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Abstract. A number of homomorphic encryption application areas, such
as privacy-preserving machine learning analysis in the cloud, could be
better enabled if there existed a general solution for combining suffi-
ciently expressive logical and numerical circuit primitives to form higher-
level algorithms relevant to the application domain. Logical primitives
are more efficient in a binary plaintext message space, whereas numeric
primitives favour a word-based message space before encryption. In a step
closer to an overall strategy of combining logical and numeric operation
types, this paper examines accelerating binary operations on real num-
bers suitable for somewhat homomorphic encryption. A parallel solution
based on SIMD can be used to efficiently perform addition, subtraction
and comparison operations in a single step. The result maximises com-
putational efficiency, memory space usage and minimises multiplicative
circuit depth. Performance of these primitives and their application in
min-max and sorting operations are demonstrated. In sorting real num-
bers, a speed up of 25-30 times is observed.
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1 Introduction

Homomorphic Encryption (HE) is seen as an important technology for enabling
computation and analytical processing on encrypted data outsourced to third
parties. This would greatly facilitate mainstream utilisation of public cloud re-
sources for sensitive data analysis with a significantly reduced chance of informa-
tion leakage should any system breach occur. Fully Homomorphic Encryption
(FHE) schemes, which support addition and multiplication operations on the
same ciphertext, have only recently come about starting from the work on ideal
lattices by Craig Gentry in 2009 [1]. Although the original scheme was highly
inefficient, newer generation FHE schemes have since rapidly evolved that are
several orders more efficient though not yet practical enough to be considered
for mainstream application use.
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Somewhat Homomorphic Encryption (SWHE) schemes remove the require-
ment of bootstrapping or recryption which typically takes up a very significant
amount of the total FHE execution time. This however places a limit on the num-
ber of combined operations that can be performed on the ‘noisy’ ciphertexts be-
fore successful decryption is no longer possible. Considerable research has been
dedicated so far to developing various optimisations and batching techniques
to improve the efficiency of SWHE schemes and to maximise the depth of the
circuits that can be evaluated without bootstrapping. A number of newer gen-
eration schemes were developed based on the more efficient and simple Learning
with Error (LWE) problem introduced by Regev in 2009 [2] (and its later ring
variant) rather than on lattices, although the hardness problems were related
[3]. A FHE scheme based on key-switching and modulus-switching optimisation
techniques (see Section 3.2) became known as the BGV scheme named after its
authors Brakerski, Gentry and Vaikuntanathan. Other SWHE scheme variants
include Ring-LWE (RLWE) scale-invariant versions and NTRU-based schemes
[4].

Despite the aforementioned optimisations, there are still significant (space
and time) demands on computational resources and network bandwidth to over-
come. The fact is that SWHE schemes are obliged to have either a massive
ciphertext expansion or an ‘ugly’ algebraic structure in order to maintain their
security [5]. Ciphertext expansion ratios are typically in the order of GBs in
size for only a relatively small amount of plaintext input, resulting in high com-
putational and communication costs [6]. Ciphertext packing techniques such as
homomorphic Single Instruction Multiple Data (SIMD) proposed by Smart and
Vercauteren [7], maximise memory space usage and achieve parallelism of re-
peated operations by enabling the combination of multiple smaller ciphertexts
into a single larger ciphertext.

Currently available SWHE implementations include additional optimisations
to improve efficiency of processing large ciphertexts. A prominent open-source
RLWE implementation of the BGV scheme called HElib1 by Halevi and Shoup [8]
incorporates many such optimisations (see Section 3.3), and is used to efficiently
implement algorithms described in this paper.

Much research effort has also been dedicated around circuit design to support
various HE application areas. The main aim is to optimise use of the SWHE tools
as much as possible by designing algorithms in a way that reduces both the
consecutive and total number of multiplications. The former minimises circuit
depth to avoid bootstrapping while the latter reduces overall computational cost.
SIMD techniques can be used to reduce the occurrence of both multiplication
instances, in addition to maximising memory space usage. SWHE tools are often
applied in highly tailored ways against the particular application scenarios, in
order to deal with narrow parameter and computational efficiency constraints.
Tightly coupling HE methods in this way limits their generalisability. The extent
to which a HE solution can support general computing functions across a wide
scope of application areas depends on the availability of sufficiently expressive

1 github.com/shaih/HElib



composable cryptographic primitives designed to work efficiently within a HE
context.

Developing even the most basic primitives such as simple numeric and logical
operations require non-trivial choices, including whether to perform evaluations
over binary or arithmetic circuits (or polynomial rings), as well as the choice of
data encoding. These factors have a significant bearing on low-level primitive
circuit performance, which have a further flow-on effect on the performance
of higher-level algorithms (eg., min-max and sorting methods), more directly
relevant to practical use cases [9].

Binary circuits, which rely on encoding data at the bit-level before encrypting
(ie., use a plaintext message space of Z2) naturally support boolean comparison
operations, whereas they are very slow in performing arithmetic operations [10].
Word-based encoding (ie., encrypting as elements of a plaintext modulus of p or
a Zp message space, for a large enough p) allows for simpler and more efficient
ciphertext multiplication and addition that are easily parallelised; this is however
at the cost of more complex comparison and thresholding operations which are
fundamental to many of the HE application areas [10].

In the area of data encoding, ciphertexts encoded as real numbers represent
the most practical solution for most application areas. Techniques to represent
fixed point numbers (encoded as polynomials) include scaled integer and frac-
tional representations [11]. Encoding floating point numbers require independent
storage of the encrypted significand from the exponent, necessitating separate
homomorphic operations on each during calculations [12, 13]. Options also exist
for encoding negative numbers, using either a sign-magnitude or two’s comple-
ment approach [9]. The approaches used to represent real numbers (fixed or
floating point) in either type of plaintext message space (Z2 or Zp) can have a
significant impact on the efficiency of numeric and/or logical operations [9].

1.1 Our Contribution

The research presented in this paper aims to minimise circuit depth, and to
maximise memory space utilisation and HE computational performance on real
numbers under a binary message space. The approach combines primitive log-
ical functions together with binary addition and subtraction operations using
SIMD techniques. The result is to permit natural comparison and thresholding
operations using binary circuits while at the same time facilitating an efficient
amortised rate for addition and subtraction operations performed in parallel.
Such a technique would find use in particular implementation instances across
all HE applications areas where combinations of logical and numeric operations
are required. The technique would also complement other strategies for perform-
ing arithmetic operations, including multiplication, in larger (p > 2) message
spaces. Finally, based on this approach, performance of the fundamental ba-
sic primitive operations and their application to various more complex SWHE
algorithm implementations on real numbers are demonstrated using HElib.



2 Related Work

Related work on encoding, addition, equality and comparison HE operations
will be discussed during development of our binary circuit primitives in relevant
parts of Sections 3 and 4. The outcome of our circuit development is to enable
more efficient complex homomorphic operations, which are derived from these
basic circuits, using parallel batching techniques. Two candidate algorithms for
demonstrating potential application of these primitives including sorting and
finding the minimum or maximum (min-max) from a group of encrypted num-
bers.

