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Abstract. We discuss several post-quantum authenticated key exchange protocols based on the
supersingular isogeny problem. Leveraging the design of the well-studied schemes by Krawczyk
(2003), Boyd et al. (2008), Fujioka et al. (2013), Krawczyk and Wee (2015), and others, we show
how to use the Supersingular Isogeny Diffie-Hellman (SIDH) and Supersingular Isogeny Key En-
capsulation (SIKE) protocols as basic building blocks to construct efficient and flexible authenti-
cated key exchange schemes featuring different functionalities and levels of security.
This note is also intended to be a “gentle” introduction to supersingular isogeny based cryptography,
and its most relevant constructions, for protocol designers and cryptographers.
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1 Introduction

Quantum-resistant cryptography (a.k.a. post-quantum cryptography) has recently experienced a signif-
icant growth of interest from industry and academia, motivated in part by the so-called “Post-Quantum
Cryptography Standardization” process recently launched by the National Institute of Standards and
Technology (NIST) [29]. This multi-year effort, whose goal is to select the next-generation of public-
key cryptographic algorithms that are resistant to both classical and quantum computer attacks, received
a total of 69 submissions [30] —the largest number of submissions in any of the open cryptographic
competitions organized by NIST. The various proposals include candidate algorithms for key encapsu-
lation mechanism (KEM), public-key encryption and digital signatures.

In the KEM category, the Supersingular Isogeny Key Encapsulation (SIKE) scheme [3] appears
as one of the most attractive candidates, thanks in part to featuring the smallest keys among all the
different post-quantum proposals. SIKE, which was designed by Costello, De Feo, Jao, Longa, Naehrig
and Renes, builds upon the increasingly popular Supersingular Isogeny Diffie-Hellman key exchange
(SIDH) protocol, a relatively young cryptographic primitive proposed by Jao and De Feo in 2011 [20].
The security of these primitives is based on the difficulty of computing isogenies between supersingular
elliptic curves and, hence, they inherit the rich arithmetic of elliptic curves.

In this work, we give a “gentle” introduction to supersingular isogeny based cryptography for pro-
tocol designers and cryptographers (see Section 2), and illustrate the use of the basic isogeny-based
primitives, namely SIDH and SIKE, by describing two families of authenticated key exchange proto-
cols from supersingular isogenies:

– SIDH-based key exchange protocols authenticated with digital signatures using the SIGMA pro-
tocol construction by Krawczyk [22]. We describe protocols that require 2 passes (server-only au-
thentication) or 3 passes (server-and-client authentication), achieve perfect forward secrecy (PFS),
provide different degrees of identity protection, and include protection against several attacks in-
cluding key-compromise impersonation and identity misbinding attacks. See Section 3.



– Implicitly authenticated key exchange protocols based on SIKE or a combination of SIDH and SIKE
using the constructions by Boyd et al. [5] and Fujioka et al. [16]. We describe protocols that require
between 1 and 3 passes and provide different levels of forward secrecy (no provision, with weak
PFS or with full PFS). See Section 4.

The security of these protocols is based on the powerful Canetti-Krawczyk (CK) model [6].
In Section 5 we present a brief comparison of the different schemes and their variants, and provide

some details about the expected performance. Finally, Appendix A discusses a straightforward adapta-
tion of the SIGMA-based variants using SIDH to the handshake protocol in TLS 1.3.

2 Preliminaries

The first part of this section sets the notation and describes SIDH and SIKE. The second part describes
some relevant background on authenticated key exchange protocols, including basic notions about the
CK model.

2.1 Supersingular Isogeny Diffie-Hellman key exchange (SIDH)

The SIDH key exchange protocol by Jao and De Feo [20] is based on the difficulty of computing
exponentially large-degree isogenies between supersingular elliptic curves. In this setting, these elliptic
curves are also required to have smooth order, which makes the corresponding smooth-degree isogenies
efficient to compute via composition of low-degree isogenies. As described in [14], such supersingular
elliptic curves of smooth order are easy to construct: let p be a prime of the form p = `eA

A `
eB
B f ± 1 for

two small primes `A and `B and an integer cofactor f ; then, define an elliptic curve E over Fp2 of order
(`eA

A `
eB
B f )2. It follows that E/[`eA

A ] and E/[`eB
B ] each contains `e−1(`+1) distinct cyclic subgroups of order

`e, for ` ∈ {`A, `B} and e ∈ {eA, eB}. Each cyclic subgroup corresponds to a different isogeny.
From now on, we will assume the parameterizations used in state-of-the-art realizations of SIDH [11,

12], which are based on 2- and 3-power degree isogenies. Let the starting supersingular curve be defined
by

E0/Fp2 : y2 = x3 + x,

where p = 2e2 3e2 − 1, i.e., we fix f = 1, `A = A = 2 and `B = B = 3.
We are now in position of describing the SIDH key exchange protocol. The public parameters are the

supersingular elliptic curve E0/Fp2 of order (2e2 3e3 )2, two independent points P2 and Q2 that generate
E0[2e2 ], and two independent points P3 and Q3 that generate E0[3e3 ]. Alice computes her keypair as
follows. She chooses the basis point R2 = P2 + [n2]Q2 of order 2e2 using a secret integer n2 ∈ Z/2e2Z.
Her secret key is computed as the degree-2e2 isogeny φ2 : E0 → E2 with kernel R2, and her public key
is the isogenous curve E2 together with the image points φ2(P3) and φ2(Q3). Similarly, Bob computes
his keypair as follows. He computes R3 = P3 + [n3]Q3 of order 3e3 using a secret integer n3 ∈ Z/3e3Z.
His secret key is then the degree-3e3 isogeny φ3 : E0 → E3 whose kernel is R3, and his public key
is E3 together with φ3(P2) and φ3(Q2). To compute the shared secret, Alice uses her secret integer
and Bob’s public key to compute the degree-2e2 isogeny φ′2 : E3 → E3,2 whose kernel is the point
φ3(P2)+[n2]φ3(Q2) = φ3(P2+[n2]Q2) = φ3(R2). Similarly, Bob uses his secret integer and Alice’s public
key to compute the degree-3e3 isogeny φ′3 : E3 → E2,3 whose kernel is the point φ2(P3) + [n3]φ2(Q3) =

φ2(R3). Finally, given that E3,2 and E2,3 are isomorphic, the common j-invariant j(E3,2) = j(E2,3) is used
as the shared secret.

