
Fault Resilient Encoding Schemes in Software:
How Far Can We Go?

Jakub Breier1, Xiaolu Hou2, and Yang Liu2

1Physical Analysis and Cryptographic Engineering
Temasek Laboratories at Nanyang Technological University, Singapore

2School of Computer Science and Engineering
Nanyang Technological University, Singapore

jbreier@ntu.edu.sg,ho0001lu@e.ntu.edu.sg,yangliu@ntu.edu.sg

Abstract. Cryptographic implementations are often vulnerable against physical
attacks, fault injection analysis being among the most popular techniques. On par
with development of attacks, the area of countermeasures is advancing rapidly,
utilizing both hardware- and software-based approaches. When it comes to soft-
ware encoding countermeasures for fault protection and their evaluation, there
are very few proposals so far, mostly focusing on single operations rather than on
cipher as a whole.
In this paper we propose an evaluation framework that can be used for analyz-
ing the effectivity of software encoding countermeasures against fault attacks.
We first formalize the encoding schemes in software, helping us to define what
properties are required when designing a fault protection. These findings show
that using anticodes in such countermeasure can increase its detection capabili-
ties. We provide a way to generate a code according to user criteria and also a
method to evaluate the level of protection of assembly implementations using en-
coding schemes. This evaluation is based on static code analysis and provides a
practical information on how good will the protection be on a real device. Finally,
we verify our findings by implementing a block cipher PRESENT, protected by
encoding scheme based on anticodes, and provide a detailed evaluation of such
implementation.

Keywords: software encoding schemes, fault attacks, countermeasures, evalua-
tion

1 Introduction

Protection and physical attacks on cryptographic implementations are ever-evolving
areas, resulting into continuous effort on each side to make advancements over the other
one. Attackers utilize various techniques that can break the protection and reveal some
information about the data or secret key. On the other hand, data owners and custodians
try to prevent these attacks by applying wide range of countermeasures.

There are various ways to analyze a device and its implementation, Fault Analysis
(FA) being among the most popular ones. Since the first reported attacks, protecting
the implementations of ciphers have become a major concern. When selecting a coun-
termeasure, one needs to decide what degree of protection to implement, taking into

account the data value and protection price. There is no universal countermeasure, each
method has its advantages and limitations. In general, countermeasures can be classified
into hardware-based and software-based.

When it comes to fault injection countermeasures, implementers currently still rely
more on hardware-based approaches, such as shielding [16], sensors [16], or hardware
redundancy [19]. This is mostly because to inject a fault, physical methods are normally
used, such as lasers, electromagnetic pulses, or voltage/clock glitches [2], and therefore,
physical protections are effective in detecting/thwarting these.

Software countermeasures against fault attacks can be generally divided into two
main groups: instruction-level and algorithm-level techniques [33]. Instruction-based
countermeasures include instruction duplication or triplication, and fault-tolerant in-
struction sequences, where an instruction is replaced by functionally equivalent se-
quence of more secure instructions [26]. This technique was recently extended to a
new approach, called intra-instruction redundancy [27]. In this technique, data is split
among several instructions, by using a redundant bit-slicing.

On the other hand, algorithm-level countermeasures include temporal and informa-
tion redundancy on an algorithm level [30]. Temporal redundancy techniques normally
execute the algorithm several times and then compare the results for inconsistencies [2,
10].

Software encoding countermeasures fall in the second category, introducing the re-
dundancy in the information being processed. Depending on the encoding scheme de-
sign and amount of redundancy, these countermeasures can provide a robust alternative
to hardware-based approaches [8]. Breier and Hou [7] showed how to select codes with
desired fault properties for protecting binary operations. Theoretical bounds of software
encoding countermeasure used in a whole cipher implementation are considered in [9,
32]. However, no real implementation or simulation was given in either work. Servant
et al. [32] considered a particular code when used in a full cipher, which they referred to
as (3,6)-code, that is actually a (6, 16, 2)−binary code (see Definition 3). The probability
of detecting a fault was analyzed in this case and it is 93.75%. The approach in [9] does
not consider some important aspects of fault injection, such as ability of the attacker
to precisely select the fault mask or his ability to inject instruction skips. Generally, to
avoid a successful fault injection attack for the countermeasure in [9], used code would
have to remain a secret.

There are works that utilize encoding techniques in hardware to provide fault re-
siliency, e.g. [1, 31]. However, there is no straightforward way to implement such schemes
in software and therefore, these papers do not provide any details on potential efficiency
and security in case the countermeasure is ported into software.

Another point of view is the evaluation of countermeasures. While most of the
works propose new protection methods, they often only consider single operations, not
in the context of the full cipher. Sometimes it is not clear whether the fully protected im-
plementation is actually possible and also, what other vulnerabilities might arise when
practical aspects are considered. For example, in case there is an integrity check after
every operation that is considered secure and out of scope of the security guarantees, the
attacker might simply skip such check or alter its value. Similarly, evaluation methods

often focus on code snippets only [17]. In the area of general software countermeasures,
there are very few works that provide evaluation results on a full cipher [23, 3].

When restricting the evaluation of countermeasures to encoding methods, to the
best of our knowledge, there is no previous work that evaluates the countermeasure
on a full cipher scale with both theoretical and experimental results. Fault resistance
evaluation of single operations was previously simulated in [8, 7]. Calculations that
provide theoretical bounds were provided in [9, 32].

Our Contribution In this work we are interested in analyzing encoding countermea-
sures for a full cipher implementation. To facilitate the evaluation, we formalize Differ-
ential Fault Attacks (DFAs) and encoding countermeasures in software, bringing light
into understanding of what is needed and what is possible. With such information, we
are able to find the optimal codes for the cipher protection.

We develop an evaluation method for encoding based countermeasures that is based
on static code analysis and works directly on assembly implementation. We imple-
mented a protected version of PRESENT-80 cipher by using an AVR assembly language
and used our evaluation method to analyze such implementation from various points of
view, enabling us to show trade-offs between the security level and the efficiency (speed,
time). Both advantages and disadvantages of such implementation are discussed. To the
best of our knowledge, this is the first work implementing and evaluating the encoding
countermeasure on a full cipher.

We provide a way to automatically generate codes with required properties for pro-
tecting cryptographic implementations against DFA (if such codes exist). We adopt the
notion of anticodes from coding theory and show that anticodes can offer the best fault
detection capabilities.

The rest of the paper is organized as follows. Section 2 provides background on fault
attacks on software targets and generalizes fault resilient encoding scheme. Theoretical
evaluation of this scheme is stated in Section 3. Algorithms used for code construction
and for evaluation of software implementations are detailed in Section 4. Section 5
provides a case study on block cipher PRESENT. Discussion of results is stated in
Section 6 and finally, Section 7 concludes this paper and provides a motivation for
future work.

2 Background and Formalization

In this section we first give the formalization of fault attacks in software. Then we
provide necessary coding theory background and present the formalization of encoding
countermeasure that can be applied to all symmetric ciphers, which we refer to as Fault
Resilient Encoding Scheme.

2.1 Fault Attacks in Software

Assembly language is a low-level programming language, specific to a particular ar-
chitecture. Normally, there is a one-to-one mapping between assembly instructions

and machine code that is being executed on the device. Assembly language uses a
mnemonic to represent machine operations in the form of instructions. Each instruction
falls into one of three categories: data movement, arithmetic/logic, and control-flow.

Operands are entities operated upon by an instruction. Addresses are the locations of
specified data in the memory. Operands can be immediate (constant values), registers
(values in the processor number registers), or memory (value stored in the memory).
Standard instruction can have zero to three operands, the leftmost operand being usually
the destination register, the second and the third are source registers.

For our purpose, registers are the most important storage units. Size of the register is
typically stated in bits and depends on the device architecture (e.g. 8-bit, 32-bit, 64-bit).
Normally, all the registers for a particular device have the same size. It is the fastest
type of memory in a computer and it is directly accessible by the arithmetic logic unit
(ALU) performing the operations.

Definition 1. We define a program to be an ordered sequence of assembly instructions
F = { f1, f2, . . . , fNF }. NF is called the number of instructions for the program. For any
assembly instruction f ∈ F , if f has a destination register, we denote this register by
r f . Let S denote the set of all programs.

Fault attack is an intentional change of the original data value into a different value.
This change can either happen in a register/memory, on the data path, or directly in
ALU. In general, there are two main fault models to be considered – program flow
disturbances and data flow disturbances. The first one is achieved by disturbing the
instruction execution process that can result in changing or skipping the instruction
currently being executed. The second one is achieved either by directly changing the
data values in storage units, or by changing the data on the data paths or inside ALU.
For the purpose of a fault injection attack, these three data flow changes are equivalent
and can be modeled by changing the values in registers.

Definition 2 (Instruction skip and fault mask).

1. For any i ∈ Z>0, an ith instruction skip is a function ϑi : S → S , such that
ϑi(F) = F if NF < i and ϑi(F) = F \{ fi} otherwise.

2. For any j ∈ FN
2 (N ∈ Z>0), a fault mask j on instruction i is a function ςi, j : S → S

such that for any F = { f1, f2, . . . , fNF } ∈ S ,

– if 1 ≤ i < NF and fi has a destination register r fi whose length is at least N,
then ςi, j(F) = { f1, f2, . . . , fi, f̃i, fi+1, fNF }, where f̃i = eor r fi j, i.e. f̃i changes
the value in r fi , to be the xored result of value in r fi and j.

– ςi, j(F) = F otherwise.

For the evaluation, we consider a random bit fault such that all the bits have equal
probability to be affected by the fault. In other words, each fault mask has the same
probability to occur. We also state detailed analysis for each m-bit flip model (1 ≤ m ≤
s, where s is the register size), so that in the case of biased fault model, it is easy to see
the upper bound for the fault detection.

2.2 Fault Resilient Encoding Scheme

A binary code, which we denote by C in this paper, is a subset of Fn
2, the n−dimensional

vector space over F2, where n is called the length of the code C. Each element c ∈ C
is called a codeword in C and each element x ∈ Fn

2 is called a word [20, p.6]. Take
two words x, y ∈ Fn

2, the Hamming distance between x and y, denoted by dis (x, y), is
defined to be the number of places at which x and y differ [20, p.9]. More precisely, if
x = x1x2 . . . xn and y = y1y2 . . . yn, then

dis (x, y) =

n∑
i=1

dis (xi, yi) ,

where xi and yi are treated as binary words of length 1 and hence

dis (xi, yi) =

1 if xi , yi

0 if xi = yi
.

Furthermore, for a word x ∈ Fn
2, the Hamming weight of x, wt(x) := dis (x, 0) [20,

p.46].
For a binary code C, the (minimum) distance of C, denoted by dis (C), is [20, p.11]

dis (C) = min{dis
(
c, c′

)
: c, c′ ∈ C, c , c′}.

Definition 3. [11, p.75] For a binary code C of length n, with dis (C) = d, if M = |C| is
the number of codewords in C. Then C is called an (n,M, d)−binary code.

