ring signature σj
is created using the private key corresponding to Pj and the ring signature γj is created using the private key

corresponding to C ′

j .

4. If b = 1, the exchange uses the MProve protocol to create a proof of assets where both the linkable ring signature

σj and ring signature γj are created using the private key corresponding to C ′

j − Cj .

5. Given P,C,C′,Γ,Σ,m, and index j, an adversary A outputs a bit b′, i.e.

b′ = A
(
P,C,C′,Γ,Σ,m, j

)
. (12)

6. The adversary succeeds if b′ = b. Otherwise, it fails.

10

TABLE I
MPROVE PROOF GENERATION AND VERIFICATION PERFORMANCE

|P| |Pknown| Proof Size Gen. Time Ver. Time

1000 100 0.32 MB 0.70 s 0.65 s

1000 500 0.32 MB 0.69 s 0.69 s

1000 900 0.32 MB 0.68 s 0.67 s

10000 1000 3.2 MB 7.01 s 6.76 s

10000 5000 3.2 MB 6.92 s 6.76 s

10000 9000 3.2 MB 6.87 s 6.75 s

100000 10000 32 MB 71.79 s 67.85 s

100000 50000 32 MB 71.13 s 67.83 s

100000 90000 32 MB 70.39 s 67.82 s

Definition 1. The MProve protocol provides address privacy if every PPT adversary A succeeds in the AddrPriv

experiment with a probability which is negligibly close to 1

2
, irrespective of the message m and index j.

As the C ′

is in the MProve protocol are chosen randomly and independently of each other (see definition in (2)),

the signatures γi for i 6= j do not aid the adversary in estimating b. Similarly, the signatures σi created by one

of the private keys corresponding to the public key pair (Pi, C
′

i − Ci) do not aid in the estimation of b for i 6= j.

Hence, we can restrict our attention to adversaries of the form A(Pj , Cj , C
′

j , γj , σj ,m).
A ring signature scheme is said to provide signer ambiguity if it does not reveal the identity of the signing key

except with probability negligibly close to that achievable by random guessing [8]. The linkable ring signature

scheme used to generate σj has been shown to be signer ambiguous in the random oracle model provided the

decisional Diffie-Hellman (DDH) problem is hard [13, Appendix C]. A similar argument can be used to show that

the MProve protocol provides address privacy in the random oracle model. We state the following theorem whose

proof is given in Appendix C.

Theorem 3. The MProve protocol provides address privacy in the random oracle model under the decisional

Diffie-Hellman assumption.

E. Performance

The performance (on a 3.6 GHz CPU/8 GB RAM desktop PC) of the MProve proof generation and verification

algorithms is given in Table I for P having sizes 1000, 10000, and 100000. For each case, the percentage of known

addresses is either 10%, 50%, or 90%. Both running times and proof sizes increase linearly with the size of P with

the proof generation time having a small dependence on the size of Pknown. The simulation code can be found at

[14].

F. Drawback

The main drawback of the MProve protocol is that it does not preserve sender address privacy when an exchange

spends from an address Pi ∈ Pknown which was used in the protocol. This is because the key image Ii is revealed

in the MProve protocol which can be matched with the key image which appears in the transaction spending from

Pi. This does not affect the privacy of the MProve protocol itself as the transaction appears on the blockchain after

the proof of assets is generated. But it effectively makes the transaction a zero mix-in transaction which increases

traceability [15], [16]. Alleviating this problem is an interesting direction for future research.

V. APPLICATION TO BITCOIN EXCHANGES

While MProve is intended for Monero exchanges, it can also be used for Bitcoin exchanges for taking advantage

of the proof of non-collusion. As the unspent amount ai associated with a public key Pi is known, the commitment

Ci can be simply set to aiH . Here H needs to be a group element whose discrete logarithm with respect to the

base point of the secp256k1 curve is not known. The C ′

i commitments will be generated as in (2). As the zis are

randomly chosen, knowledge of the opening of Ci does not reveal whether Pi ∈ Pknown or not. The ring signatures

11

γi and linkable ring signatures σi are generated as in the MProve protocol. The commitment Cassets published by

the exchange has to satisfy
N∑

i=1

aiH = Cassets +

N∑

i=1

C ′

i. (13)

Collusion between exchanges can be detected by checking if any of the key images Ii in the linkable ring signatues

σi appear in the proofs provided by two different exchanges. As spending from a Bitcoin address does not involve

the generation of a key image, the drawback mentioned in Section IV-F does not apply.