Fix `,m ∈ {2, 3}, with ` , m. The two fundamental isogeny computations used in the key exchange
mechanism described above can be denoted as follows:

– isogen` outputs a public key pk`, given as inputs the public parameters and a secret integer s`.
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Public parameters: E0, P2,Q2, P3,Q3, e2, e3

Alice Bob

s2 ∈ K2
pk2 ← isogen2(s2)

pk2
−−−−−−−−−−−−−−−−−−−−−−−−−−→

s3 ∈ K3
pk3 ← isogen3(s3)

pk3
←−−−−−−−−−−−−−−−−−−−−−−−−−−

j← isoex2(pk3, s2) j← isoex3(pk2, s3)
Ks = H( j) Ks = H( j)

Fig. 1. (Ephemeral) SIDH key exchange — an unauthenticated key exchange with ephemeral keys. H is a hash
function.

– isoex` outputs a shared secret j, given as inputs the public parameters, a public key pkm and a
secret integer s`.

Figure 1 illustrates the flow of the SIDH protocol using the basic isogeny operations defined above.
In the remainder, and following [12][3], we will assume that the keyspace K2 for secret keys s2 corre-
sponds to integers in the range {0, 1, . . . , 2e2 − 1} and the keyspace K3 for secret keys s3 corresponds to
integers in the range {0, 1, . . . , 2blog2 3e3 c − 1}.

A distinctive feature of the SIDH protocol is that it resembles a DH-like flow: Alice and Bob can
send their public keys in any order or simultaneously. No other post-quantum key exchange algorithm
known in the literature has this flexibility. We should also remark that SIDH only works securely with
ephemeral keys. Galbraith et al. [17] showed that an active attacker can exploit the use of static keys in
order to gain access to the secret key. In practice, this means that keypairs generated by each party must
be discarded after use. To solve this problem, Costello et al. [3] recently designed an IND-CCA secure
key encapsulation mechanism (KEM) based on SIDH.

Supersingular Isogeny Key Encapsulation (SIKE). SIKE is an IND-CCA secure key encapsula-
tion mechanism based on SIDH that derives from a transformation by Hofheinz, Hövelmanns and
Kiltz [19] to an IND-CPA secure public-key encryption scheme [3]. SIKE consists of the triple KEM =

{KeyGen, Encaps, Decaps}, defined by Algorithms 1–3:

– KeyGen: given the public parameters as inputs, this function outputs a secret key sk3, which consists
of the concatenation of an n-bit random integer s and a random integer s3 ∈ K3, together with a
public key pk3.

– Encaps: given the public parameters and a public key pk3 as inputs, this function outputs a cipher-
text ct and a shared secret Ks .

– Decaps: given the public parameters, a keypair (sk3, pk3) and a ciphertext ct as inputs, Decaps
outputs a shared secret Ks if the ciphertext verifies correctly. Otherwise, the function outputs a
random value.

The public parameters are the same as SIDH’s (i.e., the supersingular elliptic curve E0/Fp2 of order
(2e2 3e3 )2, two independent points P2 and Q2 that generate E0[2e2 ], and two independent points P3 and
Q3 that generate E0[3e3 ]), together with an integer value n that corresponds to n ∈ {192, 256, 320}which,
in turn, corresponds to the three parameter sets SIKEp503, SIKEp751 and SIKEp964 described in [3]. It
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is conjectured that these parameter sets roughly match the brute-force security (classical and quantum)
of AES-128, AES-192 and AES-256, respectively.

The encapsulation and decapsulation consists, essentially, of an encryption/decryption procedure of
a message m hashed together with a public key pk3. In Algorithm 2, this message m is chosen randomly
such that m ∈ M = {0, 1}n. The three hash functions F,G and H that are used in SIKE are all instantiated
with the SHA-3 derived function cSHAKE256 [21].

Algorithm 1: SIKE’s key generation, KeyGen
Input: ()
Output: sk3 = (s, s3), and pk3

1 s3 ←R {0, 1, . . . , 2blog2 3e3 c − 1}
2 pk3 ← isogen3(s3)
3 s←R {0, 1}n

4 return sk3 = (s, s3), pk3

Algorithm 2: SIKE’s key encapsulation, Encaps
Input: pk3

Output: ct = (c0, c1), and Ks

1 m←R {0, 1}n

2 r ← G(m || pk3) mod 2eA

3 c0 ← isogen2(r)
4 j← isoex2(pk3, r)
5 c1 ← F( j) ⊕ m
6 Ks ← H(m || (c0, c1))
7 return ct = (c0, c1),Ks

Algorithm 3: SIKE’s key decapsulation, Decaps
Input: sk3 = (s, s3), pk3, and ct = (c0, c1)
Output: Ks

1 j← isoex3(c0, s3)
2 m′ ← F( j) ⊕ c1

3 r′ ← G(m′ || pk3) mod 2eA

4 c′0 ← isogen2(r′)
5 if c′0 = c0 then
6 Ks ← H(m′ || (c0, c1))
7 else
8 Ks ← H(s || (c0, c1))

9 return Ks
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Public parameters: E0, P2,Q2, P3,Q3, e2, e3, n

Alice Bob

(sk3, pk3)← KeyGen()
pk3

−−−−−−−−−−−−−−−−−−−−−−−−−−→
(ct,Ks)← Encaps(pk3)

ct
←−−−−−−−−−−−−−−−−−−−−−−−−−−

Ks ← Decaps(sk3, pk3, ct)

Fig. 2. SIKE key exchange — an unauthenticated key exchange using a KEM.

Figure 2 depicts a basic key exchange protocol based on SIKE. We remark that this scheme, as well
as the SIDH scheme from Figure 1, is only secure against passive attackers. In particular, these basic
protocols do not provide authentication and can be subjected to man-in-the-middle attacks. We discuss
several authenticated key exchange schemes that address this issue in Sections 3 and 4.

Security strength of SIDH and SIKE. The security of SIDH and SIKE is based on the hardness of the
supersingular isogeny Diffie-Hellman (SIDH) problem.

The SIDH problem. Given pk2 = isogen2(s2) and pk3 = isogen3(s3) for random secret values
s2 ∈ K2 and s3 ∈ K3, compute j = isoex2(pk3, s2) = isoex3(pk2, s3).

The best known attacks against the SIDH problem are claw-finding algorithms whose asymptotic
complexities are O(p1/4) and O(p1/6) for classical and quantum adversaries, respectively. These attacks
are generic instances to solve the claw problem. Although the public keys pk2 and pk3 in the SIDH
setting contain auxiliary information that is not available in the claw problem, to date no attack is able
to exploit such additional information against SIDH and SIKE. Accordingly, the security of the claw
problem and the SIDH problem are assumed to be equivalent.