To simplify the notation we introduce the symbol ⊥, which indicates an error mes-
sage. Note that the exact implementation of ⊥ gives certain restrictions on the code C
that can be used: if zero is used to implement ⊥, we should require that 0 < C.

Definition 4. A symmetric cipher (see e.g. [18, p.37]) is a 5−tuple (K ,P,M, E,D)
such that

E : K × P →M, D : K ×M→ P,

and ∀κ ∈ K , ∀P ∈ P, D(κ, E(κ, P)) = P. We refer to K , P,M, E and D as key space,
plaintext space, ciphertext space, encryption and decryption of this cipher, respectively.
We define S to be the set of all symmetric ciphers (K ,P,M, E,D) such that

K = FN1
2 , P = FN2

2 , M = FN3
2 ,

for some N1,N2,N3 ∈ Z>0.

Definition 5. An error detection symmetric cipher is a 5−tuple (K ,P,M, E,D), where

1. ⊥∈ M,
2. E : K × P →M,D : K ×M→ P ∪ {⊥} are functions such that ∀κ ∈ K , ∀P ∈ P

(a) if D(κ, E(κ, P)) ,⊥ then D(κ, E(κ, P)) = P;
(b) D(κ,⊥) =⊥.

And we defineS⊥ to be the set of all error detection symmetric ciphers (K ,P,M, E,D)
such that

K = FN1
2 , P = FN2

2 , M = FN3
2 ∪ {⊥},

for some N1,N2,N3 ∈ Z>0.

Definition 6. Given an (n,M = 2k, d)−binary code C, an encoding-decoding scheme
associated with C is a pair of functions (EncoderC, DecoderC)

EncoderC : Fk
2 → C, DecoderC : Fn

2 ∪ {⊥} → F
k
2 ∪ {⊥}

such that DecoderC
∣∣∣
(Fn

2∪{⊥})\C
= {⊥} and EncoderC is bijective with DecoderC

∣∣∣
C

being
its inverse.

Thus for DecoderC an error message ⊥ will be returned if the input is not a codeword.
For any N , k, we extend EncoderC and DecoderC to FN

2 as follows:
If k - N, take any x = (x1, x2, . . . , xN) ∈ FN

2 , let x′ = (x1, x2, . . . , xN , 0, . . . , 0) ∈ FN+N′
2 ,

where N′ = min{` : k|(N + `)}. i.e. we add zero bits to x to get x′ so that the length of
x′ is divisible by k. Let EncoderC(x) := EncoderC(x′).
If k|N, say N = kk′, for any x = (x1, x2, . . . , xN) ∈ FN

2 , let xi = (xik+1, xik+2, . . . ,
xik+k), 0 ≤ i ≤ k′ − 1 and define

EncoderC(x) :=
(
EncoderC(x0), . . . , EncoderC(xk′−1)

)
∈ Ck′ .

It follows that EncoderC : FN
2 → C

k′ is a bijective function. We define DecoderC :
Fnk′

2 ∪ {⊥} → FN
2 such that DecoderC

∣∣∣
Ck′ → FN

2 is the inverse of EncoderC and
DecoderC

∣∣∣
(Fnk′

2 ∪{⊥})\C
k′ = {⊥}.

Definition 7 (Operation). An operation is a map g : FM1
2 × F

M2
2 × · · · × F

Mm
2 → FMm+1

2
for some positive integers M1,M2, . . . ,Mm+1. Let S denote the set of all operations.

Note that a program F (see Definition 1) can take inputs and outputs. Furthermore, an
assembly implementation of an operation is a program.

Definition 8. An operation with error detection is a map h : (FM1
2 ∪ {⊥}) × (FM2

2 ∪ {⊥

}) × · · · × (FMm
2 ∪ {⊥})→ FMm+1

2 ∪ {⊥} for some positive integers M1,M2, . . . ,Mm+1 such
that if x = (x1, x2, . . . , xm) ∈ (FM1

2 ∪{⊥})× (FM2
2 ∪{⊥})×· · ·× (FMm

2 ∪{⊥}) satisfies xi =⊥

for at least one i ∈ {1, 2, . . . ,m}, then h(x) =⊥. Let S⊥ denote the set of all operations
with error detection.

Remark 1. By the above definition, for any symmetric cipher (K ,P,M, E,D) ∈ S,
E,D ∈ S. For any error detection symmetric cipher (K ,P,M, E,D) ∈ S⊥, D ∈ S⊥.
Furthermore, for an (n,M = 2k, d)−binary code C with associated encoding-decoding
scheme (EncoderC, DecoderC), EncoderC ∈ S and DecoderC ∈ S⊥.

Definition 9. Given an (n,M = 2k, d)−binary code C, ϕC : S → S⊥ is defined as
follows:

Take any g : FM1
2 × FM2

2 × · · · × FMm
2 → FMm+1

2 ∈ S, for 1 ≤ i ≤ m + 1, suppose
{EncoderC(x)|x ∈ FMi

2 } = Cki ⊆ Fnki
2 , ϕC(g) is a function:

ϕC(g) :
(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
→ Ckm+1 ∪ {⊥}

such that for x =
(
EncoderC(x1), EncoderC(x2), . . . , EncoderC(xm)

)
∈ Ck1 × Ck2 ×

. . .Ckm , ϕC(g)(x) = EncoderC
(
g(x1, x2, . . . , xm)

)
, and ∀x ∈

(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥

}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
\Ck1 × Ck2 × . . .Ckm , ϕC(g)(x) =⊥.

Lemma 1. Let g1, g2 ∈ S such that g2 ◦ g1 ∈ S, then ϕC(g2 ◦ g1) = ϕC(g2) ◦ ϕC(g1).

(The proof can be found in Appendix B)

Remark 2. For any symmetric cipher (K ,P,M, E,D) ∈ S, any (n,M = 2k, d)−binary
code C with an associated encoding-decoding scheme (EncoderC, DecoderC), if we
write E = g1 ◦ g2 ◦ · · · ◦ gm for g1, g2, . . . , gm ∈ S, then ϕC(E) = ϕC(g1) ◦ ϕC(g2) ◦ · · · ◦
ϕC(gm).

Definition 10 (Fault resilient C-map). Given an (n,M = 2k, d)− binary code C with
an associated encoding-decoding scheme
(EncoderC, Dec oderC), we define fault resilient C-map to be the following function

ΦC : S→ S⊥
(K ,P,M, E,D) 7→ (K ,P,M∪ {⊥}, E′,D′),

such that ∀P ∈ P, κ ∈ K , Msg ∈ M\{⊥},

E′(κ, P) = DecoderC
(
ϕC(E)

(
EncoderC(κ), EncoderC(P)

))
,

D′(κ, Msg) = DecoderC
(
ϕC(D)

(
EncoderC(κ), EncoderC(Msg)

))
,

and D′(κ,⊥) =⊥.

Definition 11 (Fault resilient encoding scheme). Given (K ,P,M, E,D) ∈ S a sym-
metric cipher and C an (n,M = 2k, d)−binary code with an encoding-decoding scheme
(EncoderC, DecoderC). A cipher of the form ΦC

(
(K ,P,M, E,D)

)
is called a fault re-

silient encoding scheme.

Remark 3. Taking k = 1 and C = {01, 10}, we get the bit-sliced encoding, e.g. the one
used in [28] (EncoderC(0) = 01, and EncoderC(1) = 10) which follows the principle
of a dual-rail precharge logic. In Section 5.1, we use k = 4 mainly because PRESENT
cipher uses 4-bit SBox (see Section 5.1).

For a better understanding of how this scheme works, the design overview is stated in
Figure 1. Informally, first, an encoder is applied to both the plaintext and the key. Then,
the encryption process is performed, preserving the encoding. In the end, a decoder is
applied in order to get the encrypted message. The decryption process is analogous.

P

κ

EncoderC(P)

EncoderC(κ)

E ϕC(E)
(
EncoderC(P), EncoderC(κ)

)
Msg

DecoderC

Msg

κ

EncoderC(Msg)

EncoderC(κ)

D ϕC(D)
(
EncoderC(Msg), EncoderC(κ)

)
P

DecoderC

Fig. 1: Overview of the fault resilient encoding scheme.

3 Theoretical Evaluation of Fault Resilient Encoding Scheme

In this section we first define faults in encoding schemes and provide concepts of safe
and exploitable faults. Then, we theoretically evaluate Fault Resilient Encoding Scheme
using one operation and we show why anticodes provide better fault detection proper-
ties.

3.1 Defining Faults in Encoding Schemes

Definition 12. Given an (n,M = 2k, d)−binary code C with encoding-decoding scheme
(EncoderC, DecoderC), an operation g ∈ S, let F be an assembly implementation of
ϕC(g). Suppose F = { f1, f2, . . . , fNF },

1. The set of possible instruction skips for F is

G(F ,sk) := {ϑi : 1 ≤ i ≤ NF }.

2. The set of possible fault masks for F is

G(F ,fm) := {ςi, j : 1 ≤ i ≤ NF , j ∈ Fn
2, fi has a destination register}.

3. For an integer 1 ≤ m ≤ n, the set of possible m−bit flips for F is

G(F ,fm,m) := {ςi, j : ςi, j ∈ G(F ,fm),wt(j) = m}.

4. A fault on F is defined to be a function % such that % ∈ G(F ,sk) or % ∈ G(F ,fm).
5. Fixing an input x, a fault % on F is said to be safe if %

(
F

)
=⊥ or g(x); and it is said

to be exploitable otherwise.
6. The pair (ϕC(g),F) is said to be p−safe, if for given random input x and random

fault % on F , the probability Pr(% is safe) = p

Remark 4. A fault is closely related to a tampering function defined in [13]. In our
notation, a fault is defined on the program code level, but in a broader sense, the effect
of introducing a fault in the program execution can be considered as an application of a
tampering function.

Given an (n,M = 2k, d)−binary code C associated with an encoding-decoding scheme
(EncoderC, DecoderC) and a symmetric cipher (K ,P,M, E,D). Let (K ,P,M ∪ {⊥
}, E′,D′) := ΦC

(
(K ,P,M, E,D)

)
. The assembly implementations of E′ and D′ are

programs. If we let F1 and F2 be the assembly implementations of E′ and D′ re-
spectively, then for any κ ∈ K , P ∈ P, Msg ∈ M ∪ {⊥}, F1(κ, P) = E′(κ, P) and
F2(κ, Msg) = D′(κ, Msg). We assume the registers involved in the implementation all
have length at least n. By Definition 2 we have the following

Definition 13 (Safe and exploitable faults). For a fixed plaintext P ∈ P and a key κ ∈
K , a fault %1 on F1 is safe if %

(
F1

)
(κ, P) =⊥ or E(κ, P) and it is exploitable otherwise.

Similarly, a fault %2 on F2 is safe if %
(
F2

)
(κ, P) =⊥ or D(κ, P) and it is exploitable

otherwise.

