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Abstract. In this paper, we propose a key-recovery attack on Trivium
reduced to 855 rounds. As the output is a complex Boolean polynomial
over secret key and IV bits and it is hard to find the solution of the secret
keys, we propose a novel nullification technique of the Boolean polynomi-
al to reduce the output Boolean polynomial of 855-round Trivium. Then
we determine the degree upper bound of the reduced nonlinear boolean
polynomial and detect the right keys. These techniques can be applica-
ble to most stream ciphers based on nonlinear feedback shift registers
(NFSR). Our attack on 855-round Trivium costs time complexity 2.
As far as we know, this is the best key-recovery attack on round-reduced
Trivium. To verify our attack, we also give some experimental data on
721-round reduced Trivium.

Keywords: Trivium, Nullification Technique, Polynomial Reduction, IV Rep-
resentation, Key-recovery Attack

1 Introduction

Most symmetric cryptographic primitives can be described by boolean functions
over secret variables and public variables. The secret variables are often key
bits, the public variables are often plaintext bits for block ciphers and IV bits for
stream ciphers. The ANF (algebraic normal form) representation of the output is
usually very complex by repeatedly executing a simple iterative function, where
the iterative function is a round function for block ciphers or a feedback function
for stream ciphers based on nonlinear feedback shift registers. For stream ciphers,
obtaining the exact output boolean functions is usually impossible. But if its
degree is low, the cipher can not resist on many known attacks, such as higher
order differential attacks [I5JI3], cube attacks [II4], and integral attacks [14].
Hence, it is important to reduce the degree of polynomials for cryptanalysis of
stream ciphers.
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Trivium, based on a nonlinear feedback shift register (NFSR), is one of the
finalists by eTREMAM project and has been accepted as ISO standard [2I10].
Trivium has a simple structure, with only bit operations, so that it can be
applicable to source restricted applications such as RFID. By iteratively using
NFSR, the degree increases rapidly and the output is a complex boolean function
over key and IV bits.

There have been lots of cryptanalysis of Trivium since its submission. The
early results include the chosen IV statistical attack [6l7], which was applied to
key-recovery attack on Trivium reduced to 672 rounds. Inspired by the message
modification technique [21120], Knellwolf et al. invented the conditional differ-
ential tool [I1], which was applicable to distinguishing stream ciphers based on
NFSR. In [12], Knellwolf et al. proposed a distinguishing attack on 961-round
Trivium with practical complexity for weak keys.

Cube attacks are the major methods for recent cryptanalysis results of re-
duced round Trivium. In [4], Dinur and Shamir proposed a practical full key
recovery on Trivium reduced to 767 rounds, using cube attacks. Afterwards,
Aumasson et al. [I] provided the distinguishers of 790-round Trivium with com-
plexity 23°. Then Fouque and Vannet [8] provided a practical full key recovery
for 784/799 rounds Trivium. Todo et al. [I9] proposed a key-recovery attack on
832-round Trivium, where one equivalent bit can be recovered with complex-
ity of around 277, combined with division property [18]. All of these attacks
exploited low degree properties of the ANF of the output bit over IV bits. As
though the degree is not low, i.e., the degree is equal to the number of variables,
there is a possibility to construct distinguishers if there are missing (IV) terms.
In [53], Dinur and Shamir exploited the density of IV terms, combined with
nullification technique, and broke the full-round Grainl28. Based on nullifica-
tion technique [B3], degree evaluation and IV representation techniques were
proposed and the missing IV terms can be obtained with probability 1 [9]. The
degree upper bounds of Trivium-like ciphers were obtained [16] using the degree
evaluation technique. Then a key-recovery attack on 835-round Trivium was pro-
posed in [I7] using correlation cube attack with a complexity of 275.. Though
the cube attack and cube tester tools can be applied to obtain the low-degree
information, it is restricted by the computing ability. It is hard to execute cube
tester programs of dimension more than 50 on a small cluster of cores.

In this paper, we focus on the cryptanalysis on round-reduced Trivium. We
first propose a novel observation of the Boolean polynomial and invent a new
nullification technique for reducing the output Boolean polynomial. After nulli-
fication, we determine the degree upper bound of the reduced polynomial, which
can serve as the distinguishers. In this process, large quantities of state terms
arise to be processed. We present a series of techniques to help discard mono-
mials, including degree evaluation and degree reduction techniques. Based on
these reduction techniques for boolean polynomials, we propose the first key-
recovery attack on 855-round Trivium with time complexity 277. We summarize
the related results in Table [IL



Table 1. Some related key-recovery results for reduced round Trivium.

Rounds|Complexity| Ref.
736 230 [
767 236 2]
799 | Practical | [§]
832 277 19
835 27 ivd]
855 2" [Sect.

The rest of the paper is organised as follows. In Section [2| some basic related
preliminaries will be shown. The basic techniques used in this paper and the
attack framework will be introduced in Section [3] Based on the Boolean poly-
nomial reduction techniques and IV representation, a key recovery attack on
855-round Trivium is proposed in Section [4] combined with a new nullification
technique. Finally, Section [5| summarizes the paper.

2 Preliminaries

In this section, some basic notations used in this paper are introduced in the
following subsections.

