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Abstract

This text can be thought of an “external appendix” to the paper Sliding right into disaster:
Left-to-right sliding windows leak by Daniel J. Bernstein, Joachim Breitner, Daniel Genkin,
Leon Groot Bruinderink, Nadia Heninger, Tanja Lange, Christine van Vredendaal and Yuval
Yarom [1, 2], and goes into the details of

• an alternative way to find the knowable bits of the secret exponent, which is complete
and can (in rare corner cases) find more bits than the rewrite rules in Section 3.1 of [1],

• an algorithm to calculate the collision entropy H that is used in Theorem 3 of [1], and

• a proof of Theorem 3.

All errors, typos and irrelevancies in the present paper are purely Joachim Breitner’s fault, and
not of any of the other authors of [1, 2].

The Haskell implementation of algorithm can be found at https://github.com/nomeata/slidingright.

1 Knowing all knowable bits

Section 3.1 of [1] describes how to learn some bit of the secret exponent, given the sequence of
square and multiply operations performed by Algorithm 2, using four simple rewrite rules. It
turns out that these rules are not able to recover all known bits. Consider, for example, the bit
string

00010010001000100010001010000010001,

producing the sequence

ssssmsssmssssmssssmssssmssssmssmssssssmssssm

which is first converted to

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

and then rules 0–3 recover these bits:
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xxx1xx10xx1
a
xx
↑
x1

b
xxx1

c
xxx1

d
x1

e
00xxx1xxx1

But every bit sequence leading to the above sequence of squares and multiplies must have a 1 in
the position marked with an arrow!

To see why the most significant bit of the multiplier for multiplication b must be there, consider
the alternatives. It cannot be one bit earlier, as then it would be included in the window for a.
It also cannot be later, i.e. a multiplication with 3 or 1, as then the same would hold for c, and
hence d, which is not possible, as otherwise the multiplication at d would include the 1 at e.

These missed opportunities are rare and do not significantly affect the efficiency of the pruning,
but in the interest of completeness, we provide an algorithm to recover the bits which finds all
knowable bits.

1.1 Possible window widths

We can find out all knowable bits if we keep track of the possible widths of the multiplier of each
observed multiplication. Consider a multiplication at position i = 5, i.e. xxxx1xxxxx. For w = 4,
this corresponds to one of four cases:

Case 1: x1xx1xxxxx, multiplier width: 4
Case 2: xx1x10xxxx, multiplier width: 3
Case 3: xxx1100xxx, multiplier width: 2
Case 4: xxxx1000xx, multiplier width: 1

The key idea is now that multipliers do not overlap. More precisely, if the multiplier of the
multiplication at position i has width mi and the multiplier of the multiplication at position j
has width m j (with i > j), then

i+mi −w ≥ j+m j.

From this, we can derive a simple linear algorithm that calculates the possible multiplier widths
for each multiplication. We define

• m−
i to be the smallest possible width of the multiplication at position i, and

• m+
i to be the largest possible width of the multiplication at position i.

Let M = {k0,k1, . . . ,kn} be the positions of the multiplications, with k0 > ·· · > kM . Then

m−
ki
=

{
1, if i = n
max(1,ki+1 +m−

ki+1
+w−ki), otherwise, and

m+
ki
=

{
w, if i = 0
min(w,ki−1 +m+

ki−1
−w−ki), otherwise.

Note that m− can be calculated going from right to left, while m+ can be calculated going from
left to right.

2



Given m− and m+, we can calculate all the knowable bits of the input sequence. Let us represent
this by bi ∈ {0,1,x}, defined as follows:

bi =


1, if i ∈ M
1, else if j+m−

j −1= i = j+m+
j −1 for some j ∈ M

x, else if j+m−
j −1≤ i ≤ j+m+

j −1 for some j ∈ M

0 otherwise.

The first case corresponds to Rule 0 in Section 3.1 of [1] (last bit), the second to Rule 2 (first bit)
and the last case to Rules 1 and 3 (trailing and leading zeroes).

Theorem 1 This algorithm is correct and complete.

This means not only that the input sequence have bit i set according to bi, but also that if bi = x,
then there are two input sequence that produce the given sequence of squares and multiplies and
differ at bit i. In other words: All knowable bits are known.

PROOF (SKETCH) Correctness follows by construction of the algorithm. Completeness, because
for every unknown bit (x) we can construct two sequences, one with a 1 and one with a 0 in that
spot, that map to the same square-and-multiply sequence.

