热力学抑制剂与 CO₂ 同注开采天然气水合物的 实验研究

Khlebnikov V.N. Gushchin P.A. Antonov S.V. Mishin A.S. 梁 萌 Khamidullina I.V. Zobov P.M. Likhacheva N.V. Semenov A.P. Vinokurov V.A.

俄罗斯古勃金国立石油天然气大学

摘 要 为解决 CO₂ 置换法开采天然气水合物(以下简称水合物)过程中出现的置换速率慢、置换程度不高等问题,提出了将 CO₂ 置换法与热力学抑制剂法组合使用的技术思路,即"抑制剂—置换法"。在实验室利用填砂管模型在岩心驱替装置上测定了 CO₂ 与不同浓度的甲醇溶液在同注的情况下 CH₄ 水合物的分解效果。结果表明:①甲醇的浓度对水合物开采效果起着决定性作用,甲醇 溶液浓度越小, CH₄ 水合物的分解越弱,其变化趋势表现为以 CH₄ 水合物的分解为主导转变为以 CO₂ 水合物的生成为主导;②当 CO₂ 与浓度为 20.8% 的甲醇溶液同注时,主要发生 CH₄ 水合物的分解, CO₂ 水合物几乎不生成;③当 CO₂ 与浓度为 15% 的甲醇溶 液同注时,既发生 CH₄ 水合物的分解,也发生 CO₂ 水合物的生成;④当 CO₂ 与浓度为 10% 的甲醇溶液同注时,CH₄ 水合物几乎不 分解,主要发生 CO₂ 水合物的生成。结论认为,"抑制剂—置换法"可促进 CH₄ 水合物的分解,提高其开采效率。 关键词 热力学抑制剂 二氧化碳 同时注入 天然气水合物 开采 置换速率 置换程度

DOI: 10.3787/j.issn.1000-0976.2017.12.006

Simultaneous injection of thermodynamic inhibitors and CO₂ to exploit natural gas hydrate: An experimental study

Khlebnikov V.N., Gushchin P.A., Antonov S.V., Mishin A.S., Liang Meng, Khamidullina I.V., Zobov P.M., Likhacheva N.V., Semenov A.P. & Vinokurov V.A. (Gubkin Russian State University of Oil and Gas <National Research University>, Moscow 119991, Russia)

NATUR. GAS IND. VOLUME 37, ISSUE 12, pp.40-46, 12/25/2017. (ISSN 1000-0976; In Chinese)

Abstract: When the CO_2 replacement method is used to exploit natural gas hydrate (NGH), the replacement rate and the replacement degree are both low. In view of this, this paper proposed an inhibitor–replacement method, with the technical idea of combining the CO_2 replacement method with thermodynamic inhibitor method. The dissociation results of CH_4 hydrate, while CO_2 and methanol solutions with different concentrations were injected simultaneously, were experimentally measured in a core displacement device by using the sand packed tube model. And the following experimental results were obtained. First, the concentration of methanol solution plays a decisive role in NGH exploitation. The lower the concentration of methanol solution, the weaker the dissociation of CH_4 hydrate. And it is dominantly transformed from the dissociation of CH_4 hydrate to the generation of CO_2 hydrate. Second, when a mixed CO_2 -methanol solution with a concentration of 20.8% is injected simultaneously, the main process is the dissociation of CH_4 hydrate is dissociated and CO_2 hydrate is generated. And fourth, When CO_2 is injected simultaneously together with the methanol solution with a concentration of 15%, CH_4 hydrate is dissociated and CO_2 hydrate is dominant, and CH_4 hydrate is hardly dissociated. It is concluded that the proposed inhibitor–replacement method can promote the dissociation of CO_2 hydrate, increasing its exploitation efficiency.