The task of sorting encrypted numbers using FHE was first implemented in
2013 by Aguilar-Melchor et al. [14] using a Bubble sort, and by Chatterjee et
al. [15] using a two-stage Bubble and Insertion sort. The hcrypt2 library, based
on the work of Smart and Verteceuran [16] was used in both cases, although the
former also experimented with an early BGV-based scheme. Chatterjee examined
minimising the recryption operation and as was able to achieve sorting of 40 (32-
bit) integers in 1399 seconds. The hcrypt library however does not take advantage
of modern noise reduction or SIMD batching techniques [17], which are factors
both relevant to additional improvements in sorting performance.

The seminal work by Çetin et al. [18] in 2015 implemented two low-depth
sorting algorithms both relying on a matrix to perform all comparisons at the
outset, and achieving a multiplicative circuit depth of O(logN+log n), where N
is the total number elements to be sorted, and n is the number of bits encoding
each element. Çetin also introduced the concept of using SIMD to accelerate
sorting performance, although it is used in this case to sort multiple lists rather
than accelerate sorting of a single list. The amortised running time per sort is
reduced since it takes the same amount of time to sort one list compared to
multiple groups of similar-sized lists up to the total number of available cipher-
text slots, s. Sorting one list however inefficiently uses one ciphertext per bit,
therefore the implementation is computationally expensive. Using an NTRU-
based SWHE scheme, sorting 16 (32-bit) integers is inferred to take about 45
mins. Dai & Sunar [19] boosted the SWHE scheme’s sorting performance using
a GPU-accelerated library3 to achieve a speed-up of 12-41 times (reportedly, 1
min 38 sec to sort 16 integers of size 32 bits).

Kim et al. [20], appears to be the first work to report using SIMD batching to
accelerate sorting performance within a single list. The authors employ HElib to
implement a bitonic sorting algorithm, which is a data independent (ie. constant
number of comparisons irrespective of input) sorting algorithm, consisting of
recursive sort and merge operations. Only half of the available data slots are used
to insert elements within its ciphertext packing structure. The sorting network
is made up of two bitonic (ie. increasing then decreasing) sub-sequences, each
initially with two elements for the base case. The bitonic sort algorithm has
a O(N log2N) comparison complexity and a multiplicative depth of O(log n ·
2 github.com/hcrypt-project/libScarab
3 github.com/vernamlab/cuHE



log2N). Additional details can be found in [20, 21]. Whilst benchmarking Çetin’s
work, [20] argues that the multiplicative circuit width in addition to its depth
are important in determining the number of recryptions required for sorting
large lists, which is the most dominant bottleneck in all FHE operations. The
sorting algorithm based on the comparison matrix (having O(N2) comparators)
was shown to have a large width, and ultimately requiring more recryptions
compared to the bitonic sort, despite the latter having a larger multiplicative
circuit depth. An improvement in the number of recryptions was confirmed using
real implementations of the sorting algorithms, although performance statistics
on smaller sorting sets was not shown.

Literature specifically looking at finding min-max on encrypted number sets
using FHE is limited. Kocabaş et al. [22] uses the HElib library for min-max
heart rate computation involving a logical comparison circuit examined later in
Section 5.3. A log2N stage binary tree is used to repeatedly applying min-max on
N ciphertexts packed with a vector of n-bit integers, resulting in an overall circuit
depth of (log2 n+ 2) · dlog2Ne. It would appear further processing is necessary
(additional circuit depth of log2 n) to extract the final minimum or maximum
value within the output ciphertext in a step not apparently described; perhaps
being recovered after decryption. The min-max algorithm described by Togan et
al. [23] uses a recursive strategy to combine, in the base case, a one bit integer
‘greater than’ comparison relation with a selection operator both expressed in
polynomial form. The overall circuit depth is similar to the approach by Kocabaş,
although no ciphertext packing is involved. A HElib-based implementation finds
the maximum value from 16, 8-bit integers in 21 minutes. Set at a 140 bit security
level, the implementation is very memory intensive at 3.8 GB.

It is noteworthy that all literature reviewed only examines sorting and finding
min-max from sets of encrypted integers rather than real numbers, despite both
number types requiring an identical amount of processing time to sort when
correctly encoded, for a given bit size.

3 Preliminaries

3.1 Homomorphic Encryption

Any HE scheme consists of four probabilistic polynomial time algorithms Keygen,
Enc, Dec, Eval. In this case, all algorithms implicitly take in a number of pa-
rameters as input including dimension n, modulus q and error distributions,
according to RLWE constructions:

– Key generation (pk, sk ← Keygen(1λ)): takes in security parameter λ as
input and outputs a public encryption key pk and a secret decryption key
sk.

– Encryption (c← Enc(pk, µ)): takes pk and a plaintext µ in a message space
M defined by some ring RM. The output is a ciphertext c in space C (and
ring RC).

– Decryption (µ ← Dec(sk, c)): decrypts c back to µ using the secret key sk.



– Evaluation (cf ← Eval(pk, f, c)): characterises a HE scheme, taking as input
the public key pk, a function f : RlM → RM and a tuple of l ciphertexts
c1, ..., cl, to output a ciphertext cf .

In this work, f will be represented by an arithmetic circuit over GF(2) that
can be evaluated by a SWHE scheme to a limited depth so that Dec can recover
µ correctly without requiring bootstrapping.

3.2 The BGV SWHE Scheme

The RLWE variant of the BGV scheme can be represented as follows [3, 8]:
With λ as the security parameter (ie., all known valid attacks taking Ω(2λ)
bit operations) and an integer m = Ω(λ) that defines the m-th cyclotomic
polynomial Φm(X), we define the polynomial ring A = Z[X]/Φm(X). m, which
roughly corresponds to the dimension of the underlying lattice, determines the
size of computation and hence represents efficiency of the encryption scheme.
The plaintext message space is set to Ap := A/pA = Z[X]/(Φm(X), p) for p > 2
(although in this work we will always use A2). The ciphertext space is set to
Aq := A/qA for an odd integer modulus q with a degree up to φ(m) − 14.
Ciphertexts are 2-element vectors defined over Aqi (or ring Rqi) at any particular
level i, ie., c = (c0, c1) ∈ R2

qi . In the modulus-switching procedure, by switching
to a ciphertext with a smaller modulus (from qi to qi−1), an increase in the
number of multiplications could occur from logL to L levels before bootstrapping
is required and without involving a secret key [3, 24]. At each ciphertext level
(L, ...1, 0), the modulus decreases with every application of modulus-switching
to reduce the noise during homomorphic evaluation. No further noise reduction
is possible in level 0, requiring bootstrapping to enable further computation.

As there are a few variations to the RLWE assumptions involved in encryp-
tion, we use that proposed by Lyubashevsky, Peikert, Regev (LPR) as a practical
approach [25]. In set-up of the scheme, a (discrete Gaussian) noise distribution
χ is defined over the set of all ring elements Aq with a small norm bounded by
some B. Sample s ← χ and e ← χ. Generate a1 ← RqL uniformly at random
and calculate a0 = [−(a1s+ pe)]qL . Set the secret key sk = s and the public key
pk = (a0, a1).

