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Abstract
Current blockchain systems are incapable of holding

sensitive data securely on their public ledger while sup-
porting accountability of data access requests and revo-
cability of data access rights. Instead, they either keep
the sensitive data off-chain as a semi-centralized solu-
tion or they just publish the data on the ledger ignor-
ing the problem altogether. In this work, we introduce
SCARAB the first secure decentralized access control
mechanism for blockchain systems that addresses the
challenges of accountability, by publicly logging each
request before granting data access, and of revocability,
by introducing collectively managed data access poli-
cies. SCARAB introduces, therefore, on-chain secrets,
which utilize verifiable secret sharing to enable collec-
tively managed secrets under a Byzantine adversary, and
identity skipchains, which enable the dynamic manage-
ment of identities and of access control policies. The
evaluation of our SCARAB implementation shows that
the latency of a single read/write request scales linearly
with the number of access-securing trustees and is in the
range of 200 ms to 8 seconds for 16 to 128 trustees.

1 Introduction
Blockchain technology is considered an important build-
ing block for many next-generation systems with appli-
cations in sectors like finance [44], healthcare [40], e-
democracy [31] and insurance [37]. These distributed ap-
plications commonly assume shared access to sensitive
data between independent and often mutually distrustful
parties. However, mechanisms to enforce access control
are either not present at all or realized rather naively.

To share sensitive data, an application could, for exam-
ple, encrypt the information towards the public keys of
the intended recipients and then publish the ciphertexts
on a distributed ledger, such as Bitcoin’s blockchain [26].
Once the data is public, however, the application has no
longer any control over who accesses the data at which
point in time and can also not change access rights retro-

spectively since the access control is enforced statically
during encryption. To prevent these issues, many cur-
rent systems [17, 45, 46] fall back to semi-centralized
solutions that record access requests and access permis-
sions on-chain but keep the data itself and the decryp-
tion keys off-chain in a centralized or distributed storage
service [6]. This approach makes the storage provider a
single point of failure, as it can simply deny access, even
for legitimate requests or decrypt data undetected.

A blockchain-based system supporting shared access
to sensitive on-chain data therefore has to address the
following challenges: (1) Ensure accountability of all ac-
cesses to the sensitive data that is secured on-chain. (2)
Provide a mechanism for adding and removing access
rights since, e.g., not all eligible recipients of a given
data record might be known initially when the record
is stored. (3) Ensure that changes to the access rights
and execution of data access requests are done atomi-
cally, e.g., to avoid the participants from exploiting race
conditions to gain access to sensitive data while not hav-
ing the necessary permissions (anymore). (4) Prevent all
single points of failure, e.g., prevent a single data storage
provider from decrypting secrets without permission.

To address these challenges we introduce the Secret-
Caretaking Blockchain SCARAB, the first decentralized
data-sharing system that avoids any single point of fail-
ure and enables users to encrypt secrets “care-of” the
blockchain itself. SCARAB therefore implements an
access control mechanism that enforces accountability,
supports dynamic access rights management that enables
revocability, and ensures atomicity of changes to access
policies and execution of access requests. In particular,
we make the following contributions:

First, SCARAB introduces on-chain secrets (OCS),
which combine threshold cryptography [10, 16, 32, 34,
35] and blockchain technology [20, 26] to enable a client
to put encrypted data under the control of a set of trustees
who collectively enforce data access as stated by a client-
specified policy file. If an eligible reader requests access
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to an on-chain secret by providing a cryptographic proof,
the validators atomically log the proof on the blockchain
to guarantee accountability and then hand out the pro-
tected data. The key technical idea of OCS is to de-
couple the per-object state, i.e., the access request, from
the secret state. To realize OCS we propose two ap-
proaches called one-time secrets (OTS), which allows to
verifiably encrypt a secret under the control of an ad-hoc
set of trustees, and long-term secrets (LTS), which al-
lows to verifiably encrypt a secret to a well-defined set
of trustees. OTS is a simple implementation of OCS
and does not require the trustees to store protocol state.
However, this simplicity causes higher encryption and
decryption cost. LTS utilizes distributed key genera-
tion [10] and verifiable secret sharing [35] for bootstrap-
ping and requires the trustees to store protocol state. LTS
has, in comparison to OTS, less client-side overhead with
respect to en-/decryption and support additional features,
such as trustee group reconfiguration.

The second contribution of SCARAB is the use of
skipchains [28] for making the access control more dy-
namic, without adding a single point of failure. Al-
though there are proposals to use blockchains for iden-
tity management [5, 41] or access control [46], they use
the blockchain to enforce transparency on a centralized
identity manager. Instead we enable the users to remain
self-sovereign over their identity and use the blockchain
as a serialization tape to guarantee atomicity over up-
dates. In SCARAB we use skipchains to manage iden-
tities and to enable dynamic access control so that any-
one can follow the identity of a user or organization over
time, without trusting centralized look-up services. This
personal blockchain creates a digital identity for the user
who can now use it to include multiple aspects of their
digital presence, such as their SSH or PGP keys, and to
enable external clients to reliably and securely track the
authoritative set of keys of the user. The IdS is also used
to create a federated identity of an organization. Such
an IdS points to other personal IdSs that can have vari-
able access levels and can be managed autonomously.
At the same time, the users are free to evolve their per-
sonal identity, adding and removing keys, without gain-
ing any more privileges. Revoking an individual’s access
is as easy as excluding their personal IdS from the feder-
ated IdS. Furthermore, we use the same federated IdS
for defining dynamically evolving access-control poli-
cies that are expressed in a JSON-based language.

We implemented both versions of OCS and show that
they have a moderate overhead of hundreds to thousands
msec, which scales linearly to the provided decentraliza-
tion, thus making SCARAB a realistic system for real-
world applications. Furthermore, we implemented per-
sonal IdSs and dynamic policies, and we show that the
overhead of using them is in the order of usec. SCARAB

is already used for multiple PoCs. We describe specific
applications in Appendix C.

Our main contributions are as follows:
• We introduce SCARAB, a secure and decentral-

ized data-sharing platform that provides dynamic
access-control, auditability and atomic handling of
decryption requests.

• We introduce on-chain secrets that use threshold en-
cryption and consensus to enable a blockchain sys-
tem to hold secret state without introducing single
points of failure.

• We introduce IdS, a blockchain data-structure that
enables both persons and federated groups to re-
main self-sovereign over their identities and dynam-
ically evolve them. We also use IdSs to express dy-
namically evolving access-control policies.

2 Background
2.1 Blockchain systems
A blockchain is a a distributed append-only log used in
decentralized applications [42, 26]. Blockchain takes its
name because it is composed of blocks that are chained
together via hashes. As each block includes in its header
a hash of the parental block(s) leading to the block
depending on the entire prior history, thus forming a
tamper-evident log.

SCARAB is based on a specific blockchain system
called collective authority or cothority [39]. SCARAB
implements its blockchain using ByzCoin [20] that
builds on top of CoSi [39] to create a scalable and secure
blockchain that supports a cryptocurrency. Chainiac [28]
is a system for transparent software-updates. One
of Chainiac’s contributions is the extension of Byz-
Coin’s blockchain with multi-hop forward and backward
skiplinks that enable efficient timeline traversal. This au-
thenticated data structure is called skipchain as it is a
combination of skiplists and blockchains that provides
trust delegation via digitally signed forward links. In
SCARAB, we employ skipchains to manage identities
and access policies. SCARAB can be seen a special use
case of sharded blockchains [7, 21] that chooses subsets
of nodes to perform a subset of total system function-
ality; except in SCARAB we are choosing subsets for
two different heterogeneous roles (blockchain manage-
ment and consensus versus secret caretaking) rather than
homogeneous, symmetric shards.

2.2 Threshold Cryptosystems
Secret sharing was introduced independently by
Blakely [3] and Shamir [34] in 1979. A (t,n)-secret
sharing scheme, with 1 ≤ t ≤ n, enables a dealer to
share a secret a among n trustees such that any subset
of t honest trustees can reconstruct a, whereas smaller
subsets cannot. In other words, the sharing scheme
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can withstand up to t − 1 malicious participants. The
downside of these simple secret sharing schemes is
that they assume an honest dealer which might not
be realistic. Verifiable secret sharing (VSS) [9] adds
verifiability to those schemes: it enables the trustees
to verify that the shares distributed by the dealer are
consistent. VSS has a wide range of applications such
as threshold signature and threshold encryption, which
we describe below. Finally, publicly verifiable secret
sharing (PVSS) [32] is a variation of VSS that enables
not only the trustees but also any external third-party to
verify the secret shares distributed by the dealer.