Example For the input above, with w = 4, we learn

Input: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
m−: 4 3 3 3 3 3 1 1 1
m+: 4 3 3 3 3 3 1 3 3
bi: 1xx11x101x101x101x101x101000xx10xx1.

1.2 Self-information

Calculating m+ and m− not only allows us to read off all knowable bits, it also allows us
to calculate the number of input sequences that produce the given sequence of squares and
multiplies.

We define the function f (i, z) to be the number of colliding sequences for the output including the
window at position ki, under the additional constraint that the earliest 1 occurs at position z. This
function is recursively defined (and admits to a straight-forward efficient dynamic programming
implementation). The base case is f (i, z)= 1 for i > n, otherwise we have

f (i, z)=
m+

ki∑
m=m−

ki

[ki +m−1≤ z] ·2max(0,m−2) · f (i+1,ki +m−1−w)

where

• the sum iterates over all possible multiplier widths at this position,
• the characteristic function selects those where the first 1 of the window is after z,
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• the power of two takes into account the unknown bits in this window,
• and the recursive call goes to the next window, updating the constraint on the next allowed 1.

The total number of colliding sequences is then f (0, l), where l is the length of the input, and the
self-information of the sequence is Is =− log ps =− log f (0,l)

2l .

Example For the example above, this yields 1408 possible input sequences, a self-information
of 24.5, and hence 0.70 bits of self-information per bit of input. Note that 1408 is not simply two
to the number of x: not all assignments to yield valid input sequences.

2 Calculating the collision entropy of a leak

From Theorem 3 of [1] we learn that the expected search tree size depends on the collision entropy
rate H of the square-and-multiply sequence. While we are not able to give a closed formula of H
in the window width w, we can calculate it for a given w. The individual steps are

1. Create a Mealy automaton that converts the bits of the secret exponent into a sequence of
squares and multiplies.

2. Turn this automaton into an equivalent Hidden Markov Chain, by delaying the output by
w bits.

3. Calculate the collision entropy of the Markov chain by finding the stationary distribution of
the colliding process.

Just as Theorem 3 applies to partial information beyond sliding windows, we believe that this
approach will be useful to analyze other information leaks.

2.1 A Mealy automaton

We can model the sequence of squares and multiplies performed by Algorithm 2 in [1] as a mealy
automaton with input alphabet Σ= {0,1} and output alphabet Γ∗ = {S,M}∗ (where M represents
a combined square-and-multiply sequence). Because the algorithm may scan up to the next w
bits, we can use the 2w−1 states S = {0, . . . ,2w−1 −1} to build the automaton in a straight-forward
manner, where the state number directly encodes the bits scanned:

State Input Output Next state
0 0 S 0
0 1 1

0< x < 2w−2 0 2 · x
0< x < 2w−2 1 2 · x+1

2w−2 ≤ x < 2w−1 0 SM(2 · x+1) 0
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0/MSSS1/SSSM 0/SSMS 1/SSSM 0/SMSS 1/SSSM

Figure 1: Mealy automaton, w = 4

Once w bits are scanned into x, the sequence of squares and multiplies corresponding to x is
printed, defined by

SM(x) :=Sw−i−1MSi,

where i is the position of the last 1 in x, and the algorithm continues again in state 0.

Some states are actually equivalent, such as 5 and 7 for w = 4, because the algorithm does not
distinguish between the bit sequence 101 and 111, and a standard automaton reduction algorithm
can coalesce these nodes. For w = 4, this the resulting automaton is shown in Figure 1.

2.2 Mealy automaton to Markov chain

Such a Mealy automaton is not yet ideal to analyze, in particular due to the varying length of
the output on each transitions. We would prefer to deal with a Markov chain where every state
corresponds to one exactly output symbol. While this is obviously not the case for the automaton
constructed above, which may have to scan w bits before producing output, we can make it so by
delaying the output of the bits by w−1 steps.
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Figure 2: Markov chain, w = 4
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In all generality: Given a Mealy automaton with state space S, input alphabet Σ, output alphabet
Γ∗, output function ρ : S×Σ→Γ∗ and transition function δ : S×Σ→ S, we can construct a Markov
chain with state space S′ := S×Γ∗ which has transitions

(γ1γ2, s)−→ (γ2ρ(s, i),δ(s, i))

for γ1 ∈Γ, γ2 ∈Γ∗, s ∈ S and i ∈Σ with probability 1
|Σ| . This is a hidden state Markov chain, where

only the first symbol γ1 of a state (γ1γ2, s) is visible. We restrict the Markov chain to the states
reachable from a sensibly chosen start state; in our case that is (Mw,0).