Furthermore, we define:

Definition 14 (p−safe). The triple (ΦC
(
(K ,P,M, E,D)

)
,F1,F2) is said to be p−safe

if for given random P ∈ P, κ ∈ K and random fault % on F1 or F2, Pr(% is safe) = p.

To explain why the fault can be exploited, we have to look into preconditions of a
differential fault analysis [5]. For such attack, attacker needs to inject a fault during the
execution. Based on where the fault is introduced, diffusion can spread it up to the whole
cipher state by the end of encryption. Attacker then compares the faulty output with the
correct one and gains information about the secret key. If the fault is exploitable, the
attacker can use similar technique. In this case, the cipher output would be equivalent
to the faulty output obtained by attacking an unprotected cipher implementation. On
the other hand, if the fault is safe, it means the output is either ⊥ or the correct output,
which will not give the attacker valuable information.

Note that the definition of p−safe assumes that an attack can achieve all possible
instruction skips and fault masks, furthermore, each fault happens with an equal proba-
bility.

3.2 From Encoding Schemes to Anticodes

Let g ∈ S be a binary operation g : FM1
2 × FM2

2 → FM3
2 and let C be an (n,M =

2k, d)−binary code which does not contain the zero codeword with associated encoding-
decoding scheme (EncoderC, DecoderC). We will use zero string to denote ⊥, the error
message. That is why we require that 0 < C. Furthermore, we choose k such that k =

max{M1,M2}. Let F be the assembly implementation (in Figure 2) of ϕC(g). In the
code, two different instructions are used: LDI loads immediate data into the destination
register, LPM loads data from a program memory to the destination register – serving as
a table lookup in our case. Before executing the code we precharge all the registers to
zero. Note that the table has 2n × 2n entries. The value stored at address (a, b) is zero if

aInput: b

LDI r0, a;
LDI r1, b;
LPM r2, r0, r1;

F :

Output

Fig. 2: Assembly implementation F for ϕC(g), where g : FM1
2 × F

M2
2 → F

M3
2 is a binary operation.

a, b < C and the value is EncoderC(g(EncoderC(x), EncoderC(y))) if a = EncoderC(x)
and b = EncoderC(y).

Then by Definition 12, the set of possible instruction skips and the set of possible
fault masks for F are given by

G(F ,sk) = {ϑ1, ϑ2, ϑ3}, G(F ,fm) = {ςi, j : 1 ≤ i ≤ 3, j ∈ Fn
2}.

Binary operations are very common in symmetric ciphers, e.g. xor, and, modular
addition. We would like to point out that the analysis in this section for binary opera-
tions can be easily generalized to a whole cipher implementation. The implementation
F is a natural way of implementing ϕC(g) in assembly language. Analyzing the fault
resistance property of F gives insights to the overall fault resistance of using C in our
scheme and it provides a solid approximation of the fault resistance of a full cipher
implementation.

We adopt the following notions defined in [7, Definitions 9 and 10]:

Definition 15. For an (n,M, d)-binary code C such that d ≥ 2, let S m,C :=
∑

c∈C |{c′ ∈
C : dis (c′, c) = m}|. Then

pm,C := 1 −
S m,C

M
(

n
m

) (1)

is called the m−bit fault resistance probability for C. Furthermore,

prand,C :=
n∑

m=1

1
n

pm,C

is called the overall resistance index for C.

Since the registers are all precharged to zero, for any ϑ ∈ G(F ,sk), ϑ is a safe fault. By
Definition 12 we have

Lemma 2. 1. For given random P ∈ P, κ ∈ K and random fault ς ∈ G(F ,fm,m), the
probability Pr[ς is safe] = pm,C.

2. For given random P ∈ P, κ ∈ K and random fault ς ∈ G(F ,fm), the probability
Pr[ς is safe] = prand,C.

3. The pair (ϕC(g),F) is prand,C−safe.

Thus we are interested in binary codes C with bigger values of overall resistance index.
From Eq. (1), we can see that the smaller S m,C

M(n
m) is, the smaller overall resistance index

we get. Since
∑n

m=1 S m,C = M(M − 1) is always true, to make prand,C big, one strategy is
to make S m,C small or even equal to zero for smaller values of

(
n
m

)
.

Let

` =

 n
2 if n is even
n+1

2 if n is odd
. (2)

It is known that (see e.g. [29, p.26])
(

n
i−1

)
<

(
n
i

)
if 1 ≤ i < `(

n
i−1

)
>

(
n
i

)
if ` < i ≤ n

, and


(

n
`−1

)
=

(
n
`

)
if n is odd(

n
`−1

)
<

(
n
`

)
if n is even

. (3)

Hence we would like to have S i,C = 0 for i “close to” n or for i “close to” 0 and we
would also like to make S i,C , 0 when i is "close" to ` (see Lemma 3).

In view of the above, we recall the notion of anticode from coding theory:

Definition 16. [14]A binary anticode is an array of binary digits with n rows and M
columns, constructed so that the maximum Hamming distance between any pair of rows
is less than or equal to a certain value δ. This value δ is the maximum distance of the
anticode.

If we have a binary code, we can take its codewords as rows and then get an anticode.
Note that a binary code does not have have repeated codewords but an anticode can
have repeated rows [14]. The above discussion shows that essentially what we want is a
binary code which is also an anticode with a proper maximum distance δ. We introduce
the following definition.

Definition 17. Let C be an (n,M, d)−binary code, if furthermore

max
c,c′∈C

dis
(
c, c′

)
= δ,

where d ≤ δ ≤ n, then C is called an (n,M, d, δ)−binary anticode. Furthermore, d (resp.
δ) is called the minimum distance (resp. maximum distance) of C.

Definition 18 (Fault Resilient Anticode Scheme). A fault resilient encoding scheme
ΦC

(
(K ,P,M, E,D)

)
is called a fault resilient anticode scheme if C is an anticode.

We have the following observations

Lemma 3. Given an (n,M, d1, δ1)−binary anticode C1 and an (n,M, d2, δ2)−binary an-
ticode C2 such that d2 ≤ d1 ≤ `, δ1 ≤ δ2 and S m,C1 ≥ S m,C2 ∀m = d1, . . . , δ1. Denote the
overall resistance index for C1 and C2 by prand,C1 and prand,C2 respectively, we have

1. For d1 = d2, δ1 < δ2,
a. If ` ≤ δ1 and δ1 + d1 + 1 > n, then prand,C1 > prand,C2 ;
b. If δ1 < `, then prand,C1 < prand,C2 .

2. For d1 > d2, δ1 = δ2,
a. If d1 ≤ ` and δ1 + d1 + 1 > n, then prand,C1 > prand,C2 ;

b. If d1 > `, then prand,C1 < prand,C2 .

(The proof can be found in Appendix B)

The next natural question would be: for what kind of paramteres n,M, d, δ, there
actually exists an (n,M, d, δ)−binary anticode? We introduce the following notation.

N(n, d, δ) := max{M : ∃(n,M, d, δ) − binary anticode}. (4)

Two related well-studied coding theory concepts are [21, p.42]

A(n, d) := max{M : ∃(n,M, d) − binary code},

and [15]

B(n, d) := max{M : ∃(n,M, d) − binary code C, s.t. ∀c, c′ ∈ C,
dis

(
c, c′

)
= 0 or d}.

We have

Lemma 4. i N(n, d, d) = B(n, d);
ii N(n, d, n) ≤ A(n, d);

iii N(n, d, δ) ≤ N(n + 1, d, δ);
iv N(n, d, δ) ≤ N(n + 1, d, δ + 1), where δ ≥ d + 1;
v N(n, d + 1, δ) ≤ N(n, d, δ), where δ > d + 1;

vi N(n, 2r − 1, 2` − 1) ≤ N(n + 1, 2r, 2`) where r, ` ∈ Z>0;
vii N(n, 2r − 1, 2`) ≤ N(n + 1, 2r, 2`), where r, ` ∈ Z>0;

(The proof can be found in Appendix B)

In Section 5.1 we will study and analyze the implementation of Fault Resilient Anti-
code Scheme with PRESENT cipher. Because of the cipher design we will be interested
in anticodes with cardinality 16 (see Section 5.1). By the above Lemma and some ex-
haustive search, we have in Table 1 the possible values of d and δ for n = 8, 9, 10 and
M = 16.

4 Algorithms

In this section, we provide two useful algorithms for practical evaluation of encoding
schemes. The first one generates binary anticodes according to user requirements and
the second one evaluates software implementations that follow the Fault Resilient En-
coding Scheme.

Table 1: Possible values of d, δ such that there exists an (n, 16, d, δ)−binary anticodes for n =

8, 9, 10.

n d δ

8 2 4, 5, 6, 7, 8
8 3 6, 7, 8
8 4 8
9 2 4, 5, 6, 7, 8, 9
9 3 6, 7, 8, 9
9 4 6, 8, 9

10 2 4, 5, 6, 7, 8, 9, 10
10 3 6, 7, 8, 9, 10
10 4 6, 7, 8, 9, 10

Algorithm 1: Anticode Generation Algorithm.
Input : n : length of the anticode, M : number of codewords, d : minimum distance of

the anticode, δ : maximum distance of the anticode, and ε : probability of
exploitable faults.

Output: An (n,M, d, δ)−binary anticode C.
1 do
2 boolean codeExists := false;
3 for Every set S of M words which does not include ⊥ do
4 if S is an (n,M, d, δ)−binary anticode then
5 if 1 − pm,S < ε∀1 ≤ m ≤ n then
6 codeExists := true;
7 C := S;
8 break for;

9 ε := ε − const;
10 while codeExists;
11 return C.

4.1 Anticode Generation Algorithm

In order to use and analyze the Fault Resilient Anticode Scheme, we first need to gen-
erate the binary anticodes. The algorithm created for this purpose is described in this
section.

Pseudocode outlining the main idea of the anticode generation is stated in Algo-
rithm 1. The inputs are: parameters n,M, d, δ for the binary anticode, and ε – probabil-
ity of exploitable faults for binary operations. Please note that for our case, we use zero
word as ⊥ and thus in line 3 we choose sets S which do not contain 0.

The ε parameter is crucial for selecting an anticode with good detection capabili-
ties. As long as at least one anticode exists for given ε, the algorithm will try to lower
this value (line 9) by a pre-specified constant, to find the optimal ε. However, for some
n,M, d, δ parameters, there is no anticode with reasonable detection probabilities. For
example, every (8, 16, 4, 8)−binary anticode has a property that 8−bit flip has a proba-

bility 1 of being exploitable. Such anticodes are not suitable for protecting implemen-
tations, therefore we avoid them. For more details about this phenomenon, we refer
to [7].

Definition 15 and Lemma 2 show that 1 − pm,C can serve as a good condition for
selecting anticodes. Line 5 uses this value to only consider anticodes that do not surpass
the detection threshold for every possible bit-flip.

