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Abstract In this work we explore a combinatorial optimization problem stemming from the
Naccache—Stern cryptosystem. We show that solving this problem results in bandwidth improvements,
and suggest a polynomial-time approximation algorithm to find an optimal solution. Our work
suggests that using optimal radix encoding results in an asymptotic 50% increase in bandwidth.

1 Introduction

The Naccache—Stern (NS) modular knapsack cryptosystem encodes messages m = {m;} € {0,1}"
as py't -+ p" mod p. For decryption to be possible, one must choose a large enough modulus p,
namely p > p1 -+ - pn.

In this work we consider the possibility to encode m as a mixed-radix representation — which
is just another way to dispatch m’s bits. This gives encodings of the form pi"* - - - pj*, where for
all 4, 0 < p; < w; are integers. The original NS corresponds to w; = 1.

One interest of such a representation is that some more weight could be put on the smallest
primes p;, which are much smaller than the largest primes. As a result, more bits are available for
encoding, using the same p; (and p) as the original NS. Note that decoding is not much harder
than in the original NS case, as it suffices to iterate over the smoothness base at most max; w;
times.

Mathematically, we consider the following problem:

Maximize —°¢_; logy(1 + w;)
Subject to w; € N, ¢, w;logy(ps) < logy(p)

Ezample 1. NS with £ = 15 and 64-bit modulus p can encode 15-bit messages. Using
w=1{7,4,2,2,1,1,1,1,1,1,1,1,1,0,0}

we can encode 17-bit messages. Notice that the last two primes pi14, p15 are not used. This is a
13% increase in bandwidth, but it is arguably a small gain.

We now face several interesting questions: Does an optimal w always exist? How to find it? Is
the gain marginal, or does it provide an (asymptotic or practical) advantage?

2 The original Naccache-—Stern cryptosystem

The NS cryptosystem [13] uses the following sub-algorithms:

— Setup: Pick a large prime p and a positive integer n. Let 8 = {p9 = 2,...,pn—1} be the set of
the n first primes, so that ?;01 pi < p. We leave aside a one-bit leakage dealt with in [13]).

— KeyGen: Pick a secret integer s < p — 1, such that ged(p —1,5) = 1. Set v; = ¢/p; mod p. The
private key is s. The public key is (p,n,vg, ..., vn—1).
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— Encrypt: To encrypt an n-bit message m, compute the ciphertext c:

n—1
c <+ H v;" mod p
i=0

where m; is the i-th bit of m.
— Decrypt: To decrypt ¢, compute

n—1

m <+ > 2'ui(c, s,p)
1=0

where p;(c, s,p) € {0,1} is the function defined by:

ged(pg, ¢ mod p) — 1

Mi(cvsap) = pz_l

The security of this scheme relies on the conjectured hardness of a multiplicative variant of the
knapsack problem':

Definition 1 (Multiplicative Knapsack Problem). Given p, ¢, and a set {v;}, find a binary

vector x such that
n—1

c= H v;* mod p.
i=0

Just as in additive knapsacks, this problem is NP-hard in general but can be solved efficiently in
some situations; the secret key enabling precisely to transform the ciphertext into an easily-solvable
instance.

Unlike additive knapsacks, this multiplicative knapsack doesn’t lend itself to lattice reduction
attacks, which completely break many additive knapsack-based cryptosystems [1,4,11,6,12,10].

Over the past years, several NS variants were published, these notably seek to either increase
efficiency [7], or extend NS to polynomial rings [10], or to achieve semantic security [5]; to the
best of our knowledge, no efficient attacks against the original NS are known.

3 A daunting optimization problem

Equation 1 can be reformulated, and simplified somewhat. First we may rewrite the objective
as a polynomial in w;; then we may further impose w; 11 < w; for all 1 < ¢ < £. The resulting
problem is not strictly equivalent as eq. 1, but a solution for this modified problem is also an
optimal solution for the original problem.

Maximize f(w) = le(l + w;)
Subject to w; € N, 2)

wi+1 < wj,
l
> i—1 w; logy(pi) < logy(p).
The linear constraints delimit a simplex, however the objective function is not itself linear, which

prevents us from directly leveraging efficient linear programming techniques. Equation 2 belongs
to a class of polynomial programming problems. Unfortunately,

Theorem 1 ([9,8]). The problem of minimizing a degree-4 polynomial over the lattice points of
a convex polygon is NP-hard.