2.1 Notations

ANF the Algebraic Normal Form

1V bit public variables of Trivium

IV term product of certain IV bits

state bit internal state bit in the initialization of Trivium stream cipher

state term product of certain state bits, IV bits or key bits

2.2 Brief Description of Trivium

Trivium can be described by a 288-bit nonlinear feedback shift register s; (1 <
i < 288). During the initialization stage, s1 to sgo are set to 80 key bits, sg4 to
s173 are set with 80 IV bits, sogg, S287, Sogs are set to 1s and the other state bits
are set to zeros, i.e.,
(81,82,...7893) — (Ko,...,K79,0,...,0)
(594,595, .. .78177) — (IVO,. .. ,IV79,O, - ,O)
(8178, 81795 -+« 5288) — (O, 50,11 1).
Then the NFSR is updated for 1152 rounds with the following updating
function, i.e.,
for i< 1:4-288 do
t1 < Se6 + So1 - S92 + S93 + S171
to < S162 + S175 - S176 T S177 + S264
t3 < S243 + S286 - S287 + S288 + S69



(81,52,...,893) — (tg,sl,...,SQQ)

(594,895, - - -, 8177) < (t1,504, ..., 5176)
(517855179, - - -, S288) < (t2, 5178, - - . , S287)
end for

After the initialization, the output bits o; can be generated by the following
functions.
for i< 1: N do
t1 < Se6 + So1 * S92 + S93 + S171
ta < S162 + S175 - S176 + S177 + S264
t3 < S243 + Sas6 - S287 + S288 + S69
0; < Sp6 + S93 + S162 + S177 + S243 + S2ss

(81, 892, ..., 893) <— (tg, S1ynny 892)

(594,895, - - -, 8177) < (t1,504, ..., 5176)

(517855179, - - -, S288) < (t2, 5178, - - . , S287)
end for

Then the message can be encrypted by exclusive-or with o;.

To outline our technique more conveniently, we describe Trivium using the
following iterative expression. We use si, (0 < w < 2) shown in Equ. [1| to
illustrate r-round (1 < r < 1152) s1, So4 and s17g separately. Let z, denote the
output bit after » rounds of initialization. Then the initialization process can be
illustrated by the following formula

p_ =66 r—109 r—110 | r—111 _ r—69
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The s!, (0 < w < 2) is denoted as internal state bit in this paper. The
multiplication of state bits H s] is denoted as a state term. The output

iel,jed
r—65 r—92

can be described using the state terms as z, = 557 + s
85765 _’_857110.

r—68

+ 87708 4 5778 4

2.3 Representation of Boolean Functions for Stream Ciphers

Supposing that there are m IV bits, i.e., vg,v1,...,vn—1 and n key bits, i.e.,
ko, k1,...,kn_1, the Algebraic Normal Form (ANF) of the internal state bit or
output bit s could be written as the following style:

s=>_TTvi[]%: (2)
I,Jicl  jeJ

where the sum operation is over field Fy. The J],.;vi ] jes kj is also denoted
as a state term of s and [];.; v; is denoted as its corresponding IV term. Let
IV term ¢; = [[;c; vi be the multiplication of v; whose indices are within I, the
ANF of s can be rewritten as

S = Ztlgl(k)7 (3)
I



where gr(k) is the sum of the corresponding coefficient function of terms whose
corresponding IV term is ¢;. The |I] is denoted as the degree of IV term ¢y,
deg(ts). The degree of s is deg(s) = max;{deg (¢7)}.

2.4 Cube Attack and Cube Tester

Cube attack [4] is introduced by Dinur and Shamir at EUROCYPT 2009. This
method is also known as high-order differential attack introduced by Lai [15] in
1994. Tt assumes the output bit of a cipher is a polynomial f(kq..., kn—1, V0., Um—1)
over GF(2). The polynomial can be written as a sum of two polynomials:

f(kO--'a kn—lavO---aUm—l) = tI - P + Qt; (k()"" kn—la UO'-'avm—l)

tr is called maxterm and is a product of certain public variables, for example
(vo, .., Us—1),1 < s < m, which is called a cube Cy,; P is called superpoly;
Q4 (ko-..; kn—1,00..., Vm—1) is the remainder polynomial and none of its terms is
divisible by ¢;. The major idea of the cube attack is that the sum of f over all
values of the cube Cy, (cube sum) is:

Z f(ko,...,kn_l,x’,...vm_l) ZP

' =(vo,...,vs—1)€C;

whose degree is at most d-s, where the cube C}, contains all binary vectors of
length s and the other public variables are fixed to constants. In cube attack, P
is a linear function over key bits. The key is recovered by solving a system of
linear equations derived by different cubes Cy,.

Dynamic cube attack [5] is also introduced by Dinur and Shamir in FSE
2011. The basic idea is to find dynamic variables, which depend on some of the
public cube variables and some private variables (the key bits), to nullify the
complex function P = P; - P, + P3, where the degree of Pj is relatively lower
than the degree of P and P; - P> is a complex function. Then guess the involved
key bits and compute the dynamic cube variables to make P; to be zero and the
function is simplified greatly. The right guess of key bits will lead the cube sum
to be zero otherwise the cube sums will be random generally.

Cube testers [I] are used to detect non-random properties. Suppose in
Equ. |3} an IV term ¢; does not exist in the ANF of s, e.g. the coefficient g; (k) = 0.
Hence, the cube sum over cube C}, is definitely zero for different key guessing.
However, if the IV term ¢; exists, the value of cube sum g;(k) is dependent on
the key guessing. This property was applied to break full-round Grain128 [5[9].

3 Basic Ideas

3.1 New Observation of Boolean Polynomial Reduction

In this paper, we propose a new nullification technique based on a lemma as
follows.



Lemma 1. Suppose z is the output polynomial of a cipher, and
Z:P1P2—|—P3. (4)

Then the polynomial can be reduced to a simpler one (1+ Py)z = (1+ P1)Ps by
multiplying 1 + Py in both sides of Equ. if deg(P1Py) > deg((1+ P1)Ps).

Lemma [l| can be verified by (P + 1)z = (P1 + )PPy + (P + 1)P3 =
(P141)Ps. In our cryptanalysis of Trivium, P; is a simple polynomial over several
IV bits and key bits, while P, is much more complex than P5. In our nullification
technique, we multiply P;+1 in both sides of Equ. to nullify the most complex
polynomial P, without changing Ps. The result (1+ P;)z = (1+ P1)P3 could be
analyzed by considering P3 and 1 + P; independently, and then multiply them
together to get (1+ Py)z.

3.2 Outline of Our Attack

Based on the novel observation in Section [3.1}, our attack includes two phases,
which are the preprocessing phase and on-line attack phase.
In the preprocessing phase,

1. We apply the new nullification technique by determining P;, then multiply
1+ P, in both sides of Equ. 4| and obtain the reduced polynomial (1+ P;)Ps.
2. We study the polynomial (1 4+ P;)P5; and prove its upper bound degree to
be d mathematically, then cubes of dimension d + 1 lead to distinguishers.