4.2 Static Code Analysis

For the purpose of fault analysis, we have designed a static code analyzer that is able
to simulate the code execution and inject faults with a bit precision in any instruction
of the code. Along with the bitflips, it can simulate instruction skips (see Definition 2).
Pseudocode implementing the evaluation is stated in Algorithm 2.

Keep the same notations from Definition 13. (K ,P,M, E,D) ∈ S is a symmetric
cipher, C is an (n,M, d, δ)−binary anticode and (K ,P,M ∪ {⊥}, E′,D′) is the corre-
sponding Fault Resilient Anticode Scheme. F1 and F2 denote assembly implementa-
tions of D′ and E′ respectively. Algorithm 2 gives the static code analyzer for F1. With
simple adjustments, it can be used for analyzing F2. In the following we describe how
the algorithm works.

Inputs of the algorithm are: a plaintext P and a secret key κ, together with the corre-
sponding ciphertext E(P, κ), an (n,M, d, δ)− binary anticode, and a sequence of assem-
bly instructions F .

In the first part, we evaluate bit-flips (lines 1-10). The first loop iterates over every
possible fault mask. Fault mask (see Definition 2) is a value which will be later xor-ed
with the intermediate value in order to change the original value in the destination reg-
ister of an instruction. Please note that according to Definition 2, fault mask is a binary
string, however, it is more convenient and efficient to use an integer in the implemen-
tation. The second loop iterates over every instruction in F , to select the position in
the program to be faulted. The last loop is the program execution itself, it iterates over
instructions in F and executes them one by one. In case the instruction number corre-
sponds to the number that is currently being targeted, a bit-flip is performed (line 6).
After the algorithm finishes, there is a checking of the output value (lines 7-10). If the
value does not deviate from the expected ciphertext E(P, κ), or the value is ⊥, we con-
sider it a safe fault. Otherwise, it is considered an exploitable fault (see Definition 13).
In each case we increment a corresponding value in the array, where the array index
indicates the Hamming weight of the fault mask.

The second part evaluates instruction skips (lines 11-20). It works in the same fash-
ion as the previous part, however, in this case we save one loop because we do not need
any fault mask. Output evaluation is analogous, but the outputs will be integers instead
of arrays of integers.

Clearly, the time complexity of the first part is O(NF (2n − 1)), where NF = |F |,
since the algorithm needs to evaluate every possible fault mask on every instruction
of the code. The time complexity of the second part is O(NF) because in this case,
the total time depends only on the number of instructions. To give an overview, for
8-bit microcontroller implementation of PRESENT-80, time required to analyze the
assembly code is ≈ 610 seconds.

Algorithm 2: Fault analysis algorithm.
Input : P: plaintext, κ: secret key, E(P, κ): ciphertext corresponding to encrypting P with

κ, C: (n,M, d, δ)−binary anticode, F : sequence of assembly instructions
Output: Distribution of safe and exploitable faults:

Int[] SafeBitFlip: SafeBitFlip[m]= |{ς ∈ G(F ,fm,m)is safe}|
Int[] ExploitableBitFlip: SafeBitFlip[m]= |{ς ∈ G(F ,fm,m)is exploitable}|
Int SafeSkip: SafeBitFlip= |{ς ∈ G(F ,sk)is safe}|
Int ExploitableSkip:SafeBitFlip= |{ς ∈ G(F ,sk)is exploitable}|

1 for Fault mask Int x: 1 to 2n do
2 for Int j: 0 to |F | do
3 for Instruction f in F do
4 Execute instruction f ;
5 if f == j and f has a destination register then
6 r f = r f⊕ x;

7 if output == ⊥ or output == E(P, κ) then
8 SafeBitFlip[HammingWeight(x)]++;

9 else
10 ExploitableBitFlip[HammingWeight(x)]++;

11 for Int j: 0 to |F | do
12 for Instruction f in F do
13 if f == j then
14 continue;

15 else
16 Execute instruction f ;

17 if output == ⊥ or output == E(P, κ) then
18 SafeSkip++;

19 else
20 ExploitableSkip++;

21 return ExploitableBitFlip, SafeBitFlip, ExploitableSkip, SafeSkip.

5 Case Study

In this section, we present the case study on block cipher PRESENT, fully implemented
by using Fault Resilient Anticode Scheme with (n, 16, d, δ)−binary anticodes for n =

8, 9, 10 (Table A lists all the anticodes used). In Section 5.1, we provide implementation
details by using a generic 8-bit microcontroller. Section 4.2 describes the algorithm we
used for static code analysis of the assembly program. This algorithm is generic and
can be used to analyze any algorithm implemented by Fault Resilient Anticode Scheme.
Finally, Section 5.2 provides the results of the code analysis.

Plaintext

Ciphertext

addRoundKey

addRoundKey

sBoxLayer

pLayer

31x

Fig. 3: Sequence of operations of PRESENT block cipher.

5.1 PRESENT Cipher

PRESENT is an ultra-lightweight block cipher, developed in 2007 [6]. It is a sym-
metric cipher, following an SPN structure, where the block length is 64 bits and key
length can be either 128 bits or 80 bits. A round function consists of three operations:
xor of the state with the round key, substitution by 4-bit SBox, which we refer to as
PRESENT SBox, and bitwise permutation. After 31 rounds, there is one more ad-
dRoundKey, used for post-whitening. The whole process is depicted in Figure 3. Be-
cause of its lightweight character, it is recommended to use 80-bit key length in order
to keep the computation fast and energy efficient [6]. Therefore, in our paper, we will
focus on this variant, denoted by PRESENT-80.

Each round of PRESENT-80 consists of three operations: g1 = bit permutation :
F16

2 → F
16
2 , g2 = PRESENT SBox : F4

2 → F
4
2and g3 = bitwise xor with the round key :

F64
2 × F

64
2 → F

64
2 . Because g1 and g3 are bitwise operations, 64 and 16 are multiples

of 4, we can use code with cardinality 24 = 16. In particular, to apply Fault Resilient
Anticode Scheme with PRESENT-80, we will use (n, 16, d, δ)−binary anticodes. For
our implementation, we take pre-computed round keys which are already encoded and
therefore, we omit the description of the key schedule here.

Figure 4 shows one round of PRESENT and gives an overview of how the sBoxLayer
and pLayer work. There are 4 groups of Sboxes in the sBoxLayer, indicated by different
colors. Output bits from each group serve as inputs to 4 distinct Sboxes in the subse-
quent round, thanks to the state-wise diffusion function. As illustrated in the figure,
outputs of Sboxes 0, 1, 2, 3 denoted by red color, will be inputs of Sboxes 0, 4, 8, 12 in
the next round. This property helps us to tailor the look up tables in a way that can
provide more efficient space/time implementation compared to implementing the two
layers separately. In the following, we will explain the design of such implementation.

Encoded Round Function for PRESENT In this part, we will explain the implemen-
tation of the round functions for Fault Resilient Anticode Scheme with PRESENT-80
by using (n, 16, d, δ)− binary anticodes. Remark 2 justifies that we can split or merge
multiple cipher operations while using the C−map (see Definition 10), preserving the
correct data-flow.

Fig. 4: One round of PRESENT.

The addRoundKey is a binary operation, xor-ing the key with the current state.
Therefore, it can be directly implemented by an xor lookup table, as explained in Sec-
tion 3.2. The sBoxLayer maps an input value to an output value, therefore the stan-
dalone implementation would be even easier than the xor. However, we have decided to
merge sBoxLayer together with the pLayer, because the latter cannot be implemented
in a straightforward way. The overview of this merged implementation is depicted in
Figure 5. The explanation of this approach is given in the following.

EncoderC ()c0 c1 c2 c3

cs00 0)

cs1)0 0

cs2)0 0 0

cs3)0 0 0

0

0EncoderC (

EncoderC (

EncoderC (

EncoderC (

EncoderC ()b0 b1 b2 b3

bs0 0 0)

bs1)0 0 0

bs2)0 0

bs3)0 0

0

0

0

EncoderC (

EncoderC (

EncoderC (

EncoderC (

EncoderC ()d0 d1 d2 d3

ds00 00)

ds1)0 00

ds2)0 0 0

ds3)0 0 0

EncoderC (

EncoderC (

EncoderC (

EncoderC (

a0 a1 a2 a3EncoderC ()

as1)0 0

as2)0 0

as3)0 0

0

0

0

as0 0 0 0)EncoderC (

EncoderC (

EncoderC (

EncoderC (

0 0 0)

)0 0 0

)0 0 0

)0 0 0

EncoderC (

EncoderC (

EncoderC (

EncoderC (

as0

bs0

cs0

ds0

EncoderC ()as0 bs0 cs0 ds0

~

~
~

Fig. 5: Illustration of the implementation of PRESENT-80 sBoxLayer and pLayer in Fault Re-
silient Anticode Scheme.

Suppose we are using an (n, 16, d, δ)−binary anticode C. The implementation of
ΦC

(
pLayer ◦ sBoxLayer

)
relies on the xor lookup table and eight other tables, which

can be divided into two groups:

1. Bit-extracting Sbox tables: This group has four tables: T0, T1, T2, T3 such that Ti
takes a codeword, say EncoderC(x0x1x2x3) and returns the codeword EncoderC(xsi000).
If the input is not a codeword, the return value will be⊥ (in our implementation it is
zero). Here we assume that after PRESENT SBox, x0x1x2x3 becomes xs0xs1xs2xs3

In other words, this group first computes an Sbox on the encoded data, and then
extracts one bit – the bit position depends on which of the four tables is used.

2. Bit-shifting tables: This group has four tables as well: T B0, T B1, T B2 and T B3.
For a codeword of the form EncoderC(x000), T B0, T B1, T B2, T B3 return the
codewords EncoderC(x000), EncoderC(0x00), EncoderC(00x0), EncoderC(000x),
in their respective order. If the input is not a codeword, the return value will be ⊥
for all the four tables.
In other words, the tables in this group provide bit shifting operations, that are
necessary to finalize the pLayer.

After the Sbox is computed and the bit shifts on the resulting data are done, the data
is combined back to 4-bit format by using an xor table – in total, three xor operations are
required to combine the data. In the following, we will explain this process step-by-step.

Assume we have EncoderC
(
a0a1a2a3b0b1b2b3c0c1c2c3d0d1d2d3

)
, representing a ci-

pher state, where each letter represents one nibble of information. This is what happens:

1. EncoderC(a0a1a2a3) is passed to tables T0, T1, T2, T3, then the four returned
values are passed to T B0 and we get:
EncoderC(as0000), EncoderC(as1000), EncoderC(as2000), EncoderC(as3000);

2. EncoderC(b0b1b2b3) is passed to tables T0, T1, T2, T3, then the four returned
values are passed to T B1 and we get:
EncoderC(0bs000), EncoderC(0bs100), EncoderC(0bs200), EncoderC(0bs300);

3. EncoderC(c0c1c2c3) is passed to tables T0, T1, T2, T3, then the four returned
values are passed to T B2 and we get:
EncoderC(00cs00), EncoderC(00cs10), EncoderC(00cs20), EncoderC(00cs30);

4. EncoderC(d0d1d2d3) is passed to tables T0, T1, T2, T3, then the four returned
values are passed to T B3 and we get:
EncoderC(000ds0), EncoderC(000ds1), EncoderC(000ds2), EncoderC(000ds3).