Keywords: Thermodynamic inhibitor; Carbon dioxide; Simultaneous injection; Natural gas hydrate; Exploitation; Replacement rate; Replacement degree

基金项目:俄罗斯联邦教育与科学部基金项目"用于天然气水合物开采及温室气体封存的复合抑制剂的开发"(编号: 14.577.21.0233;唯一识别码:RFMEFI57716X0233)。

作者简介:Khlebnikov V.N., 1957年生,教授,博士生导师,博士,本刊第八届编委会委员;迄今已发表论文240余篇、发明专利40余项;主要从事提高石油天然气采收率方面的研究工作。地址:(119991)俄罗斯莫斯科市列宁大街65号。电话:(499)5078693。 ORCID:0000-0003-2321-3140。E-mail:khlebnikov_2011@mail.ru

通信作者:梁萌,1987年出生,博士;主要从事提高油气采收率方面的研究工作。地址:(119991)俄罗斯莫斯科市列宁大街65号。 电话:(499)5078693。ORCID:0000-0003-4129-7691。E-mail:liangmeng@mail.ru

天然气水合物(以下简称水合物)的商业开采 受到了全球的关注,日本、中国先后在海域进行了 水合物的成功试采。目前关于水合物的研究主要集 中于物理化学性质研究和计算机模拟^[1,2],有必要加 强其开采方法的研究。

水合物的开采方法主要有:降压法、热刺激法、 降压与热刺激组合法、注热力学抑制剂法、降压与 注热力学抑制剂组合法^[3]、CO₂置换法、注热力学 抑制剂与CO₂置换组合法(以下简称"抑制剂一置 换法")^[4]。目前研究热点集中在CO₂置换法及基于 CO₂置换法的各类组合法。在抑制剂一置换法中,将 进度缓慢的CO₂—CH₄置换过程替换为2个快反应 的过程:①热力学抑制剂下CH₄水合物的快速分解, ②CO₂水合物的生成,从而解决了单一的CO₂置换 法所存在的置换速率低、置换程度不高等问题^[5-8]。

本文作者早期曾提出将热力学抑制剂(如甲醇) 和 CO₂ 连续注入来开采水合物的方案^[4]。石油开采 行业的经验表明,水气混合物具备特定的流变性能,可更好地调节驱替前缘^[9],在很多情况下注入水一气 混合体系常表现出比交替注水、注气的效果更好。本 文的研究目的在于考察热力学抑制剂和 CO₂ 同注法 在水合物开采中的应用效果。

1 实验部分

1.1 水合物地层模型及实验装置

水合物地层模型的制备,选河砂作为多孔介质, 填砂管长度为35 cm,直径为3 cm。首先对填砂管抽 真空,用蒸馏水饱和,空气吹扫创建束缚水饱和度。 称重并计算模型的孔隙体积和束缚水饱和度。在实验 8-2、8-3 中使用了同一个填砂管,实验过程中没有对 填砂管进行拆卸,地层模型的重建过程如下:注入 蒸馏水清洗模型,60 ℃下烘干,然后空气吹扫至质 量不变。水合物地层模型参数如表1所示。

表1 水合物地层模型(填砂管)性质参数

实验 序号	初始气相渗透率 / D	初始含水 饱和度	生成水合物所需 CH ₄ 消耗量 /mol	含水合物填砂管 气相渗透率 /D	H ₂ O 与 CH ₄ 摩尔比	孔道体积/ mL
3	1.75	55.7%	0.251 4	$0.2 \sim 0.3$	10.0	81.5
8-2	1.67	51.2%	0.286 6	_	7.9	80.1
8-3	1.69	53.3%	0.290 4	pprox 0.2	8.2	80.0

所有实验均在改装的岩心驱替装置 UIK-5^[4]上 进行。热力学抑制剂选择甲醇溶液,用蒸馏水配制。 利用理想气体状态方程计算气体的量。

1.2 实验方法

主要实验步骤如下:

 1)在地层模型中合成 CH₄ 水合物。在-15 ~ -20 ℃下将地层模型冷冻不少于 10 ~ 12 h,然后快速抽干空气,恢复至室温,安装至驱替装置上,缓慢注入 CH₄ 饱和地层模型至所需压力,将模型冷却 至实验温度,通过记录用来维持系统压力所补偿的 液压油的量来确定水合物生成过程中 CH₄ 的消耗量。