To encrypt a plaintext polynomial m ∈ Ap, sample u, g, h← χ and compute
the ciphertext which is initially in level L:

c = (c0, c1) = (a0u+ pg +m, a1u+ ph) mod qL (1)

At any level, i the equality over A holds, m = [[c0 + sc1]qi ]p
5, which is the

decryption formula. The term [c0 + sc1]qi is the ‘noise’ in the ciphertext that
grows with each homomorphic evaluation. The ciphertext is valid as long as this
noise does not wrap around modulo qi, which gives bound on the norm of the
noise to be always below B. Under the RLWE assumption, the encryption scheme

4 φ(m) is the Euler’s totient function
5 [·]q is the reduction-mod-q function



is semantically secure (ie., against honest-but-curious adversary behaviour) if the
public key (a0 = −(a1s+ pe), a1) ∈ R2

q , and by extension the ciphertext (c0, c1),
are computationally indistinguishable from uniform in R2

q .
Homomorphic addition involves simply adding two ciphertext vectors under

the same key s over Aqi . The noise of the added vector is at most 2B. Homo-
morphic multiplication involves a tensor product over Aqi resulting in squaring
of both ciphertext and (new self-tensored) secret key dimensions. While the cur-
rent modulus remains unchanged, the noise of the product ciphertext is bounded
by B2. A key-switching (or relinearisation) technique is required to reduce the
dimension of tensored secret key and ciphertexts back to original dimensions. At
each multiplication level, the tensored secret key would be encrypted under a
different secret key as a hint to facilitate conversion to the new valid encryption.
A single key however is only required for all levels if it can be assumed safe to
encrypt the secret key under its own public key (circular security assumption)
[3].

SIMD makes use of the fact that smaller plaintext spaces could collectively be
considered a vector of independent plaintext slots (for performing component-
wise addition or multiplication) when encrypted into much larger ciphertext
spaces by virtue of the Chinese Remainder Theorem (CRT). Since the plaintext
space is over Ap, Φm(X) factors modulo p into s irreducible factors, Fi(X) (ie.,
Φm(X) =

∏s
i=1 Fi(X)). Each factor corresponds to a ‘plaintext slot’ of degree

d, which is the smallest integer such that pd = 1 mod m, and thus the number
of slots, s = φ(m)/d. The plaintext polynomial a ∈ Ap therefore can be viewed
as a vector of s different small polynomials, (a mod Fi)

s
i=1. The slot values can

represent elements of the extension field Fpd (or embedded elements of the sub-
field Fpn where n divides d), rather than individual bits [26].

Implementing linear rotations and shifts to move data across plaintext slots
can be achieved with an automorphism operation without any increase in ci-
phertext noise [8]. The automorphism is represented by the transform, a 7→ a(i)

where a(i)(X) = a(Xi) mod Φm(X) for a(X) ∈ A and some i ∈ Z∗m. Often a
combination of automorphism operations with selective slots masked out is nec-
essary to achieve arbitrary permutations on packed ciphertexts. Key-switching
is also required to transform a ciphertext involved in an automorphism into an-
other valid ciphertext that is decryptable with respect to the original secret key.
In this case, secret key and ciphertext dimensions remain unchanged. Note, there
is a computational cost involved in combining automorphisms followed by key
switching to achieve permutations on plaintext slots. For further details, refer to
[26].

3.3 HElib

HElib includes many optimisations over the basic BGV scheme, including sup-
port for recryption and SIMD. Due to a specialised key-switching procedure,
each qi is a product of smaller set of primes pj , (ie., qi =

∏i
j=0 pj). As a result,

ciphertext elements of the ring Aqi are represented with respect to both poly-
nomial vectors modulo each small prime and the primitive m’th roots of unity



evaluations generated using the Fast Fourier Transform (FFT). This so-called
DoubleCRT format allows point-wise addition and multiplication of elements
in Aqi in linear time [27, 8]. The encryption method involved in HElib varies
slightly compared to the aforementioned LPR method: It uses a native plaintext
space of Rpr for a prime power pr. The secret key, s is the 2-vector (1, s) ∈ R2,
where s is chosen randomly from {0,±1}φ(m) with a recommended Hamming-
weight (ie., number of non-zero coefficients) of 64. If Qct is the product of all
ciphertext primes, initially generate c1 ← AQct uniformly at random and e← χ
where χ ∈ AQct , and set c0 = [pre − c1s]. Then at any level i, the ciphertext
c = (c0, c1) satisfies [〈s, c〉]qi = [c0 + c1s]qi = m+ pre in R where m ∈ Rpr is the
message plaintext and pre is the error term, which has a small norm relative to
qi [8].

4 Encoding Real Numbers

As mentioned, ease of implementation and efficiency of operations on binary
circuits relies on the specific encoding method used to represent real numbers.
A fixed point representation is the simplest one for demonstrating circuit opera-
tions, which can be applied to the polynomial plaintext ring, Rp and whose coef-
ficients represent bits in a binary sequence. Two methods proposed by Dowling
et al. [11] use scaled-to-integer and fractional encoding representations of fixed
point real numbers, which are demonstrated by Costache et al. [28] to be isomor-
phic under the same power of two cyclotomic ring. Strictly speaking, fractional
encoding cannot operate under a binary message space whereas the scaled-to-
integer approach can perform computations over both binary or arithmetic cir-
cuits. It is nevertheless worthwhile considering both fixed point representations
as researchers have previously sought to avoid costly bit operations by turning
to the plaintext space, Rp [28].

The scaled-to-integer approach scales a binary representation of a real num-
ber by some power of 10 into an integer according to some fixed digit precision.
Despite literature criticism about the requirement for complex book-keeping in
order to ensure ciphertexts are correctly scaled in homomorphic operations [11,
28], we use the approach suggested by Jäschke et al. [9] of multiplying a real
number by a power of two according to k bits of precision. In this case, the
output of each homomorphic multiplication between two real numbers should
be truncated by deleting the last k bits (equivalent to dividing by 2k), to bring
the product back to the required precision. Under this approach, there is no
requirement to keep track of scaled products involved in computations before
final conversion to the decrypted output, which could otherwise potentially leak
data or computation information to an adversary.

The fractional encoding scheme is implemented over the cyclotomic ring R =
Z[X]/(Xd + 1) where d is a power of two. The integer portion to the left of a
decimal point can be represented in binary as usual while the fractional part
of a real number to the right of a decimal point are represented by the highest
polynomial coefficients. The latter are designated −Xd−ib−i, where i is the bit



position to the right of the decimal point. Intuitively, due to the modulus of
R, Xd = −1 and so the highest coefficients can also be represented as X−ib−i,
which is as desired. Under this scheme, a number of coefficients are set aside
for the fractional part of the encoded polynomial, p ∈ R. Negative numbers are
represented by swapping coefficient signs. Under p, addition and multiplication
work as expected and p(2) decodes to the original real number [11, 28].

The problem with a fractional encoding scheme is that it does not appear
to be compatible with SIMD operations, since the plaintext slots depend on
irreducible modulus factors, Fi(X), which is not the case with the modulus
of R. The fractional encoding scheme can handle wrap-around modulo Xd + 1
with operations involving p, although with too many multiplications, coefficients
reserved for the fractional and integral parts quickly grow towards each other
to yield unexpected results when the two parts coalesce. In a power of two
scaled-to-integer encoding, wrapping around slot values modulo Fi(X) will yield
unexpected results, placing a lower bound on the ring degree of polynomials
involved in operations. In practice, this usually means ensuring that the degree
of two polynomial inputs involved in multiplication are each less than half of
the degree, d of the plaintext slots in order to prevent wrap-around. Due to
truncation of the last k bits to correct for precision in multiplication, this has
the effect of lowering the degree of the polynomial product, hence multiplication
can continue indefinitely in this way, albeit within ciphertext noise limits.