In the on-line phase, we guess the partial key bits in P;, and compute the
cube sums of (P; + 1)z over (d + 1)-degree IV terms:

i For the right key guessing, (P; +1)z = (P; + 1) P3. Thus the cube sums must
be zero.

ii For the wrong key guessing, the equation becomes (Pj+1)z = (P{+1)P1 Pa+
(P +1)Ps5, which is more complex and dominated by Ps, thus the cube sums
are not always zero.

We focus on constructing the distinguishers in the preprocessing phase and
it costs most computing sources.

3.3 Constructing Distinguishers

After obtaining the reduced polynomial (1 + P;)Ps, our major work is to study
this polynomial and derive distinguishers. In our analysis, we demonstrate that
the degree of the reduced polynomial is strictly lower than 70. As the degree is
so high, such a result was hard to achieve in previous works. So we introduce
various details of reducing polynomials in an iterative process.

We introduce several techniques to discard monomials in advance during the
iterative computation of the ANF representation of the output bit (1 4+ P;)Ps.
Suppose we are proving the upper bound degree of (1 + P;)P3’s ANF to be



d, then the following techniques are used to reduce the Boolen polynomial of
(1 + P;)Ps by discarding monomials in advance. The whole process could be
divided into the following three steps shown in Figure

— Step 1. We compute forward to express the ANF of some internal state bits
over IV bits and key bits. In Trivium, the internal state bits s! (0 <7 < 2,
0 < j < 340) are computed in a PC.

— Step 2. During the iterative computation of the ANF representation of
(14 P;)Ps in the backward direction (decryption), we introduce the fast
discarding monomial technique in Section which includes the fol-
lowing two algorithms:

e First, we propose the degree evaluation algorithm to obtain the degree
bounds of internal state bits. As the monomials of (1+ P;)Ps’s ANF is a
product of these internal state bits, the degree of a monomial is bounded
by the sum of the degrees of the multiplied internal state bits, which is
regarded as the degree estimation of the monomial. If the estimated
degrees of monomials are lower than d, they are discarded directly.

e Second, we exploit the iterative structure of Trivium, and find that the
(14 Py)Ps’s ANF contains many products of consecutive internal state
bits. Thus, we pre-compute the degree reductions of those product-
s, which is d; = ), deg(z;) — deg([[, z;), where z; is an internal state
bit. Thus, the degree of a monomial is upper bounded by the difference
value between the sum of the multiplied internal state bits and the cor-
responding degree reduction d;. If it is smaller than d, the monomial is
discarded.

— Step 3. For the left monomials of (1 + P;)P3’s ANF, we introduce IV
representation technique in Section to determine the upper bound
degree of (1 + P;)Ps or find the d-degree missing product of certain IV bits
(missing IV term). In IV representation technique, the symbolic key bits
in the internal state bits are removed and only IV bits are left. Combining
with repeated IV term removing algorithm, we can simplify monomials of
(14 P;)Ps’s ANF without losing the missing IV term information. If we find
an IV term is not in the IV representation of (1 4+ P;)Ps, we can conclude
that it is also not in (14 P;)Ps.

Internal Internal

State bits State bits
Forward j i’ discardin
(Kpses Ky Vyseens Vo) s/ s! 9_ (1+P)P,
vy Ngoy Vysters Vg / =y B
I 1V Representation ! monomials e
I Step 1 I I Step 2 I I Step 3 I

Fig. 1. Framework of Constructing Distinguishers



3.4 Fast Discarding Monomial Techniques

In Step 3 of Figure [I] during the iterative computation of the ANF representa-
tion of (1 + P;)Ps in the backward direction (decryption), there arise more and
more state terms. We will give several techniques to simplify the polynomial by
discarding monomials in advance. In this Step, repeated state terms arise accord-
ing to the Trivium encryption scheme. The repeated state terms are removed
using Algorithm [I} The complexity of Algorithm [I{is O(n), supposing there are
n state terms.

Algorithm 1 Repeated-(state)term Removing Algorithm

Input: The vector T' with n terms, i.e., T1, Ts, ..., Ty.
Output: Updated T' with m terms, where m < n.
1: Initialize an empty Hash Set H.
2: for i+ 1:n do
3:  Compute the Hash value of T, i.e., H(T})
if H.contains(T;) is true then
H.delete(T5)
else
H.insert(T;)
end if
end for

Degree evaluation technique As we are proving the degree of the Boolean
polynomial (14 P;)Ps to be d, thus many monomials with lower degree produced
during the iterative computation backward (decryption) in Step 3 are deleted
without consideration (we do not need to continue the iterative computation over
those monomials). We estimate those monomials using degree information of
the internal state bits in lower rounds. This section presents a degree evaluation
algorithm for the internal state bits. For example, we are going to estimate the
degree of b; = b;_3 + b;—_1b;_o.

deg(b;) = deg(b;—3 + bi—1b;_2)
= max{deg(b;_3),deg(b;_1b;—2)} (5)
< max{deg(b;—3),deg(b;—1) + deg(b;—2)}

If we continue to decompose b;, we find

bi—1bi—o = (bj—a + bi—2bi—3)(bi—s + bi—3bi_4)

=bj_abi—5 +bi_3bj_4 +b;_2bj_3bi_5 + b;_2b;_3b;_4, (6)

If deg(b;—1) = deg(b;—2b;—3) and deg(b;—2) = deg(b;—3b;—4), then in Equ.( [5),
deg(b;—1) + deg(b;—2) may add deg(b;—3) twice. So in order to obtain a more
accurate degree estimation, we are willing to decompose b; for several rounds
backwards.



For Trivium, the ANFs of sZ (0 <i<2,0<j<340) are exactly obtained in
a PC and their exact degrees can be obtained. For example, in the cryptanalysis
of 855-round Trivium, we compute ANF of s (0 < < 2,0 < j < 340) over 75
free IV Variableﬁﬂ the degrees are shown in Table |2} To estimate the degree of
s} for r > 340, we decompose s] until the state terms are the product of internal
state bits sf for j < end = | 35| x 32 — 128 considering the efficiency tradeoff of
the computation.