在水合物合成之前(室温下)和之后(实验温 度下)地层模型均进行了 CH₄ 渗流操作,以测定模 型的气相渗透率, CH₄ 黏度数据引自本文参考文献 [10]。然后给地层模型降压,以使 CO₂ 在实验温度与 压力下处于气相状态。

2)注入热力学抑制剂溶液段塞。含 CH₄ 水合物 的多孔介质具有较低的渗透率,开始时先注入甲醇溶 液段塞,以分解地层模型入口处的 CH₄ 水合物堵塞块, 为后续流体在多孔介质中的流动创建渗流通道。

3)利用双泵同时注入热力学抑制剂和 CO₂。热 力学抑制剂溶液和 CO₂分装在两个带活塞的柱状容 器中,通过三通阀将上述流体注入地层模型。由于 多孔介质是良好的气液分散介质^[9],所以在模型入口 没有安装专门的气液分散装置。

4)将地层模型恢复至室温,热分解剩余水合物。 在实验 8-2 和 8-3 的最后热分解阶段,在出口端利用 氢氧化钠溶液吸收分解出的 CO₂,以确定剩余水合物 中 CH₄ 的含量。

实验流程如图1所示。

2 实验结果与讨论

抑制剂一置换法的本质:在热力学抑制剂存在 的条件下 CO₂ 水合物比 CH₄ 水合物具有更高的稳定 性^[11],因此可设计一种 CH₄ 水合物分解与 CO₂ 水合 物生成同时进行的过程。CH₄ 水合物分解为吸热过程, CO₂ 水合物生成为放热过程,热效应上可实现互补。

图1 实验流程图

 $CH_4 \cdot mH_2O(solid) \rightarrow CH_4(gas) + mH_2O(liquid)$ $\Delta H > 0$

 $CO_2(gas) + nH_2O(liquid) \rightarrow CO_2 \cdot nH_2O(solid)$ $\Delta H < 0$

本文参考文献 [11-12] 中罗列了甲醇溶液中 CH₄ 水合物和 CO₂ 水合物稳定存在的条件,但都是利用 常规高压反应釜在相平衡条件下获得的。而在地层 模型的多孔介质中,甲醇浓度、CO₂ 和 CH₄ 的分压、 多孔介质中水合物的饱和度、温度等诸多实验参数 会随时变化,并沿着地层模型的轴向发生变化。因 此初始研究阶段优先选择驱替实验手段,这样更加 接近水合物存在的真实地层条件。

2.1 实验 3: 甲醇溶液(浓度为 20.8%) + CO₂

实验3研究了浓度为20.8%的甲醇溶液和CO₂ 同注情况下CH₄水合物的分解过程,同注实验结果 如图2所示。含CH₄水合物的地层模型制备完毕后, 向其中注入体积为0.1 PV浓度为20.8%的甲醇溶液 段塞,地层模型出口释放出少量气体。暂停,进行 CO₂和甲醇溶液注入的准备工作,暂停期间模型出口 持续有气体放出。然后用双泵向地层模型同时注入 甲醇溶液和 CO₂ 气体,发现地层模型入口与出口之间的压差持续升高至 0.160 4 MPa,说明在甲醇溶液的抑制作用下 CH₄ 水合物发生分解,在多孔介质中形成了具有较高驱替阻力的气液混合物。随着液体突破地层模型,驱替压差回落。后续的驱替实验在较低的压差下进行,并且在地层模型出口不断有气液混合物流出。由图 2 可以看出,流体的注入速度始终小于模型出口流体的流出速度,说明在驱替过程中 CH₄ 水合物一直在分解。