Once we are able to share a secret, we can construct
more complicated systems out of it. In SCARAB, we
use a distributed key generation (DKG) protocol [10],
and a threshold encryption protocol [35]. The idea be-
hind DKG is to remove the trusted dealer from the se-
cret sharing scheme by having one secret sharing round
per trustee. Afterwards, the validity of the secret shar-
ing protocol is verified through acknowledgments of re-
ception of valid shares. Once consensus is reached on
the correctly shared secrets, each trustee can combine all
her shares to a new share, which corresponds to the dis-
tributed key. The upside of this protocol is that nobody
knows the distributed secret key and, as a result, the key
can only be used if and only if a threshold of servers de-
cide that using it is the correct thing to do.

After generating the key, a client can encrypt data un-
der the publicly shared key. One option is to use El-
Gamal encryption, but it is susceptible to chosen cipher-
text or malleability attacks. In order to provide a secure
threshold encryption scheme, Shoup et al. [35] show how
to bind the access-control with the ciphertext via NIZK
proofs, and we use this technique in SCARAB (see Ap-
pendix B).

3 SCARAB
In SCARAB, we solve the following problem: Alice
wants to share some sensitive data with Bob. She wants
to preserve the capability of withholding the data later
and she wants to log the fact that Bob accessed the
data. Concurrently, Bob wants to be able to dynamically
change his identity (i.e., his public keys), even after the
data has been encrypted, but still be able to decrypt. Bob
does not trust Alice to deliver the data, as she might try to
log an access request and not serve the data. Alice does
not trust Bob, as he might want to secretly obtain the data
(e.g., PGP encryption) and claim that he never accessed.

3.1 Strawman Solution
This section introduces StrAcc, a strawman system that
we use to outline SCARAB’s design. Below we describe
one encryption/decryption round of StrAcc, where Alice
encrypts some data for Bob. StrAcc is a combination

of PGP with Bitcoin’s [26] blockchain. First, Alice en-
crypts the data using the PGP key of Bob and, in order to
guarantee that the data will be available when she goes
offline, she posts the encrypted message on Bitcoin’s
blockchain. When Bob wants to read the data, he can
download the correct block from Bitcoin’s blockchain to
retrieve the ciphertext and use his private PGP key to de-
crypt and read the data.

StrAcc already provides a similar functionality to
SCARAB, but it has two significant security restrictions.
First, upon the release of the encrypted data, Alice loses
ownership of the data-access policy. Even if she wants
to revoke access and writes a revocation record to the
blockchain, the ciphertext is already available and en-
crypted to Bob’s private key, and Bob can still decrypt the
document. Therefore, she is no longer able to withhold
this data from Bob. Second, Alice is unaware whether
Bob tried to access and decrypt the data. Bob has plau-
sible deniability in case of a privacy breach. StrAcc’s
design also falls short in terms of usability. First, if the
identity of Bob corresponds to multiple keys (per device
key or Bob is an organization with multiple employees),
Alice will have to encrypt the message to each individual
key. Second, if Bob wants to rotate his keys for security
reasons, he no longer has access to the data, unless he
asks Alice to redo the protocol.

To address those issues, we introduce two new capa-
bilities in StrAcc that results into SCARAB:

1. To enable auditability, revocability and atomicity,
we introduce on-chain secrets (Section 4).

2. To remove the need for static identities and access-
control policies, we introduce IdS (Section 5) that
enables Bob to manage his identity while preserving
a provable trust delegating path to his new keys.

A high-level overview of how Alice uses SCARAB to
encrypt data to Bob is illustrated in Figure 1. In the re-
mainder of this section, we define the goals of SCARAB
and the environment it is deployed into.

3.2 System Overview
System Model. The actors and the workflow are de-
picted in Figure 1. We assume that the writer (Alice)
always symmetrically encrypts the data under a key k,
which is the shared secret. Alice can store the encrypted
data either on-chain or off-chain, but in either case, the
reader (Bob) has to retrieve it and verify its integrity be-
fore making a read transaction. SCARAB implements
two logically separate cothorities.

The first one is called the Access-control Cothority
(AC) that runs Byzantine consensus [20] and maintains
the blockchain (i.e., the per-object state) where transac-
tions for reading/writing from/to the chain are logged,
and encrypted data is stored. The access log serializes
all transactions and transparently maintain proofs.
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Figure 1: Alice encrypts the data ”care-of” the SC, adding Bob’s IdS in the access control label. AC verifies and logs
the transaction. Bob can prove ownership of the identity to AC which logs the proof. Finally Bob sends the logged
proofs to the SC, which re-encrypts the data to the public key provided by Bob.

The second cothority is the Secret-caretaking Cothor-
ity (SC) that manages the secrets. There can be a per-
secret (OTS) or dedicated (LTS) SC. The SC trustees
need to maintain secret state, which is their private keys
(OTS and LTS) and the shared key shares (LTS). They
do not run consensus for every transaction nor maintain
a blockchain.

The same set of nodes can physically run both the AC
and the SC, as in the evaluation of Section 8. We separate
the roles logically both for architectural cleanness and
flexibility, e.g., in case its worthwhile to provision the
nodes for one differently from those for the other (e.g.,
bulk storage only on AC nodes, stronger security lock-
down for the long-term private keys for the SC nodes).
Threat Model. Readers (e.g., Bob) do not trust writ-
ers (e.g., Alice) to deliver the data as writers might try
to log a read transaction and not serve the data, fram-
ing the readers in case of a privacy breach. We assume
that writers encrypt the correct data and symmetric key,
as readers can realease a protocol transcript and blame
in case of misbehavior. Writers do not trust readers as
readers might want to get the data in secret (e.g., as in
StrAcc) and claim that they never tried to decrypt. We
do not address the case of multiple mutually distrust-
full readers, as we cannot pinpoint the exact source of
leakage. The security assumption of the AC is the stan-
dard blockchain threat model (Byzantine), adapted for
cothorities as prior work [20, 28] namely, that at most
1/3 of the active cothority servers are malicious. Finally,
the threshold of the VSS schemes on the SC is a design
trade-off between availability and security. We set it to
1/3 for simplicity as we use the same servers to imple-
ment the cothorities.
Network Model. As everything is done over the In-
ternet, we borrow the network assumption from other
cothority protocols [38, 28], specifically a weakly syn-
chronous network.

3.3 System Goals
With SCARAB, we have the following primary goals
with respect to security and usability

3.3.1 Security Goals

G1: Decentralization No single point of failure.
G2: Privacy of Secrets Secrets encrypted on-chain re-
main secret to non-authorized parties.
G3: Auditable Decryption Before an authorized user
accesses data, there is an auditable proof logged.
G4: Revocability The data owner does not lose own-
ership over the data’s access policy (as long as nobody
performs an auditable decryption of the data) and is able
to revoke access rights.
G5: Atomic Decryption If and only if a read transaction
is logged does the reader receive the secret data.
G6: Transparency All accesses to data are provable
against a public log (blockchain), and clients can verify
that the proofs they see have been disclosed.

3.3.2 Usability Goals

G7: User-Sovereign Identity A user or organization is
sovereign over their identity. The identity provider does
not hold the keys of the user (unless requested), hence is
unable to impersonate the user.
G8: Dynamic Identity Management A user or orga-
nization is able to dynamically evolve (e.g. rotate keys
for security) their online identity without losing access
to any data.

4 On-Chain Secrets (OCS)
This section introduces the OCS protocols that provide
accountability of accesses on secret data, revocability of
published data and atomicity between provably request-
ing data and securely accessing them.
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4.1 OCS Overview
In this section, we give an abstract overview of OCS.
For now, we assume that the access policy is a simple
encrypt-to-public-key, where Alice statically binds the
secret with Bob’s public key. Bob signs the read trans-
action to request access and the AC verifies the signature
before accepting the read. In Section 5, we remove this
constraint and define dynamic identities and policies.

As shown in Figure 1, when the writer puts a se-
cret on-chain, she sends a write transaction to the AC;
whereas the reader sends a read transaction to request
access. Figure 1 displays the transactions in LTS; OTS
write transactions additionally include the encrypted se-
cret shares and the corresponding NIZK encryption con-
sistency proofs [32].

We describe two approaches to implementing OCS
that enable us to consider different tradeoffs. One-Time
Secrets (OTS) uses PVSS and employs a per-secret SC.
OTS’s simplicity enables each write transaction to define
a fresh, ad hoc group of SC servers that do not require
any prior knowledge of, or coordination with, each other.
However, simplicity comes at a cost: both the write trans-
action size and the encryption/decryption overhead lin-
early increase with the size of the SC. This is because (1)
encrypted shares are stored in the write transaction at the
AC and (2) the number of shares is equal to the number
of servers in the SC.

Long-Term Secrets (LTS) is the second approach to
implementing OCS; it uses DKG and VSS. LTS requires
a coordinated bootstrapping phase (DKG) of the SC and
for the SC servers to remember some minimal state of
their VSS secret shares. Unlike OTS, LTS requires a
fixed or pre-determined group of servers for the SC.
On the other hand, write transaction size and encryp-
tion/decryption overhead are constant in LTS. Further-
more, LTS enables additional capabilities such as recon-
figuration of the trusted servers and delegation of the
”secret-caretaking” to a different SC.