We choose a slight refinement to Jäschke’s approach when considering the
scaled-to-integer representation of real numbers which, despite having identical
encoding to the original method, is conceptuality simpler when applied compu-
tationally and for descriptive purposes. After scaling a real number by 2k and
encoding it in binary, dedicate k of the lowest polynomial coefficients to encode
the fractional part of a real number with binary digits b−1b−2...b−k, followed
by the integral portion encoded with binary digits bI+ ...b1b0, and represented
as:

∑
I+6i6−kX

ibi. Although binary digits are shown, any base (b > 2) can be
chosen to represent a real number using this scheme (whether balanced or not),
similar to fractional encoding.

For negative numbers, a two’s complement rather than a sign-magnitude
encoding is chosen since the former is more efficient in comparison and addition
operations [9], which have relevance to the circuit primitives discussed in the
following section. A two’s complement encoding of a negative real number is
computed by inverting the scaled binary encoding of the positive real number
and adding one. In this case, the ‘highest’ polynomial coefficient is reserved
for encoding the negative value −2d−k−1, and sign extension is used to extend
the bit length of the encoding to d. Using an example, the real value -1.25
within a plaintext slot where d = 8 and 4 bits of precision are required, can
be two’s complement encoded as a ring polynomial under extension field F28

whose coefficients represent the bit sequence 11101100. The least four significant
bits represent the fractional part while the Most Significant Bit (MSB) indicates
the encoded value is negative (with two adjacent sign-extension bits). The final



result can be decoded as: p(2) = −23 + 22 + 21 + 2−1 + 2−2 = −1.25. Under this
scheme, addition and multiplication also work as expected.

5 Circuit Primitives

Ultimately, primitive binary circuits for addition and equality are alone necessary
to combine a range of logical operations together with addition and subtraction
on real numbers under a binary plaintext space. Finding efficient versions of
these primitives has a flow-on effect to more complex homomorphic operations
that are derived from these two basic circuits. At a bit level, XOR (⊕) and
AND (·) logic gates are implemented slot-wise over a binary plaintext space via
corresponding homomorphic addition (+h) and multiplication (×h) operations
between ciphertexts respectively. All other logic functions can be derived from
these two logic gates. This includes an OR operation which is implemented as the
binary inverse (by adding 1 in binary) of an AND (ie., NAND) operation. When
combining a number of AND operations, ciphertexts are commonly arranged into
a binary tree formation so that terms are multiplied from base to root rather
than sequentially [29, 30, 6]. The effect is to reduce the multiplication depth of
the circuit from n − 1 to log n, and can be readily implemented using SIMD
operations.

The following sections describe various primitive circuits that can perform
binary addition and equality operations, with the aim of finding optimal parallel
designs to minimise the three resource parameters: memory usage, multiplicative
depth and total number of multiplications. Circuits will be described generally
with focus being given to the final most competitive versions. All circuits assume
a ciphertext structure that takes up one slot per plaintext bit to work correctly
including SIMD operations.

5.1 Addition Circuit

The most basic adder implementation is the n-bit Ripple Carry Adder (RCA)
which employs n full adders, with the carry bit output from one adder acting
as input into the next adder along a chain from least to most significant bits.
This ‘rippling’ dependency of carry bits means that the circuit is unsuitable for
parallel operations. The logic for a sum of two bits, ai, bi and carry-in bit, ci
of the full adder is expressed as, si = ai ⊕ bi ⊕ ci. Logic for the carry-out bit,
ci+1 = ai · bi ⊕ ci · (ai ⊕ bi) can be reduced to one AND gate per bit, ci+1 =
(ai⊕ci)·(bi⊕ci)⊕ci [29]. The multiplicative depth of this adder hence is limited to
n− 1. There are bit-wise and packed ciphertext RCA protocol implementations
available [31]. Despite the latter potentially making use of SIMD operations,
there is no real benefit conferred with respect to resource parameters used and
circuit depth (refer to Table 1).

A Carry Lookahead Adder (CLA) aims to avoid the ‘rippling’ effect by al-
lowing the incoming carries to be computed in parallel. The original carry-out
logic can be reformulated as, ci+1 = gi ⊕ pi · ci where gi = ai · bi is called the



generate term, and pi = ai ⊕ bi, is called the propagate term. According to the
carry-out logic, if gi is one (ai and bi are both one), ci+1 is one; and if pi is one
(at least one of ai or bi is one), then ci is propagated to ci+1. Since neither gi
nor pi depend on the carry, they can be determined beforehand and in parallel.
A pattern emerges whereby for each carry bit:

ci+1 = gi ⊕ (pi · gi−1)⊕ (pi · pi−1 · gi−2)⊕
...⊕ (pi · ... · p2 · p1 · g0)⊕ (pi · ... · p1 · p0 · cin) (2)

The final sum is computed as si = pi ⊕ ci. A CLA has a lower multiplicative
depth but a higher computational cost compared to the RCA. By sub-dividing
n-bits into smaller equal m-bit sized blocks, this cost can be reduced. The smaller
m-bit adders can be arranged into a CLA between blocks while carries within a
block are rippled (or vice-versa) to realise Equation 2. In this case, the circuit
depth is Θ(m + n

m ) and minimised when m = Θ(
√
n) [31]. Summary statistics

for a CLA with an m-bit block ripple adder design [31] are presented in Table 1.
CLAs form the basis of another group of adders called Parallel Prefix Adders

(PPAs), which perform parallel group carry operations. These adders are known
to be amongst the most efficient of all digital binary addition circuits [32]. The
Kogge-Stone Adder (KSA) is one of the fastest adders of this type where every
propagate and generate bit is computed in parallel. The circuit has a minimum
possible multiplication depth and scales logarithmically, although at the expense
of long wiring, more gates and a larger area requirement in digital hardware
implementations [32]. These disadvantages tend to be much less significant in
computing systems. In fact, the KSA appears particularly amenable to homo-
morphic SIMD operations as the protocol entails applying identical instructions
uniformly across all plaintext slots, staged between shifting slots relative to two
interacting ciphertexts. An 8-bit KSA circuit is illustrated in Fig. 1.

Fig. 1. The Kogge-Stone Adder Circuit [33].



As shown, each circuit node combines p and g recursively from two ‘bit’
columns to form a new set, (g = g′′⊕p′′ ·g′, p = p′′ ·p′). Starting at level 0, column
i is combined with column i + 2k up to level k = d(log2 n) − 1e to eventually
realise Equation 2. There are bit-wise and packed ciphertext protocol versions
of the KSA [31]. In the latter case, all bits from a set of slots encoded within a
base ciphertext can be combined in one step with another ciphertext whose set
of slots are shifted in each level by 2k towards the MSBs. To compute the final
sum in parallel, a single multiplication depth is required initially to compute all
g’s, and subsequently between all k level carry operations, resulting in an overall
multiplication depth of dlog2 ne and a total cost of 2 · dlog2 ne multiplications.
The KSA appears to be the most efficient binary addition circuit that minimises
all three main resource parameters (Table 1). These findings are reasonably
comparable with those by King [31] and Kocabaş et al. [30] who employ the
KSA. This adder appears to outperform various alternative techniques used for
binary addition outlined in [9, 29, 34, 6].