上述实验结束后为了驱替出地层模型中的气液 混合物,后续注入了矿化水(密度为1010 kg/m³的 氯化钠溶液)。发现地层模型出口不断有气体放出, 并且温度下降,这些均表明剩余水合物发生了分解。 在水驱的初期阶段驱替压差增至最大,之后持续减 小。水驱实验后地层模型的含水饱和度由59.6%增 加至77.7%,也说明持续释放的气体有一部分来源于 多孔介质中含气饱和度的降低。

最后,将地层模型恢复至室温,热分解剩余的 水合物,共释放出 0.079 mol 气体。

整个实验过程共向地层模型注入 CH4 和 CO2 共

图 2 甲醇溶液(浓度为 20.8%)和 CO₂同时注入曲线图

 $\cdot 43 \cdot$

计 0.393 7 mol, 采出气体 0.419 1 mol。考虑到实验前 后多孔介质含水饱和度从 55.7% 升至 77.7%, 换算为 气体减少量为 0.024 3 mol。对整个过程进行气体的物 质平衡计算,结果为: 100× 0.393 7 0.419 1-0.024 3 =99.7%, 可认为注入与采出过程中气体物质是守恒的。

在甲醇溶液与 CO₂ 气体同注阶段,地层模型中 同时发生着 CH₄ 水合物的分解与 CO₂ 水合物的生成, 而地层模型流体的流出速率与注入速率的差异则由 上述两过程相互调节。由图 2 可以看出,在同时注 浓度为 20.8% 的甲醇溶液和 CO₂ 时,流体的流出速 率显著高于注入速率,说明 CH₄ 水合物的分解速率 要远大于 CO₂ 水合物的生成速率,即主要发生的是 CH₄ 水合物的分解,而气体的采出量远大于注入量 也印证了这一点。但具体的 CH₄ 水合物的分解量与 CO₂ 水合物的生成量在实验 3 中没有定量测得,所 以为了更准确地对比 CH₄ 水合物的分解量与 CO₂ 水 合物的生成量,在接下来的实验 8-2 和 8-3 中均对采 出气进行了氢氧化钠溶液吸收,以除去其中所含的 CO₂。另外,实验 3 也表明了矿化水可用作 CO₂ 与甲 醇混合物段塞的推进介质。

实验3作为首次进行的水合物热力学抑制剂和 CO₂同注实验,驱替实验结果并没有完全实现良好的 可重复性,如制备的地层模型原始渗透率,合成的 CH₄水合物量、含水合物地层模型的渗透率等参数 有较大差异。这是由于地层模型准备过程的复杂性 及繁琐性造成的,其中的不确定性主要体现在以下3 个方面:

1)无法确定模型中剩余水的分布状况以及是否

分布均匀,这就可能导致后续生成的 CH₄ 水合物在 地层模型中分布不均匀。

2)多孔介质条件下 CH₄ 水合物的生成带有很大的随机性,从而造成每次实验水合物的生成量及地 层模型渗透率的不确定性。

3)向非均质的地层模型同时注甲醇与 CO₂ 同样 给实验的不确定性带来影响。

笔者期望后续的研究可以通过优化实验方法(如利用同一个填砂管模型、优化操作步骤)来达到驱替实验良好的可重复性^[13]。接下来的实验研究表明, 从定性及半定量的层面来看,实验的可重复性良好, 可用于对比性研究。

2.2 实验 8-2: 甲醇溶液 (浓度为 15%) + CO₂

在实验3中使用浓度为20.8%的甲醇溶液时, 主要发生的是CH₄水合物的分解,接下来研究了较 低浓度甲醇溶液与CO₂共注的情况。地层模型按照 上述的方法制备,首先向含CH₄水合物的地层模型 注入0.2 PV浓度为15%的甲醇溶液段塞。发现压差 持续上升,并伴有气体流出。当甲醇溶液注入量达到 0.11~0.12 PV 后,地层模型的温度开始下降,说明 了热力学抑制剂作用下CH₄水合物发生分解。