There exist several computational problems adapted to the supersingular isogeny setting that are
used to provide the underlying security of various protocols. For example, in Section 3 we use the su-
persingular decision Diffie-Hellman (SSDDH) problem to prove security of the SIGMA based protocols
using SIDH. The reader is referred to [14, §5] for complete details about these different computational
problems.

In addition to the SIDH problem, SIKE’s security also relies on the security of a public-key en-
cryption scheme based on the classical hashed ElGamal scheme. This scheme converted to the setting
of supersingular isogenies is proved IND-CPA secure in the random oracle model in [3, Prop. 1] (see
also [14, Problem 5.4] for an alternative security proof in the standard model using the SSDDH prob-
lem). Finally, SIKE is proved IND-CCA secure in [3, Thm. 1] using a result by Hofheinz et al. [19].

2.2 Authenticated key exchange

In this section we give an informal review of the basic concepts related to the security of key exchange
protocols, closely following the security models introduced by Canetti and Krawczyk in [6] and [8]. For
complete details, the readers are referred to the original papers.

In this work, we adopt the following three core requirements that characterize a “secure key ex-
change protocol” in, arguably, most common settings [22]: (i) authentication, which refers to the ability
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of each party in a key exchange session to verify the identity of the peer; (ii) secrecy, which refers to the
inability of any third party to learn any information about a session key established between two other
parties; and (iii) consistency, which refers to the ability of each party in a key exchange session to know
with certainty the identity of the peer with which a session key is established.

We distinguish two main approaches to authenticating a key exchange: using digital signatures (e.g.,
the SIGMA protocols) or using implicitly-authenticated schemes (e.g., (H)MQV [26][23]).

Threat model. We consider an active, man-in-the-middle, attacker with full control of the commu-
nication links and capabilities for blocking, delaying, injecting and interleaving messages. We assume
that parties use some trusted mechanism, such as a certification authority, to bind their identities with
public keys. The corresponding long term private keys can come in the form of digital signature keys
(for schemes authenticated via signatures) or in the form of secret keys from a KEM (for implicitly-
authenticated schemes).

A relevant aspect in the CK model is to consider the possibility of leakage of either (i) the long-term
keys or (ii) some secret session-specific information (e.g., the ephemeral keys). In special, there are two
important security properties that are related to the effects of leakage of long-term keys: perfect forward
secrecy (PFS) and key-compromise impersonation (KCI) resilience.

In the case of PFS, if the long-term secret keys of one or more parties are compromised by an
adversary, PFS guarantees the secrecy of the session keys that were produced and erased from memory
before the leakage. There is also a weaker notion of PFS, referred to as weak perfect forward secrecy
(wPFS), which was advanced in [23]. wPFS guarantees that if the long-term secret keys of one or more
parties are compromised by an adversary, past session keys still remain secure against passive attackers.

In the case of KCI, it is said that a protocol is KCI resistant if it does not allow an adversary who
gained access to a party’s (say, A’s) long-term keys to impersonate other uncorrupted parties to A [26].

The security model in [8] also considers the effect of leakage of some secret session-specific in-
formation, e.g., the ephemeral keys. In such an event, if a key exchange session is compromised by an
attacker exploiting, for example, known-key attacks and replay attacks, the protocol should still guaran-
tee the secrecy of past sessions.

Finally, the consistency requirement in the security model requires the guarantee that session keys
are correctly binded to the corresponding peers. In particular, protocols should be secure against identity
misbinding attacks (a.k.a. unknown key share (UKS) attacks). Under this attack, two parties Alice and
Bob are able to compute the same session key, but while Alice is convinced that the key is shared with
Bob, Bob is made believe that his peer is a malicious party Eve.

There are other features that, even though are not part of the core requirements described above, can
be attractive in certain applications. For example, we mention identity protection and key confirmation.
It is said that a protocol provides key confirmation when it guarantees to a given party that its peer was
alive during the connection and was able to compute the session key.

Notation and presentation of protocols. For the remainder, we will represent the identities of the two
parties establishing a secure channel by A and B in protocol descriptions.

There are some additional cryptographic primitives that are required to assemble a full protocol. In
our case, this includes a pseudorandom function, a digital signature scheme, a message authentication
code (MAC) and a symmetric encryption primitive. In this work, a secure pseudorandom function is
denoted by PRF : K × {0, 1}∗ → Ko. Signature generation under a secret key sk is denoted by SIGsk(),
while a MAC under a key Ko is represented by MACKo (). Both the digital signature and MAC primitives
are assumed to be existentially unforgeable under chosen message attacks (EUF-CMA). Finally, the
notation {. . .}Ko using brackets is used to represent symmetric encryption under a key Ko.
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We emphasize that, throughout the paper, protocols are depicted in their simplest form, i.e., only
showing their “cryptographic skeleton”. That is, many elements that are required by real-world deploy-
ments are omitted for presentation purposes. This, for example, includes the omission of nonces, which
are typically used to guarantee freshness of messages, and session identifiers.

3 Sign-and-MAC authenticated key exchange protocols using SIDH

Digital signatures are a useful tool to implement the authentication functionality during the setup of a
secure channel. A representative family of protocols based on this premise is SIGMA [22]. The SIGMA
protocols, which are essentially Diffie-Hellman key exchange schemes authenticated via digital signa-
tures, provide many attractive security features, including perfect forward secrecy and different levels
of identity protection.

In this section, we describe SIDH-based key exchange protocols authenticated via digital signa-
tures, closely following the SIGMA paradigm. In the following, we fix the set of public parameters
{E0, P2,Q2, P3,Q3, eA, eB, n} described in Section 2.1. Keypairs {sk`,pk`} contain the parties’ long-term,
secret and public, signature keys.

The basic form of SIGMA without identity protection is described in [22, §5.1]. We begin by adapt-
ing this scheme to the setting of supersingular isogenies, and call the modified protocol SIGMA-SIDH.
This is depicted in Figure 3.

SIGMA-SIDH is a 3-pass authenticated key exchange scheme based on SIDH that naturally inherits
the attractive features found in SIGMA, among which we mention:

– The fresh generation (per session) of public/secret keypairs guarantees perfect forward secrecy.