4.2 One-Time Secrets (OTS)
Our first implementation of OCS is OTS, which is based
on PVSS [32]. As the PVSS dealer, Alice initializes
the protocol by creating an encrypted share of her se-
cret for each server in the SC (SC corresponds to the
PVSS trustees in Section 2) by using their public keys.
She uses the shared secret to generate the encryption
key, symmetrically encrypts the data under the encryp-
tion key, and sends a write transaction to the AC to store
it on the blockchain. Later, Bob signs a read transac-
tion and sends it to the AC. If the AC verifies that Bob
is authorized to access the data, he can show the proof-
of-access, together with the encrypted shares, to each
server in the SC (PVSS trustee), and obtain the decrypted
shares. Once Bob obtains a threshold number of valid

Pick(s(x))
Generate(k)
Enck(D)
TW [〈ŝi〉 , 〈cj〉 , 〈π̂i〉 , HC ,
〈yi〉 , policy : yB ]SigyA Verify(〈ŝi〉 , 〈π̂i〉)

Log TW in BW

BW

Verify(HC)TR[H(BW )]SigyBVerify(SigyB
)

Log TR in BR

BR

DecReq[TW , TR, ŷ,
B

′
R, πm]SigyB

Verify(B′
R, πm, ŷ)

[〈si〉 , 〈πi〉]
Verify(si, πi)

Recover(S0, k)
Deck(D)

Alice AC Bob SC

Write

Read

Figure 2: OTS Protocol Communication

decrypted shares, he can reconstruct the symmetric key,
hence the original data. Figure 2 demonstrates the proto-
col steps for OTS.

4.2.1 Protocol

Let G be a multiplicatively written cyclic group of large
prime of order q with generator G, where the set of non-
identity elements in G is denoted by G ∗. We assume that
Alice and Bob collectively trust a set of servers that, de-
noted by N = {1, . . . ,n}, constitute the SC. We refer to
each server i in the SC as an SC trustee, and we denote
its private and public key by xi and yi = Gxi , respectively.
Similarly, we use xA, yA and xB, yB to denote Alice and
Bob’s private and public keys, respectively. We also as-
sume that the AC has an aggregate public key ŷ. We
require that t = b|N|/3c+ 1, which is the PVSS thresh-
old, as described in Section 2. Finally, we assume that
the AC and SC verify the signatures of the protocol mes-
sages that they received from Alice and Bob.

Write Transaction Processing (Writer). Alice cre-
ates a write transaction as follows:

1. Compute B = H(yB) to map Bob’s public key yB to
a group element B ∈ G ∗, used as the base point for
generating the PVSS polynomial commitments.

2. Choose a secret sharing polynomial s(x) =

∑
t−1
j=0 a jx j of degree t − 1. The secret to be shared

becomes S0 = Gs(0).
3. For each SC trustee i, compute the encrypted share

ŝi = ys(i)
i of the shared secret S0 and create the cor-

responding NIZK encryption consistency proof π̂i,
where 1 ≤ i ≤ n. The exact NIZK proofs can be
found in Appendix A. Create the polynomial com-
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mitments c j = Ba j , for 0≤ j < t.
4. Compute H(S0) and use it as the symmetric key k

to encrypt the message m. The encrypted message
is C = Enck(m).

5. Create the write transaction:

TW = [〈ŝi〉 ,〈c j〉 ,〈π̂i〉 ,HC,〈yi〉 , policy : yB]SigyA

where 〈ŝi〉 is the list of encrypted shares, 〈c j〉 is the
list of polynomial commitments, 〈π̂i〉 is the list of
NIZK proofs, HC is the hash of the ciphertext C,
〈yi〉 is the public keys of the SC trustees, and policy
is the public key of Bob to designate him as the de-
cryptor of the ciphertext. Send it to the AC.

When creating a write transaction, Alice derives the
group element B from H(policy) to tie the encrypted
PVSS shares to policy. Suppose an adversary obtains
a write transaction from the blockchain, forges a new
transaction where they keep everything from the origi-
nal one except for policy. They change policy with their
public key, and dispatches it to the AC. As the AC will
derive a new B using policy′, the PVSS proofs in the
forged transaction will not verify against the new B. This
way, the AC can immediately detect a malicious write
transaction (chosen-ciphertext secure) and discard it.

Logging the Write Transaction (AC). Before logging
the write transaction, AC ensures that it contains valid
encrypted shares:

1. Derive the group element B from H(policy).
2. Verify each encrypted share ŝi against π̂i using 〈c j〉,
〈yi〉 and B (Appendix A). This step guarantees the
validity of the encrypted shares.

3. If all shares are valid, log TW .

Read Transaction Processing (Reader). Bob per-
forms the following steps to create a read transaction:

1. Retrieve the ciphertext C either from Alice, the AC
or a highly available storage, and the block BW ,
which stores write transaction TW , from the AC.

2. Compute H
′
= H(C). Compare H ′ to HC in TW to

ensure that the ciphertext C is not altered.
3. If the hashes agree, create the read transaction:

TR = [HW ]SigyB

where HW is the hash of the write transaction. Send
it to the AC.

Logging the Read Transaction (AC). AC stores TR on
the blockchain as follows:

1. Use yB in TW to verify the signature of TR .
2. If the signature is valid, then logs TR.

Decryption Request (Reader). Bob sends a decryp-
tion request to each SC trustee to obtain the decrypted
shares:

1. Create a decryption request:

DecReq = [TW ,TR,B
′
R, ŷ,πm]SigyB

where B
′
R is the signed header of the block that

stores TR, and πm is the Merkle path to prove the
membership of TR in the blockchain. Send DecReq
to the trustees.

Decrypting the Shares (SC Trustee). Upon receiving
a decryption request, each SC trustee executes the fol-
lowing steps:

1. Use yB in TW to verify the signature of TR .
2. Verify that TR is logged on the blockchain using πm,

ŷ and the Merkle root in B
′
R.

3. Compute the decrypted share si = (ŝi)
x−1

i and cre-
ate the corresponding NIZK decryption consistency
proof πi (Appendix A).

4. Send si and πi back to Bob via a private channel.

Key Reconstruction. (Writer) Bob carries out the fol-
lowing steps to reconstruct S0, followed by k:

1. Verify each si against πi.
2. If there are at least t valid shares, use Lagrange in-

terpolation to recover S0.
3. Recover k by computing H(S0) perform the decryp-

tion to obtain m = Deck(C).

4.2.2 Mapping to Goals

OTS achieves the following security goals:
Decentralization: Both the logging and the key handling
processes can withstand up to t failures.
Privacy of Secrets: OTS’s secrets remain private due
to the privacy of PVSS, as long as the assumption that
less than t trustees collude. AC verifies the encrypted
shares without obtaining any information and all de-
crypted shares are sent to the reader via a private channel.
Auditable Decryption: Any read transaction is validated
by the AC and serialized on-chain. The reader has
enough proof to request shares only afterwards.
Revocability: Alice can post a revocation transaction (it
is logged the same way as a read transaction) and ask the
AC to stop accepting new reads.
Atomic Decryption: Given a correct AC and SC (less
than t Byzantine) and partially synchronous network,
OTS will either execute both (a) log the read transaction
and (b) re-encrypt the key or reject (a) and stop.
Transparency: All actions are reads and writes and are
provable against the blockchain maintained by the AC.

4.2.3 Advantages and Shortcomings

OTS is the first implementation of OCS and it has several
advantages. First, it does not need a bootstrapping phase
at the SC to generate a collective private-public key pair.
Second, OTS enables the use of a different SC for each
secret without requiring the servers to maintain protocol
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Figure 3: LTS Protocol Communication

state. Although these properties make OTS simple to im-
plement and reason about, it still has shortcomings.

First, OTS has high PVSS setup cost and share recon-
struction cost for the client. Alice needs to evaluate the
secret sharing polynomial at n points, create n encrypted
shares and NIZK proofs, along with t polynomial com-
mitments. As these operations rely heavily on elliptic
curve arithmetic, they will be computationally expensive,
especially for large numbers of shares. Similarly, Bob
has to verify up to n decrypted shares against the NIZK
proofs and reconstructing the shared secret on his device.

A second shortcoming is the large transaction size.
The SC trustees do not store any protocol state, hence the
write transaction contains the encrypted shares, NIZK
proofs and the polynomial commitments, making it lin-
early increasing to the SC size. Finally, Alice cannot use
OTS to share an already existing encryption key. She
has to either re-encrypt the data or use another key that
encrypts the original key.

4.3 Long-Term Secrets

The second OCS design, LTS, addresses the above lim-
itations. The key idea behind LTS is that there is a ded-
icated SC that is aware of participating in the system
and provides the necessary availability and bootstrapping
procedures. After the bootstrapping phase of Distributed
Key Generation (DKG), the overhead of encrypting se-
crets is constant as a write transaction simply contains
an ElGamal encryption of the secret to a single shared
key, eliminating the need to publish individual shares of
each secret. Furthermore, the configuration of the SC
can change without compromising the availability by re-
sharing the same secret shared key or re-encrypting all
the secrets to a new SC. The basic workflow of LTS is
shown in Figure 3.