Table 2. Degree deg(s?) of s7 for 0 < < 2,0 < j < 340

[ Jf [123456780910 1112 13 14 15 16 17 18 10 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35]
37" J0000000000 0000000000 O0O0OO0O0O0O0O0O0O0O0O0O0 0 0
S‘i:O11111111111111111111111111111111111
s37% 0111222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 222222222
53=3510000000000 000 00000000000O0O0OO0O0O0O0O0 1 11
$75 1111111110011 1111110111111 11111111111
)= 2222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 222222
5702222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 222222222222
Si:7011111111111111111111111111111111111
s3=0l2222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2222222322222
3= Tl2222222233 38 3 83 33 3 33333323333 323333333
S5 1111111111 11 11111111 1111111111222 2
s371%%222222222 2 2 2 2 2 2 2 2 2. 2 2 2 2 2 2 22222222222
3~ lss333333333 3 3 3 3 3333333333333 33333333
3{114022222222222222222222233333333333333
s37103 222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22222222222
s T™l33333333833 3 3 3 3 33333333333 4444444444
$J=1713333333333 3 3 3 3333333323333 323445355555
s371™l222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22222222222
56:21044444444444444444444444444444444444
$]721%05 555555555 5 55 555 55 5555555555555 55 5 5
s3721002 2222222383 3 3 33 333333333333 333334455
7% l4aa444444 4 4 4 4 4 4 4 4 4 4 4 4 44 44 444 4444444
=415 555555555 5 5 5 5 5 5 5555555 55555666666 6
s 245555555555 5 5 5 5 55 666 66666666 6666G6666
7004444444444 4 4 4 4 4 4 4 4 4 4 4 4 4444444555555
7006666666666 6 7 7 7 7T T 7T 7T T TTTTTTTTTTTT T
7280666677888 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
335555555555 5 5 6 66 6666666666

=W\ rrrrrr 1 T T 7 T T T T T T T 7T 77

s375%|s 888888888 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

For example, we estimate the degree upper bound of s3*!, where end =

|35 x 32 — 128 = 192. We first express 5341 using state bits in less rounds, and
discard the state terms of degree lower than d.

— Step 1. First, we express sgit = 537 + 53315232 4 5230 4 5272 according to

Equ. .
— Step 2. According to Table[2|highlighted in red, let d = max{deg(s37), deg(s3*!)+
deg(s33?), deg(s3%°), deg(s3™)} = max{6,3 + 3, 3,4} = 6.

5 The other 5 IV bits are fixed as zero and their positions are given in Section



— Step 3. Discarding the state terms of degree lower than 6, we get s

341x _

5375 452315232 Tteratively compute s3*'* and discard state terms with degree
lower than 6, we get s341** = 51925193 451625163 4 514831495163 4 (14951504162 1

8%488%498%50 +>S%478}498%50 +>8}498%508%44 +_S%48S%49S%45.

— Step 4. Note that there is still a state bit s1% in s3*1** that is bigger than

end=192. So we continue to iteratively compute and discard state terms

with degree lower than 6, and we get:

341exx _ 126127 | 100,101 127 , 101,102 126 | 100101 102

50 =5p7"8g"" +5p 85 Sg +Sp S5 SpT + 85 S Sp+
50950016102 TOSTIL 0T 4 (107296 | (TOT1 T2 | (07 (148,149 4 -
571526148 149 | (0 148 (149 | (06,140 (150 | (70,71 (149 150
8149 150 | (47 (149 (150 | (149 150 144 | (148,149 145

— Step 5. Here, there is no state bit in rounds more than end = 192, the

expression ends and there are still state terms that survive. Then the current

degree d = 6 is the estimated degree of s3t.
341 %%

— Step 6. Note that, if there is no state item in s surviving, which means

the degree added twice or more shown in Equ. @ happens to the iterative
computation of sg*!. So the degree must be less than 6. We reset d = 5 and
continue the above steps 3-5 to get a more accurate degree bound.

We summarise the above 6 steps as Algorithm [2l We only estimate degree of

s} for r < 665 and list the results in Table

Algorithm 2 Degree Evaluation Algorithm (DEG) of State Bit

Input: The value ¢ and r which indicates the state bit s} .
Output: DEG(s;)=d.

1:

2:
3:

Initialize the degree bound d similar to the above Step 2., the end point end and
the number of state terms len < 0.
while len = 0 do
Iteratively express s; using state bits sg, where 0 < j < 2and 0 < 5 < end.
During each expression, discard the state terms of degree lower than d. Let len
be the number of remaining state terms.
if len = 0 then
d+—d—-1
end if
end while

: Return d

Degree reduction technique In this part, we formally consider the property
in Equ.@, that deg(b;—3) is added twice. We call it degree reduction. Define the
degree reduction d; as

dy =y deg(w;) — deg(] [ =), (®)

el i€l

10



where z; is a state bit. _

We pay attention to the degree reduction of the state term Hé.':_l s] for a
specific i € [0,2]. This state term results from the iteration structure of Trivium
scheme, whose high degree state terms come from the multiplication of s sf“
shown in Equ.. After several rounds of iteration, the high degree state terms

are in the form Hé‘:l_l SZ Define the degree reduction d; = Zé—:z_l deg(sz ) —
l4t—1 j
deg ([T, " s))-

Table 3. The estimated upper bound degree DSQ(S?) of s; for r < 665
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The degree reduction can help discard state terms of lower degree dramati-
cally, as it can help predict the change of degree before expression operatiorﬂ
We take the state term s340s34! as an example to illustrate the process to com-
pute the degree reduction d;. Algorithm [2]is first used to obtain the degree of
state bits as shown in Table 2] and [Bl

Let end be |35 x 32 — 128 = 192, too. The degree bound d is initialized as
d = DEG(s319) + DEG(s311) and dy = 0. Express the s3%s341 by one iteration
using Equ.. Discard the state terms of degree lower than d — d; = d, there is