Public parameters: E0, P2,Q2, P3,Q3, eA, eB, n

Alice Bob

skA, pkA static parameters skB, pkB

r2 ←R {0, 1}n

sA = PRF1(r2 || B) mod 2eA

epkA ← isogen2(sA)
epkA, nA

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
r3 ←R {0, 1}n

sB = PRF2(r3 || epkA) mod 2blog2 3eB c

epkB ← isogen3(sB)
j← isoex3(epkA, sB)
Km = PRF3( j)

epkB, B, nB, SIGskB (epkB, nA), MACKm (B)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

j← isoex2(epkB, sA)
Km = PRF3( j)

A, SIGskA (epkA, nB), MACKm (A)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ks = PRF4( j) Ks = PRF4( j)

Fig. 3. SIGMA-SIDH: a 3-pass key-exchange protocol based on SIDH with client-and-server authentication using
a sign-and-MAC approach. If authentication of Alice (client) is not required, the last Alice-to-Bob message can be
eliminated, turning the scheme into a 2-pass server-only authenticated protocol.
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– By including the value of each party’s ephemeral public key in the signed message, these public
keys get protected from modification or replacement.

– Message authentication codes (MACs) are used to bind the session key to the identity of each of the
protocol parties. This provides protection against identity misbinding attacks.

A difference with SIGMA is that SIGMA-SIDH does not require the inclusion of the peer’s public
key in a party’s signed message. Instead, SIGMA-SIDH mandates the use of a fresh nonce per session
(denoted by n`)1. Forcing the use of a fresh nonce guarantees protection against replay attacks, even in
the event of an implementation erroneously reusing the value of the (supposedly ephemeral) public key.

In the original version of the SIDH key exchange (see Fig. 1), the protocol is susceptible to the
catastrophic active attack by Galbraith et al. [17] if the secret/public keys are reused. An important
design element in SIGMA-SIDH to minimize the risk to such catastrophic attack is to hash the random
values (r2 or r3) together with Bob’s identity or Alice’s ephemeral public key (resp.). This is similar to
what is done at the beginning of SIKE’s encapsulation procedure (see Alg. 2). In this case, the basic idea
is to require some session-specific information to generate the secret values inputted to isogen`, with
the goal of disincentivizing implementers from caching the secret/public keypair. This measure also has
the positive side effect of slightly reducing the amount of randomness that is required to generate secret
values.

We remark that SIGMA-SIDH can be adapted to typical client-server scenarios in which only servers
are required to authenticate, by eliminating the very last client-to-server (i.e., Alice-to-Bob) message in
Figure 3. In this case, the first message from Alice would include (A, epkA, nA), and the scheme would
effectively become a 2-pass protocol. This server-only authenticated protocol would not be protected
against identity misbinding on Alice’s side, but this is by definition acceptable for applications that do
not require client’s authentication.

We comment that it is possible to use SIKE in place of SIDH in the scheme above. However, the
resulting protocol would be slightly slower, due to SIKE’s re-encryption operation during decapsula-
tion. Although the performance difference can be virtually eliminated if Alice caches her public key,
the protocol would no longer guarantee PFS if this is done. Moreover, the use of SIDH favors an imple-
mentation in which the initiator (Alice) is a small device, since in the SIDH case this party is required
to compute cheaper 2-power isogeny operations only (in contrast to the slightly more expensive isoex3
operation that the protocol initiator would need to compute during decapsulation if the protocol is in-
stantiated with SIKE).

SIGMA-SIDH with identity protection. The SIGMA-SIDH protocol described above does not protect
the identity of the parties establishing a secure channel, given that the identity information is simply sent
as plaintext. This could be a disadvantage in some applications. Following the SIGMA-I protocol [22],
it is easy to extend SIGMA-SIDH to protect Alice’s identity (initiator) against active attackers and Bob’s
identity from passive attackers. This variant, called SIGMA-I-SIDH, is depicted in Figure 4.

SIGMA-I-SIDH requires that each party’s identity be sent encrypted. Since Alice (initiator) sends
her identity in the last message, once Bob has been properly authenticated, her identity is protected
against active adversaries. In contrast, it is easy to see that Bob’s identity is only protected against pas-
sive attackers: if an attacker, Eve, replaces Alice’s first message epkA by a public key epkA′ , for which
she knows the secret key s′A, she can then use the generated key Ke′ to decrypt Bob’s response and access
his identity information.

1 Krawczyk [22] mentions that one must use either a fresh nonce or the party’s own public key (if chosen fresh)
in the signed message, leaving the decision to the protocol implementer.
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Public parameters: E0, P2,Q2, P3,Q3, e2, e3, n

Alice Bob

skA, pkA static parameters skB, pkB

r2 ←R {0, 1}n

sA = PRF1(r2 || B) mod 2eA

epkA ← isogen2(sA)
epkA, nA

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
r3 ←R {0, 1}n

sB = PRF2(r3 || epkA) mod 2blog2 3eB c

epkB ← isogen3(sB)
j← isoex3(epkA, sB)
Km = PRF3( j)
Ke = PRF4( j)

epkB, {B, nB, SIGskB (epkB, nA), MACKm (B)}Ke
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

j← isoex2(epkB, sA)
Km = PRF3( j)
Ke = PRF4( j)

{A, SIGskA (epkA, nB), MACKm (A)}Ke
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ks = PRF5( j) Ks = PRF5( j)

Fig. 4. SIGMA-I-SIDH: a 3-pass key-exchange protocol based on SIDH with identity protection and client-and-
server authentication using a sign-and-MAC approach. Alice’s identity is protected against active attacks, whereas
Bob’s identity is protected against passive attacks. Similar to SIGMA-SIDH, if authentication of Alice (client)
is not required, the last Alice-to-Bob message can be eliminated, turning the scheme into a 2-pass server-only
authenticated protocol.

We remark that, in addition to achieving full PFS, all the SIGMA-based schemes described in this
section also provide key confirmation for both parties (case of client-and-server authentication) or for
the client (case of server-only authentication).

What signature scheme should be used? In general, one requires to simply double the key size
of symmetric cryptographic algorithms to make them post-quantum ready. For example, the MACs
required in the SIGMA-SIDH and SIGMA-I-SIDH protocols can be instantiated with KMAC256 using
keys and outputs that are 256-bit long [21] in order to achieve 128 bits of quantum security while
providing 256 bits of classical security. In contrast, digital signatures require a full replacement of the
currently used classical algorithms by post-quantum secure alternatives. Nevertheless, in settings in
which signatures are used exclusively for authentication (as in SIGMA-SIDH and SIGMA-I-SIDH), it
is possible to continue using classical algorithms under the reasonable assumption that there are still
several years ahead before a large-scale fault-tolerant quantum computer is developed. Note that this
is not the case of key exchange, for which current protocol deployments are advised to begin to plan
support using a combination of classical and post-quantum secure algorithms, since communications
taking place in the present need to be protected against attackers that could record these communications
today to try to break their security in the future.