APPENDIX A

RING SIGNATURE GENERATION IN MPROVE

In this appendix, we describe the calculation of the regular ring signature γi corresponding to step 4 of the MProve

proof generation procedure described in Section IV-B. The calculation is the same as the algorithm described in

Section IV-A with the public key list Qi = (C ′

i, C
′

i −Ci). We use different notation to differentiate the terms from

those used in the linkable ring signature calculation of Appendix B.

(i) For i such that Pi ∈ Pknown, the private key zi corresponding to the public key C ′

i = ziG is used to create the

regular ring signature γi = (di0, t
i
0, t

i
1) where

• Using randomly chosen βi from Z
+

l , di1 is calculated as

Si
0 = βiG,

di1 = Hs(Q
i,m, Si

0). (14)

• Using randomly chosen ti1 from Z
+

l , di0 is calculated as

Si
1 = ti1G+ di1(C

′

i − Ci),

di0 = Hs(Q
i,m, Si

1). (15)

• The value ti0 is set to βi − di0zi.

(ii) For i such that Pi /∈ Pknown, the private key zi corresponding to the public key C ′

i − Ci = ziG is used to

create the regular ring signature γi = (di0, t
i
0, t

i
1) where

• Using randomly chosen βi from Z
+

l , di0 is calculated as

Si
1 = βiG,

di0 = Hs(Q
i,m, Si

1). (16)

• Using randomly chosen ti0 from Z
+

l , di1 is calculated as

Si
0 = ti0G+ di0C

′

i,

di1 = Hs(Q
i,m, Si

0). (17)

• The value ti1 is set to βi − di1zi.

APPENDIX B

LINKABLE RING SIGNATURE GENERATION IN MPROVE

In this appendix, we describe the calculation of the linkable ring signature σi corresponding to step 5 of the

MProve proof generation procedure described in Section IV-B. The calculation is the same as the algorithm described

in Section III-B with the public key list Ri = (Pi, C
′

i − Ci).
Let xi ∈ Z

+

l be the private key corresponding to Pi, i.e. Pi = xiG.

(i) For i such that Pi ∈ Pknown, the private key xi is used to create the linkable ring signature σi = (Ii, c
i
0, s

i
0, s

i
1)

where Ii = xiHp(Pi) is the key image.

12

• Using randomly chosen αi from Z
+

l , ci1 is calculated as

Li
0 = αiG,

Ri
0 = αiHp(Pi), (18)

ci1 = Hs(R
i,m, Li

0, R
i
0).

• Using randomly chosen si1 from Z
+

l , ci0 is calculated as

Li
1 = si1G+ ci1(C

′

i − Ci),

Ri
1 = si1Hp(C

′

i − Ci) + ci1Ii, (19)

ci0 = Hs(R
i,m, Li

1, R
i
1).

• The value si0 is set to αi − ci0xi.

(ii) For i such that Pi /∈ Pknown, the private key zi corresponding to the public key C ′

i − Ci = ziG is used to

create the linkable ring signature σi = (Ii, c
i
0, s

i
0, s

i
1) where Ii = ziHp(C

′

i − Ci) is the key image.

• Using randomly chosen αi from Z
+

l , ci0 is calculated as

Li
1 = αiG,

Ri
1 = αiHp(C

′

i − Ci), (20)

ci0 = Hs(R
i,m, Li

1, R
i
1).

• Using randomly chosen si0 from Z
+

l , ci1 is calculated as

Li
0 = si0G+ ci0Pi,

Ri
0 = si0Hp(Pi) + ci0Ii, (21)

ci1 = Hs(R
i,m, Li

0, R
i
0).

• The value si1 is set to αi − ci1xi.