然后利用双泵向地层模型同时注入 CO₂ 和浓度 为 15% 的甲醇溶液,注入速度分别设定为 15 mL/h 和 3 mL/h,结果如图 3 所示。从开始至注入体积达 0.65 ~ 0.75 PV,地层模型温度从 1.21 ~ 1.24 ℃升至 1.63 ℃,表明有 CO₂ 水合物生成。并且温度上升的 同时观察到有大量气体自地层模型出口流出,证明了 CH₄ 水合物的持续分解。由此可以看出,CO₂ 水合物 的生成和 CH₄ 水合物的分解发生在地层模型的不同部

图 3 甲醇溶液 (浓度为 15%)和 CO₂ 同时注入曲线图

位,即在入口处发生 CO₂ 水合物生成,在地层模型内部主要发生 CH₄ 水合物的分解。实验结束阶段温度降至 1.41 ℃,在此期间尽管地层模型含水饱和度从71.2%降至 51.1%,但仍发现了压差增加,表明驱替阻力增大,渗透率减小,说明了 CO₂ 水合物的生成。

气体总量平衡曲线表明,初始阶段地层模型出 口释放气体的量大于注入 CO₂ 的量。当流体注入体 积达到 0.85 PV 后,整个过程移向气体消耗过程。最 终气体的注入量和释放量的差值为 0.018 8 mol。地 层模型含水饱和度的下降导致含气饱和度增加,气体 的增加量为 0.024 4 mol。气体总的注入和释放的差 值为 0.024 4 - 0.018 8 = 0.005 6 mol,也就是说 CO₂ 水合物的生成与 CH₄ 水合物的分解基本实现气体量 的互相抵消。

对剩余的水合物进行热分解,释放出 0.096 9 mol 的 CH₄,其中的 CO₂用碱溶液中和。向地层模型 中共注入气体 0.568 9 mol,采出 0.281 9 mol,也就 是在地层模型中转化为水合物及溶解在液体中的气 体为 0.568 9 -0.281 9 = 0.287 0 mol,其中 CO₂ 水合 物含的气体约为 0.287 0 -0.096 9 = 0.190 1 mol。因 为 CO₂ 易溶于甲醇溶液,因而所得的估算结果偏高,但证实了地层模型中 CO₂ 水合物的生成。

2.3 实验 8-3: 甲醇溶液(浓度为 10%) + CO₂

按照前述方法制备完水合物地层模型后,为分 解地层模型入口处的CH₄水合物堵块,向其中注入0.4 PV 浓度为 10% 的甲醇溶液。在甲醇溶液注入过程中 及暂停期间,从地层模型出口共释放出 0.128 0 mol 气体。然后向地层模型中同时注入 CO₂ 气体和甲醇 溶液,注入速度分别为 15 mL/h 和 3 mL/h。

实验结果如图 4 所示, CO₂ 的注入量和采出量 之间差异很大,证明地层模型消耗了 CO₂。开始时温 度增加,注入量达 0.7 PV 后,温度升至最大值 1.77 ℃, 表明有 CO₂ 水合物生成。随后由于 CO₂ 水合物的生 成速率逐渐降低,地层模型温度缓慢下降,最终降 至 1.54 ℃。

开始阶段多孔介质的含水饱和度随流体注入, 其变化不大,然后迅速增加并又迅速下降。在气体 渗流过程中压差的变化不大,但整个过程中压差的 绝对值却不低,最高达到 0.034 MPa。较高的驱替阻 力也说明了多孔介质中含水(含水合物)饱和度很大, 为 66.3%。

在实验的最后阶段,测定了剩余水合物中 CH₄ 的含量。剩余水合物分解产生的 CH₄ 为 0.162 6 mol,几乎等于 CO₂和甲醇溶液开始注入前 CH₄ 的量 (0.162 4 mol)。因此,在低浓度甲醇注入的条件下, 只发生 CO₂ 水合物的生成过程,而几乎不发生 CH₄ 水合物的分解。这可能是由于 CO₂ 水合物在 CH₄ 水 合物的表面生成,从而阻止了 CH₄ 水合物的继续分解, 或因为甲醇溶液被 CH₄ 水合物分解后的水稀释,导 致局部浓度变低,减弱了 CH₄ 水合物的分解进程。