There exist several alternatives for post-quantum signatures, including hash-based schemes (e.g.,
Gravity-SPHINCS [2] and SPHINCS+ [4]), lattice-based schemes (e.g., Dilithium [13] and qTesla [1])
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and signature schemes based on multivariate quadratic equations (e.g., Rainbow [9]). Recently, Gal-
braith et al. [18] and Yoo et al. [31] independently proposed signature schemes based on supersingular
isogenies. Unfortunately, these schemes are still impractical in terms of performance and their use would
induce a significant increase in the computing cost of an authenticated protocol.

Security proof. The SIGMA protocols were proven secure under the notion of session-key (SK) security
in the post-specified peer model introduced by Canetti and Krawczyk in [7]. Their security proof used
the decisional Diffie-Hellman (DDH) problem. Below, we show that it is straightforward to adapt a
similar proof to SIGMA-SIDH and SIGMA-I-SIDH using a decisional variant of the SIDH problem,
namely the supersingular decision Diffie-Hellman (SSDDH) problem [14, Problem 5.4].

We do not discuss here more details about the SK-security model and other related definitions.
Readers are referred to [7] for complete information.

Theorem 1. SIGMA-SIDH and SIGMA-I-SIDH are SK-secure in the post-specified peer model, assum-
ing that SIG and MAC are existentially unforgeable under chosen message attacks (EUF-CMA), that PRF
is a secure pseudorandom function, and that the SSDDH assumption holds for the SIDH key exchange.

Proof. The proof follows [7, §4], while applying a similar methodology to [27, Thm 6.1]. There are two
defining properties of SK-secure protocols that need to be proved in order to prove the theorem. The first
property requires that two uncorrupted parties running the protocol derive the same session key. This is
guaranteed by the correctness of the SIDH key exchange, as described in §2.1, and the unforgeability
of the signature scheme. The second property requires that no efficient attacker can distinguish a real
response to the test-session query from a random response with non-negligible advantage. The proof of
this property is exactly the proof in [7] after replacing the Decisional Diffie-Hellman (DDH) assumption
by the SSDDH assumption. Basically, [7] constructs a distinguisherD for a DDH triple {gx, gy, z}, where
z is either gxy or a random value modulo the order of the group generated by g. As in §2.1, define the
supersingular elliptic curve E0/Fp2 of order (2e2 3e3 )2 where p = 2e2 3e2 − 1, two independent points
P2 and Q2 that generate E0[2e2 ], and two independent points P3 and Q3 that generate E0[3e3 ]. Let
φ2 : E0 → E2 be a degree-2e2 isogeny with kernel P2 + [n2]Q2 for a random integer value n2 ∈ K2, and
let φ3 : E0 → E3 be a degree-3e3 isogeny with kernel P3 + [n3]Q3 for a random integer value n3 ∈ K3.
It suffices to show that under the SSDDH assumption an analogous distinguisher can be constructed for
an SSDDH tuple {E2, E3, φ2(P3), φ2(Q3), φ3(P2), φ3(Q2), Ez}, where Ez � E2,3 � E0/〈P2 + [n2]Q2, P3 +

[n3]Q3〉 or Ez � Er � E0/〈P2 + [n′2]Q2, P3 + [n′3]Q3〉, where n′2 and n′3 are chosen at random from K2
and K3, respectively.

4 Implicitly authenticated key exchange protocols based on SIDH and SIKE

In some settings, the combined use of key exchange and digital signatures to establish a secure channel
can potentially increase the complexity of a protocol implementation. An alternative approach that helps
to reduce such complexity is to use so-called implicitly authenticated key exchange protocols, in which
authentication is performed as part of the procedure to establish the session key.

In this section, we focus specifically on protocols that use a KEM as building block [5, 15, 16].
We discuss several 2-pass implicitly authenticated key exchange schemes based on SIDH and SIKE
that provide different levels of forward secrecy and authentication. The schemes follow the generic
constructions presented by Boyd et al. [5] which, in turn, are based on an IND-CCA secure KEM.
These constructions were proven secure using the CK model [6], in the standard model.

As before, the set of public parameters is given by {E0, P2,Q2, P3,Q3, e2, e3, n} or, in some cases,
by a subset of this. Each party’s long-term keys consist of one SIKE keypair denoted by (skI, pkI) for
I ∈ {A, B}. These keypairs are generated using Algorithm 1. For the remainder, ephemeral public keys
are denoted by epkI.
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Public parameters: E0, P2,Q2, P3,Q3, e2, e3

Alice Bob

skA, pkA static parameters skB, pkB

(ctA,KA)← Encaps(pkB)
ctA

−−−−−−−−−−−−−−−→
(ctB,KB)← Encaps(pkA)
KA ← Decaps(skB, pkB, ctA)

ctB
←−−−−−−−−−−−−−−−

KB ← Decaps(skA, pkA, ctB)
Ks = PRF1(KA ||KB) Ks = PRF1(KA ||KB)

Fig. 5. AKE-SIKE: a 2-pass implicitly authenticated key exchange protocol based on SIKE with client-and-server
authentication, but without PFS. If authentication of Alice (client) is not required, the key share KB and the cor-
responding Encaps/Decaps pair used for its computation can be eliminated, turning the scheme into a 1-pass
server-only authenticated protocol.

Implicitly authenticated key exchange without PFS. The first variant, called AKE-SIKE, is an im-
plicitly authenticated key exchange scheme based on SIKE with client-and-server authentication. The
scheme is depicted in Figure 5. AKE-SIKE requires two Encaps/Decaps instantiations for its con-
struction. Note that the elimination of either KA or KB from the shared secret would make the protocol
vulnerable to a man-in-the-middle attacker able to replace the value ctB or ctA (resp.) by her own. On
the flip side, the protocol can be easily adapted to a typical server-only authentication scenario by elimi-
nating the second Encaps/Decaps computation pair that produces KB (and its associated Bob-to-Alice
message). In this case, the protocol would effectively become a one-pass protocol. This server-only au-
thenticated protocol would not be protected against active attackers replacing ctA with their own values,
or against identity misbinding on Alice’s side, but this is by definition acceptable for applications that
do not require client’s authentication.

Implicitly authenticated key exchange with wPFS and PFS. AKE-SIKE provides protection against
KCI attacks, but since it lacks an ephemeral computation, the protocol does not provide PFS. To
solve this, we present a second AKE scheme that combines SIDH and SIKE. This protocol, called
AKE-SIDH-SIKE, is depicted in Figure 6. Following Boyd et al. [5], AKE-SIDH-SIKE is secure against
several attacks including KCI attacks, and achieves weak perfect forward secrecy (wPFS).