Binary addition can also be used to perform subtraction using the trick of
adding the first number with the two’s complement negative encoding of the
second number. This calculation can be incorporated into the adder algorithm
by inverting the second encoded real number in addition to setting the first carry-
in bit (cin in Equation 2), to 1. The circuit requires only one further addition
operation without any increase in its multiplicative depth.

Table 1. Comparison of addition and equality binary circuit parameter costs. n -
bit number input; m - bits per block. Algorithms (Alg.) shown: RCA - Ripple Carry
Adder; CLA - Carry Lookahead Adder; KSA - Kogge-Stone Adder; Eq - Equality; and
Comp - Comparison Logic; includes bit-wise (b) and packed (p) ciphertext versions.
Memory (Mem.) is the minimum number of ciphertexts required to fulfil the protocol.
lgn represents dlog2 ne.

Alg. Add Shift Mult. Depth Mem.

RCA(b) 4n− 2 0 n− 1 n− 1 2n+ 3

RCA(p) n n n− 1 n− 1 4

CLA m+ n
m

lgm+m+ n
m
− 1 lgm+m+ n

m
− 1 m+ n

m
− 2 4

KSA(b) n[lgn+ 1] + 1 0 n[2 lgn− 1] + 3 lgn 3n

KSA(p) lgn+ 2 2 lgn 2 lgn lgn 4

Eq(p) 2 lgn lgn lgn 2

Comp(p) 2 lgn+ 3 2 lgn+ 1 lgn+ 2 lgn+ 1 4

5.2 Equality Circuit

A common binary equality circuit implementation with optimisation for packed
ciphertexts (albeit described for integers) is based on [34, 35, 18]. The equality
test also holds for a two’s complement scaled-to-integer encoding of a real number



and is depicted as: equal(a, b) =
∏n−1
i=0 (ai ⊕ bi ⊕ 1). The output is 1 if a and b

are equal, otherwise it is 0. In this case, n−1 multiplications are required which
can be reduced to a multiplicative depth of dlog2 ne using a binary tree structure.
The application of SIMD involves accumulating products of a packed ciphertext
containing initial bit-wise values of ai⊕bi⊕1. The slots are progressively shifted
by 2k in each level towards the MSBs and multiplied in parallel with the previous
level’s result. The MSB will contain the final output for the equal circuit after
dlog2 ne levels [34]. An alternative divide-and-conquer strategy for determining
integer equality with a similar multiplicative depth is described in [23], although
n− 1 homomorphic multiplications are required instead of log2 n.

5.3 Comparison Circuit

A comparison circuit compares the magnitude between two real numbers, indi-
cating one number is larger or smaller compared to the other. Only one type of
comparison circuit is required in combination with the equal circuit, to derive
all other comparison relationships (ie., <,>,6,>; see below). To enable a less-
than comparison, there are two binary circuits of note [22, 18]. One determines
the comparison logically while the other is derived from the addition circuit.

The comparison logic can be depicted in the following way: comp(a, b) =∑n−1
i=0 [(ai < bi)

∏
i<j<n(aj = bj)], where (ai < bi) = (bi · (ai ⊕ 1)) and (aj =

bj) = (aj ⊕ bj ⊕ 1). An implementation of the circuit using SIMD involves
progressively shifting slots containing the term aj = bj by 2k in each level
towards the Least Significant Bits (LSBs) and multiplied with the previous level’s
results. The final slot output is multiplied by the expression ai < bi resulting in
a multiplicative depth of dlog2 ne+ 1 and a total of dlog2 ne+ 2 multiplications
(extra AND gate in the ‘<’ term) [22]. Calculating a final sum of products using
a binary tree structure, requires an additional dlog2 ne shifts and homomorphic
additions to reveal the comp output. Comparison logic furthermore needs to
address signed numbers in two’s complement encoding. In particular, the inverse
of the comp output should be returned when the signs differ between the two
real numbers being compared. The final output therefore should be modified to,
comp(a, b)⊕ an−1 ⊕ bn−1 (not accounted for in Table 1).

Comparisons based on the binary addition circuit use subtraction to compare
two real numbers followed by testing of the sign bit of the result [30]. In a less-
than comparison, the following relationship holds: comp(a, b) = (a − b)n−1.
Subtraction can be readily implemented using the KSA described earlier.

At first glance, it might appear that the logical comparison circuit, despite
having a greater multiplicative depth by 1, is overall more efficient due to its
lower cost of dlog2 ne + 2 multiplications compared to 2 · dlog2 ne for the KSA
comparator. However, the logical comparison algorithm has greater complexity
around slot set-up and selection mask usage to perform sign correction. Such
additional costs are not factored into the final parameter estimations presented
in Table 1. Ultimately, the multiplication costs become comparable between both
circuits (when n 6 64 bits), while all other cost parameters are exceeded for
the logical comparator. Alternative comparison circuits reporting a much higher



total number of homomorphic multiplications, albeit of similar multiplicative
depth, appear in [34, 23].

Once c = comp(a, b) and e = equal(a, b) have been determined, all re-
maining comparison relationships can be derived using binary logic and at little
additional cost as follows: a 6 b = c + e; a > b = c + e; and a > b = c.

5.4 Further Optimisation

From the group of primitive binary circuits reviewed in Table 1, the packed ver-
sions of the KSA (for ’+’, ’−’ and ’<’ operations) and Equality (equal) circuits
appear the most competitive from an overall memory, computation cost and mul-
tiplicative depth standpoint. Despite overall efficiency of these chosen schemes,
each ciphertext input still only encodes a single real number, leaving many (po-
tentially hundreds of) unused slots. Fortunately with very little modification to
the basic circuits, both primitives can be further accelerated for free. Based on
this approach, multiple real number computations can occur in one step within
a single ciphertext per input. The parallelism across multiple primitive circuits
is in addition to that occurring within each primitive (as outlined in Section 5),
and both rely on SIMD. Arranging both KSA and Equality circuits in parallel
to process multiple real number inputs and accelerate HE performance has not
been previously described in the literature reviewed. Combining both parallel
primitive circuits enables multiple arithmetic and logic operations, which are
built from one or both primitives, to be executed in one step. Analyses and com-
putations that benefit from parallel execution of the candidate sub-operations
(+,− =, <,>,6,>), would have a significantly reduced amortised running time.