4.3.1 Protocols

Distributed Key Generation: Unlike in OTS, SC
needs a bootstrapping step called DKG in LTS. A
DKG [10] protocol is run by a distributed set of servers
to collectively generate a private/public key pair in a way
that the private key is not known to any single party, but
can be reconstructed by a threshold t+1 of available key
shares. Each server holds one such share; and if t+1
shares collaborate, they can reconstruct this key.

In order to remain consistent with our adversary and
network models we could use HybridDKG [18]. How-
ever, given the rarity of the event of key generation,
we assume a pessimistic synchrony assumption for the
DKG (e.g.,. ∆ = 1 minute) and implement the DKG in-
troduced by Gennaro et al. [10], because of its simplicity
and the fact that it produces uniformly random keys.

Let N = {1, . . . ,n} denote the list of servers that partic-
ipate in the SC and that n = 3 f +1, where f denotes the
number of dishonest servers. Furthermore, let t be the
reconstruction threshold such that t = f + 1. We make
the standard assumptions of using g to denote a genera-
tor of a secure subgroup G . After the DKG is executed,
the output is a public key X = gx, where x is the private
key that is unknown. Additionally, each server i holds
a share of the secret share denoted as xi and all servers
know the public counterpart Xi = gxi .

LTS Write Transaction Processing (Writer, AC):
When Alice wants to share a secret, she will create a TW

1. Cothority Key Retrieval: First Alice retrieves X ,
the public key of the SC that we assume for sim-
plicity to be available in the genesis block of the
blockchain. We can provide more dynamic cothor-
ity evolution using ideas from Chainiac [28] and is
orthogonal to SCARAB.

2. Symmetric Encryption: Alice chooses a key k to
symmetrically encrypt the message and then embed
k to a point m ∈ G.

3. Ciphertext Generation: To share the secret with the
SC, Alice uses ElGamal encryption modified for
threshold cryptosystems [35]. More specifically,
she picks r at random, computes c = (X rm,gr) and
also creates the NIZK proofs πe to guarantee that
the system is chosen ciphertext secure and non-
malleable. The exact NIZK proofs can be found in
Appendix B. Finally, she defines a policy L that in-
cludes the public key yB of Bob.

4. Write Transaction Creation: Alice creates a write
transaction that contains c, πe, and the hash of the
symmetrically encrypted data Hc, then she signs the
transaction using her private key xA and dispatches
it to the AC for logging.

LTS Read Transaction Processing
1. Encrypted Data Retrieval (Reader): Bob requests
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the block with Alice’s write transaction and the en-
crypted data. He verifies Alice’s signature and πe
and that H(data) = Hc to ensure data availability.

2. Read Transaction Creation (Reader): Bob creates
a read transaction pointing to the write transaction
(block and transaction hash) and signs it with his
private key xB as proof of access, then he sends it to
the AC for validation.

3. Read Transaction Validation (AC): AC verifies the
signature against L and logs the read transaction.

4. Collective Re-encryption (Reader, SC): Bob col-
lects the logged read and write transactions from the
AC and either goes to each SC server i and collects
the encrypted share ui = grxi or delegates the recon-
struction to an exeternal server. We describe both
approaches below.

Secret Retrieval (Reader)
1. Share Verification: For each share ui, Bob verifies

the decryption share creation NIZK proof πd (Ap-
pendix B) until he collects t valid shares.

2. Combining Shares: Assuming that Bob has a set
of t decryption shares (i,ui), the recovery algorithm
does Lagrange interpolation of the shares:

X r =
t

∏
k=0

ui
λi

, where λi is the ith Lagrange element.
3. Decrypt: Bob computes the inverse of X r and finds

m = cX−r. From m he can derive k and symmetri-
cally decrypt the original message.

Collective Re-encryption If Bob retrieves the data in
a portable or IoT device, then it is preferable that he does
not have to do the costly public-key operations. In this
section, we devise a protocol that enables any untrusted
server, instead of Bob, to do the share reconstruction. We
assume that this server is honest-but-curious and will not
DoS Bob. If the server delivers an invalid ciphertext, Bob
can detect that he cannot decrypt the data and either ask
another server or do the protocol himself. Bob selects a
server to do the share reconstruction, instead of himself.
He signs this delegation request with xB.

1. ElGamal Re-Encryption. Each SC server that cre-
ated his decryption share as grxi = ui ElGamal en-
crypts the share for Bob using xi as the blinding
factor instead of a random r′. The new share is:
grxigxBxi = g(r+xB)xi = gr′xi = u′xi = u′i. Then, to
show that the share has been correctly generated he
computes the NIZK proofs πd as before (App. B).

2. Share combination. The untrusted server collects t
valid shares and reconstructs the re-encrypted secret
with Lagrange interpolation as shown above. The
end result is gr′x = g(r+xB)x. Note that the server
never sees grx, hence learns nothing.

3. Secret retrieval. Bob obtains g(r+xB)x and as he
knows gx and xB he can find −xB and com-
pute gx−xB = g−xxB . Finally he computes grx =
g(r+xB−xB)x and carries out the decryption as it is ex-
plained above.

4.3.2 Evolution of SC

Given that the SC is long lived in LTS, we need to make
sure that it remains secure and available. A number of
issues can arise during the lifetime of SCARAB. First,
secret-holding servers can join and leave SC, which re-
sults in churn. Secondly, even if SC memberships are
static, private shares of the secret-holding servers should
be refreshed/rotated regularly (perhaps every month), so
that an attacker cannot collect a threshold of shares over
a sufficiently long time. Finally, for security reasons,
we also want the shared private key of the SC to be ro-
tated (e.g., once every year or two). This will require
re-encrypting the long-lived secrets from one shared key-
pair to another.

We solve the first two problems by periodically re-
sharing [14] the existing collective public key when a
secret-holding server joins or leaves the SC, or when the
server wants to rotate its individual private key-shares.
For the last challenge, where the SC wants to rotate the
shared public/private key pair (X ,x), SCARAB needs to
collectively translate each individual valid secret under
the new public key Y = gy. To achieve this, we generate
translation certificates [16].

On a high level, the translation functionality is as fol-
lows: Let c1 = (mgrx, gr) be an ElGamal encryption of
a message m with respect to a public key X, and let x be
the corresponding secret key that is shared by the trusted
servers by using a threshold scheme as described before.
The trusted servers want to compute the ElGamal en-
cryption c2 = (mgyt ,gt ) of m, with respect to the public
key Y. However, they do not want to expose m to any set
of dishonest servers (or any other set of servers). Fur-
thermore, they do not know the private key y that corre-
sponds to Y . To translate c1 to c2, we need to execute the
following two steps:

1. Trustee i selects a value ti uniformly at random ∈
Zq, and computes (ai,bi) = (g−rxigyti ,gti). This is
the translation share.

2. The SC servers (or an untrusted gateway) collect a
threshold of shares and compute the translation (c2,
gt ) = (c1 ∏

t
k=0 ak,∏

t
k=0 bk).

The above algorithm is not robust as is, therefore the
trustees distributively generate robust translation certifi-
cates, using the protocol of Jakobsson et al. [16] to guar-
antee that they performed the translation correctly. Af-
terwards, the translation certificate is appended to the
(re)write transaction of the secret on the blockchain for
Bob to verify before he issues a read transaction.
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Periodically creating fresh secret-holding keys and
collectively translating all secrets in the currently-
outstanding state from the old (X) to the new (Y ) shared
public keys is a per-object operation. This means that it
can take a long time in a large system holds many secrets,
hence it should be done rarely and over a long period of
time where both X and Y are considered valid.

4.3.3 Mapping to Goals

LTS achieves the same security goals as OTS the same
way except from the Privacy of Secrets.:
LTS remains private due to the unpredictability of the
DKG algorithm that guarantees that the shared private
key is never revealed, as long as less than t of the cothor-
ity servers collude. All shares are encrypted under yB and
remain private during reconstruction.

5 Identity-Based Access Control
In the design introduced so far, if Alice encrypts her data
and posts a write transaction but later decides to share
the data with more decryptors or if Bob decides to ro-
tate his public key, Alice would have to revoke the previ-
ous write transaction and post a new one with modified
access-control list. In this section, we show how to create
decentralized dynamic identities and policies to grace-
fully handle the identity evolution and access control of
SCARAB. Furthermore, we show how to protect against
an adversary taking advantage of this new dynamic fea-
ture and trying to gain access using stale (i.e., revoked)
access rights.