It is easy to see that AKE-SIDH-SIKE does not achieve full PFS. First, consider that there are two
uncorrupted parties, Alice and Bob, who wish to establish a secure channel. An attacker, Eve, pro-
duces the pair (s′A, epk′A), computes (ct′A,K

′
A) ← Encaps(pkB), and then sends the values (ct′A, epk′A)

as if they were part of a first message from Alice. Then, Bob produces the pair (s′B, epk′B), and com-
putes (ctB,KB) ← Encaps(pkA) and K′A ← Decaps(skB, pkB, ct′A), which yields the shared secret
K′s = PRF3(K′,K′A,KB) (note that Eve can use the value epk′B to obtain K′). Once the session termi-
nates at Bob’s side, assume that the attacker corrupts Alice and steals the private key skA. Now, Eve can
recover the missing piece, namely KB, by computing KB ← Decaps(skA, pkA, ctB), which then allows
her to obtain the full shared secret K′s = PRF4(K′,K′A,KB) of an, otherwise, unaccessible past session,
breaking the PFS property.

Additionally, the analysis above also shows that two is the minimal number of Encaps/Decaps
instantiations —and also the minimal number of protocol passes— that is required in order to make
the protocol resilient to man-in-the-middle attacks. Eliminating the need for computing either KA or
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Public parameters: E0, P2,Q2, P3,Q3, e2, e3, n

Alice Bob

skA, pkA static parameters skB, pkB

r2 ←R {0, 1}n

sA = PRF1(r2 || B) mod 2eA

epkA ← isogen2(sA)
(ctA,KA)← Encaps(pkB)

ctA, epkA
−−−−−−−−−−−−−−−−−−−−−→

r3 ←R {0, 1}n

sB = PRF2(r3 || epkA) mod 2blog2 3eB c

epkB ← isogen3(sB)
j← isoex3(epkA, sB)
(ctB,KB)← Encaps(pkA)
KA ← Decaps(skB, pkB, ctA)

ctB, epkB
←−−−−−−−−−−−−−−−−−−−−−

KB ← Decaps(skA, pkA, ctB)
j← isoex2(epkB, sA)

Ks = PRF3( j ||KA ||KB) Ks = PRF3( j ||KA ||KB)

Fig. 6. AKE-SIDH-SIKE: a 2-pass implicitly authenticated key exchange protocol based on SIDH and SIKE with
client-and-server authentication and weak perfect forward secrecy. If authentication of Alice (client) is not required,
the key share KB and the corresponding Encaps/Decaps pair used for its computation can be eliminated, turning
the scheme into a 2-pass server-only authenticated protocol.

KB immediately exposes the shared secret if an attacker is able to replace either the pair (ctB, epkB) or
(ctA, epkA), respectively, by her own values.

As detailed in [23], full PFS can be achieved by using a MAC and adding one more round to
the protocol. By applying a similar modification to AKE-SIDH-SIKE we obtain what we refer to as
AKE3-SIDH-SIKE, a 3-pass implicitly authenticated key agreement scheme based on SIDH and SIKE
that provides full PFS (see Figure 7). In addition, we note that AKE3-SIDH-SIKE also offers key con-
firmation for both parties.

It should be noted that, as in the case of SIGMA-SIDH (see §3), the protocols above hash the
random values (r2 or r3) together with Bob’s identity or Alice’s ephemeral public key (resp.), in order
to disincentivize implementers from reusing the ephemeral public keys and making implementations
vulnerable to the catastrophic active attack by Galbraith et al. [17].

Security proofs. The implicitly authenticated protocols discussed in this section closely follow the
same generic construction of analogous schemes from [5, 15, 16], which were proven secure in the CK
model including KCI resilience and forward secrecy. Thus, the security of AKE-SIKE and AKE-SIDH-
SIKE follows from the generic bounds of these works. For the case of AKE-SIDH-SIKE, one simply
needs to additionally replace the decision Diffie-Hellman (DDH) assumption by the supersingular deci-
sion Diffie-Hellman (SSDDH) problem for the the security proof in [5, App. C.3] to apply.

Finally, note that Fujioka et al. [16] discusses how to relax some of the conditions from [5] by
relying on the random oracle model instead of the standard model. In particular, the functions used for
key derivation (function PRF in our case) are modeled as random oracles in [16].
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Public parameters: E0, P2,Q2, P3,Q3, eA, eB, n

Alice Bob

skA, pkA static parameters skB, pkB

r2 ←R {0, 1}n

sA = PRF1(r2 || B) mod 2eA

epkA ← isogen2(sA)
(ctA,KA)← Encaps(pkB)

ctA, epkA
−−−−−−−−−−−−−−−−−−→

r3 ←R {0, 1}n

sB = PRF2(r3 || epkA) mod 2blog2 3eB c

epkB ← isogen3(sB)
j← isoex3(epkA, sB)
(ctB,KB)← Encaps(pkA)
KA ← Decaps(skB, pkB, ctA)
Km = PRF3( j ||KA ||KB)

ctB, epkB, MACKm (B)
←−−−−−−−−−−−−−−−−−−−−

KB ← Decaps(skA, pkA, ctB)
j← isoex2(epkB, sA)

Km = PRF3( j ||KA ||KB)
MACKm (A)

−−−−−−−−−−−−−−−−−−−−−−→
Ks = PRF4( j ||KA ||KB) Ks = PRF4( j ||KA ||KB)

Fig. 7. AKE3-SIDH-SIKE: a 3-pass implicitly key exchange protocol based on SIDH and SIKE with client-and-
server authentication and full PFS. If authentication of Alice (client) is not required, the key share KB, the cor-
responding Encaps/Decaps pair used for its computation, and the last Alice-to-Bob message can be eliminated,
turning the scheme into a 2-pass server-only authenticated protocol.

5 Comparison and cost estimates

In this section we compare the different properties of the various authenticated protocols discussed in
Sections 3 and 4, and give some rough estimates of their communication and computing costs.

Table 1 summarizes the main features and estimated communication and computing costs of the
different protocols. The top rows detail the protocols authenticated via digital signatures (“sign-and-
MAC” method), while the rows at the bottom present the implicitly authenticated protocols (“implicit”).
The table displays authentication coverage (server-and-client or server-only), the number of protocol
passes, and other additional properties and protection levels to several relevant attacks, including perfect
forward secrecy (PFS) support, key-compromise impersonation (KCI) resilience, identity misbinding
(IM) resilience, key confirmation (KC) provision and identity protection (IP) support. The notation
M, S and C stand for mutual authentication, server-only (authentication or support) and client-only
(support), respectively. For example, SIGMA-SIDH (S) —the second entry in Table 1— is a server-
only authenticated key exchange protocol that uses the sign-and-MAC approach, requires two passes,
offers PFS support, resilience to KCI attacks, resilience to identity misbinding attacks for the server and
key confirmation for the client, but does not provide identity protection.