图 4 甲醇溶液(浓度为 10%)和 CO₂ 同时注入曲线图

3 实验结果的对比分析

根据前文列出的反应机理,在热力学抑制剂溶

液存在的情况下 CH₄ 水合物的分解过程属于气体体 积增大的过程,而地层模型中 CO₂ 水合物的生成过 程则属于气体体积减小的过程。基于此,对各实验 的甲醇溶液与 CO₂ 同注阶段进行气体采出量与气体 注入量的分析与比较。

实验 3 中,在高浓度的甲醇溶液(浓度为 20.8%)与 CO₂ 同注阶段,注入 CO₂ 的量为 0.142 3 mol,采出的混合气为 0.263 7 mol。而从物料衡算来 看,流体的流出=流体的注入+ CH₄ 水合物的分解一 CO₂ 水合物的生成,所以本实验中 CH₄ 水合物的分解 解量比 CO₂ 水合物的生成量高出 0.121 4 mol,该部 分 CH₄ 约占甲醇与 CO₂ 共注前 CH₄ 水合物中 CH₄ 量 的 52%,说明 CH₄ 水合物实际分解率更高。虽然本 实验没有确定 CO₂ 水合物的生成量,但这足以说明 该过程中 CH₄ 水合物分解的量远大于被地层模型吸 收的 CO₂ 的量,即主要发生 CH₄ 水合物的分解。

实验 8-2 中,当甲醇浓度降为 15% 时, CO₂ 注 入量为 0.261 4 mol,而采出气 0.242 6 mol,流体的 流出速率与注入速率基本相同(图 3),说明 CO₂ 水 合物的生成与 CH₄ 水合物分解的量基本持平。剩余 水合物中 CH₄ 的量为 0.096 9 mol,而 CO₂ 和甲醇 溶液注入前 CH₄ 水合物中 CH₄ 的量为 0.268 2 mol, CH₄ 水合物的分解率达到 64%。剩余水合物中 CO₂ 水合物的含量为 0.190 1 mol。说明该过程既发生 CH₄ 水合物分解,又发生 CO₂ 水合物生成。

实验 8-3 中甲醇浓度为 10%,剩余水合物中 CH_4 的量为 0.162 6 mol,这与 CO_2 和甲醇溶液注入前的量(0.162 4 mol)几乎一致,也就是说 CO_2 与浓度为 10% 的甲醇溶液同注时,说明 CH_4 水合物几乎没有发生分解。 CO_2 注入量为 0.288 2 mol,采出气的量减少至 0.168 3 mol,剩余水合物中 CO_2 的含量为 0.119 9 mol。说明该过程不发生 CH_4 水合物的分解,只有 CO_2 水合物的生成。

通过对比实验 3、8-2 和 8-3,可以看出随着甲 醇溶液浓度从 20.8%降至 10%,CH₄ 水合物的分解 越来越弱,由此降低了 CO₂ 对 CH₄ 水合物的置换率。 整体变化趋势表现为以 CH₄ 水合物的分解为主导转 变为以 CO₂ 水合物的生成为主导。所以,甲醇溶液 的浓度对抑制剂一置换法开采水合物有极大的影响。

在上述实验中甲醇溶液和 CO₂ 同注前,为了在 低渗透率的 CH₄ 水合物地层中开辟渗流通道,注入 了热力学抑制剂段塞。优先选择使用浓甲醇溶液作 为热力学抑制剂段塞。因为随着 CH₄ 水合物的分解, 融水的稀释作用使甲醇浓度下降,会降低对后续 CH₄ 水合物堵块的分解效果。