This process turns the mealy automaton from Figure 1 into the Markov chain shown in Figure 2.
The colors indicate the visible state of each node: green for M, blue for S.

At this point it becomes irrelevant which input bit (0 or 1) causes a transition, as we are interested
in the distribution of the output.

2.3 Collision entropy of a Markov chain

The final step is to calculate the collision entropy of a hidden Markov chain. To that end, we
construct a Markov chain that simulates the evolution of two independent instances of the given
Markov chain, find the stationary distribution of still-colliding states and calculate the probability
of the two Markov chains producing different output in the next step. More theoretical details
and generalizations of this novel approach can be found in [3].

We start with a Markov chain with state space S, transition probability p : S → S →R and visible
state ρ : : S →Γ.

The product Markov chain has state space S×S and transition probability

p
(
(s1, s2), (s′1, s′2)

)= p(s1, s′1) · p(s2, s′2).

We find a probability distribution P : C →R on the colliding states

C := {(s1, s2) ∈ S×S | ρ(s1)= ρ(s2)}

that is stationary in the sense that if the product Markov chain starts in this distribution, takes
a step and ends up in a state in C again, then it is again in this distribution. In other words, it
satisfies the equation

P(s)=

∑
s′∈C

P(s′) · p(s′, s)∑
s′,s∈C

P(s′) · p(s′, s)
.

for all s ∈ C. The denominator re-normalizes the distribution, as the next state may not be in
C. We can find this distribution as the eigenvector with the largest eigenvalue of the transition
matrix of the product Markov chain with all transitions outside of C set to zero. (In contrast to
the usual stationary distribution of a Markov chain, the eigenvalue will be smaller than 1.)

The collision probability rate is now simply the probability of the product Markov chain remaining
in C, and hence the collision entropy rate is:

H =− log
∑

s′,s∈C
P(s′) · p(s′, s).
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Figure 3: Collision entropy rate

2.4 Results

We have applied this process to both left-to-right and right-to-left sliding window leaks for various
window widths, and obtain the following results, which are also plotted in Figure 3. We can see
that for w = 4, compared to right-to-left, left-to-right hoists the collision entropy rate over the
threshold of 0.5, and for w = 5 moves it very close.

w 1 2 3 4 5 6 7
left-to-right 1.000 0.786 0.652 0.545 0.460 0.395 0.345
right-to-left 1.000 0.643 0.463 0.360 0.294 0.249 0.215

2.5 Why not Shannon entropy?

In Theorem 3 and this section, we are are concerned with the collision entropy, also known as as
Rényi entropy [5], rather than the more common Shannon entropy. Why is this the case? Let
us recall the definition of the Shannon entropy H1 and the collision entropy H2 for a random
variable X with px = P(X = x):

H1 :=−∑
x

px · log px H2 :=− log
∑
x

p2
x

We always have H2 ≤ H1, and equality for an uniformly distributed X .

Note that
∑

x p2
x = P(X1 = X2), the probability of two independent random variables with the

same distribution as X to coincide, hence the name collision entropy. And it is exactly when there
is a collision between the partial information from the actual secret key and from the guessed
suffix when the pruning algorithm will carry on.

More on the difference between the various entropy measures in the context of cryptography can
be found in [6].
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3 Proof of Theorem 3

We can prove Theorem 3 of [1] in a more general setting than just left-to-right leakage: We
assume an oracle that, given a hypothesized suffix p′ of dp of length n tells us whether this is
indeed a possible suffix. This framework allows us to model various forms of partial information
about dp, including randomly known bits and square and multiply sequences.

In notation: An(dp,d′
p) holds if the oracle does not refute the n least significant bits of d′

p as a
possible suffix of dp.

Assumption Our proof relies on these assumptions:

1. If we guessed d′
p and d′

q wrong, and the least significant wrongly guessed bit is at position
i, then we assume that the probability that the RSA equation

RSAn(dp,dq) := (edp −1+kp)(edq −1+kq)= kpkqN mod 2n

holds to be 2−(n−i).

2. In the above situation, we assume that the probability of the oracles for dp and dq to accept
the guesses after the first wrongly guessed bit are independent.