APPENDIX C

PROOF OF THEOREM 3

The proof involves constructing a PPT adversary M who violates the decisional Diffie-Hellman (DDH) assump-

tion using a PPT adversary A who violates address privacy in the MProve protocol. Furthermore, the hash functions

Hs and Hp will be modeled as random oracles.

Suppose A is a PPT adversary who violates address privacy in the AddrPriv experiment. By the discussion

following Definition 1, we can restrict our attention to adversaries of the form A(Pj , Cj , C
′

j , γj , σj ,m). If A violates

address privacy, then there exists a polynomial f such that

Pr
[
A(Pj , Cj , C

′

j , γj , σj ,m) = b
]
>

1

2
+

1

f(λ)
, (22)

where λ is a security parameter.

Suppose M is an adversary tasked with identifying Diffie-Hellman triples. Let G be the generator of a cyclic

group of order l. An entity who wishes to test M chooses a bit d uniformly from {0, 1} and gives M the triple

(G1, G2, G3) = (aG, bG, cdG) where a, b, c0 are chosen uniformly from Z
+

l and c1 = ab. To estimate d from

(G1, G2, G3), M will use A as a subroutine as follows.

1. M chooses a bit b uniformly from {0, 1}.

2. If b = 0, M does the following:

(i) It sets Pj = G1, Hp(Pj) = G2 (using the random oracle assumption), and Ij = G3.

(ii) It chooses random group elements Cj and C ′

j and sets the public key list R = (Pj , C
′

j − Cj).

13

(iii) It chooses scalars c0, s0, s1 uniformly from Z
+

l and calculates L1, R1 as follows.

L0 = s0G+ c0Pj ,

R0 = s0Hp(Pj) + c0Ij ,

c1 = Hs(R,m, L0, R0), (23)

L1 = s1G+ c1(C
′

j − Cj),

R1 = s1Hp(C
′

j − Cj) + c1Ij .

(iv) It sets the random oracle output Hs(R,m, L1, R1) to be equal to c0.

(v) It sets σj = (Ij , c0, s0, s1) which will pass the linkable ring signature verification algorithm for the public

key list R.

(vi) It chooses scalars d0, t0, t1 uniformly from Z
+

l and calculates S1 for public key list Q = (C ′

j , C
′

j −Cj) as

follows.

S0 = t0G+ d0C
′

j ,

d1 = Hs(Q,m, S0), (24)

S1 = t1G+ d1(C
′

j − Cj),

(vii) It sets the random oracle output Hs(Q,m, S1) to be equal to d0.

(viii) It sets γj = (d0, t0, t1) which will pass the ring signature verification algorithm for the public key list Q.

3. If b = 1, M does the following:

(i) It chooses a random group element Cj and sets C ′

j = Cj +G1.

(ii) It sets Hp(C
′

j − Cj) = G2 (using the random oracle assumption) and Ij = G3.

(iii) It chooses a random group elements Pj and sets the public key list R = (Pj , C
′

j − Cj).
(iv) For public key list R, it generates the linkable ring signature σj = (Ij , c0, s0, s1) using the same procedure

as the b = 0 case.

(v) For public key list Q = (C ′

j , C
′

j − Cj), it generates the ring signature γj = (d0, t0, t1) using the same

procedure as the b = 0 case.

4. M obtains the output b′ = A(Pj , Cj , C
′

j , γj , σj ,m). If b′ = b, then M estimates the bit d as 1. Otherwise, M
estimates d as 0.

When d = 1, the triple (G1, G2, G3) is a DH triple and the Ij in the linkable ring signature σj constructed by

M is the key image of one of the keys in R. By (22), the adversary A can identify which key was used with a

probability which is non-neglibly better than 1

2
. This in turn implies that M can correctly estimate d with the same

probability. So we have

Pr [M(G1, G2, G3) = 1 | d = 1] = Pr[b′ = b | d = 1]

>
1

2
+

1

f(λ)
. (25)

When d = 0, G3 (and consequently Ij) is independent of (G1, G2). As the inputs Pj , Cj , C
′

j , γj , σj to A or their

components are either uniformly random group elements/scalars or outputs of random oracles, the adversary can

only estimate the bit b with probability 1

2
. So we have

Pr [M(G1, G2, G3) = 0 | d = 0] = Pr[b′ 6= b | d = 0]

=
1

2
. (26)

As d was chosen uniformly from {0, 1}, averaging (25) and (26) we get

Pr [M(G1, G2, G3) = d] >
1

2
+

1

2f(λ)
. (27)

This contradicts the DDH assumption as M is a PPT adversary.