" The details are given in section
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no state term surviving. Increase the d; by 1, such that d; = 1. Express 53405341

again and discard the state terms of degree lower than d —dy = d — 1, the result
is 3349 3‘J0 262 5248 349 263 Continue to compute iteratively, the remaining
state terms are S(1)70 e (1)80 140 3l 451705 (1)71 1815139 4140 4 o171 (172 0179 139 (140

55T 858051385139, There is no state bits s’ Wlth J bigger than end = 192 in all
the state terms, hence the expression ends. Degree reduction d; = 1 is returned.
Thus the deg(s? 340 s34 < DEG(s340) + DEG(s34Y) —dy = T+ 7 — 1 = 13. The

degree reductlon algorithm is shown in Algorithm

Algorithm 3 Degree Reduction Algorithm of State Term

Input: The value i, r, ¢ which indicates the state term degree reduction.
Output: The degree reduction d¢ = ZH't ! deg(s ) deg(HH't L),

1: Initialize the degree bound d = ZZH 'DEG(s?) , degree reduction d; = 0, end
point end and number of survived state terms len.

2: while len =0 do

3:  Express the state term HHt 1 s] using state bits s{, where 0 < ¢ < 2 and
0 < j < end, discard the state terms of degree lower than d — d;. Let len be the
number of remaining state terms.
if len = 0 then

dt < dt +1

end if

end while

Return d;

3.5 IV Representation Techniques

In the cryptanalysis of stream ciphers, the output is a boolean function over
key and IV bits. But obtaining the exact expression is hard, thus we propose
1V representation technique to reduce the computation complexity for obtaining
the degree information.

Definition 1. (IV representation) Given a state bit s =3, ;[L;crvill e kj

the IV representation of s is syv = Y ;[ [;cr vi

For example, if a boolean polynomial is s = vok1 + vokoks + v1k1ke + vov1 ko,
then its corresponding IV representation is s;jy = vg + vg + v1 + vov1.

IV representation with repeated IV terms Removing Algorithm. Due
to neglection of key bits, there are lots of repeated IV terms. Here we give an
algorithm to remove the repeated IV terms of s;y. The details of the algorithm
are shown in Algorithm 4] This algorithm is based on a Hash function. First,
an empty hash set is initialized. For each IV term T;, compute the hash value
as H(T;) (Line 3), then determine if 7; is already in H. If not, then insert 7;
into H (Lines 4-5). Applying Algorithm [4| to the above example, the result is

12



vo + v1 + vov1. Note that this algorithm is slightly different from Algorithm
If we apply Algorithm [I] to s;v, the result is vy + vovy.

In the iterative computation process of the output bit of Trivium, it should
be noted that if an IV term exists in s, it must also exist in sy, but not the
opposite. For example, x1 = vg(k1ke + koka) + v1 +vov1 ke, o = vakoks +vivaky
and s = z1xo. We use the IV representations of x; and zo to approximate the
IV representation of s. Thus, z17vy = vg + v1 + Vov1, Tojy = V2 + V12, and
S[V = T11vToyv = UgUs + v1Vg + vov1v2. However, s = 125 = Ulvg(k‘okl + kl)
So if we find an IV term is not in s;y, we can conclude that it is not
in s either. We use this to determine the degree upper bound of the output
ANF of Trivium.

Algorithm 4 Repeated-IV term Removing Algorithm
Input: The vector T" with n IV terms, i.e., T1, T2, ..., Tn.
Output: Updated T with m IV terms, where m < n.

1: Initialize an empty Hash set H.

2: for i+ 1:n do

3:  Compute the Hash value of T3, i.e., H(T;).

4:  if H.contains(T;) is false then
5: H.insert(T;).

6: endif

7: end for

After using IV representation combined with Algorithm [4} all the existent IV
terms are left by ignoring their repetition. With collision-resistent hash function
H, the time complexity of Algorithm [4]is O(n) for processing n IV terms. It
needs several minutes to apply Algorithm [4 on 1 billion IV terms on a single
core.

4 Key Recovery Attack on 855-round Trivium

In the attack on 855-round Trivium, all the 80-bit IV are initiated with free
variables: IV; = v;, i € [0, 79].
The output of 855-round Trivium can be described using the internal state
bits:
2a55 = 5790 + 5763 4+ 787 4 772 4 gT90 4 G745, 9)

As a first step of the attack on 855-round Trivium, we need to determine P;.

4.1 Determining the Nullification Scheme for the Output
Polynomial of 855-round Trivium

For 855-round Trivium, the degree of output bit z is very high, as shown in [19].

So it is not easy to find the missing IV terms in the complex z = PP + Ps.

13



However, based on the new observation of Boolean polynomial introduced in
Section we can choose P; to reduce the Boolean polynomial (1 + P)z =
(14 Py)P; such that the degree of (1 + P;)Ps is lower. The lower, the better. In
fact, the lower the degree of a state term, the less high degree IV terms it can
deduce.

Degrees of state bits are obtained first in order to determine the high degree
state terms. The exact Boolean polynomial of s! for i € [0,2] and j € [0, 340]
can be obtained. The other degree upper bounds can be obtained by executing
Algorithm [2] We repeatedly express the output using internal state bits and
preserve the high degree state terms. Then we calculate the frequency of state
bits in high degree state terms.