5.1 Identity Skipchains
This section introduces the identity skipchain. The iden-
tity skipchain is inspired by CHAINIAC [28], where the
authors introduce a double-linked blockchain that pro-
vides efficient timeline-traversal in order to enable the
rotation of the configuration of a cothority without re-
quiring the clients to trust a third-party look-up service
after their initial bootstrap. In SCARAB we adopt the
skipchain data structure, because of the additional trust-
delegation property that it provides compared to normal
blockchains, and use it to create and manage decentral-
ized personal and federated identities that we call Iden-
tity Skipchains (IdSs). IdSs enable SCARAB to decouple
OCS from static identities, but it can also be used in more
general identity management applications.

5.1.1 Personal Identity Skipchain

The personal identity blockchain was first introduced in a
worksop talks [19]. In this section we reintroduce the de-
sign and extend it for design completeness. We define the
per-user IdS that enables the user to access services (e.g.,
OCS service) from multiple devices without the need to
manually configure the remote locations every time a key
changes. IdS is made of blocks storing two types of keys.

The first type consists of the cold keys of the user (ide-
ally stored offline in multiple devices): they are used only
when the user evolves his identity. The second type con-
sists of the warm keys that are used for the applications
(e.g., SSH, PGP key). The cold keys are used for signing
forward links in order to delegate trust [28] between the
digital identity representations of a user. To provide se-
curity against an adversary that uses an old block as the
active one, we use the AC from SCARAB to periodically
timestamp all IdSs and to enforce a single-inheritance
rule (no-forks). This way, the freshness attack window
is minimized to be between two timestamp events.

After applying IdSs on SCARAB, Alice is now able
to encrypt data for the personal IdS of Bob and Bob can
rotate his keys (e.g., for security) without losing access.

5.1.2 Federated Identity Skipchain

Enabling people to manage their identities is one step
towards our goal. However, defining the identity of an
organization by adding all the keys and updates of em-
ployees to one shared IdS will quickly lead to a large
number of conflicts, as multiple people concurrently try
to change the IdS. For this reason, we scale by creating
recursive federated IdSs.

As illustrated in Figure 4, the federated IdS includes
not only the public keys, but also the personal IdSs of
the employees (e.g., Bob). This enables a user to manage
his identity independently and re-use it at multiple loca-
tions. Also, revocation becomes cleaner, as removing an
employee’s IdS from the federated IdS automatically re-
moves the employee’s ability to create inclusion proofs
against the federations’ IdS.

After applying federated IdSs in SCARAB, Alice can
now encrypt data to the full sales department of her com-
pany, and anyone able to provide a provable path from
the federated IdS to his personal IdS can access. Further-
more, if the federated IdS includes personal IdSs, people
can easily evolve their identities without conflicts.

5.2 Access Control Policies
One final issue remaining in SCARAB is dynamic access
control. Even with IdSs, Alice cannot change the fact
that she shared some data with the sales department. A
simplistic solution would be to define a special ”revoke
transaction” and then a new write transaction with the
new access-control list. In this section, we describe how
to provide the same functionality without the need for
new write transactions by tuning federated IdSs upside
down and using them as policy skipchains PolSs

The intuition is that the same way federated identi-
ties evolve (to include / exclude authorized users) is used
to evolve access-control rules. We use federated identi-
ties (or policy identities) to enable Alice to dynamically
change the access writes of a specific document. Instead
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of using the IdS of an individual or an organization in the
access control policy, Alice creates a new PolS specific
for the document. She then dynamically manages this
PolS as any other federated identity. For example, she
can create a PolS for her medical records and then share
it dynamically with her new doctor. This enables Alice to
always be sovereign over her data. Finally, we enhance
the expressiveness of PolSs by defining access control
rules that enable Alice to have multiple rules or rules with
more complex conditions attached to her writes.

A policy is a set of rules that regulates access control to
a resource. We use a simple JSON-based access-control
language to express policies. In the following sections,
we define our policy structure and describe how requests
for access to resources are created and verified.

5.2.1 Policy Structure

In this section, we describe the structure of policies and
demonstrate how they can be used for access control. A
policy consists of a random ID, a version number and a
list of rules that outline the access control. A rule com-
prises three components: action, subjects and expres-
sion. Action refers to the type of activity that can be
performed on the resource (e.g., encrypted document).
It is an application-specific string indicating the activity.
Subject is the list of users that are permitted to perform
an action. We permit individuals and federations to be
subjects similar to federated IdSs, hence a subject can be
a public key or an IdS.

To build more sophisticated rules, we introduce ex-
pressions. An expression is a string of the form:
{operator : [operands]}. Operator can be a logical op-
erator (such as AND/OR) and operands can be a list of
Subjects. An example is: {AND : [IDGroup1, IDBob]}. In
the context of signatures, this means that both IDGroup1
and IDBob’s signatures are required by a particular rule.
We can combine expressions to express complex con-
ditions for rules. For example: {‘OR′ : [{‘AND′ :
[S1,S2]},{‘AND′ : [S3,S4]}]} evaluates to ((S1 AND S2)
OR (S3 AND S4)). In Appendix D, we describe single
and multi-signature access requests against policies and
outline how they are created and verified.

5.2.2 Evolving Policies

Figure 4 shows an example of the full deployment of
SCARAB, where Report X has a PolS, group A is a fed-
eration with its own federated IdS and Bob is part of A
but also manages his personal IdS. The latest version of
the PolS grants read access to Group A, of which Bob is
a member. Bob can access Report X as he is a member of
the group that has access. If a new version of the policy
(v3) is created where Group A does not have access, its
members will no longer be able to read the document. In
the case of an access request from Bob’s Key1 to Report

Figure 4: Evolution of policies by using skipchains.

X’s policy, the path is shown in red. The rules in the latest
policy block indicate which IdS to access. The skiplinks
enable fast traversal through the policy’s versions.

5.2.3 Transparent Logging against Races

One key idea on SCARAB’s design is using the AC’s
blockchain to timestamp the latest versions of IdSs and
PolSs. This guarantees atomicity of events such as dy-
namically changing an identity (e.g. to exclude someone)
and soon after granting it more access rights.

Specifically, in a naive system that lets IdSs to evolve
off-line without any transparent announcement, access
policy structures will not be atomic with the structures
being access controlled. For example, administrator
Sally of the sales group, decides that Bob should be fired
because he is performing industrial espionage, hence she
removed the IdS of Bob from the federated IdS of the
sales group. Afterwards Sally grants the rest of her em-
ployees access to the new corporate strategy plan. In a
naive asynchronous access control system in which pol-
icy changes can take varying amounts of time to propa-
gate and take effect (e.g., OAuth [12]), there is significant
accidental time window in which Bob can still convince
someone that he is part of the sales group, as he might be
able to still prove membership to the controller of the the
sensitive object (i.e., to a threshold of SC trustees).

In SCARAB, all the changes of the IdSs are serial-
ized together with the read and write transaction on the
blockchain maintained by the AC. Hence the exclusion
of Bob will be strictly after the granting of access. This
means that Bob will be unable to provide a correctly
timestamped (by the AC) proof to the SC trustees and
as a result be unable to read the sensitive document.

5.3 Mapping to Goals
We inherit the achievment of the security goals from
OCS, other than the revocability. Furthermore we also
achieve the usability goals as follows:
Revocability: The writer is able to revoke access to the
data by extending the PolS with an empty block, after
the new block is timestamped by the AC no reader can

10



access any more.
User-Sovereign Identity: Even if the lookup of an iden-
tity is delegated to an identity provider (e.g., using
CONIKS [24]), the identity creator holds the private keys
and is both sovereign over the identity and responsible
for each evolution.
Dynamic Identity Management: The legitimate owner
can dynamically change their identity’s representation
using their cold keys and re-use it to many federated
IdSs.

6 Anonymous Access Control
In this section, we explore a second approach to access-
control in OCS. Instead of looking into dynamic identi-
ties, we look into relationship privacy. More specifically,
once Alice indicates that Bob should be able to decrypt
her write transaction, it becomes evident and logged on
the chain that Alice and Bob have some kind of relation-
ship. However, if for example Alice is a whistle-blower
and Bob is Wikileaks, this leakage is a security breach.

To solve this problem in SCARAB, we introduce an
“on-chain private-key exchange” protocol. The basic
idea of the protocol is that Alice hides Bob’s identity in
the write transaction, and generates a temporary public
key for Bob to use in his read transaction. The corre-
sponding private key can only be calculated by Bob, and
a signature from this corresponding private key is enough
for Alice to prove that Bob created the read transaction.
In order for Bob to know which transaction to search for,
Alice needs to notify him on a separate secure channel
that she posted a write transaction for him. The protocol
works as follows:

1. Key creation: Alice generates a random number r
and uses it to generate Bob’s temporary public key
y′B as y′B = yr

B = grxB .
2. Write Transaction Creation: Alice uses y′B instead

of yB in the policy of the write transaction. In order
for Bob to be able to calculate x′B = xBr, he needs
r. Alice encrypts r for Bob in the write transaction.
She picks random number r′ and encrypts r as e =
gxBr′r and f = gr′ . The final write transaction has y′B
as the allowed reader and e, f as further metadata of
the ciphertext.