对于连续注入热力学抑制剂和 CO₂ 开采水合物的方法^[4],本文的结果也具有借鉴意义,气体在地层

中的移动速度快于液体,所以必然存在着流体间的 相互混合。在抑制剂一置换法实际应用时,为充分 利用气液混合物的渗流性质,以达到提升地层波及 系数的目的,有必要将热力学抑制剂+CO₂的连续 注入和同注两方式相结合。

4 结论

1)本文提出了同时注入甲醇溶液和 CO₂ 开采 CH₄ 水合物的方法,即"抑制剂一置换法",其中甲 醇溶液的浓度对"抑制剂一置换法"的作用效果起 着决定性影响。

2) 实验结果表明:当 CO₂ 和浓度为 20.8%的 甲醇溶液同注时,主要发生 CH₄ 水合物的分解,而 CO₂ 水合物基本不生成;当 CO₂ 和浓度为 15% 的甲 醇溶液同注时,既发生 CH₄ 水合物的分解,又发生 CO₂ 水合物的生成;当 CO₂ 和浓度为 10% 的甲醇溶 液同注时,主要发生 CO₂ 水合物的生成,而 CH₄ 水 合物几乎不分解。

参考文献

- [1] Khlebnikov VN, Antonov SV, Mishin AS,梁萌, Khamidullina IV, Zobov PM,等.多孔介质中天然气水合物生成的主要影响 因素 [J]. 天然气工业, 2017, 37(5): 38-45.
 Khlebnikov VN, Antonov SV, Mishin AS, Liang Meng, Khamidullina IV, Zobov PM, et al. Major factors influencing the formation of natural gas hydrates in porous media[J]. Natural Gas Industry, 2017, 37(5): 38-45.
- [2] 樊栓狮, 王曦, 郎雪梅, 王燕鸿. 发电厂烟气开采天然气水合物过程能效模拟 [J]. 天然气工业, 2017, 37(5): 119-125.
 Fan Shuanshi, Wang Xi, Lang Xuemei & Wang Yanhong. Energy efficiency simulation of the process of gas hydrate exploitation from flue gas in an electric power plant[J]. Natural Gas Industry, 2017, 37(5): 119-125.
- [3] Kawamura T, Ohtake M, Yamamoto Y, Haneda H, Sakamoto Y & Komai T. Dissociation behavior of hydrate core sample using thermodynamic inhibitor—Part 3 Inhibitor or steam injection combined with depressurization and high-concentration inhibitor injection[J]. International Journal of Offshore and Polar Engineering, 2010, 20(2): 125-131.
- [4] Khlebnikov VN, Antonov SV, Mishin AS, Bakulin DA, Khamidullina IV, 梁萌,等.一种新型 CO₂ 置换 CH₄ 水合物的开采方法 [J]. 天然气工业, 2016, 36(7): 40-47.
 Khlebnikov VN, Antonov SV, Mishin AS, Bakulin DA, Khamidullina IV, Liang Meng, et al. A new method for the replacement of CH₄ with CO₂ in natural gas hydrate production[J]. Natural Gas Industry, 2016, 36(7): 40-47.
- [5] Jadhawar PS, Yang Jinhai, Jadhawar J & Tohidi B. Preliminary

experimental investigation on replacing methane in hydrate structure with carbon dioxide in porous media[C]//5th International Conference on Gas Hydrates. Trondheim, Norway: Tapir Academic Press, 2005.

- [6] Ota M, Saito T, Aida T, Watanabe M, Sato Y, Smith R L Jr, et al. Macro and microscopic CH₄–CO₂ replacement in CH₄ hydrate under pressurized CO₂[J]. AIChE Journal, 2007, 53(10): 2715-2721.
- [7] Воронов ВП, Городецкий ЕЕ, Муратов АР & Сафонов СС. Экспериментальное исследование процесса замещения метана в газовом гидрате углекислым газом[J]. Доклады академии наук, 2009, 429(2): 255-259.
- [8] Zhou Xuebing, Liang Deqing, Liang Shuai, Yi Lizhi & Lin Fuhua. Recovering CH₄ from natural gas hydrates with the injection of CO₂-N₂ gas mixtures[J]. Energy & Fuels, 2015, 29(2): 1099-1106.