! This can also be described as a modular variant of the ‘subset product’ problem.



3.1 Brute-force exploration

Despite the problem’s complexity, we may hope to exhaust all solutions for small enough instances.
This can be achieved by backtracking, where we explore the combinatorial graph “from the end”,
i.e. with values of wy as roots, wy_1 as subroots, etc.

One advantage of this approach is its simplicity; however it quickly runs out of steam as
larger instances are considered. The solution of Example 1 was first computed this way.

It is interesting to compute the number of configurations that can be explored, i.e. the number
of points in P NZ", where P is the polytope defined by the constraints of Eq. 2. In dimension 2
one can use Pick’s theorem, however there are no simple generalisations to higher dimensions of
such a result. Rather, we may estimate the number of integer points as the volume of P:

1 n
N =|PNZ" = vol(P) = — [ log,, p-
Ti=1

Assuming that all the p; are of similar size, this is approximately (log, p)"/n!; by the prime
number theorem we have log,, p = Inp/In(p,) ~ Inp/In(nlnn), so that

(Inp)"

N~ ——
n!(nlnn)”

Using p > #75 ~ 2°!2 we find N ~ 2%, which is nearly beyond reach — and in any case
impractical.

3.2 Fully polynomial-time approximation scheme

In the face of Theorem 1, and of the comments above, we will alter the problem: First we replace
the logarithms by their rational approximation, the precision of which will be discussed later;
Second we look for an approximation to the optimum, rather than the optimum itself.

Approximation problem. Having an approximate value for the maximum value f* = f(w)
taken by f on the optimal solution w provides us with a strategy:

Lemma 1. Let P be an n-dimensional rational polytope. Assume that there exists a polynomial-
time algorithm that computes f* over PNZ™. Then there is a polynomial-time algorithm that
finds a feasible solution W such that f* — f(W) < O(e).

Proof. We proceed by iterative bisection of P.

Remark 1. The expression “polynomial-time” refers here to an algorithm whose complexity is
bounded above by a polynomial function of the encoding of f and P.

Therefore we first focus on finding efficiently an approximation for f*, from which an immediate
algorithm follows (by Lemma 1), that provides an approximation to w.

Recall the classical fact that, for {z1,...,x,} a collection of non-negative real numbers,
max ;= o0 = T [x];
where || - || is the {i-norm, from which we get

1
n=E[|x[lk < fIxlloo < x][x-

Now, denote x; = f(w) for all w in the rational polytope P, and x = (x1,...,2zx), where
N = |PNZ". Then for all k> 0,

_1
N7R|Ixle < [xlloo < (1%

Phrased equivalently, the optimal solution, W = ||x||~, can be approximated by summing a
polynomial in the points of P N Z". Namely:



Lemma 2. Let € > 0, then for k= [(1+ 1/¢)log/],
Il (1= €7F) < ef (W)

Remark 2. Tt is important to note at this point that we can expand the polynomial function f*
as a list of monomials in polynomial time.

The only remaining question is whether we can compute ||z||; in polynomial time.

Polynomial-time computation over P N Z™. One difficulty is that P contains a priori an
exponential number of integer points. Here is how to circumvent this apparent problem: Consider
the generating formal (Laurent) series:

g(Piz)= > z%. 3)
wePNZn

Since P is bounded, the sum is in fact finite, and g(P; z) is a formal (Laurent) polynomial for
which we may expect a short rational representation.

Ezample 2. Consider P the interval [0, k], so that PNZ = {0,...,k}. We have

k
g(P;z) = Z zw:sz:zo+zl—|—--'+zk
wePNZ j=0
1_Zk+1
1z

The second line of the above equation gives a compact representation of g(P;z), which is linear
in n. In particular, one may count the points in P — i.e. compute the /;-norm over the integer
points of P — by carefully evaluating g(P; z) at z = 1. Carefully refers to the 1 — z denominator,
which requires us to use either residue methods, the Bernoulli-I’Hé6pital rule, or a numerical
approximation of the limit ||wl|; = lim,_,; g(P; 2).

Theorem 2 ([2,3]). There exists a polynomial-time algorithm for computing the rational gener-
ating function of a polyhedron P C R™ given by rational inequalities.