3. The probability of the oracle accepting an n-bit suffix where the last i bits are correct is
less than the probability of the oracle accepting a random (n− i)-bit suffix:

P(An(dp,d′
p) | last i bits of d′

p are correct)≤ P(An−i(dp,d′
p))

4. The probability of the oracle accepting a next bit is constant. In other words,

P(An(dp,dq))= 2−nH

for some H ∈ [0,1]. The constant H can be understood as the collision entropy rate of the
oracle.

It suffices if these assumptions hold for almost all n; if they do not hold for small n then the
inequality in Theorem 3 holds up to a constant factor.

Proof We use some additional notation: Let k be the key size, i.e. the lengths of both p, q ∈ {0,1}k.
We use (x, y) 6n= (x′, y′) to denote that the n least significant bits of x and x′ and of y and y′ are
equal, and that the n’th bit of either x and x′ or y and y′ differ.

In general, the size of a search tree with pruning is

S(dp,dq) :=
k−1∑
n=0

∑
d′

p,d′
q∈{0,1}n

[OKn(dp,dq,d′
p,d′

q)]

where the predicate OK is true if the least significant n bits of d′
p and d′

q are potentially correct
suffixes of the actual values dp and dq. In our case,

OKn(dp,dq,d′
p,d′

q) := An(dp,d′
p)∧ An(dq,d′

q)∧RSAn(d′
p,d′

q).
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This notion of size counts all nodes of the tree that are not pruned, i.e. excludes the leaves where
a contradiction is observed.

We can further split this sum up according to whether we guessed all bits correctly (in which case
[OKn(dp,dq,d′

p,d′
q)]= 1) or if not, when was the first bit that we guessed wrongly:

S(dp,dq)=
k−1∑
n=0

1+
n∑

i=0

∑
d′

p,d′
q∈{0,1}n

[(d′
p,d′

q) 6 i= (dp,dq)∧OKn(dp,dq,d′
p,d′

q)]

 .

Reordering the sum to iterate over the position of the wrongly guessed bit first, we get

S(dp,dq)= k+
k−1∑
i=0

k−1∑
n=i

∑
d′

p,d′
q∈{0,1}n

[(d′
p,d′

q) 6 i= (dp,dq)∧OKn(dp,dq,d′
p,d′

q)].

At this point we use the assumption that once bit i of dp or dq has been guessed wrong, the
following n− i bits pass the RSA check with uniform probability 2−(n−i) and furthermore that
the likelihood of the oracle to accept d′

p is independent of the oracle accepting d′
q. Formally, this

means that, over all keys dp and dq, we have

∑
d′

p,d′
q∈{0,1}n

P((d′
p,d′

q) 6 i= (dp,dq)∧OKn(dp,dq,d′
p,d′

q))

= ∑
d′

p,d′
q∈{0,1}n−i

2−(n−i) ·P(An−i(dp,d′
p)) ·P(An−i(dq,d′

q))

Plugged into the above, we get

E(S(dp,dq))= k+
k−1∑
i=0

k−1−i∑
n=0

∑
d′

p,d′
q∈{0,1}n

2−n ·P(An(dp,d′
p)) ·P(An(dq,d′

q))

≤ k+
k−1∑
i=0

k−1∑
n=0

∑
d′

p,d′
q∈{0,1}n

2−n ·P(An(dp,d′
p)) ·P(An(dq,d′

q))

= k ·
1+

k−1∑
n=0

∑
d′

p,d′
q∈{0,1}n

2−n ·P(An(dp,d′
p)) ·P(An(dq,d′

q))


By the last assumption this simplifies to

E(S(dp,dq))≤ k ·
1+

k−1∑
n=0

∑
d′

p,d′
q∈{0,1}n

2−n ·2−nH ·2−nH


= k ·

(
1+

k−1∑
n=0

2n·(1−2H)

)

= k ·
(
1+ 1−2k·(1−2H)

1−21−2H

)
.
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Figure 4: Validation of Theorem 3

Validation In order to empirically validate Theorem 3, we plot the predicted upper bound as
well as the measured tree sizes in Figure 4, with pruning based on

• randomly known bits, similar to the setting of [4],

• left-to-right sliding window sequences of squares and multiply of varying window window
width,

• a hypothetical leak where the attacker learns the number of set bits, but not their positions,
per fixed window.

We find that the graph does not refute our theorem.

The graph measures the tree size for 50 randomly chosen 1024 bit keys. The search was aborted
if the tree size exceeds 100,000 nodes. Note that close to H = 0.5 and further left, the plots show
the average search tree size over those attempts that finished within the limit.
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