3. Read Transaction Creation: When Bob wants to
read, he will first decrypt e by computing f ′ = f xB

and r = e
f ′ . Then he will compute x′B = rxB and use

it to sign the read transaction.
4. Auditing: If Alice wants to prove that Bob gener-

ated the transaction, she can simply release r. Then
anyone can verify that yB = y′Bg−r hence be sure that
only Bob could know the x′B.

This solution enables Alice and Bob to hide their rela-
tionship without forfeiting any of OCS’s guarantees and
it has already been deployed for industrial applications.

This approach does not support dynamic identity evo-
lution, as we cannot predict the future key of Bob, but
is already used in an industrial PoC where relationship
privacy is more important than dynamic identity evolu-
tion. We leave the extension of this protocol with dy-
namic identities to future work, and emphasize that if re-
lationship privacy is required, then the identities should
be static.

7 Security against Attacks
Our contributions are mainly pragmatic rather than the-
oretical as we employ already-proven secure crypto-
graphic protocols. We argued on achieving the security
goals in the previous sections. In this section, we de-
scribe the attacks that could happen in SCARAB and ar-
gue on SCARAB’s defenses.
Malicious Reader/Writer: SCARAB’s functionality re-
sembles a fair-exchange protocol [30]. In such a proto-
col, a malicious reader wants to retrieve the secret with-
out paying for it and a malicious writer wants payment
without revealing the secret. In SCARAB, we protect
against malicious readers and writers by employing the
AC and SC as decentralized trusted third parties that me-
diate the interaction.

AC logs a write transaction on the blockchain only af-
ter it successfully verifies the encrypted data against the
corresponding consistency proof. Similarly, before log-
ging a read transaction, AC verifies that (1) it is for a
valid write transaction and (2) it is sent by a party that is
listed as an authorized reader in the matching write trans-
action. As for the SC, it decrypts the data for the reader
after confirming that they are the authorized reader, and
they have an auditable proof logged on the blockchain
(i.e., read transaction). By employing these mechanisms
at the AC and SC, we protect SCARAB from mali-
cious readers and writers. Additionally, because of the
atomic delivery property, readers and writers are guar-
anteed that they will not be worse-off after the protocol
ends. Writer know that the data will only be decrypted
to the reader, if they have a valid read transaction logged
in the blockchain and readers know that if there is a valid
read transaction logged, then the SC will be convinced to
deliver the data.
Chosen Ciphertext Attack SC’s functionality resem-
bles a decryption oracle, hence SCARAB needs to be
CCA secure. A CCA attack would happen when Eve
copies the transaction of Alice from the AC blockchain
and dispatches a new write transaction that has the same
ciphertext but a modified access-control list.

OTS protects against this attack as it uses the access-
control list to derive the base-point that is used to cre-
ate the NIZK consistency proofs in PVSS. Eve’s attack
will fail in SCARAB because she cannot generate correct
proofs against her access list as she does not know the
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Figure 5: Latency of OTS protocol steps for varying
sizes of SC/AC

decrypted shares (they are encrypted inside the write).

LTS protects against such an attack by using the
NIZK-proofs introduced in the protocol of Shoup et
al. [35], which binds the access-control list with the ci-
phertext at encryption time. Eve’s attack will fail in
SCARAB because she cannot generate correct proofs
without the knowledge of the blinding factor of the El-
Gamal encryption.

Individual Malicious Trustees A final component that
can misbehave in SCARAB are the AC and SC trustees.
If they decide to DoS the system, this does not cause
a problem as long as the threat model holds (less than
t Byzantine). Similarly, if they try to collude and de-
crypt the secrets, they still do not hold enough decryption
shares as long as the threat model holds.

8 Implementation and Evaluation

8.1 Implementation

In order to evaluate our system, we implemented
SCARAB in Go [11] and will make it available on
GitHub. The AC is implemented using the current
skipchain code written for the cothority project. We im-
plemented both the OTS and LTS verisons of OCS, com-
plete with encryption and decryption of the shared se-
crets. For the IdSs and PolSs we implemented signing
and verifying using AND, OR and NOT expressions. In
our code, we used the Ed25519 curves giving 128-bit
security. All the code will be made available under an
open source license on GitHub. The total SLOC-count of
each module is for skipchains 4,000 LOC, for OTS 2,000
LOC, for LTS 4,000 LOC and for IdSs 1,000 LOC.

8.2 Evaluation
In this section, we evaluate the performance of
SCARAB. We first evaluate and compare the two im-
plementations of OCS, then we look into the overhead
introduced when using dynamic identities and policies.
For both implementations of SCARAB we evaluate the
time it takes to create a write and a read transaction
with different sizes of SC and AC. We run all experi-
ments using Mininet [25] run on 4 servers where each
server has 256 GB of memory and 24 cores running
at 2.5 GHz. To make realistic assumptions on the net-
work, Mininet introduced 100 ms point-to-point latency
between all nodes and a maximum bandwidth of 100
Mbps for each node. The basic questions we want to
answer is whether SCARAB has an overhead that can
be acceptable for blockchain systems (e.g., Bitcoin val-
idates transactions every 10-minutes), and whether we
can scale it to hundreds of validators that provide a high
degree of confidence that the thresholds assumed will
hold. Similarly for IdSs we wanted to evaluate the over-
head of creating and verifying proofs and see if it scales
well when multiple levels of federated IdSs need to be
searched.

8.3 OCS
In our experiments, we measure the cost of different pro-
tocol steps of OTS and LTS for a varying number of
nodes, where each node is part of both the AC and SC. In
OTS, we represent the cost in terms of wall-clock time,
while in LTS, we additionally use the CPU time.

OTS For the OTS experiments, we measure the cost
of three protocol steps, which are described in Sec-
tion 4.2.1. Each step includes the message exchange la-
tency between the parties that are involved in that step.
Write transaction step consists of two consecutive parts
that take place at the client and AC: The first part in-
volves creating a write transaction by setting up the en-
crypted PVSS shares, polynomial commitments, NIZK
proofs, and symmetrically encrypting the data. The sec-
ond part involves the collective verification of the en-
crypted shares against the NIZK proofs and logging the
write transaction on the blockchain. Read transaction
step takes place at the AC, where a read transaction is
collectively verified and logged on the blockchain. Mes-
sage recovery step consists of two consecutive parts that
take place at the SC and client: In the first part, upon
receiving a DecReq, each SC trustee decrypts its PVSS
share, creates a NIZK decryption proof, and sends it back
to the client. The second part involves verification of the
decrypted shares against the NIZK decryption proofs, re-
construction of the shared secret by performing the La-
grange interpolation, and decryption of the ciphertext.

Figure 5 shows the results of our measurements for
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varying sizes of SC and AC cothorities. Note that in
the context of OTS, size of the SC equals the number
of trustees involved in PVSS. First, we observe that cre-
ation of the write transaction at the client is a costly op-
eration as it takes almost a second when the SC is com-
prised of 64 nodes. This result conforms with our expec-
tations, as preparing the write transaction involves many
elliptic curve arithmetic operations to set up the PVSS
shares, commitments and proofs. Second, we observe
that the write transaction and read transaction process-
ing times at the AC are comparable, but the former takes
~250 ms longer on average than the latter. This is due to
the fact that the AC collectively checks the NIZK proofs
to verify the encrypted shares, which brings additional
computational overhead. Our experiments also show that
verifying the NIZK decryption proofs and reconstruct-
ing the shared secret are substantially faster than creating
the write transaction: they differ by an order of magni-
tude for large numbers of shares (e.g., with 128 shares:
~250 ms vs ~3 seconds). Finally, we observe that the
time values for the SC part of the message recovery are
an order of magnitude greater than their client counter-
parts. This is expected as the client dispatches a request
to each SC trustee and waits until all respond.

LTS Figure 6 illustrates the cost of LTS with a varying
number of nodes. First, we measure the time to setup the
shared key of the SC. After the DKG, each node has a
secret share of the overall secret and SCARAB stores the
collective public key. Next, we measure a write transac-
tion, where the client stores the symmetric key encrypted
under the shared public key of the DKG, that is veri-
fied and logged by the AC. Then, we measure the read
transaction that the AC (1) verifies by checking whether
its signature belongs to a client that is authorized by the

Number of servers
in SC

Write transaction size (bytes)
OTS LTS

16 4,086 160
32 8,054 160
64 15,990 160
128 31,926 160

Table 1: Write transaction size for varying SC sizes

writer and (2) logs the read transaction on the blockchain.
Finally, we measure the time it takes for a reader to re-
ceive the re-encrypted key from the SC; this is the time
it takes for the SC to verify the read transaction and then
do the actual re-encryption. As we can see, the LTS pro-
tocol scales linearly to the size of the cothority, but even
for 128 servers takes less than 8 seconds. The CPU-time
is significantly lower than the wall-clock time because of
the networking overhead over a WAN that is present on
the wall-clock measurements.