Theorem 2 is constructive and provides an explicit algorithm, that we reproduce below. But first,
observe that the knowledge of g(P;z) is enough to compute the function

g(P,h;z) = Z h(w)z".

wePNZ"

Ezxample 3. Consider the same setting as in Example 2, and let D be the differential operator
D = (z%)Z. Then
1— szrl
1—=z

_(d) il—ZkJrl
- Zdz zdz 1—2

(zd> (Z(l — (1 + k)" + k21+k)>

Dg(P;z)=D

dz (1—2)2
_ 2(k(z =D (k(z—1) =2)+ 2+ 1)2F —2—1)
(z—1)°
=2 4422 4928 4 B2
= 9(P, h; 2)

where h(z) = 22.



Lemma 3. Let h € Z[wy, ..., w,] be a polynomial, then there is a differential operator Dy, such
that Dyg(P;z) = g(P, h;z).

Proof. This is a straightforward extension of Example 3, using

0 0
Dh—h(ﬂ)lau)l,,wnau}n) .

Combining this with Lemma 2, we see that the knowledge of g(P, f*;z) gives the desired
approximate solution. Hence everything hinges on Theorem 2 being polynomial-time.

Definition 2. An algorithm A is an e-approximation algorithm for a constrained optimization
problem with optimal cost f* if, for each instance of the problem of encoding length N, A runs
in poly(n) and returns a feasible solution with cost fa, such that fq > (1 —¢)f*.

Definition 3. A family {Ac}c of e-approzimation algorithms is a fully polynomial-time approx-
imation scheme (FPTAS) if the running time of A. is poly(n,1/e).

Theorem 3. Let f be a polynomial function over the integer points of a rational polytope P, and
a rational number € > 0, where f is given as a list of monomials with rational coefficients and
integer exponents, then there exists a FPTAS for the maximisation problem for all polynomial
functions f that are non-negative on the feasible region, i.e. an polynomial-time algorithm that
computes a feasible solution x. such that

|f(xe) = [Tl < ef”
Proof. The algorithm is as follows: On input P, f, € > 0,

Compute k = (1 + 1/€)log(|P NZ"|) (as in Lemma 2)

Compute f* as a list of monomials

Use Lemma 3 to compute D s

Use Barvinok’s algorithm (Algorithm 1) to get the function g(P;z)
Apply Dyr to g(P;2) to get g(P, f*:2)

Using residue techniques, compute

AR N .

LBy =

(g(R 15 1))i
g(P;1)

m= (o4 )'|

These bounds satisfy
UBy — LB, < f* (PN Z"))% 1)

7. Iteratively bisecting P (as in Lemma 1) we get a feasible solution that is (1 — €)-optimal.

Every step is easily checked to run in polynomial time.



Algorithm 1: Barvinok’s Algorithm [2]

Input: Polyhedron P.
Output: Short generating function g(P;z).

1. Compute all vertices v;, and corresponding supporting cones C;, of P

2. Triangulate C; into simplicial cones Cj ;, keeping track of all the intersecting proper faces

3. Apply signed decomposition to the cones v; 4+ Cj ;, to obtain unimodular cones v; + C; ;,; (again keeping
track of all the intersecting proper faces)

4. Compute the unique integer point a; in the fundamental parallelepiped of every resulting cone v; + C; ;.

5. For each unimodular cone, the generating function is

n

2/ -2,

j=1

where a is the integer point and b; are the cone’s spanning vectors.
6. Compute the signed summation of all the cones, resulting in g(P;z).

4 Mixed-radix linear-bandwidth Naccache—Stern encryption

Using [7], messages can be encoded by “packing” primes together. The resulting construction
results in asymptotically linear bandwidth encryption.

Table 1. Comparison of the original and pack-adjusting mixed-radix linear-bandwidth Chevallier-Mames—Naccache—
Stern encryption, for v = 4,¢ = 1. Both outperform the original Naccache—Stern bandwidth at a given security
level.

n Minimal p CMNS MR-CMNS Radix

1 11 2 bits 2 bits 4
2 137 4 bits 4 bits 3,6
3 4931 6 bits 7 bits 2,7, 11
4 260849 8 bits 10 bits 2,4,9,17
5 18517753 10 bits 13 bits 2,2,8, 15, 23
6 1648077367 12 bits 16 bits 2,2, 4,12, 19, 30
7 176344276177 14 bits 19 bits 2,2,3,7, 14, 23, 37
8 23101100172959 16 bits 23 bits 2, 2, 2, 5, 10, 19, 28, 44
9 3488266126107761 18 bits 26 bits 2, 2, 2, 3, 9, 12, 22, 32, 51

— Setup(1¥) — pp. Let £ > 1 and ~ be two integers. We construct n “packs” containing - small
primes each, and pick a prime p such that

n

14
I1#5 <o
=1

where p; is the i-th prime number (p; = 2). Denoting

v+L
b= ,
we introduce an invertible function unrank that maps an integer 0 < m < b to a y-tuple
(di,...,dy) such that 0 < dj and dy + --- 4+ dj, < L. Set pp < (p,n,7,{).