Afterwards, we need three xor table lookups to get:

1. The first four encoded nibbles are given by(
EncoderC(as0000)⊕̃EncoderC(0bs000)

)
⊕̃
(
EncoderC(00cs00)⊕̃EncoderC(000ds0)

)
;

2. The second four encoded nibbles are given by(
EncoderC(as1000)⊕̃EncoderC(0bs100)

)
⊕̃
(
EncoderC(00cs10)⊕̃EncoderC(000ds1)

)
;

3. The third four encoded nibbles are given by(
EncoderC(as2000)⊕̃EncoderC(0bs200)

)
⊕̃
(
EncoderC(00cs20)⊕̃EncoderC(000ds2)

)
;

4. The fourth four encoded nibbles are given by(
EncoderC(as3000)⊕̃EncoderC(0bs300)

)
⊕̃
(
EncoderC(00cs30)⊕̃EncoderC(000ds3)

)
;

Here ⊕̃ represents xor table lookup. We illustrate the whole process using Figure 5,
which explains how the first encoded nibble is obtained.

5.2 Results

Algorithm 2 runs for one plaintext. For the evaluation purposes, we had to run it several
times for random plaintexts in order to minimize the error to acceptable level. From

experimental evaluation, after ≈200 random plaintexts, the error becomes negligible
(< 10−6). Therefore, we have run 200 random iterations of the algorithm for every an-
ticode stated in Appendix A. Our PRESENT-80 algorithm implementation follows the
specification stated in Section 5.1. Therefore, as inputs we used a 64-bit plaintext P,
80-bit secret key κ, and 64-bit ciphertext E(P, κ). Please note that we did not target en-
coding and decoding processes. In case of faulting the encoding process, the introduced
fault would change the input to the encoding algorithm, therefore the fault analysis pro-
cess would just become a differential cryptanalysis. Also, this type of fault could be
introduced on the data anytime before the algorithm execution which is out of scope of
this work. In case of faulting the decoding process, attacker would not gain any valuable
information about the secret key or the plaintext.

Fault analysis results for anticodes from Table 3 (Appendix A) with n = 8, d = 2, 3,
and n = 10, d = 2 with various δ values are stated in Figures 6 and 7, respectively.
Additional results for n = 8, d = 2, 3, n = 9, d = 2, 3, 4, and n = 10, d = 3, 4
are stated in Appendix C. Percentages of safe random fault masks are stated in the
last column of Table 3. The improvement of using a longer length for encoding the
data is obvious – values of random exploitable faults for length 8 go up to ≈0.05,
for length 9 up to ≈0.031, and for length 10 up to ≈0.016. Moreover, we can see
the advantage of (n,M, d, δ)−anticodes with δ < n over codes with unbounded dis-
tance, i.e. (n,M, d, δ)−binary anticodes with δ = n. For example, the simulation with
our fault analysis algorithm shows that the probability of safe faults is 0.9908 for the
(10, 16, 2, 9)−anticode and 0.9938 for the (10, 16, 2, 6)−anticode (the theoretical values
follow the same trend). Also, for most of the cases, codes with unbounded maximum
distance have the worst detection properties. In accordance with findings in Lemma 3,
we can find the best performing anticodes with n > δ ≥ ` (see Equation (3)).

In
s.

Sk
ip

1-
B

it
Fl

ip

2-
B

it
Fl

ip

3-
B

it
Fl

ip

4-
B

it
Fl

ip

5-
B

it
Fl

ip

6-
B

it
Fl

ip

7-
B

it
Fl

ip

8-
B

it
Fl

ip

R
an

do
m

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty
of

ex
pl

oi
ta

bl
e

fa
ul

ts

(8,16,2,4)
(8,16,2,5)
(8,16,2,6)
(8,16,2,7)
(8,16,2,8)
(8,16,3,6)
(8,16,3,7)
(8,16,3,8)

Fig. 6: Simulated results for anticodes with n = 8, d = 2, 3.

In
s.

Sk
ip

1-
B

it
Fl

ip

2-
B

it
Fl

ip

3-
B

it
Fl

ip

4-
B

it
Fl

ip

5-
B

it
Fl

ip

6-
B

it
Fl

ip

7-
B

it
Fl

ip

8-
B

it
Fl

ip

9-
B

it
Fl

ip

10
-B

it
Fl

ip

R
an

do
m

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty
of

ex
pl

oi
ta

bl
e

fa
ul

ts

(10,16,2,10)
(10,16,2,4)
(10,16,2,5)
(10,16,2,6)
(10,16,2,7)
(10,16,2,8)
(10,16,2,9)

Fig. 7: Simulated results for anticodes with n = 10, d = 2.

6 Discussion

In this section, we would like to discuss the results obtained in Section 5, as well as
some properties of the Fault Resilient Anticode Scheme.

Memory and Speed Trade-Offs Table 3 shows that if the anticode C has longer
length, Fault Resilient Anticode Scheme using C has better fault resistance proper-
ties. On the other hand, it also means a bigger memory consumption that increases
sub-exponentially with the code length. In the following, we will discuss the overheads.

When it comes to speed, the fastest non-bit sliced 8-bit implementation of PRESENT-
80 requires 8 721 clock cycles [25], out of which ≈ 1 248 is a key schedule (since we
consider the round keys already in the memory, we will only count 7 473 clock cycles
for the implementation from [25]). In case the selected code can be fully implemented
in the SRAM (and therefore, a table look-up operation LD takes 2 clock cycles), Fault
Resilient Anticode Scheme implementation takes 9 424 clock cycles (≈ 26.1% over-
head). In case all the look-up tables are stored in the flash memory (LMP instruction
taking 3 clock cycles has to be used), the approach takes 13 640 clock cycles (≈ 82.5%
overhead). Therefore, compared to the most popular time redundancy that repeats the
encryption twice and compares the results [2], the encoding method provides reasonable
timing overheads, especially if the look-up tables can be stored in the SRAM.

While the speed of the implementation might be reasonable, the memory overheads
quickly grow to sizes that are not practical for real-world cryptography. It has to be
noted that even if the code length is smaller than the memory address length, the table
normally has to occupy the size according to this length, otherwise the unused bits in
the address could be faulted and would point to another part of the memory that is
used for a different purpose. Therefore, if we have a 16-bit addressing space, but only a
binary anticode of length 6, the constructed table has to be of size of 8×8 bits. For such

architecture, codes longer than 8 bits would not be possible – in case of code lengths
between 9−16, we need a 32-bit addressing space. Also, number of codewords does not
affect the memory requirements since the table size for the same code length is constant,
only the number of non-zero values will change with different number of codewords.

Table 2 provides memory requirements for some standard cryptographic operations.
Since block ciphers combine several functions in order to achieve the security require-
ments for confusion and diffusion, several tables normally have to be stored in the mem-
ory. For example, the PRESENT implementation in Section 5 uses one xor table and
eight shifting tables for the combined pLayer and sBoxLayer, resulting in total of
81,920 bytes of memory. To test the feasibility, we made an implementation for Atmel
ATmega328P, an 8-bit microcontroller. However, only the eight smaller tables could fit
into the device memory, while the big xor table had to be put on an external EEPROM
module (256 Kbit Microchip 24LC256).

Table 2: Overheads for implementing Fault Resilient Encoding Scheme.

Operation Type Code Length Required Memory (B)

Unary (Sbox, shifts)
≤ 8 2,048
≤ 16 524,288

Binary (XOR, AND, modular addition)
≤ 8 65,536
≤ 16 33,554,432

Comparison with Other Evaluation Methods Moro et al. [22] developed an evalu-
ation platform based on electromagnetic fault injection to experimentally verify tem-
poral redundancy countermeasures at assembly instruction level. They implemented a
protected version of FreeRTOS to conduct the study. Two countermeasures were tested
– an instruction skip protection and a fault detection that is applicable to a subset of
assembly instructions. Their experiments showed that both countermeasures work in a
way they are supposed to, however with obvious limitations that come from their design
– they either protect only against instruction skips and not against other, more complex
fault models, or they can only protect several chosen instructions of the code.

Yuce et al. [33] provided experimental evaluation of several instruction level coun-
termeasures by using a single clock glitches. They showed that the most popular choices,
such as instruction duplication/triplication, parity, and instruction skip countermeasure
can be broken by a careful choice of fault scenario.

Goubet et al. [17] aimed at formal verification of countermeasures by using au-
tomata and SMT solver. Such approach required a decomposition of a code into pieces,
while analyzing each piece separately. Also, the method work by comparing the unpro-
tected code with the protected one. However, while the duplication countermeasure was
proven to be secure in this case, the work mentioned before ([33]) shows an experimen-
tal way how to break it. Therefore, it is necessary to provide simulated or experimental
results when dealing with fault countermeasures since there might be hidden vulnera-
bilities that cannot be verified just by analyzing standalone code snippets.

In case of encoding based software countermeasures, there are no works proposing
a full cipher evaluation to the best of our knowledge. The closest work to this one
evaluates a single operation on encoded data [7]. Our method is universal for encoding
based software countermeasures and provides details on all the possible bit flips and
instruction skips. Also, the static code analysis technique that was implemented can
efficiently evaluate a full cipher implementation in a short time.

Cache Timing Attacks Look-up tables in general are susceptible to cache timing at-
tacks, since fetching a value from one position in the table takes a different time com-
pared to using another position due to cache misses [4]. As mentioned in [24], there are
various ways for protecting such implementations. One way to do it is to use two differ-
ent round function implementations – some rounds use look-up tables, while the others
do not. This method can be further investigated in order to provide the best properties
w.r.t. cache-timing, power, and fault attacks. Another approach is cache warming that
loads the whole table into the cache, resulting into constant time of execution, avoiding
cache misses completely. Furthemore, one can add random delays in the execution to
make the attack harder.

Other Fault Analysis Methods Apart from the Differential Fault Analysis (DFA),
there are several other methods that can be used by the attacker. There are methods that
have similar requirements to DFA, such as Collision Fault Analysis or Algebraic Fault
Analysis, where the knowledge of the fault propagation is necessary in order to get the
secret information. Therefore, our scheme can be applied as a countermeasure for these
methods as well.