We choose P; = 5210 because the corresponding P is simple and the degree
upper bound is relative low by rough computing and statistics. The output
polynomial can be rewritten as

z = S%lOPQ-FPg, (10)

where P, and P3; do not contain s%lo. Polynomial P, is so complex that it is
hard to compute its degree and density information while Pj is relatively simple.
Here Py = 5310 = us9u60v61 + V59060076 + V17059060 + V30U31059V60 + U32U59V60 +
V59U60vV62 + Us9U0U77 + UsoUsok20 + Us9V61U73V74 + Us9U73V74VT6 + V17VU59VU73VT74 +
V30U31V59U73V74 + U32U59U73V74 + Us9Ue20U73U74 + UsgU73U74V77 + UsgU73U74koo +
V59V60V74V75 +U59U60V75V76 T U59V73VU74V75 +U59U73V74U75 V76 +U59V61 V75 +U59 V74 V75
+ V1759075 + V30V31VU59V75 + V32Us9V75 + UsgUs2U7s + UsgUrsUrr + UsgUrskag +
V60V61V72073 + Ve0VU72V73V76 + V17V60VU72V73 + U30VU31VU60V72V73 + VU32VU60V72V73 +
V60V62UT2V73 T V60UT2U73V77 TV60VT2U73 k20 + V61 V72073 V74 +UT2073V74 V76 +U1TUT2UT3
V74 +V30V31V72073U74 +V32072V73V74 +Ve2VU72U73V74 + V72U73V74V77 +VU72VU73V74 K20 +
Vg0 UT2VU73V74V75+V60V72073V75V76 +U72073V74U75 V76 +U61 V72 V73 V75 +U17VU72U73 V75 +
V30U31U72073V75 + U32U72U73VUT5 + Ve2Ur2U73V75 + Vr2Ur3UrsUrr + Ur2vr3Urskiag +
V60V61V74FV60V74V76 +V17V60V74 +V30V31V60V74 +V32V60V74 T V60V62V74 +V60V74V77 1
V60U74k20+V17V73V74FV30V31V73V74HU32VU73VU74 HV62V73VT4 T VU73V74V77 HUT3 VT4 K20+
V16V60V61 T V16V60U74V75 +V16V60U76 T V16V61V73V74 +V16V73V74V75 +V16V73VU74V76 +
V16V61V75 + V16V74V75 + V16V17 + V16U30V31 + V1632 + V16Vs2 + V16V77 + vickeo +
V29V30U60V61 TV29V30V60U74V75 +V29V30V60 V76 +VU29V30V61V73U74 +V29V30V73V74 V75 +
V29V30V73V74V76 T V29V30U61 V75 + V29V30V74U75 +V17V29V30 +V29U30V31 +V29U30V32 +
V2903062 +V29V30V77 +V29V30 K20 +V31V60V61 + V31 V60 V74 V75 + V31 V0 V76 +U31V610U73
V74 +031V73V74V75 +VU31VU73V74V76 +V31V61 V75 V31 V74V75 + V17031 +V30U31 +V31V62 +
v31V77 +V31 k20 +Ve0V61 + V61075 + V61 V74075 +V17U61 +V30V31 V61 + V32061 +Ve1 k20 +
V0UT4V75V76 T+ VU60V76 T U73V74UT5 V76 +U17V76 +V30V31 V76 +U32V76 + V76 V77 + V76 K20 +
V60V61 K19 +60V74V75 k19 F060V76 K19+ V61 V7374 K19 FU73V74V75 K19 FU73U74V76 K19+
V61V75k19 + V74v75K19 + V17k19 4 v30U31 K19 + V32k19 4 ve2k19 + vrrkig 4 k19koo +
V3435 + U34V48V49 + V34V50 + V35V47V48 + V47V48V49 + V47V48V50 + V35V49 + V4gV49 +
k57 +v69 +v4v5 + Vg + V36 + Us1 + V60 + V7374 + V75 + K63 + Ve2U74 V75 + V74075 VTT +
V75V76 + V18 + V33 + V63 + Urg + ka1 + kagkag + k3 + k3o + k12 + k3rkas + k3o + vaa.
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IV Nullification The degree of s219 is 5 and the IV bits involved in s210 are
shown in Table [l

Table 4. Count of IV bits in $2'° before IV nullification.

IV |vs vs wve V16 v17 V18 V24 V29 V30 V31 V32 V33 V34 U35 V36 V47 V4s
Count|1 1 1 14 14 1 1 14 2726 13 1 3 3 1 3 5

IV |v49 w50 Us1 Usg V6o V1 Us2 Us3 Vey V72 U73 U4 Urs V76 UT7 UT8
Count| 4 2 1 28 44 26 13 1 1 26 56 62 46 26 14 1

In order to simplify s31° so that it is easier to obtain the degree bound of

(1 + 8%10)P3, we nullify V74, Vg0, V75, V30 and v4g.
After nullifying the 5 IV bits, we obtain the simplified boolean function:

210 _
ST = v16V17 + V1632 + V16Vs2 + V16V77 + Vickoo + V17V31 + V31062 +

U31V77 + V31k20 + V17U61 + V32V61 + U1 K20 + V17VU76 + U32U76 + V76UTT

vrekao + virk1g + vaakig + ve2ki19 + vrrkig + ki9koo + V34035 4+ vaavso+  (11)

v35V49 + k57 + Vg9 + v4U5 + V6 + 36 + Us1 + Ke3 + v1g + V33 + vez+

vrg + ko1 + kogkog + k3 + k3o + k12 + k3rksg + k3g + vog.
Here, the degree of 5219 is 2 and key information equivalent to 3 bits in s3!° are
klg, kQO and k57 + k63 + kgl + kggkzg + ]Cg + kgo + k12 + k37k38 + kgg. The IV bltS
involved in s2'° are shown in Table

210
1

Table 5. Frequency of IV bits in s3'° after IV nullification.

IV |v4 vs U6 Vie Uir V18 V24 V31 U32 V33 U34 U3s
Count|]1 1 1 5 5 1 1 4 4 1 2 2

IV |vse va9 V50 V51 V61 V62 V63 V69 Ure V77 VT8
Count|1 1 1 1 3 3 1 1 4 4 1

After determining P; = s?2!°, we multiply 1 + s%!° in both sides of Equ.,
then (1+5210)z = (14 s219) P3. Finding the non-randomness in (1 + s319) P3 will
help us to construct the cube tester of 855-round Trivium. More specifically, we
will determine the nonexistent IV terms of degree 70 in (1+5%'0) P5. First, we will
reduce the polynomial, then IV presentation technique is applied to determine
the nonexistent IV terms. The framework is presented in Figure |2] and details
are shown in the following Section |4.2

4.2 Determining the Degree Bound of Reduced Polynomial

We are going to iteratively compute (1 + s3!°)P5. In each iteration, many state

terms of (1 + s210)P; are produced. Based on our computing ability, we can
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Fig. 2. Framework of determining the missing IV terms

compute the IV terms of degree around 70. Since we are finding the 70-degree
missing IV terms, state terms with degree less than 70 are removed without
consideration, because they do not contain those 70-degree IV terms certainly.
The removing process could be divided into 2 steps:

1. Deleting state terms according to degree evaluation;
2. Deleting state terms according to degree reduction.

Degree evaluation phase After nullifying the 5 IV bits in Section the
exact boolean functions and degrees of state bits sg for0 <i<2and0<j <340
can be updated. Then we execute Algorithm [2|to obtain the degrees of the other
state bits, partially in Table 2] and [3] For example, given a state term byby, we
first find DEG(b1) and DEG(by) in Table [2[ and [3] if DEG(b1) + DEG(b2) < 70,
then deg(b1bs) < DEG(b1) + DEG(b2) < 70, delete bybs.