The packing structure of the ciphertext inputs are similar for both acceler-
ated primitives, as illustrated in Fig. 2. Packed ciphertexts A and B contain
multiple operand pairs providing input to a corresponding array of candidate
sub-operations to be executed in parallel. A ciphertext consisting of s slots can
pack bs/nc data slots, each encoding an n-bit real number. The last (s mod n)
slots are disregarded. Function ParallelPacking (outlined in Alg. 1 and Fig.
2) pre-processes packed ciphertext operands to prepare subsequent input to func-
tions ParallelAdderSubtractor (Alg. 2) and ParallelEquality (Alg.
3). Three outputs resulting from the pre-processing stage are P , G and CT . All
three ciphertexts are required for input to Alg. 2 whereas only CT is required
for Alg. 3. Importantly, Alg. 2 also requires that the MSB for each data slot to
be zero in order to work correctly, leaving the remaining (n− 1) bits to encode
signed or unsigned real numbers. Masking of the MSBs is shown in Fig. 2 (and
represented in Alg. 1, lines 4, 15) as a constant multiplication by maskArray[]
applied to all packed propagate and generate data slots (resp. P and G). Subse-
quently, both ciphertexts are right shifted by one bit (line 16) to move the zeroed
bit to the LSB of the adjacent right data slot (in G the LSB represents cin). All
sub-operations except addition require corresponding inputs to be prepared for
KSA subtraction. Fig. 2 demonstrates this as a constant add by xorArray[] (Alg.
1, lines 6, 13) to obtain the inverse of relevant sub-inputs of Ciphertext B, in ad-
dition to setting the cin bit to 1 via a constant add by c0Array[] (lines 7, 17) to



the relevant data slots of G. The final outputs of ParallelAdderSubtrac-
tor and ParallelEquality are contained in respective ciphertexts of CT .
Both CT outputs are homomorphically combined in a trivial post-processing
stage to derive the final encrypted evaluations of all parallel sub-operations. The
circuit block of parallel primitives illustrated in Fig. 2 from now will be referred
to as Parallel Primitive Circuits (PPCs).

Both ParallelAdderSubtractor and ParallelEquality can flexibly
process any n-bit number groups, not just powers of 2. The latter case however
makes most efficient use of available slot resources. As a further optimisation,
if the maximum bit length of numbers in all data slots is l < n, then this
knowledge can reduce the multiplicative depth and computational cost of both
parallel functions (eg. depth of dlog2 le instead of dlog2 ne). This property is used
to significantly reduce the parameter costs of an accumulator function discussed
in Section 6.1.

Fig. 2. Example ciphertext packing structure and preprocessing of inputs according
to Alg. 1. Each ciphertext can fit 4 x 4-bit plaintext elements into 16 available slots.
The greyed out area indicates variables not relevant to an ’equal’ operation (as input
to Alg. 3).



Algorithm 1 Preprocessing packed inputs to ParallelAdderSubtractor
(Alg. 2) and ParallelEquality (Alg. 3)

INPUT: A, B, s, n and Op[], where A and B are packed ciphertexts with s slots and
each encoding an (n − 1)-bit real number in each of its bs/nc data slots. Op[] is
an unencrypted array of strings of size bs/nc specifying the sub-operation types to
occur in corresponding data slots between A and B (eg. ‘add’, ‘subtr’, ‘eq’, etc.).

OUTPUT: CT , G and P : packed ciphertexts providing input to Algs. 2 (all 3 param-
eters) and 3 (only CT required).

1: function ParallelPacking(A,B, n,Op[])
2: xorArray[s],maskArray[s], c0Array[s]
3: for i← 0 to bs/nc do . for each data slot
4: maskArray.insert((n− 1) · [1] + [0]) . MSB = 0
5: if Op[i] 6= ‘add’ then
6: xorArray.insert(n · [1])
7: c0Array.insert([1] + (n− 1) · [0]) . LSB = 1
8: else
9: xorArray.insert(n · [0])

10: c0Array.insert(n · [0])
11: end if
12: end for
13: B = B ⊕ xorArray[]
14: G← A ·B ; P ← A⊕B; CT ← P
15: G = G ·maskArray[]; P = P ·maskArray[]
16: G� 1; P � 1
17: G = G⊕ c0Array[]
18: return CT , G, P
19: end function

6 Implementation

The following section demonstrates acceleration of various sample privacy-pre-
serving applications, by integrating the aforementioned parallel algorithms. The
focus is on applications that are able to sort or find the min-max from a group
of encrypted numbers. Depth optimised and unoptimised versions of both appli-
cations types will be illustrated. The main aim is to demonstrate broad utility,
versatility and effectiveness of these parallel algorithms. Many other privacy-
preserving applications and computations could potentially benefit from block
execution of multiple binary operations, including other sorting algorithms. As
a secondary aim, the high degree of acceleration achieved by the parallel algo-
rithms yields very competitive performances on sorting and min-max compared
to more specialised privacy-preserving applications of the same type found in the
literature. Performance characteristics will be limited to multiplicative depth and
parallel sorting times under a SWHE scheme, leaving analysis of number of re-
cryptions and comparisons of larger sorting sets under a FHE scheme as future
work.



Algorithm 2 Parallel Kogge-Stone Adder-Subtractor

INPUT: G, P , CT and l, where G, P , CT are packed ciphertexts with s slots and
bs/nc data slots, packed according to Algorithm 1. l is the maximum input bit
length contained in all n-bit data slots (l 6 n).

OUTPUT: CT : a ciphertext with component-wise addition or subtraction performed
on every data slot pair.

1: function ParallelAdderSubtractor(G,P,CT , l)
. G, P , CT - ciphertext memory objects 1,2,3

2: for i← 0 to dlog2 le do
3: tmp← G . ciphertext memory object 4
4: tmp = P · (tmp� 2i)
5: G = G⊕ tmp
6: if i 6= dlog2 le − 1 then
7: tmp← P
8: P = P · (tmp� 2i)
9: end if

10: end for
11: return CT = CT ⊕G
12: end function

6.1 Sorting

The following demonstrators will look at accelerating sorting methods including
the odd-even transposition sort and the Direct Sorting algorithm of Çetin’s work
[18]. Both are ideal candidates for the parallel primitive algorithms described in
this paper.

Odd-Even Transposition Sort This simple bubble sort variant alternately
compares odd and even pairs in an array of numbers in parallel. The steps for
sorting 4 numbers is illustrated in Fig. 3(a). The algorithm is guaranteed to
terminate after N parallel comparison steps. Normally the N−1 comparisons in
each iteration are performed in parallel so the overall complexity is O(N). The
algorithm is readily implemented using a block of PPCs with all sub-operations
set to ‘less than’ for each comparison iteration. Numbers are compared to their
neighbours by shifting one of two identical ciphertexts packed with (n-bit) real
numbers, by n bits relative to the other ciphertext. Subsequently, the parallel
comparison operators are applied using SIMD. Overall this requires N appli-
cations of the parallel KSA subtractor algorithm (circuit depth of dlog2 ne) to
sort an array of N numbers. Each iteration however would require preprocess-
ing of inputs according to Algorithm 1, in addition to selection and swapping
of alternate odd and even pairs within the packed ciphertext, which adds a to-
tal constant circuit depth of approximately 5 per iteration. Altogether a naive
approach to sorting N x n-bit real numbers in one packed ciphertext has a min-
imum circuit depth of [N · (dlog2 ne+ 5)]. Such an unoptimised sorting method
would require recryption to sort a single packed ciphertext block due to the high
circuit depth. Furthermore, sorting large number sets will further add to the



Algorithm 3 Parallel Equality

INPUT: CT and l, where CT is a packed ciphertext with s slots and bs/nc data slots,
packed according to Algorithm 1. l is the maximum input bit length contained in
all n-bit data slots (l 6 n).

OUTPUT: CT : a ciphertext with component-wise equality performed on every data
slot pair. Results are located in the MSB of each data slot of CT .