On the other hand, there are approaches that utilize the behavior where the fault does
not propagate in all the cases, such as Safe-Error Analysis or Ineffective Fault Analysis
(recently utilized in [12]). These two methods, when used for block ciphers, require a
stuck-at fault model, i.e. a model where certain value becomes either ‘0’ or ‘1’, no mat-
ter what value was in the register before. The attacker then just needs the information
whether the output is faulty or not, without the knowledge of the fault value. There-
fore, any error detection method that outputs ⊥ reveals such information to the attacker.
Even if it carries out the computation one more time and provides a correct output on
the second run, there is already a timing difference that can be observed. However, these
attacks can be thwarted by a well-designed error correction codes. Some results in this
direction are stated in [7], along with the code properties. Similar properties could be
derived for Fault Resilient Anticode Scheme in case such protection is necessary.

Open Problems Recall the notations from Definition 14. Let (K ,P,M, E,D) ∈ S, C
be an (n,M, d, δ)−binary anticode associated with a decoding-encoding scheme (Encod
erC, DecoderC) and let (K ,P,M∪ {⊥}, E′,D′) := ΦC

(
(K ,P,M, E,D)

)
be the corre-

sponding Fault Resilient Anticode Scheme with F1 (resp. F2) being the assembly im-
plementation of E′ (resp. D′). Given ΦC

(
(K ,P,M, E,D)

)
, F1 and F2, using the same

theoretical calculation techniques of prand,C in Section 3.2, we can calculate the value p

such that
(
ΦC

(
(K ,P,M, E,D)

)
,F1,F2

)
is p−safe. Thus the goal is to achieve the max-

imum possible value of p. Note that, using a large number of “dummy” instructions
in an implementation can reduce the percentage of exploitable faults. We exclude this
strategy from all the discussions as this method would increase the computation time.

The primary open problem that naturally emerges can be stated as follows:
1. Given (K ,P,M, E,D), what is the best way to choose (n,M, d, δ)− binary anticodes,
the associated decoding - encoding scheme (EncoderC, DecoderC) and the design of
the implementations F1,F2?

We have seen that the same implementation of Fault Resilient Anticode Scheme
with PRESENT-80 behave differently under fault injection attacks for anticodes with
different lengths and maximum/minimum distances. As we just mentioned, longer length
gives better properties but it also requires bigger memory consumption. Another open
question would be:
2. Given (K ,P,M, E,D), values of n,M, and implementations F1,F2, what is the best
way to choose d and δ?

As mentioned in Section 3.2, it is not always possible to find a binary anticode for
any values of n,M, d, δ. Considering the standard size of registers in current existing
architectures is 64 bits, one would ask:
3. What is N(n, d, δ) (see Equation (4)) for n ≤ 64?

The simulation results show that if the anticode has longer length, the fault resis-
tance property of the Fault Resilient Anticode Scheme would be better. We conjecture
that:
Conjecture: For any ε > 0 and any (K ,P,M, E,D) ∈ S, there exists a binary anticode
C, an encoding-decoding scheme (EncoderC, DecoderC) and implementations F1, F2

such that
(
ΦC

(
(K ,P,M, E,D)

)
,F1,F2

)
is p−safe for some p > 1 − ε.

7 Conclusion

In this paper, we have generalized fault resilient encoding schemes and provided a way
to evaluate software implementations protected by encoding. We have practically im-
plemented and evaluated symmetric block cipher PRESENT with encoded operations
by using 8-bit microcontroller assembly code. We showed the benefits of using anti-
codes for cipher protection.

For the future work, we would like to extend our evaluation methodology to pipelined
architectures.

References

1. Akdemir, K.D., Wang, Z., Karpovsky, M., Sunar, B.: Design of cryptographic devices re-
silient to fault injection attacks using nonlinear robust codes. In: Fault Analysis in Cryptog-
raphy, pp. 171–199. Springer (2012)

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s Apprentice
Guide to Fault Attacks. Proceedings of the IEEE 94(2), 370–382 (Feb 2006)

3. Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G., Regazzoni, F.: Low-cost software coun-
termeasures against fault attacks: Implementation and performances trade offs. In: Proc. of
the 5th workshop on Embedded Security, WESS. pp. 7–1 (2010)

4. Bernstein, D.J.: Cache-timing attacks on AES. Tech. rep. (2005)
5. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems. In: Kaliski,

B.S. (ed.) Advances in Cryptology — CRYPTO ’97: 17th Annual International Cryptology
Conference Santa Barbara, California, USA August 17–21, 1997 Proceedings. pp. 513–525.
Springer Berlin Heidelberg (1997)

6. Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y.,
Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede,
I. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2007, Lecture Notes in
Computer Science, vol. 4727, pp. 450–466. Springer Berlin Heidelberg (2007)

7. Breier, J., Hou, X.: Feeding Two Cats with One Bowl: On Designing a Fault and Side-
Channel Resistant Software Encoding Scheme. In: Handschuh, H. (ed.) Topics in Cryptology
– CT-RSA 2017: The Cryptographers’ Track at the RSA Conference 2017, San Francisco,
CA, USA, February 14–17, 2017, Proceedings. pp. 77–94. Springer International Publishing
(2017)

8. Breier, J., Jap, D., Bhasin, S.: A study on analyzing side-channel resistant encoding schemes
with respect to fault attacks. Journal of Cryptographic Engineering (Jun 2017), https://
doi.org/10.1007/s13389-017-0166-5

9. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal Direct Sum
Masking. In: Naccache, D., Sauveron, D. (eds.) Information Security Theory and Practice.
Securing the Internet of Things: 8th IFIP WG 11.2 International Workshop, WISTP 2014,
Heraklion, Crete, Greece, June 30 – July 2, 2014. Proceedings. pp. 40–56. Springer Berlin
Heidelberg (2014)

10. Ciet, M., Joye, M.: Practical Fault Countermeasures for Chinese Remaindering Based RSA
(Extended Abstract). In: In Proceedings of Workshop on Fault Detection and Tolerance in
Cryptography (FDTC’05). pp. 124–131 (2005)

11. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, vol. 290. Springer Sci-
ence & Business Media (2013)

12. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.: Exploiting
ineffective fault inductions on symmetric cryptography. Cryptology ePrint Archive, Report
2018/071 (2018), https://eprint.iacr.org/2018/071

13. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-Malleable Codes. In: ICS. pp. 434–452
(2010)

14. Farrell, P.: Linear Binary Anticodes. Electronics Letters 13(6), 419–421 (1970)
15. Fu, F.W., Kløve, T., Luo, Y., Wei, V.K.: On Equidistant Constant Weight Codes. Discrete

applied mathematics 128(1), 157–164 (2003)
16. Galathy, N.F., Yuce, B., Schaumont, P.: A Systematic Approach to Fault Attack Resistant

Design. In: Bhunia, S., Ray, S., Sur-Kolay, S. (eds.) Fundamentals of IP and SoC Security:
Design, Verification, and Debug. Springer International Publishing (2017)

17. Goubet, L., Heydemann, K., Encrenaz, E., De Keulenaer, R.: Efficient esign and evaluation of
countermeasures against fault attacks using formal verification. In: International Conference
on Smart Card Research and Advanced Applications. pp. 177–192. Springer (2015)

18. Hoffstein, J., Pipher, J., Silverman, J.H., Silverman, J.H.: An Introduction to Mathematical
Cryptography, vol. 1. Springer (2008)

19. Lee, P.A., Anderson, T.: Fault Tolerance: Principles and Practice. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2nd edn. (1990)

20. Ling, S., Xing, C.: Coding Theory: A First Course. Cambridge University Press (2004)
21. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. Elsevier (1977)
22. Moro, N., Heydemann, K., Dehbaoui, A., Robisson, B., Encrenaz, E.: Experimental eval-

uation of two software countermeasures against fault attacks. In: 2014 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST). pp. 112–117 (May 2014)

23. Moro, N., Heydemann, K., Encrenaz, E., Robisson, B.: Formal Verification of A Soft-
ware Countermeasure Against Instruction Skip Attacks. Cryptology ePrint Archive, Report
2013/679 (2013), http://eprint.iacr.org/2013/679

24. Mukhopadhyay, D., Chakraborty, R.S.: Hardware Security: Design, Threats, and Safeguards.
CRC Press (2014)

25. Papagiannopoulos, K., Verstegen, A.: Speed and size-optimized implementations of the
present cipher for tiny avr devices. In: Hutter, M., Schmidt, J.M. (eds.) Radio Frequency
Identification: Security and Privacy Issues 9th International Workshop, RFIDsec 2013, Graz,
Austria, July 9-11, 2013, Revised Selected Papers. pp. 161–175. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-41332-2_11

26. Patranabis, S., Chakraborty, A., Mukhopadhyay, D.: Fault Tolerant Infective Countermeasure
for AES. In: Chakraborty, R.S., Schwabe, P., Solworth, J. (eds.) Security, Privacy, and Ap-
plied Cryptography Engineering: 5th International Conference, SPACE 2015, Jaipur, India,
October 3-7, 2015, Proceedings. pp. 190–209. Springer International Publishing (2015)

27. Patrick, C., Yuce, B., Ghalaty, N.F., Schaumont, P.: Lightweight Fault Attack Resistance in
Software Using Intra-Instruction Redundancy. Cryptology ePrint Archive, Report 2016/850
(2016), http://eprint.iacr.org/2016/850

28. Rauzy, P., Guilley, S., Najm, Z.: Formally Proved Security of Assembly Code Against Leak-
age. IACR Cryptology ePrint Archive 2013, 554 (2013)

29. Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and Engineering:
A Comprehensive Guide. Cambridge University Press (2006)

30. Schmidt, J.M., Medwed, M.: Countermeasures for Symmetric Key Ciphers. In: Joye, M.,
Tunstall, M. (eds.) Fault Analysis in Cryptography. pp. 73–87. Springer Berlin Heidelberg
(2012)

31. Schneider, T., Moradi, A., Güneysu, T.: ParTI – Towards Combined Hardware Countermea-
sures Against Side-Channel and Fault-Injection Attacks. In: Robshaw, M., Katz, J. (eds.) Ad-
vances in Cryptology – CRYPTO 2016: 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II. pp. 302–332. Springer
Berlin Heidelberg (2016)

32. Servant, V., Debande, N., Maghrebi, H., Bringer, J.: Study of a Novel Software Constant
Weight Implementation. In: Joye, M., Moradi, A. (eds.) Smart Card Research and Advanced
Applications: 13th International Conference, CARDIS 2014, Paris, France, November 5-7,
2014. Revised Selected Papers. pp. 35–48. Springer International Publishing (2015)

33. Yuce, B., Ghalaty, N.F., Santapuri, H., Deshpande, C., Patrick, C., Schaumont, P.: Software
Fault Resistance is Futile: Effective Single-Glitch Attacks. In: 2016 Workshop on Fault Di-
agnosis and Tolerance in Cryptography (FDTC). pp. 47–58 (Aug 2016)

A Anticodes

Table 3: Table of (n, 16, d, δ)−binary anticodes C generated from Algorithm 1. Each
anticode C consists of codewords “Codewords of C”, denoted by (n,M, d, δ) in Sec-
tion 3.2, with overall resistance index prand,C. The last column gives the percentage of
safe faults under static code analysis for FRESH scheme using PRESENT-80 and C
(Section 4.2).