For our cost estimates, we consider two security levels denoted by P503 and P751, which correspond
to the parameter sets SIDHp503/SIKEp503 and SIDHp751/SIKEp751, respectively (see §2.1). We as-
sume that signature operations are carried out with the elliptic curve based signature scheme ECDSA,
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Table 1. Summary of features and costs of the various authenticated key exchange protocols based on SIDH and
SIKE. Details include provision of perfect forward secrecy (PFS), key confirmation (KC) and identity protection
(IP), and resistance to attacks such key-compromise impersonation (KCI) and identity misbinding (IM). Communi-
cation cost estimates of the “cryptographic” messages are provided in terms of bytes, and computing costs (without
including network delays, cost of signing, MACs and symmetric encryption) is provided in terms of milliseconds.
These timings were obtained using the SIDH library [12] on a 3.4GHz Intel Core i7-6700 (Skylake) processor. Esti-
mates are given for the SIDH and SIKE parameter sets SIDHp503/SIKEp503 (“P503”) and SIDHp751/SIKEp751
(“P751”).

Protocol Method Auth. Passes Features Cost (P503) Cost (P751)
PFS KCI IM KC IP Comm. Time Comm. Time

SIGMA-SIDH sign/MAC M 3 3 3 3 3 7 948 10.3 1,320 31.5
SIGMA-SIDH (S) sign/MAC S 2 3 3 S C 7 852 10.3 1,224 31.5
SIGMA-I-SIDH sign/MAC M 3 3 3 3 3 3 † 948 10.3 1,320 31.5
SIGMA-I-SIDH (S) sign/MAC S 2 3 3 S C S †† 852 10.3 1,224 31.5
AKE-SIKE implicit M 2 7 3 - 7 7 804 20.2 1,192 61.1
AKE-SIKE (S) implicit S 1 7 3 - 7 7 402 10.1 596 30.5
AKE-SIDH-SIKE implicit M 2 weak 3 - 7 7 1,560 30.5 2,320 92.6
AKE-SIDH-SIKE (S) implicit S 2 weak 3 - 7 7 1,158 20.4 1,724 62.1
AKE3-SIDH-SIKE implicit M 3 3 3 - 3 7 1,624 30.5 2,384 92.6
AKE3-SIDH-SIKE (S) implicit M 2 3 3 - C 7 1,190 20.4 1,756 62.1

† Client’s identity (initiator) is protected against active attacks; server’s identity (responder) is protected against passive attacks.
†† Server’s identity (responder) is protected against passive attacks.

the MAC operations MACK() are instantiated with the SHA-3 variant KMAC256 [21] and the symmetric
encryption operations {. . .}K are performed with an AES-256 based scheme. Note that as a result of the
use of ECDSA as signature scheme, authentication is only classically protected. This is an acceptable
choice for deployments in the near future, assuming that current systems only require protection of the
key exchange portion of a secure channel establishment.

Communication costs, expressed in terms of bytes in Table 1, only include cryptography-related
content. That is, for simplification purposes, they do not take into account some additional informa-
tion that is needed in practice, such as nonces, identity information, session identifiers, etc. Computing
costs were estimated by adding the timings of the corresponding SIDH/SIKE operations in the SIDH
library [12], after running the software on a machine powered by a 3.4GHz Intel Core i7-6700 (Sky-
lake) processor with Ubuntu 16.04.3 LTS. As standard practice, TurboBoost was turned off during the
tests. For compilation we used clang version 3.8.0 with the command clang -O3. We remark that the
estimates do not include the costs of signing, MACs and encryption, which are relatively small in com-
parison with the cost of supersingular isogeny computations. Likewise, we disregard network delays,
which can add a significant overhead to the whole protocol cost. Running “real-world” benchmarking
tests (using, for example, TLS with OpenSSL) is left as future work.

It can be seen that, in general, sign-and-MAC variants appear to offer a wider variety of security
features at a lower computing cost. Nevertheless, in some settings implicitly authenticated protocols
can offer higher overall performance, especially if network delays are relatively costly. For example,
in cases in which mutual authentication and wPFS are required AKE-SIDH-SIKE might result more
efficient than any equivalent SIGMA-based option due to the reduced number of passes. Moreover,
implicitly authenticated protocols are, in general, simpler and easier to implement, and their security
relies on only one underlying hard problem for the public-key cryptography of the handshake 2.

Notably, SIDH’s bandwidth requirements can be reduced even further with the public key compres-
sion techniques proposed in [10] and further optimized in [32]. For example, the effect of compression

2 This seems to hold even in a full post-quantum scenario in which supersingular isogeny based key exchange
would have to be matched with a signature scheme based on a different underlying problem, given the current
impracticality of isogeny-based signatures.
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over the results for the SIGMA-based protocols in Table 1 would be a reduction in roughly 40% of
the bandwidth requirement at the expense of almost doubling the computing cost. Hence, this trade-off

might be attractive for applications in which transmission size is a bottleneck.
It is recommended that near-term deployments use a combination of classical and post-quantum

cryptography. This is because the security of most post-quantum algorithms, including SIDH, has not
been fully studied and is still the focus of intense cryptanalytic research. In this direction, an EC-based
scheme can be easily coupled with the protocols discussed in this work (the different key shares can be
concatenated and hashed together to derive the keying material) with negligible impact to the computing
time and communication bandwidth.

Using a PQ signature scheme. Future deployments of SIGMA-based schemes using SIDH might want
to incorporate post-quantum digital signatures to achieve full security against classical and quantum
attacks. In this case, these protocols can be upgraded without experimenting significant changes in
speed efficiency. However, the communication bandwidth might be affected considerably. For example,
if one assumes the use of the lattice-based signature scheme Dilithium —parameter set III [13], which
roughly matches the security of P751— the communication bandwidth of SIGMA-SIDH increases in
roughly 5,402 bytes, while the additional computing overhead is negligible.
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A Authenticated key exchange in TLS 1.3

TLS 1.3, the new version of the Transport Layer Security (TLS) protocol, promises significant improve-
ments in both security and performance. This includes, for example, the support of a zero-round-trip-
time (0-RTT) mode that can be used to speed up connection setup for some application data, and a new
pre-shared key (PSK) exchange.

Of particular interest to us is the handshake portion of the protocol, which is used by the client and
server to negotiate the security parameters of a connection, optionally authenticate each other, and es-
tablish shared secret keying material that is used to protect the application layer traffic. In this appendix,
we show how one can easily adapt some of the protocols described in §3 to the TLS handshake protocol,
using version 26 of the TLS 1.3 IETF draft [28]. For details about the protocol specifications the reader
is referred to [28], as well as other closely related work by Krawczyk and Wee [25].