1: function ParallelEquality(CT , l)
. CT - ciphertext memory object 1

2: for i← 0 to dlog2 le do
3: if i = dlog2 le − 1 and (l mod 2i) 6= 0 then
4: shiftamt = l mod 2i

5: else
6: shiftamt = 2i

7: end if
8: tmp← CT . ciphertext memory object 2
9: CT = CT · (tmp� shiftamt)

10: end for
11: return CT

12: end function

circuit depth, which involves computing parallel (SIMD) odd-even transposition
sort spanning across multi-threaded packed ciphertext blocks. This particular
sorting method will not be further considered in this paper.

Matrix Comparison Sort Çetin’s work implemented two shallow circuit sort-
ing algorithms, Direct and Greedy Sort, which both initially make use of a com-
parison matrix and have an overall circuit depth of O(log2N + log2 n). Only the
former sorting algorithm will be examined for PPC integration. The comparison

matrix, m
(γ)
ij for a given encrypted input vector, E(X) = 〈X(α)

0 , ..., X
(α)
N−1〉 is

described as:

m
(γ)
ij =

{
mij = 1 if Xi < Xj .

mij = 0 else .
(3)

where i, j < N , i < j, and mii = 0 (the diagonal elements). The lower

triangular part of the matrix, j < i is computed as m
(γ)
ji = (Xi > Xj) = m

(γ)
ij ⊕1.

The Direct Sort algorithm relies on calculating the sum of all elements within
each matrix column, which returns the index of each Xj in the sorted array. For
further details see [18].

The parallel version replicates the comparison matrix by splaying out its rows
across blocks of packed ciphertexts, which are readily processing by the PPCs.
Two rows of ciphertexts per block contain the input combinations required to
compute only the upper triangular part of the matrix, while the corresponding
inputs for the lower triangular part are all 0. The comparison matrix’s diagonal
elements are removed, thereby reducing the number of comparisons required to



Fig. 3. Demonstrator algorithms: (a) Odd-Even Sort, (b) Min-Max, (c) Depth Opti-
mised Min-Max and Sort. Squares represent data slots.

N · (N − 1) instead of N2. These steps are represented in Fig. 3(c). As shown,
sorting an array of four numbers requires setting up all relevant input combi-
nations across twelve n-bit data slots. In this case, all number combinations
are contained in two input ciphertexts within one block. Parallel ‘less than’
sub-operations are performed on all input data slots by applying the PPCs to
compute the upper triangular portion of the matrix. Remaining values are cal-
culated by adding 1 (XOR) to the partial matrix and transforming the relevant
data slots to complete the lower triangular portion of the matrix. Transposing
half the comparison matrix in this way involves N − 1 stages of slot shifts and
insertions of XORed values at periodic intervals from the partial to completed
matrix, represented by data slots within packed ciphertexts A and B respectively
(as shown in Fig. 3(c)). The shift amount of ciphertext A and the periodic slot
insertions to ciphertext B required at each stage are represented in Table 2. The
steps in each stage are performed in parallel using SIMD and the algorithm can
work to transform data slots across multiple ciphertext blocks. The algorithm
has an overall circuit depth of one constant multiplication per stage due to the
mask operation on ciphertext B.

Computing the index of every encrypted element in the sorted array requires
adding the comparison matrix columns as shown in Fig. 3(c) - (A+B+C). The



Table 2. Algorithm to transpose upper triangular portion of matrix encoded in Ci-
phertext A to form comparison matrix in Ciphertext B

Stage
Ciphertext A Mask to Ciphertext B

Shift Start Period Times

0 −1 0 N + 1 N − 1

1 N − 2 N N + 1 N − 2

2 2N − 3 2N N + 1 N − 3

[i] [iN − i− 1] [iN ] [N + 1] [N − i− 1]

N − 2 (N(N − 3) + 1) N(N − 2) − 1

corresponding columns are aligned with N−2 shifts of the data slots by N ·n each
shift. Elements in aligned columns require binary addition to compute the sorted
indices. This accumulator operation (counting of elements) can be performed in
parallel with an application of the PPCs, with all sub-operations set to ‘add’.
Since the highest index count resulting from the accumulator is expected to be
N − 1, the circuit depth of one application of the KSA is log2(dlog2(N − 1)e)
instead of log2 n (note l < n in Alg. 2). The accumulator function is applied N−2
times, therefore the overall circuit depth becomes (N − 2) · log2(dlog2(N − 1)e).
This circuit depth is relatively high. We consider instead using Çetin’s approach
to calculate the Hamming distance of the matrix columns by replacing the KSA
with a Wallace Tree Adder (WTA) [36] to perform the accumulation. The latter
adder itself is not computed in parallel using SIMD, but since it is applied n
times - once for each matrix column, this part can be multi-threaded. The WTA
has an overall minimal circuit depth of log2(N/2).

Finally, the computed sorted index values need to be converted into an actual

sorted array, which requires comparing each sorted index value, σ
(γ)
i with an

ascending list of all indices in the interval [0, N − 1]. This function returns the

encrypted output vector, Y β = 〈Y (β)
0 , ..., Y

(β)
N−1〉 and is described by Çetin as

follows:

Y β =
∑
i∈[N ]

(σ
(δ)
i = j)X

(α)
i for j ∈ [N ]. (4)

The equality expression in equation 4 can be computed in parallel with a
second application of the PPCs, where all sub-operations are set to ’equal’.
Similar to the accumulator, the maximum number of bits to be compared for
equality are dlog2(N − 1)e, therefore the overall minimum multiplicative depth
for the equality circuit becomes log2(dlog2(N − 1)e).

Overall, there are two separate applications of the PPCs to compute a sorted
array. Multiple PPCs processed in blocks are required to span the entire com-
parison matrix. Computations occur in groups of N data slots within blocks,
called segments. For instance, to sort 8 x 32-bit real numbers using ciphertexts
with 630 slots and b630/32c = 19 available data slots, will result in a maximum
of b19/8c = 2 segments per ciphertext block. Thus, sorting 8 numbers requires



a comparison matrix spanning 7 segments across 4 blocks. Sorting 16 x 32-bit
numbers requires 15 blocks using one segment per block. Similarly, multiple
blocks are required to process the equality circuit in addition to the compari-
son matrix. As blocks are processed independently, there is significant potential
for multi-threaded block processing to further accelerate sorting times. Data
slot preparations across single or multiple blocks add more operations, such as
slot shifting and masking, to achieve equivalent bit manipulations compared to
unpacked ciphertexts (ie. encoding individual bits or numbers). These factors
increase overall circuit depth estimations in homomorphic procedures involving
packed ciphertexts.

6.2 Min-Max

Depth unoptimised Min-Max To simplify analysis of a depth unoptimised
min-max circuit, we initially look at processing encrypted real numbers encoded
within one ciphertext block. In this case, two ciphertexts are packed with iden-
tical data slot inputs. As shown in Fig. 3(b), slots of the lower ciphertext are
progressively shifted by 2k in each stage towards the MSB. ‘Less than’ compar-
ison sub-operations are computed in parallel from the previous stage’s output
using a single application of the PPCs per stage. In each stage, the PPCs’ output
is used as a selection mask to choose data slots from either upper or lower ci-
phertext inputs depending on whether the final desired output is a minimum or
maximum value, respectively. Each stage therefore has a minimum circuit depth
of dlog2 ne + 1. The MSB will contain the final min-max output after dlog2Ne
stages, resulting in an overall minimum circuit depth of dlog2Ne · (dlog2 ne+ 1).