Codewords of C (n,M, d, δ) prand,C Analysis
0x1, 0x7B, 0x68, 0x22, 0xB8, 0x7, 0x46,
0x1A, 0x24, 0x29, 0x2E, 0x30, 0x33, 0x35,
0x36, 0x84

(8, 16, 2, 8) 0.9421 0.9589

0x1, 0x8, 0x2, 0xB, 0x4, 0x1D, 0x1E, 0x30,
0x7, 0x65, 0x6A, 0xAD, 0xB3, 0xCE, 0xD9,
0xF6

(8, 16, 2, 7) 0.9548 0.9523

0x1, 0x8F, 0x7D, 0x6, 0x2F, 0x3B, 0xC,
0x66, 0x1A, 0x1D, 0x20, 0x23, 0x34, 0x51,
0xDA, 0xE8

(8, 16, 2, 6) 0.9605 0.9667

0x1, 0x36, 0x50, 0xA2, 0xD2, 0x9A, 0x46,
0xC4, 0x8, 0xE, 0x17, 0x30, 0x83, 0x95,
0x9C, 0xA4

(8, 16, 2, 5) 0.9643 0.9703

0x1, 0x62, 0x64, 0x68, 0x70, 0xA2, 0xA4,
0xA8, 0xB0, 0xC2, 0xC4, 0xC8, 0xD0, 0xE3,
0xE5, 0xE9

(8, 16, 2, 4) 0.9752 0.9619

0x1, 0xAF, 0xFB, 0xA, 0x3C, 0xEC, 0xC0,
0x92, 0x17, 0x26, 0x4D, 0x54, 0x63, 0x99,
0xC7, 0xF5

(8, 16, 3, 8) 0.9426 0.9671

0x1, 0x37, 0x38, 0x42, 0x4C, 0x55, 0x5B,
0x6F, 0x8B, 0x9C, 0xA5, 0xAE, 0xB2, 0xD6,
0xE0, 0xF9

(8, 16, 3, 7) 0.9599 0.9700

0x1, 0x62, 0x6, 0x65, 0x18, 0x7B, 0x7C,
0xA8, 0x1F, 0xAF, 0xB1, 0xB6, 0xCA, 0xCD,
0xD3, 0xD4

(8, 16, 3, 6) 0.9643 0.9703

n = 9
0x1, 0xD5, 0x1D6, 0x2E, 0x42, 0x158, 0x85,
0x11B, 0x106, 0x108, 0x10D, 0x110, 0x115,
0x11C, 0x120, 0x12A

(9, 16, 2, 9) 0.9641 0.9734

0x1, 0xF3, 0x167, 0xBD, 0xB0, 0x1D3, 0x25,
0xC5, 0x11C, 0x11F, 0x120, 0x123, 0x126,
0x139, 0x188, 0x1D8

(9, 16, 2, 8) 0.9766 0.9839

0x1, 0x1D9, 0x1A9, 0xA4, 0x1C2, 0x1B4,
0xD4, 0x10, 0x8D, 0x8E, 0x91, 0x92, 0x97,
0xEA, 0x10A, 0x17F

(9, 16, 2, 7) 0.9799 0.9828

0x1, 0x180, 0x51, 0xD2, 0x110, 0xF8, 0x6A,
0x74, 0x16, 0x18, 0x1B, 0x26, 0x8D, 0x11C,
0x13B, 0x14C

(9, 16, 2, 6) 0.9819 0.9847

0x1, 0x115, 0x4C, 0x9F, 0x7D, 0x18D, 0x1D5,
0x99, 0x17, 0x25, 0x59, 0x94, 0xAD, 0xC1,
0xC7, 0xF5

(9, 16, 2, 5) 0.9814 0.9838

0x1, 0x2, 0x4, 0x8, 0x31, 0x32, 0x34, 0x51,
0x52, 0x58, 0x94, 0x98, 0xE0, 0x130, 0x150,
0x190

(9, 16, 2, 4) 0.9769 0.9796

0x1, 0x44, 0x18, 0x160, 0x9F, 0x1FA, 0xA0,
0x1A3, 0x116, 0x11B, 0x125, 0x12A, 0x13C,
0x143, 0x14D, 0x177

(9, 16, 3, 9) 0.9663 0.9749

0x1, 0x13C, 0x149, 0x1F6, 0x187, 0x1D3,
0x2F, 0x1E5, 0x70, 0x77, 0x82, 0x8C, 0x95,
0x9B, 0xE8, 0x132

(9, 16, 3, 8) 0.9791 0.9786

0x1, 0x27, 0xA, 0x1B3, 0x7E, 0x2C, 0xF0,
0xDF, 0xED, 0x104, 0x117, 0x118, 0x14B,
0x162, 0x1AA, 0x1C6

(9, 16, 3, 7) 0.9819 0.9849

0x1, 0x1E7, 0x8E, 0x42, 0x76, 0x11F, 0x1C4,
0x134, 0x2C, 0x55, 0x6F, 0x97, 0xA5, 0xB2,
0xDC, 0xF9

(9, 16, 3, 6) 0.9841 0.9866

0x1, 0x16, 0x17B, 0x2A, 0x198, 0x165,
0x18F, 0x142, 0x3D, 0x4C, 0x70, 0xA4, 0xB3,
0xD5, 0xE9, 0xFE

(9, 16, 4, 9) 0.9634 0.9788

0x1, 0xE4, 0x1B0, 0xBD, 0xCA, 0x179, 0x116,
0x1D5, 0x3A, 0x5C, 0x77, 0x12C, 0x14F,
0x162, 0x19B, 0x1A7

(9, 16, 4, 8) 0.9781 0.9869

0x1, 0xF8, 0x122, 0x1B4, 0x165, 0x76,
0x15F, 0x1EB, 0x3B, 0x4C, 0x97, 0xAD, 0xC2,
0x118, 0x18E, 0x1D1

(9, 16, 4, 6) 0.9841 0.9866

n = 10
0x1, 0x399, 0x331, 0x2B3, 0xF6, 0x17D,
0x2C2, 0x294, 0x92, 0x95, 0x98, 0x9B, 0x9E,
0xA0, 0xA3, 0xCE

(10, 16, 2, 10) 0.9752 0.9901

0x1, 0x87, 0x176, 0x102, 0x1F8, 0x200,
0x38F, 0x108, 0x216, 0x218, 0x21B, 0x222,
0x225, 0x2CC, 0x2F3, 0x351

(10, 16, 2, 9) 0.9889 0.9908

0x1, 0x202, 0x27E, 0x45, 0x2DD, 0x38A,
0x23, 0x39B, 0x251, 0x252, 0x260, 0x267,
0x2AC, 0x314, 0x3B7, 0x3E9

(10, 16, 2, 8) 0.9897 0.9892

0x1, 0x46, 0x23D, 0x16E, 0x107, 0x25F,
0xE1, 0x2E7, 0x340, 0x343, 0x345, 0x349,
0x371, 0x384, 0x38A, 0x3B2

(10, 16, 2, 7) 0.9905 0.9928

0x1, 0x3AB, 0x14A, 0x20E, 0x1F, 0x15F,
0x23B, 0xAF, 0x8E, 0x92, 0x98, 0xCB, 0x122,
0x128, 0x26A, 0x383

(10, 16, 2, 6) 0.9912 0.9938

0x1, 0x24A, 0x8A, 0x298, 0x268, 0x25B,
0x109, 0x20F, 0x4C, 0x59, 0x200, 0x229,
0x28D, 0x2C1, 0x308, 0x3C9

(10, 16, 2, 5) 0.9898 0.9905

0x1, 0x381, 0x80, 0x140, 0x302, 0x182,
0x103, 0x304, 0x105, 0x108, 0x110, 0x121,
0x184, 0x1A0, 0x200, 0x320

(10, 16, 2, 4) 0.9835 0.9858

0x1, 0x6, 0x18, 0x1F, 0x2A, 0x2D, 0x33,
0x34, 0x4B, 0x4C, 0x52, 0x55, 0x60, 0x67,
0x79, 0x386

(10, 16, 3, 10) 0.9776 0.9914

0x1, 0x6, 0x18, 0x1F, 0x2A, 0x2D, 0x33,
0x4B, 0xD4, 0x1E0, 0x1FF, 0x2E6, 0x353,
0x37C, 0x385, 0x38A

(10, 16, 3, 9) 0.9896 0.9898

0x1, 0x112, 0x29A, 0x338, 0x283, 0x3C7,
0x27D, 0x389, 0x24B, 0x24C, 0x256, 0x2B5,
0x2EA, 0x33F, 0x3A4, 0x3F0

(10, 16, 3, 8) 0.9912 0.9927

0x2, 0x3A4, 0xD7, 0x143, 0x1FA, 0x3EB,
0x3F0, 0x283, 0xB9, 0xC0, 0xCD, 0xE3,
0x109, 0x131, 0x18E, 0x258

(10, 16, 3, 7) 0.9918 0.9927

0x1, 0xAC, 0x261, 0x22D, 0x59, 0x34C,
0x3C5, 0xCF, 0xC4, 0x107, 0x108, 0x1E9,
0x24A, 0x280, 0x28B, 0x29D

(10, 16, 3, 6) 0.9924 0.9930

0x1, 0x193, 0x277, 0xA2, 0x160, 0x3CA,
0x33E, 0xBF, 0xF8, 0x106, 0x118, 0x12B,
0x135, 0x14D, 0x1AC, 0x26C

(10, 16, 4, 10) 0.9779 0.9839

0x1, 0x3B1, 0x2BC, 0x156, 0x32F, 0x9B,
0x340, 0x35D, 0xE0, 0xEF, 0x138, 0x1A6,
0x20A, 0x273, 0x2C5, 0x3DA

(10, 16, 4, 9) 0.9904 0.9925

0x1, 0x304, 0x3DF, 0xFC, 0x86, 0xE3, 0x28B,
0x295, 0x10A, 0x11D, 0x177, 0x1D0, 0x238,
0x26E, 0x3B2, 0x3E9

(10, 16, 4, 8) 0.9911 0.9918

0x1, 0x2EF, 0x3A3, 0x18C, 0x395, 0x1B6,
0x370, 0x244, 0x75, 0xB8, 0x11F, 0x169,
0x1C2, 0x21A, 0x32E, 0x3DB

(10, 16, 4, 7) 0.9923 0.9932

0x1, 0xE, 0x32, 0x3D, 0xC4, 0xCB, 0xF7,
0xF8, 0x150, 0x15F, 0x163, 0x16C, 0x195,
0x19A, 0x1A6, 0x256

(10, 16, 4, 6) 0.9929 0.9939

B Additional Proofs

B.1 Proof of Lemma 1

Proof. By Definition 7, since g2 ◦ g1 ∈ S, ∃M1,M2, . . . ,Mm+2 ∈ Z>0 s.t.

g1 : FM1
2 × F

M2
2 × · · · × F

Mm
2 → FMm+1

2 , g2 : FMm+1
2 → FMm+2

2 .