The TLS 1.3 handshake consists of three modes: (i) 1-RTT non-static mode, (ii) PSK mode with
(EC)DHE and optional early application data (0-RTT), and (iii) PSK-only mode with optional early
application data (0-RTT).

In the following, we discuss the first two modes which are based on public-key authentication
schemes. We use the exponential notation gx, where g is a group generator.

1-RTT non-static. This TLS 1.3 mode, depicted in Figure 8, is a variant of the SIGMA-I protocol [22].
Therefore, it is straightforward to adapt it to the setting of supersingular isogenies using the SIGMA-I-
SIDH protocol from §3. This is done in Figure 9.

In its simplest form, the 1-RTT non-static protocol requires only 2 passes (one round trip), but it is
extended to 3 passes if client authentication is requested by the server.

Following the notation of previous sections, the server’s secret and public keypairs {sssk, sspk}
are represented by {skB, pkB} in Fig. 9. Similarly, the client’s secret and public keypairs {cssk, cspk}
are represented by {skA, pkA}. Note that the long-term public keys can come in the form of certificates;
however, this is abstracted away in the descriptions. The keys epkA and epkB in Fig. 9 correspond to the
client and server ephemeral key shares ceks and seks, respectively. All the keying material, including
the client and server Finished keys cfk and sfk, the client and server handshake traffic keys chtk and
shtk, and the client and server application traffic keys catk and satk, are derived using an HMAC-
based key derivation function (HKDF) [24]. A key schedule repeats the application of HKDF combining
secret inputs with fixed labels in order to generate a set of computationally independent keys [28]. This
key schedule includes the transcript hash and, in the case of Fig. 9, the value j derived from the SIDH
key exchange.

PSK mode with (EC)DHE and optional early application data (0-RTT). In this mode, a pre-shared
key PSK that was produced either out-of-band or in a previous connection is used in combination with
an (EC)DHE key exchange. Figure 10 illustrates this protocol mode. And Figure 11 shows how to adapt
it to SIDH.

An attractive option in this mode is the use of early application data (0-RTT), in which a client is
able to immediately transmit application data in the first pass of the protocol, using an eadk key for
encryption. The optional operations that are required to use this features are marked with † in Figure 11.

As before, all the keying material, including the early application data eadk , the key client and
server Finished keys cfk and sfk, the client and server handshake traffic keys chtk and shtk, and
the client and server application traffic keys catk and satk, are derived using HKDF. In this case, the
HKDF-based key schedule includes the transcript hash, the pre-shared key PSK and the value j derived
from the SIDH key exchange.
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chello,

ceks︷︸︸︷
gx

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

shello,

seks︷︸︸︷
gy ,

{
sspk, SIGsssk(. . .), MACsfk(. . .)

}
shtk

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

†
{
cspk, SIGcssk(. . .), MACcfk(. . .)

}
chtk

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 8. 1-RTT non-static mechanism in TLS 1.3 [28], with optional client authentication. Keys ceks and seks stand
for client and server (resp.) ephemeral key shares; cspk and sspk represent client and server (resp.) certificates that
correspond to client and server (resp.) static public keys; cssk and sssk stand for client and server (resp.) static
secret keys; the client and server Finished keys, cfk and sfk (resp.), the client and server handshake traffic keys,
chtk and shtk (resp.), and the client and server application traffic keys, catk and satk (resp.), are derived from
the value gxy. † The third pass is optional and is only used when client authentication is requested by the server.

Public parameters: E0, P2,Q2, P3,Q3, eA, eB, n

Alice (Client) Bob (Server)

† skA, pkA static parameters skB, pkB

r2 ←R {0, 1}n

sA = PRF1(r2 || B) mod 2eA

epkA ← isogen2(sA)
epkA

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
r3 ←R {0, 1}n

sB = PRF2(r3 || epkA) mod 2blog2 3eB c

epkB ← isogen3(sB)
j← isoex3(epkA, sB)
Get sfk,shtk using j

epkB,
{
pkB, SIGskB (. . .), MACsfk(. . .)

}
shtk

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
j← isoex2(epkB, sA)

Get catk using j Get satk using j
† Get cfk,chtk using j

†
{
pkA, SIGskA (. . .), MACcfk(. . .)

}
chtk

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→{
application traffic data}satk

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−{
application traffic data}catk

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 9. 1-RTT non-static with SIDH: a 2-pass key-exchange variant of SIGMA-SIDH with server authentication.
† Adding the optional client authentication requires one extra pass.
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chello,

ceks︷︸︸︷
gx , psk id, †

{
early data

}
eadk

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

shello,

seks︷︸︸︷
gy ,

{
MACsfk(. . .)

}
shtk

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

† †
{
MACcfk(. . .)

}
chtk

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 10. PSK mode with (EC)DHE and optional early application data (0-RTT) [28]. The operation marked with †
is optional and only used for the early application data (0-RTT) mechanism. The corresponding early application
data key is denoted as eadk. Keys ceks and seks stand for client and server (resp.) ephemeral key shares; the client
and server Finished keys, cfk and sfk (resp.), the client and server handshake traffic keys, chtk and shtk (resp.),
and the client and server application traffic keys, catk and satk (resp.), are derived from the value gxy and the PSK
key corresponding to a given psk id. †† The third pass is optional and is only used when client authentication is
requested by the server.

Public parameters: E0, P2,Q2, P3,Q3, eA, eB, n

Alice (Client) Bob (Server)

knows PSK and its psk id static parameters knows PSK and its psk id

r2 ←R {0, 1}n

sA = PRF1(r2 || B) mod 2eA

epkA ← isogen2(sA)
† Get eadk using PSK

epkA, psk id,
†
{
early data

}
eadk

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
r3 ←R {0, 1}n

sB = PRF2(r3 || epkA) mod 2blog2 3eB c

epkB ← isogen3(sB)
j← isoex3(epkA, sB)
Get sfk,shtk using j, PSK

epkB,
{
MACsfk(. . .)

}
shtk

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
j← isoex2(epkB, sA)
Get catk using j, PSK Get satk using j, PSK

†† Get cfk,chtk using j, PSK
† †

{
MACcfk(. . .)

}
chtk

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→{
application traffic data}satk

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−{
application traffic data}catk

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 11. PSK mode with SIDH and optional early application data (0-RTT): a 2-pass key-exchange protocol with
server authentication. Operations marked with † are optional and are only used when exploiting the early applica-
tion data (0-RTT) mechanism. †† Adding the optional client authentication requires one extra pass.
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