Even though the DKG setup is quite costly in bigger
settings, it is a one-time cost that is only incurred at the
start of every epoch. The following read and write trans-
actions are faster and smaller in size than their counter-
parts in OTS, because the data is encrypted to the shared
public key of the DKG, which is constant regardless of
the SC size. We can see that the costs of read and write
transactions are almost equal as they are dominated by
adding a block to the AC blockchain. Finally, the col-
lective decryption overhead scales linearly to the SC as
a threshold t of shares needs to be validated and interpo-
lated, where t increases linearly to the size of the SC.

Write transaction size Table 1 shows the write trans-
action sizes in OTS and LTS for different SC sizes. In
OTS, a write transaction stores three pieces of PVSS-
related information, namely encrypted shares, polyno-
mial commitments and NIZK encryption consistency
proofs. Since the size of this information is determined
by the number of PVSS trustees, write transaction size
increases linearly with the size of the SC. In LTS, since
SC servers remember a minimal state of their VSS se-
cret shares, write transactions use the shared key of the
SC and do not need to store the encrypted shares. As a
result, LTS has constant write transaction size.

8.4 Identity Skipchain
For the IdS, we conduct benchmark tests for the access
request verification as this operation is the most resource
and time intensive. Other functions, such as creation or
updates to policies, are less time consuming. We con-
sider two cases for benchmarking: verification of single
signature and of multi-signature requests.

Single-signature Request Verification We bench-
mark the request verification time for single-signature re-
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Figure 7: Single-signature request verification.

quests. The request verification time is the sum of the
signature verification and the time to find the path from
the target policy to the requester. We vary the depth of
the requester; this depth refers to the distance between
the target policy and the parent policy of the requester.
In order to investigate whether access checking has a
significant effect on the request verification time. Fig-
ure 7 shows the variation in request verification time with
depth of the requester. Interestingly, we see that most of
the request verification time goes into signature verifica-
tion. The signature verification takes ≈ 385us and ac-
counts for 92.04−99.94% of the total time. We observe
that even at a depth of 200, a relatively extreme scenario,
path finding takes only about 35 us.

As signature verification is the major factor contribut-
ing to request verification time, it will have an effect on
multi-signature requests. To investigate this effect, we
create requests with a varying number of signatures and
look into the number of request per second we can ver-
ify. Figure 8 shows the verification rate for requests with
different number of signatures. We show the results for
a requester depth of 2 and 10. We see that there is a sig-
nificant reduction in the number of requests that can be
verified when the number of signatures increases. This is
expected as the signature verification step is performed
for each signature. Finally, the depth of the requester
does not play a notable role in the verification rate.

9 Related Work
In the decentralized data sharing topic, the closest work
to ours is by Zyskind et al. [45]: they introduce a decen-
tralized personal data management platform that enables
users to own and control their data without a trusted third
party. Their solution uses a blockchain as the access-
control manager for the encrypted user-data that is stored
off-chain. The system stores encrypted user-data off-
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Figure 8: Multi-signature request verification through-
put.

chain, and the access-control policy at the blockchain,
which enforces access control before serving data. This
is further expanded in Enigma [46], a decentralized com-
putation platform. Enigma provides functionality for
users to store and run computations on data with pri-
vacy guarantees. MedRec [2], is based on permission-
less blockchain implementation and PoW, thus involves
transaction fees, and requires involvement into mining
and account management processes. On the contrary,
Dubovitskaya et al [8] works in a permissioned setting,
but uses a cloud-storage breaking our decentralization as-
sumptions. Factom [36] and MedVault [4] also publish
medical records on chain, which we assume are privacy-
preserving, but have not yet published their blockchain-
based design, while SeShare [15] relies on a blockchain
based data structure to avoid conflicts in file sharing en-
vironments but suffers from performance and usability
issues in some of its functionality.

Blockchain-based solutions are also emerging in
the IoT ecosystem. Shafagh et al. [33] proposes a
blockchain-based solution for providing a distributed and
secure data storage system for the IoT domain. It uses a
blockchain to provide auditable and decentralized access
control for the data that is stored off-chain. Off-chain
storage holds the end-to-end encrypted data and when it
receives an access request, it checks with the blockchain
to enforce the access control. ChainAnchor [13] enables
the owner of an IoT device to verify the manufacturing
provenance of the device without requiring a trusted third
party, and to anonymously register its device by using a
permissioned blockchain.

In the identity management area, Maesa et al. [23]
outline a blockchain-based access-control system that
uses the Bitcoin blockchain and XACML policies.
BBDS [43] describes a framework for secure sharing of
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medical records where users are verified before they can
create requests for data. However, implementation de-
tails and experimental data have not yet been published.
Another notable system is FairAccess [29], a framework
that aims to provide a blockchain-based access-control
system for IoT (Internet of Things) devices. Neisse et
al. [27] propose an approach where contracts outlining
usage policies are deployed on a blockchain. They out-
line three possible models for the contracts, based on the
use cases. Finally, ClaimChain [22] is a decentralized
PKI where users maintain repositories of claims about
their own and contacts’ public keys. However, it allows
transfer of access control tokens, which may result in
unauthorized access to the claims. Blockstack [1] lever-
ages the Bitcoin blockchain to provide naming and stor-
age functionality, due to which it performs slowly both
in throughput and in latency.
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A PVSS
We follow the protocol in [32]. Let G be a multi-
plicatively written cyclic group of large prime of order
q with two distinct generators G and g, where the set
of non-identity elements in G is denoted by G ∗. Let
N = {1, . . . ,n} denote the set of trustees, where each
trustee i has a private key xi and a corresponding pub-
lic key yi = Gxi . PVSS runs in four steps:

1) Dealing the shares: The dealer chooses a secret
sharing polynomial s(x)=∑

t−1
j=0 a jx j of degree t−1.

The shared secret becomes S0 = Gs(0). For each
trustee i∈ {1, . . . ,n}, they create an encrypted share
ŝi = ys(i)

i of the shared secret S0. Furthermore, they
create the polynomial commitments c j = ga j , for
0≤ j < t, and a NIZK encryption consistency proof
π̂i for each share si, 1≤ i≤ n. The dealer publishes
all ŝi, π̂i, and c j.

π̂i proves that the corresponding encrypted share
ŝi is consistent. More specifically, it is a proof of
knowledge of the unique s(i), which satisfies:

Ai = gs(i), ŝi = ys(i)
i

where Ai = ∏
t−1
j=0 c j

i j
. In order to generate π̂i, the

dealer picks at random wi ∈ Zq and computes:

a1i = gwi ,a2i = ywi
i ,

Ci = H(Ai, ŝi,a1i,a2i),ri = wi− s(i)Ci

where H is a cryptographic hash function, Ci is the
challenge, and ri is the response. Each proof π̂i con-
sists of Ci and ri, and it shows that logg Ai = logyi

ŝi

2) Verification of the shares: Each trustee i verifies
their encrypted share ŝi against the corresponding
NIZK encryption consistency proof π̂i to ensure the
validity of the encrypted share. To do so, they first
compute Ai = ∏

t−1
j=0 c j

i j
using the polynomial com-

mitments c j, 0≤ j < t. Then, using yi,Ai, ŝi, and ri,
they compute:

a′1i = griACi
i ,a′2i = yri

i ŝi
Ci

Finally, they check that H(Ai, ŝi,a′1i,a
′
2i) matches

the challenge Ci.

3) Decryption of the shares: If their share is valid,
each trustee i creates the decrypted share si =(ŝi)

x−1
i

and the corresponding NIZK decryption consis-
tency proof πi. πi proves that si is the correct de-
cryption of ŝi by showing that logG yi = logsi

ŝi.

4) Reconstructing the shared secret: If the trustees
can pool at least t correctly decrypted shares, they
use the Lagrange interpolation to recover the shared
secret S0.

B Full Encryption/Decryption Protocol for
LTS

We follow the protocol described in [35]. As before we
have a group G of prime order q with generators g and
ḡ . We assume the existence of two hash functions:
H1 : G6×{0,1}l → G and : H2 : G3→ Zq

A user that wants to encrypt a message under the col-
lective public key X that can be decrypted by anyone in-
cluded in label L ∈ {0,1}l1 does the following steps:

1. Choose a key k to symmetrically encrypt the mes-
sage and then embed k to a point m ∈ G.

2. Choose at random r,s ∈ Zq. Compute:

c = X rm,u = gr,w = gs, ū = ḡr, w̄ = ḡs,

e = H1 (c,u, ū,w, w̄,L) , f = s+ re

The ciphertext is (c,L,u, ū,e, f ).