To determine the min-max value over large number sets, the ‘less than’
PPCs are first repeatedly applied across B multiple ciphertext blocks using
a log2B stage binary tree similar to [30]. This process has a minimum cir-
cuit depth of dlog2Be · (dlog2 ne + 1). Output from this stage is subsequently
reduced onto one ciphertext block which can be processed finally by the single-
block min-max circuit of similar depth; resulting in an overall minimum depth
of (dlog2Be+ dlog2Ne) · (dlog2 ne+ 1). Despite the relative lower complexity of
depth unoptimised min-max compared to the corresponding sorting algorithm,
recryption would likely be required to process one ciphertext block of inputs.
We therefore turn our attention to the depth optimised min-max algorithm and
do not further consider the unoptimised version in this paper.

Matrix Comparison Min-Max The depth optimised version of min-max is a
derivation of Çetin’s Direct Sort algorithm. All steps are identical to matrix com-
parison sorting described in Section 6.1, except during the final stage where all
matrix columns are multiplied instead of added, as shown in Fig. 3(c) - (A·B ·C).
Multiplication generates a mask pointing to the index of the maximum value for
the number array input. If the comparison matrix is inverted beforehand (all
data slots in ciphertext B are XORed), the output of multiplication points to
the minimum value. Multiplication can be performed firstly across blocks us-
ing a binary tree structure, then across segments within blocks using SIMD,



resulting in a minimum circuit depth of dlog2(B · N)e in the final stage. This
stage replaces the combined accumulator and equality circuit stages present in
sorting, resulting in an overall reduced circuit depth for the optimised version
of min-max compared to sorting. Multi-threaded processes could accelerate ho-
momorphic multiplication of multiple ciphertext blocks at each binary tree level
(with the lowest potential closest to the root), in addition to the multi-threaded
computation of the comparison matrix blocks.

7 Evaluation

We evaluate performance of the accelerated matrix comparison sort against
Çetin’s standard open source implementation6, in addition to evaluating the
depth optimised version of min-max. Our implementations are in C++ and use
the HElib library for homomorphic operations with multi-threading turned on,
and compiled using the NTL library version 10.5.0 and GMP version 6.1.2. All
simulations are conducted using a m2.4xlarge AWS EC27 execution environ-
ment, which is reported to use an Intel Xeon E5-2686 v4 processor with 8 vCPU
cores at 2.30GHz and 32GB RAM, running Ubuntu 16.04.3 LTS. As shown in
Table 3, parameters are derived to ensure that the security of HElib’s BGV-
based SWHE scheme is conservatively higher than that of the NTRU-based
LTV-SWHE scheme used in Çetin’s work. It should be noted that matching the
security of differing SWHE schemes is a tricky problem [37], including having
potential issues surrounding NTRU’s security assumptions [38, 39]. The security
level of all conducted tests are upwards from 108-bit, estimated according to
[27]. HElib defaults are used for parameters not listed in Table 3.

Table 3. Selected HElib parameters for evaluation: m - cyclotomic ring, φ(m) - lattice
dimension, λ - security level, L - levels, s - number of slots.

m φ(m) λ L Plaintext Space s

15709 15004 108.5 15 GF(222) 682

23311 23310 172.5-134.1 17-20 GF(245) 518

Table 4 displays sorting and min-max performance statistics on 4, 8 and
16 elements encoding 31-bit real numbers (1 bit less due to ciphertext packing
structure). Average execution times are shown for each algorithm, where 20 runs
are conducted for each array size test. This amount is adequate given the low
coefficient of variance shown for executions times within each test (normally
< 0.01). Depth optimised algorithms are accelerated using multi-threaded op-
erations across blocks involving PPCs, the impact of which is explicitly demon-
strated (multi-threading ‘off’ vs ‘on’ in Table 4). Although WTA accumulator

6 github.com/vernamlab/FLaSH
7 aws.amazon.com/ec2



multi-threading could potentially accelerate N repeated Hamming distance com-
putations of the matrix columns, this was not done to allow focus on parallel
effects of the PPCs alone. For comparison purposes, Çetin’s sorting code is run
within the same execution environment as the PPC implementation.

Table 4 demonstrates a significant speed up of sorting performance by a factor
of approximately 25-30 times as a result of batched SIMD binary operations. The
circuit depth associated with each array size input is higher in the PPC version
due to overheads associated with processing packed ciphertexts. Ciphertext sizes
are also compared for each array size. In the case of Çetin’s matrix sort, despite
being 1

10 the size comparatively, one ciphertext is generated per bit of input,
therefore N · n ciphertexts are processed initially during input (∼ 335MB for
N=16, 32-bit numbers). In the PPC matrix sort, only 2 ciphertexts per block,
B are necessary to process inputs according to Alg. 1 (∼ 180MB for N=16, 32-bit
numbers). Subsequently, only 4 ·B and 2 ·B ciphertexts are required to compute
Algs. 2 and 3 respectively. Processing fewer packed ciphertexts effectively reduces
memory and communication costs associated with a homomorphic application.

Table 4. Performance results for depth-optimised sorting (comparison
with Çetin results) and min-max using 31-bit real number array inputs.
blk - block, seg - segment, mthr - multi-threading

Algorithm Array Size 4 8 16

Matrix Sort -
PPCs

level 17 19 20

blk x seg/blk 1 x 4 4 x 2 15 x 1

time - mthr off 12s 55s 4m 8s

time - mthr on 11s 49s 3m 40s

ciph. size (MB) 5.3 6.0 6.0

Matrix Sort -
Çetin [18]

level 11 12 13

time 5m 10s 24m 34s 1h 50m

ciph. size (MB) 0.565 0.610 0.655

Min-Max -
PPCs

level 15 15 15

blk x seg/blk 1 x 4 4 x 2 15 x 1

time - mthr off 2s 10s 42s

time - mthr on 3s 8s 33s

ciph. size (MB) 3 3 3

8 Conclusion

This paper proposes a simple to implement, primitive circuit design providing a
general solution for efficiently performing mixed combinations of parallel logical



(=, <,>,6,>) and numerical (+,−) binary operations on real numbers. The
PPCs aggregate parallel KSA and equality circuits that operate on almost fully
packed ciphertexts (ie. less one bit per data slot). The general applicability and
versatility of the design is demonstrated through its application to problems
such as homomorphic sorting and min-max. In matrix comparison sorting, two
separate applications of the PPCs involved are comparison (<) and equality (=),
whereas only the former is used in the depth optimised min-max algorithm. For
the first time, input elements are real numbers and a competitive speed-up is
achieved compared to more specialised existing schemes through flexible primi-
tive circuit design, SIMD batching of densely packed ciphertexts, and a potential
for multi-threading operations across ciphertext blocks. Data slot arrangements
involved in parallel design normally result in higher multiplicative circuit depths
compared to more memory-intensive, non-batched implementations. The circuit
depth, multiplication cost and memory footprint of the PPCs were minimised
as much as possible by analysing several primitive circuit designs before select-
ing a final combination. The challenge of developing efficient FHE applications
that optimise computational resource and communication requirements is under-
pinned by primitive circuit combinations that balance effective parallel design
with a minimum total number of recryptions.
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