14

REFERENCES

[1] Wikipedia contributors. Mt. Gox — Wikipedia, the free encyclopedia. [Accessed 15-Nov-2018]. [Online]. Available:
https://en.wikipedia.org/wiki/Mt. Gox

[2] “Cryptocurrency anti-money laundering report,” 2018 Q3 Report, CipherTrace Inc, Oct. 2018. [Online]. Available:
https://ciphertrace.com/crypto-aml-report-2018q3

[3] Monero website. [Online]. Available: https://getmonero.org/
[4] Z. Wilcox, “Proving your Bitcoin reserves,” Bitcoin Talk Forum Post, May 2014. [Online]. Available:

https://bitcointalk.org/index.php?topic=595180.0
[5] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provisions: Privacy-preserving proofs of solvency for Bitcoin exchanges,”

in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (ACM CCS), New York, NY, USA,
2015, pp. 720–731.

[6] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” in Advances in Cryptology — CRYPTO ’91.
Springer, 1992, pp. 129–140.

[7] N. v. Saberhagen, “CryptoNote v 2.0,” White paper, 2013. [Online]. Available: https://cryptonote.org/whitepaper.pdf
[8] J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous anonymous group signature for ad hoc groups,” in Australasian Conference

on Information Security and Privacy. Springer, 2004, pp. 325–335.
[9] S. Noether and A. Mackenzie, “Ring confidential transactions,” Ledger, vol. 1, pp. 1–18, 2016.

[10] G. Maxwell, “Confidential transactions,” 2015. [Online]. Available: https://people.xiph.org/∼greg/confidential values.txt
[11] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-security signatures,” Journal of Cryptographic

Engineering, vol. 2, no. 2, pp. 77–89, Sep 2012.
[12] M. Abe, M. Ohkubo, and K. Suzuki, “1-out-of-n signatures from a variety of keys,” in Advances in Cryptology — ASIACRYPT 2002.

Springer, 2002, pp. 415–432.
[13] J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous anonymous group signature for ad hoc groups,” Cryptology ePrint

Archive, Report 2004/027, 2004, https://eprint.iacr.org/2004/027.
[14] MProve simulation code. [Online]. Available: https://github.com/avras/monero/tree/v0.13.0.4-mprove/tests/mprove
[15] A. Kumar, C. Fischer, S. Tople, and P. Saxena, “A traceability analysis of Monero’s blockchain,” in European Symposium on Research

in Computer Security – ESORICS 2017, 2017, pp. 153–173.
[16] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava, K. Hogan, J. Hennessey, A. Miller, A. Narayanan, and N. Christin,

“An empirical analysis of traceability in the Monero blockchain,” Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 3,
pp. 143–163, 2018.

https://en.wikipedia.org/wiki/Mt._Gox
https://ciphertrace.com/crypto-aml-report-2018q3
https://getmonero.org/
https://bitcointalk.org/index.php?topic=595180.0
https://cryptonote.org/whitepaper.pdf
https://people.xiph.org/~greg/confidential_values.txt
https://eprint.iacr.org/2004/027
https://github.com/avras/monero/tree/v0.13.0.4-mprove/tests/mprove

	Introduction
	Related Work
	Overview of Monero
	Monero Public Keys and One-Time Addresses
	Linkable Ring Signatures
	Pedersen Commitments and Range Proofs

	MProve Proof of Assets Protocol
	Ring Signatures
	Proof Generation
	Proof Verification
	Security Properties
	Performance
	Drawback

	Application to Bitcoin Exchanges
	Appendix A: Ring Signature Generation in MProve
	Appendix B: Linkable Ring Signature Generation in MProve
	Appendix C: Proof of Theorem 3
	References