Decryption Share Creation Given a ciphertext
(c,L,u, ū,e, f ) and a matching authorization to L, a
decryption server does the following:

1. Checks if e = H1 (c,u, ū,w, w̄,L),
where w = g f

ue , w̄ = ḡ f

ūe which is a NIZK proof that
logg u = logḡ ū

1Later this Label is the identifier of an Identity Blockchain
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2. If the checks are valid server i choose si ∈ Zg at
random, and computes:

ui = uxi , ûi = usi , ĥi = gsi ,

ei = H2
(
ui, ûi, ĥi

)
, fi = si + xiei

3. Outputs (i,ui,ei, fi).

Note that if the label L has changed e is not computed
correctly. Given that an adversary will not know r, he
cannot change the e to match his new label.

Share reconstruction at the client

1. Share Verification. First the client runs the de-
cryption share check to make sure that the server
is not misbehaving. If the check passes then he
checks that (u,ui,hi) is a DH triple, by checking if:
ei = H2

(
ui, ûi, ĥi

)
, where ûi =

u fi
ui

ei , ĥi =
g fi

hi
ei

2. Combining Shares. Assuming that the client has a
set of t decryption shares (i,ui) the recovery algo-
rithm is doing Lagrange interpolation of the shares:

X r =
t

∏
k=0

ui
λi

, where λi is the ith Lagrange element

3. Decrypt. The client computes the inverse of X r and
finds m = c

Xr . From m he can derive k and symmet-
rically decrypt the original message.

Share reconstruction at an untrusted Server The
client authenticates himself using his public key gxc One
of the decryption servers is assigned to do the reconstruc-
tion for the client.

1. ElGamal Encryption. Each Server that created his
decryption share as grxi = ui ElGamal encrypt the
share for the client using xi as the blinding fac-
tor instead of a random r′ the new share looks like
: grxigxcxi = g(r+xc)xi = gr′xi = u′xi = u′i. Then he
computes ĥi, as before and û′i = u′si . Finally e′i =

H2

(
u′i, û

′
i, ĥi

)
and f ′i = si + xie′i

2. Share combination. Any untrusted server can pool
the shares and reconstruct the secret with Lagrange
interpolation as shown above. The end result would
be gr′x = g(r+xc)x

3. Secret decryption. The client gets g(r+xc)x and as
he knows gx and xc he can find −xc and compute
gx−xc

= g−xxc . Finally he computes grx = g(r+xc−xc)x

and decrypts as above.

C SCARAB in Real Applications
C.1 Access Control on Encrypted Docu-

ments
The first application is a simple decentralized document-
sharing system on SCARAB: it enables organization N
to share a document S with organization A.

Problem Definition Organization N wants to share a
confidential document S with organization A. Within N
and A, there is a ”confidential” clearance level and parts
of S (if not all of it) are meant to be secure. There exist
employees that have clearance and departments whose
employees automatically obtain access when hired and
lose it when they resign. We want to enable the mutu-
ally distrustful N and A to share the document and to en-
force dynamic access on parts of the document on a per
user basis, while each access is transparently logged and
available for auditing.

Solution with SCARAB Organizations N and A agree
on a mutually trusted cothority configuration. This
cothority can include individual trustees that are con-
trolled by N and A. Each organization establishes a con-
fidential federated IdS. The hashes of the IdS’s genesis
blocks are posted on the AC managed skipchain. Inside
each chain, any key is solely used for this chain to pre-
vent the linking of identities.

When Organization N generates document S, each
paragraph is labeled either confidential or unprotected.
Afterwards N generates a write transaction for the confi-
dential symmetric key, including in the label of the trans-
action the respective IdS of A. The actual document S is
encrypted under the symmetric key paragraph by para-
graph, then it is shared with organization A. Any autho-
rized user of organization A can retrieve document S and
create a proof-of-inclusion to the confidential IdS. This
proof is attached to the read transaction, and the cothor-
ity can atomically log it and deliver the encryption key.
Organization A is free to evolve the confidential IdS, as
well as A’s employees are free to evolve their individual
IdSs.

C.2 Medical Data Sharing
Problem Definition Patient P has his medical data in
multiple hospitals that refuse to share them because of
potential privacy breaches. P, however, wants to grant
access to a medical research team to use his data for
their studies. We want to enable P to remain sovereign
over his data and to be able to share. At the same time,
we want the hospitals to be able to show that P shared
the data and that they are not responsible for a privacy
breach.

Solution with SCARAB We designed a simple
medical-data sharing application on SCARAB that en-
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Figure 9: Verifier’s path checking for multi-signature requests.

ables P to share his data with multiple potential read-
ers over time. The main difference from the documents-
sharing application is that the data generator (hospital)
and the data owner (P) are different. For this reason, we
use the PolS data-structure as a dynamically evolving in-
dicator for P to the hospitals on how they should enable
access on his data.

SCARAB enables P to initialize a PolS when regis-
tering with his social security number, which will en-
able dynamic access control on his medical data. Every
time he wants to share data he (1) adds the identity or
public key of the decryptor in his dynamic identity and
(2) gives a pointer to his medical PolS to the potential
reader, hence he can generate the appropriate inclusion
proofs.

When new data are generated, the data creator (e.g.,
hospital) creates a new write transaction where the la-
bel is the medical PolS of P, and the hospital stores the
data in an encrypted form. But P can authorize decryp-
tion requests, thus remaining sovereign over his medical
data. P keeps privately a log of all these write trans-
actions. He can point anyone she wants to them in his
medical identity, enabling them to access his data by is-
suing read transactions. This scheme could be further
enhanced with payments towards P for sharing his data.

D Access Requests and Verification
In this section, we outline how we create and verify ac-
cess requests. A request consists of the policy and the
rule invoked that permits the requester to perform the ac-
tion requested. There is also a message field where extra
information can be provided e.g., a set of documents is
governed by the same policy but the requester accesses
one specific document.. A request Req is of the form:
Req = [IDPolicy, IndexRule,M], where IDPolicy is the ID of
the target policy outlining the access rules; IndexRule is
the index of the rule invoked by the requester; and M is a
message describing extra information.

To have accountability and verify that the requester is
permitted to access, we use signatures. The requester
signs the request and creates a signature consisting of the
signed message and the public key used. A request sig-

nature’s SigReq form is: SigReq = [RSK ,PK], where RSK
is the Req signed by the requester’s signing key, SK, and
PK is the corresponding public key. An access request
consists of the request and the signature, (Req,SigReq).

On receiving an access request, the verifier checks that
the RSK is present and correct. The verifier then checks
that there is a valid path from the target policy, IDPolicy, to
the requester’s public key, PK. This could involve multi-
ple levels of checks, if the requester’s key is not present
directly in the list of subjects but included transitively in
some federated IdS that is a subject. The verifier searches
along all paths (looking at the last version timestamped
by AC) until the requester’s key is found.

Sometimes, an access request requires multiple par-
ties to sign. Conditions for multi-signature approval
can be described using the expression field in the rules.
An access request in this case would be of the form
(Req, [SigReq]) where [SigReq] is a list of signatures from
the required-for-access parties. The verification process
is similar to the single signature case.

Figure 9 shows an example of the path verification per-
formed by the verifier. Report X has a policy with a Rule
granting read access to Bob and Amy. There is an ex-
pression stating that both Bob’s and Amy’s signatures are
required to obtain access. Hence, if Bob wants access,
he sends a request (Req, [SigReq,Bob,SigReq,Amy]), where
Req = [1234,2,“ReportX ′′], SigReq,Bob = [RSK4,PK4]
and SigReq,Amy = [RSK1,PK1]. The verifier checks the
paths from the policy to Bob’s PK4 and Amy’s PK1.
Paths are shown in red and blue respectively. Then the
expression AND : [0,1] is checked against the signatures.
If all checks pass, the request is considered to be verified.

D.1 JSON Access Control Language
A sample policy for a document, expressed in the JSON
based language, is shown in Figure 10. The policy states
that it has one Admin rule. The admins are S1 and S2
and they are allowed to make changes to the policy. The
Expression field indicates that any changes to the policy
require both S1 and S2’s signatures.
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Figure 10: Sample Policy in JSON access control language.

20


	Introduction
	Background
	Blockchain systems
	Threshold Cryptosystems

	SCARAB
	Strawman Solution
	System Overview
	System Goals
	Security Goals
	Usability Goals


	On-Chain Secrets (OCS)
	OCS Overview
	One-Time Secrets (OTS)
	Protocol
	Mapping to Goals
	Advantages and Shortcomings

	Long-Term Secrets
	Protocols
	Evolution of SC
	Mapping to Goals


	Identity-Based Access Control
	Identity Skipchains
	Personal Identity Skipchain
	Federated Identity Skipchain

	Access Control Policies
	Policy Structure
	Evolving Policies
	Transparent Logging against Races

	Mapping to Goals

	Anonymous Access Control
	Security against Attacks
	Implementation and Evaluation
	Implementation
	Evaluation
	OCS
	Identity Skipchain

	Related Work
	PVSS
	Full Encryption/Decryption Protocol for LTS
	SCARAB in Real Applications
	Access Control on Encrypted Documents
	Medical Data Sharing

	Access Requests and Verification
	JSON Access Control Language