Degree reduction phase In the structure of stream ciphers based on NFSR,
degree reduction arises often due to the iterative structure. We use Algorithm
to obtain the degree reduction, which is shown in Table [6] Table [7] and Table [§]
for products of 2 consecutive state bits s7s/T" (t = 2), 3 consecutive state bits
751711 (t = 3) and 4 consecutive state bits 575/ s 25713 (+ = 4), respec-
tively. Note that we only list the degree reduction when j > 340. The degree
reduction for j < 340 is much easier to obtain in a PC.

In the cryptanalysis of Trivium, the degree reduction may be more compli-
cated. Further degree reduction for ¢ > 4 is hard to be obtained using PC for
loop executing Algorithm [3] Some man-made work should be involved to obtain
further degree reduction. The degree reduction can help discard state terms of
lower degree dramatically. For example, if the state term biby goes through de-
gree evaluation phase, that means DEG(b1) + DEG(b2) > 70, then we check if
DEG(b1) + DEG(ba) — di(brba) < 70. If yes, deg(b1bz) < 70 and delete it.
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Table 8. Degree reductions dy(s?s? "' s77%s713) of 575771 s7T27%3 with t = 4

IO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33]
=0/0 0 0 O OOO O O 312180 0 0 0 0O OO OO OO OO0OOOOUOUOUOUOUODOO
=12 2 2 2 2 2 2 2 2 6 1115 2 2 2 2 2 1 1 0 4 4 4 4 4 4 3 3 2 2 2 2 2 2

22 6 6 6 6 5 5 4 8 142430 8 8 8 8 8 7 6 5 4 3 3 2 6 6 6 6 6 6 5 3 2 4
=0/0 0 0 0O 0O O O 82230 4 4 4 4 4 4 3 2 0 2 5 8 12121212 12 12 12 12 11 11 10 10
=12 2 2 2 2 2 2 7 13182 2 2 2 2 2 2 2 2 2 2 2 2 1 002 2 2 2 2 2 2 2
=28 8 8 8 8 8 8 163039 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
=0/1010101010183037 8 8 8 8 8 8 8 8 8 8 8 7 7 6 6 6 6 6 6 6 5 4 3 2 2 2
=12 2 2 2 2 71521 0 0 0O 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 4 2 3
=28 8 8 8 8 163039 8 8 8 8 8 8 8 8 8 7 7 6 6 6 6 6 5 5 4 4 4 4 4 4 3 2
=0/2 2 2132536 0 0 0 2 2 2 1 0 0 0O OO OO 1T 01 4 3 3 2 6 6 6 6 6 6 6
=1|5 7 13 24 40 48 14 14 14 14 14 14 14 14131210 8 7 6 6 6 6 6 6 6 5 4 2 4 8 8 8 8
=2|5 4 4 163042 4 3 3 6 6 6 6 6 6 5 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

For example, the Equ. @ can be expressed furthermore using state bits:
2a5s = s[4+ sG805G81 4 o879 {TgT21 4 o697 | (6535654 4 (652 | o094 4 (T21 | 5095 696
5894 4 §T09 G706 4 o680 4681 | (679 | "g604 L"gT2l 4 JTOTLTO8 | (706 | o703 4 o676 4
59625863 1 5061 4 5858 Then 596! can be discarded because its degree is lower than
68, shown in Table [3| highlighted in red, and the total degree of (1 + s910)s$5*
is lower than 70. Furthermore, the output can be expressed using state bits in
lower rounds and more state terms can be discarded.

After the above 2 steps to reduce (1 + s2!0)P;, the degrees of the left state
terms are possibly higher or equal to 70. As the dimension is high, a cube tester
over such a big dimension is far beyond our computing ability. For the left
state terms, we use IV representation for each left state terms and remove the
repeated IV terms using Algorithm [4]in order to determine the missing 70-degree
IV terms. After the above steps, there is no 70-degree IV term in (1 + s310)P;.
So the degree of (1 + s319)P; is strictly lower than 70, which is summarized as
the following Lemma

Lemma 2. Set the vr4, vgo, Urs, 30 and vag to zeros, then the degree of (1 +
5219) 255 is bounded by 70, where zg55 is the output after 855-round initializa-
tions.

According to Lemma [2] we strictly prove that the degree of the reduced
polynomial is lower than 70, so the sum over any selected cube of dimension 70
is zero, such that the distinguishers can be constructed.