For 1 ≤ i ≤ m + 2, take ki such that {EncoderC(x)|x ∈ FMi
2 } = Cki ⊆ Fnki

2 , then

ϕC(g1) :
(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
→ Ckm+1 ∪ {⊥},

such that for x =
(
EncoderC(x1), EncoderC(x2), . . . , EncoderC(xm)

)
∈ Ck1 × Ck2 ×

. . .Ckm , ϕC(g1)(x) = EncoderC
(
g1(x1, x2, . . . , xm)

)
and ∀x ∈

(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥

}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
\Ck1 × Ck2 × . . .Ckm , ϕC(g1)(x) =⊥. Moreover

ϕC(g2) : Fnkm+1
2 ∪ {⊥} → Ckm+2 ∪ {⊥},

such that for y = EncoderC(a) ∈ Ckm+1 , ϕC(g2)(y) = EncoderC(g2(a)) and ∀y ∈ Fnkm+1
2 ∪

{⊥}\Ckm+1 , ϕC(g2)(y) =⊥. We have ϕC(g2) ◦ ϕC(g1) is a map(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
→ Ckm+2 ∪ {⊥}

such that for x =
(
EncoderC(x1), EncoderC(x2), . . . , EncoderC(xm)

)
∈ Ck1 × Ck2 ×

. . .Ckm , (
ϕC(g2) ◦ ϕC(g1)

)
(x) = ϕC(g2)

(
ϕC(g1)(x)

)
= ϕC(g2)

(
EncoderC(g1(x1, . . . , xm))

)
= EncoderC

(
g2(g1(x1, x2, . . . , xm))

)
= EncoderC

(
g2 ◦ g1(x1, x2, . . . , xm)

)
,

and ∀x ∈
(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
\Ck1 × Ck2 × . . .Ckm ,(

ϕC(g2) ◦ ϕC(g1)
)
(x) = ϕC(g2)

(
ϕC(g1)(x)

)
= ϕC(g2)(⊥) =⊥ .

On the other hand,

g2 ◦ g1 : FM1
2 × F

M2
2 × · · · × F

Mm
2 → FMm+2

2 ,

and ϕC(g2 ◦ g1) is a map:(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
→ Ckm+2 ∪ {⊥}

such that for x =
(
EncoderC(x1), EncoderC(x2), . . . , EncoderC(xm)

)
∈ Ck1 × Ck2 ×

. . .Ckm , (
ϕC(g2 ◦ g1)

)
(x) = EncoderC

(
g2 ◦ g1(x1, x2, . . . , xm)

)
,

and ∀x ∈
(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
\Ck1 × Ck2 × . . .Ckm ,

(
ϕC(g2 ◦

g1)
)
(x) =⊥. ut

B.2 Proof of Lemma 3

Proof. We prove 1-a and 2-a, the other cases can be proved similarly.
Let x be such that

(
n
x

)
= min{

(
n
m

)
: d1 ≤ m ≤ δ1}, then by the assumption that δ1+d1+1 >

n and Equation (3), we have
(

n
x

)
>

(
n

δ1+1

)
and

(
n
x

)
>

(
n

d1−1

)
.

Using the notations in Definition 15, we have

prand,C1 − prand,C2 =

n∑
m=1

1
n

(pm,C1 − pm,C2)

=

n∑
m=1

1

nM
(

n
m

) (
S m,C2 − S m,C1

)
.

1-a Let S :=
∑δ2

m=δ1+1 S m,C2 , d := d1 = d2. Since

δ1∑
m=d

S m,C2 +

δ2∑
m=δ1+1

S m,C2 =

δ1∑
m=d

S m,C1 = 2M,

we have
∑δ1

m=d(S m,C2 − S m,C1) = −S with S m,C2 − S m,C1 ≤ 0 for each m = d, . . . , δ1.
Hence prand,C1 − prand,C2 is given by

δ1∑
m=d

1

nM
(

n
m

) (S m,C2 − S m,C1) +

δ2∑
m=δ1+1

1

nM
(

n
m

)S m,C2

≥
1

nM
(

n
x

) δ1∑
m=d

(S m,C2 − S m,C1) +
1

nM
(

n
δ1+1

) δ2∑
m=δ1+1

S m,C2

= −
S

nM
(

n
x

) +
S

nM
(

n
δ1+1

) =
S

nM

 1(
n

δ1+1

) − 1(
n
x

)  > 0.

2-a Let S :=
∑d1−1

m=d2
S m,C2 , δ := δ1 = δ2. Since

d1−1∑
m=d2

S m,C2 +

δ∑
m=d1

S m,C2 =

δ∑
m=d1

S m,C1 = 2M,

we have
∑δ

m=d1
(S m,C2 − S m,C1) = −S with S m,C2 − S m,C1 ≤ 0 for each m = d1, . . . , δ.

Hence prand,C1 − prand,C2 is given by

d1−1∑
m=d2

1

nM
(

n
m

)S m,C2 +

δ∑
m=d1

1

nM
(

n
m

) (S m,C2 − S m,C1)

≥
1

nM
(

n
d1−1

) d1−1∑
m=d2

S m,C2 +
1

nM
(

n
x

) δ∑
m=d1

(S m,C2 − S m,C1)

=
S

nM
(

n
d1−1

) − S

nM
(

n
x

) =
S

nM

 1(
n

d1−1

) − 1(
n
x

)  > 0.

B.3 Proof of Lemma 4

Proof. i and ii easily follow from the definitions.

iii,iv. Let C be an (n, d, δ)−binary anticode. For any c = (c1, c2, . . . , cn) ∈ C, define
c̃ := (c1, c2, . . . , cn, 1) and let C′ := {c̃ : c ∈ C}. Then C′ is an (n + 1, d, δ)−binary
anticode. This proves part iii.
Now assume δ ≥ d + 1. Take c1, c2, c3, c4 ∈ C such that dis (c1, c2) = d and
dis (c3, c4) = δ. Without loss of generality, we can assume c3 , c1 and c3 , c2.
Suppose c3 = (x1, x2, . . . , xn) and take

C′′ :=
(
C′\{c̃3}

)
∪ {(x1, x2, . . . , xn, 0)}.

Then dis ((x1, x2, . . . , xn, 0), c̃4) = δ + 1, dis (c̃1, c̃2) = d and ∀x, y ∈ C′′, d ≤
dis (x, y) ≤ δ + 1. Thus C′′ is an (n + 1, d, δ + 1)−binary anticode. This proves iv.

v. Let C be an (n, d + 1, δ)−binary anticode. Take c1, c2, c3, c4 ∈ C s.t. dis (c1, c2) =

d +1 and dis (c3, c4) = δ. Since δ > d +1, without loss of generality, we can assume
c3 , c1 and c3 , c2. Also, we can assume the first bit of c1 and c2 are different.
For any c = (c1, c2, . . . , cn) ∈ C, define c̃ := (1, c2, c3, . . . , cn) and let C′ :=
{c̃ : c ∈ C}. Then dis (c̃1, c̃2) = d and ∀x, y ∈ C′, d ≤ dis (x, y) ≤ δ. If C′

is an (n, d, δ)−binary anticode, then we’re done. Otherwise, dis (c̃3, c̃4) = δ − 1.
Suppose c3 = (x1, x2, . . . , xn) and take C′′ :=

(
C′\{c̃3}

)
∪ {(0, x2, . . . , xn)}}, then

dis ((0, x2, . . . , xn), c̃4) = δ and C′′ is an (n, d, δ)−binary anticode.
vi, vii. Let C be an (n,M, 2r − 1, δ) binary anticode. Take c1, c2, c3, c4 ∈ C such that

dis (c1, c2) = 2r − 1 and dis (c3, c4) = δ.
We add one parity check bit for each codeword in C to get a binary anticode C′:
For any c = (c1, c2, . . . , cn) ∈ C, define c̃ := (c1, c2, . . . , cn, c1 + c2 + · · ·+ cn mod 2)
and let C′ := {c̃ : c ∈ C}. Since 2r − 1 is odd, dis (c̃1, c̃2) = 2r and ∀x, y ∈ C,
dis (x, y) ≥ 2r.
If δ = 2` − 1 is odd, dis (c̃3, c̃4) = 2` and ∀x, y ∈ C′, dis (x, y) ≤ 2`. So C′ is an
(n,M, 2r, 2`)−binary anticode. This proves vi.
If δ = 2` is even, ∀x, y ∈ C with dis (x, y) = δ, dis (x′, y′) = δ and we have C′ is an
(n,M, 2r, 2`)−binary anticode. This proves vii.

C Further Results on Fault Analysis

In
s.

Sk
ip

1-
B

it
Fl

ip

2-
B

it
Fl

ip

3-
B

it
Fl

ip

4-
B

it
Fl

ip

5-
B

it
Fl

ip

6-
B

it
Fl

ip

7-
B

it
Fl

ip

8-
B

it
Fl

ip

9-
B

it
Fl

ip

R
an

do
m

0.00

0.05

0.10

0.15

0.20

0.25
Pr

ob
ab

ili
ty

of
ex

pl
oi

ta
bl

e
fa

ul
ts

(9,16,2,4)
(9,16,2,5)
(9,16,2,6)
(9,16,2,7)
(9,16,2,8)
(9,16,2,9)

Fig. 8: Simulated results for anticodes with n = 9, d = 2.

In
s.

Sk
ip

1-
B

it
Fl

ip

2-
B

it
Fl

ip

3-
B

it
Fl

ip

4-
B

it
Fl

ip

5-
B

it
Fl

ip

6-
B

it
Fl

ip

7-
B

it
Fl

ip

8-
B

it
Fl

ip

9-
B

it
Fl

ip

R
an

do
m

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty
of

ex
pl

oi
ta

bl
e

fa
ul

ts

(9,16,3,6)
(9,16,3,7)
(9,16,3,8)
(9,16,3,9)
(9,16,4,6)
(9,16,4,8)
(9,16,4,9)

Fig. 9: Simulated results for anticodes with n = 9, d = 3, 4.

In
s.

Sk
ip

1-
B

it
Fl

ip

2-
B

it
Fl

ip

3-
B

it
Fl

ip

4-
B

it
Fl

ip

5-
B

it
Fl

ip

6-
B

it
Fl

ip

7-
B

it
Fl

ip

8-
B

it
Fl

ip

9-
B

it
Fl

ip

10
-B

it
Fl

ip

R
an

do
m

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty
of

ex
pl

oi
ta

bl
e

fa
ul

ts

(10,16,3,10)
(10,16,3,6)
(10,16,3,7)
(10,16,3,8)
(10,16,3,9)
(10,16,4,10)
(10,16,4,6)
(10,16,4,7)
(10,16,4,8)
(10,16,4,9)

Fig. 10: Simulated results for anticodes with n = 10, d = 3, 4.