— KeyGen(pp) — (sk, pk). Choose a random integer s { (p — 1), and let v; + pl-1
to yn. Set sk < ¢, pk < {v;}.

/

*mod p fori =1



— Encrypt(pp, pk,m) — c. Write m in base b as myg,...,m,—_1, then {d;;} < unrank(m;).
Finally,

n—1 7 d
0,
e T] L v, mod
=0 j=1

— Decrypt(pp, sk, ¢) — m. Compute ¢® mod p in N, factor over the smoothness base {p;} and
recover each m; as m; < rank({d;;}).

The main appeal of this approach is that p can be made much smaller compared to the original
cryptosystem. We can use the techniques described above to optimize each “pack”. Let’s illustrate
this on an example.

Ezample 4. Let n = 3, v = 4, £ = 1, hence we will use the primes p; to pi2, for which an
admissible value of p is 4931.2 Let s = 3079. The public key consists in the {v;}:

V] = \S@modp = 1370
Vg = \s/?:modp = 1204
v = /5 mod p = 1455
Vg = \Sﬁmodp = 3234

vs = /11 mod p = 2544
v = v/13 mod p = 3366
v7 = ¥/17 mod p = 1994
vg = v/19 mod p = 3327

vg = v/23 mod p = 4376
v10 = v/29 mod p = 1921
v11 = v/31 mod p = 3537
v12 = /37 mod p = 3747

pack 2 pack 1

pack 3

To encrypt a message, it is written in base v = 4 and the appropriate v;’s are multiplied; thus if
m = 35 = 2034,

c=v4-v5-v11 mod p = 4484.

This cryptosystems allows the encoding of 6-bit messages.

There are two ways to introduce the mixed-radix approach: by choosing different pack sizes, for
instance making the first pack larger, or by using varying powers of primes. The two approaches
are related, as it might be more efficient to use e.g. a higher power of a small prime, rather than
introducing a new large prime.

To illustrate the effect of pack-adjusting, assume that the packs have dimension vy, 2, 7v3; this
allows the encoding of messages of log, y17y2y3 bits, under the condition that p, Py, 4y, Py et <
p. The choice v1 = 2,v9 = 4,3 = 24 satisfies the constraints and allows for encoding 192 different
messages, i.e. a little more than 7-bit messages. Alternatively, using v; = v2 = 2,v3 = 16, we still
encode 6-bit messages, but we can safely bring p down to 1493.

The optimization problem corresponding to pack-adjusting can readily be addressed using the
same tools as in Section 3, and we give the results for small values of n in Table 1. As is
visible already in this table, the gain of pack-adjusting increases, achieving a 50% bandwidth
improvement for larger values of n.

2 In the original NS setting, p would be at least 7420738134871.



Considering parameters of cryptographic size, n = 58 gives a minimal CMNS modulus of 513
bits:

Pmin = 0x172027ebd81c90acf8b8f7276279f5e5
c5dfa4bdb9bd2391937db041ec981aa7
cb82dc468791ad498fb808f111f74d9b
8e53e96e6b4f37b06ae81bff4b04b0487.

Using NS the bandwidth is 75 bits.? Using CMNS the bandwidth reaches 116 bits. Using our
mixed-radix encoding with CMNS (MR-CMNS) we achieve a bandwidth of 174 bits, or about
49% improvement over plain CMNS.

5 Conclusion

In this paper we set out to use a more flexible encoding of messages for the Naccache—Stern public-
key encryption scheme, namely a mixed-radix representation. This gave rise to an optimization
problem for which a polynomial-time approximation scheme exists, which relies on geometric
computations. This in turn provides efficient weights for the encoding — which only need to be
computed once for a given modulus. The resulting scheme extends on, and outperforms, earlier

work on linear-bandwidth Naccache—Stern encryption, with an overall bandwidth improvement
of 50%.
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