- [9] Полищук АМ, Хлебников ВН, Мишин АС, Антонов СВ, Кокорев ВИ, Дарищев ВИ, и др. Экспериментальное исследование механизма фильтрации водогазовых смесей[J]. Вестник ЦКР Роснедра, 2012(6): 8-14.
- [10] Загорученко ВА & Журавлев АМ. Теплофизические свойства газообразного и жидкого метана[М]. Москва: Издательство стандартов, 1969.
- [11] Haghighi H. Phase equilibria modelling of petroleum reservoir fluids containing water, hydrate inhibitors and electrolyte solutions[D]. Edinburgh: Heriot-Watt University, 2009.
- [12] Avlonitis DA. Thermodynamics of gas hydrate equilibria[D]. Edinburgh: Heriot-Watt University, 1992.
- [13] Лозин ЕВ & Хлебников ВН. Применение коллоидных реагентов в нефтедобыче[М]. Уфа: Башнипинефть, 2003.

(修改回稿日期 2017-10-30 编 辑 孔 玲)

国际能源署:中国将成全球天然气消费主推动力

据国际能源署最新发布的《世界能源展望 2017 中国特别报告》预计,到 2040 年,中国天然气需求量将超过 6 000×10⁸ m³,天然气在中国能源结构中的占比将从 2016 年的不足 6% 上升至 12%。

国际能源署执行干事法提赫·比罗尔指出,中国将成为全球清洁能源技术和天然气消费的主要推动力。在这两个方面,中国将对全 球产生深刻的影响。他说,现在中国的经济和能源政策正在发生变化,中国的蓝天保卫战将对能源政策带来影响。中国在北方城市推进 的"煤改气"是一个非常好的政策,但需要好的政策设计。

中国天然气市场增长潜力巨大,这一点已成为业内共识。比罗尔预计,受益于家庭采暖、工业生产和发电领域的需求,中国天然气 消费量将会大幅增长。但当前中国国内天然气产量有限,这意味着未来中国将会进口越来越多的天然气。

国际能源署预计,中国将在2020年左右成为世界最大的天然气进口国,在天然气市场上将发挥更为重要的影响。比罗尔说,天然 气的快速发展将推动中国能源系统的低碳化,不过在供应方面,中国页岩气资源能否满足大部分的需求尚不确定。他表示,很难说中国 非常规气的成本会不会大幅下降,技术可能会带来惊喜。

《世界能源展望 2017 中国特别报告》还认为:到 2040 年,中国天然气产量将从 2016 年的 1 400×10⁸ m³ 增至 3 400×10⁸ m³,天然 气产量增长主要来自非常规天然气中的页岩气;市场改革、成熟的常规油气产量和前景不明的页岩气是决定中国石油和天然气供应情况 的主要因素。

中国石油集团经济技术研究院党委书记钱兴坤近日在出席 2018 国际能源发展高峰论坛时也表示看好中国天然气的发展前景,他预 计 2017 年我国天然气消费量将增长 320×10⁸ m³。他表示,"煤改气"工程完成以后,我国天然气消费量仍有机会实现大发展。这取决于 天然气发电成本、燃气轮机和氢能等其他替代能源是否会实现突破。

国际能源署称,未来中国将成为世界上最大的原油进口国和天然气进口国,对供应中断、国际油价和地缘政治事件都会更加敏感。 比罗尔认为,要应对能源安全问题,中国需要找到减少国内石油消费量和降低油价的途径,中国的石油储备机制也会在很大程度上保障 石油供应安全。国际能源署也将与中国在石油安全和安全机制方面保持紧密关系。

据介绍,国际能源署和中国将在油气安全和改进电力市场设计等方面合作,双方还将在能效、碳捕获和封存、如何最优利用电力系 统和改进能源系统方面合作。