4.3 Online Phase and Complexity Analysis

We first guess the 3 key bits in 5%10, i.e. k19, koo and ks7+kgz + ko1 +kogkog+ k3 +
k3o + k12 + k3vkss + k3g as shown in Equ. , for the right guess the result is 0
while for wrong guesses, the result is 1 with probability % If the sum over cubes
of dimension 70 is 1, then the key guess is wrong and dropped (Line 7). After
the first cube sum, about half key bits remain, and sum over another cube again.
The remaining guess is the key. The on-line phase is shown in Algorithm

For each guess, we need to sum over a cube of dimension 70, so that the
complexity is 23 - 270 4-22. 270 4 21. 970 ~ 274,
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Algorithm 5 On-line Attack

1: Initialize the possible key space K EY with size of 23.
2: for i+ 1:3 do

3 for Each possible key in KEY do
4 Compute the value 5?19, so that obtain the value of 1+ 5310,
5: Compute cube sums zsym of (1 + sflo)z,
6: if zsym = 1 then
7 Delete key from KEY .
8 end if
9 end for
10: end for

After the above process, the bits k19, kog and ks7 + kg3 + ko1 + kogkag + k3 +
k3o + k12 +ksrkss +ksg can be determined. k19 and ko are single master key bits.
Let ¢ = k57 + k63 + kgl + kggk'gg + kg + kgo + klg + k‘37k38 + k39 (C is 0 or ].), then
it can be rewritten as k57 = k63 + k‘21 + k28k29 + kg + kg() + k12 + k37k38 + kgg +c.
We guess the other 77 key bits excluding k19, k20 and ks7, the value k57 can
be obtained directly. So the other 77 key bits excluding k19, ko¢ and k57 can be
recovered by brute force. Thus the complexity to recover all the key bits is 277.

4.4 Experimental Verification

We apply a powerful nullification technique to reduce the output polynomial,
prove the degree bound of the reduced polynomial theoretically and recover key
bits. To make the attack more clear, we give an attack instance. We give two
attacks on 721-round Trivium: a distinguishing attack and a key-recovery attack.

Obtain the Degree Upper Bound of Output of 721-round Trivium
Initial I'V; = v; with ¢ € [0,79]. In the example attack on 721-round Trivium, we
only use 40 freedom variables, i.e. set vs.j41 = 0 for j € [0,39] and the other 40
IV bits are freedom variables. ‘

The exact boolean functions of the first 340 state bits s! for ¢ € [0,2] and
J € [0,340] can be obtained directly on PC. Hence, the degrees of them can
be obtained directly. Degrees upper bounds of other state bits can be evaluated
using Algorithm [2]and are shown in Table [0} Note that in Table[J] the estimated
degrees of some state bits are larger than 40, e.g. DEG(s5%%) = 41, which is
because the accuracy of Algorithm [2] decreases for state bits with large rounds.
Thus we only apply this algorithm to s] for j < 665.

The output of 721-round Trivium is 2721 = s5°¢ 4 529 4 553 4 538 4 5556
s§1. According to Table [9] the 6 state terms (bits) highlighted in red are of
degree lower than 40, so the degree of z79; is lower than 40, which can serve as
distinguishers. This result can be obtained easily by rough computing.

Next, we give a more accurate bound of z791. In the following, we will de-
termine whether z791’s degree is bigger than 37. The 6 state bits are expressed
using state bits in lower rounds again and substituted into z7o1, which is called

19



< 665

) of the state bits s/ for j

J
7

Table 9. Degree upper bounds DEG(s?

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35]
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the substitution or expression process in [9]. Then z79; = s3%0 + 55465347 +
5345 4 $387 4 5303 | g3196520 | G818 4 o560 | (BT | oB61862 4 o560 4 o575 (872 1
s346534T 4 o545 | (560 | oB8T | (53 G8TA 4 (BT2 4 o869 4 (542 | GBD8gH20 4 (52T | o524
According to degree upper bounds Table @ deg(s5%9) = 27 < 37 highlighted
in blue, so s3% is removed. Then deg(s5%°s5%") < DEG(s5%0) + DEG(s34T) =
20 + 21 = 41 and 41 > 37, so the degree of s31°s3%7 is possibly bigger than 36
and left. After discarding all the state terms whose degrees are lower than 36,
2791 |deg>36 = 55105317 + 7735774, Continue substitution and expression process
for z721|deg>36 and finally, there remain no state terms with degree bigger than
36, so that the degree bound of z79; is 36. The details of the above step are

shown in Appendix [A]

A Key-recovery Attack on 721-round Trivium Similar to the IV setting
above for distinguishing 721-round Trivium, we set vo.;11 = 0 for j € [0,39] and
the other 40 IV bits are freedom variables.

According to our attack outline introduced in Section we need to deter-
mine the nullification scheme first. We express the output of 721-round Trivium
iteratively and calculate the frequency of state bits in the polynomial. Then we
choose 5290 as Pj, the output can be rewritten as z7o; = s2°°P, + P3. Multiply

1+ 5399 with 2791 such that the result is (1 + s3%0)270; = (1 + 539°) P3. We study

the reduced polynomial (1 + s2°)P;. In order to decrease the number of key
bits in s7%°, we choose to nullify vsg, ves and vr2, so that there are 37 freedom

variables. Set the degree bound to 32, we express (1+s3°) P53 using internal state

bits furthermore and discard state terms whose degree are lower than 32 + d;,
where d; is the corresponding degree reduction. We use IV presentation, com-
bined with Algorithm [4]in order to obtain the IV terms of degree higher than 32.
Finally, there is no IV term. Hence, we prove that the degree of (1 + s3%9)279; is
lower than 32. Then the sum of (1+45%%)z79; over any selected cube of dimension
32 is zero. This process can be executed in an hour in a PC.

Guess the key bit involved in s3°°. For right guess, sum over a cube of di-
mension 32 is zero while for wrong guesses, the result is 1 with probability %
The key bits involved in s3%° are shown in Table After 19 summations over
cubes of dimension 32, the 19 key bits can be recovered. The complexity is about
2 x 219 x 232 = 252 The other key bits can be recovered using brute force with
a complexity of 261. Hence, the total complexity of recovering all key bits of

721-round Trivium is 261.

5 Conclusions

In this paper, we propose the Boolean polynomial reduction techniques and
IV representation, which can be applicable to cryptanalysis of stream ciphers
based on NFSRs. These techniques can help obtain more accurate degree bounds.
We apply these techniques to the cryptanalysis of reduced round Trivium. For
recovering the key bits of Trivium, we propose a new nullification technique.
Combined with the distinguishers, we propose a key-recovery attack on 855 round
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Table 10. The key bits involved in s2°°.

Equivalent key bits

k1s, k17, k63, k61, k59, keo + k16k17, k35 + keoke1 + k62, k33 + ksskso + keo, k15 + kaoka1 + ka2,
kaokas + kaa, kas + krskza + k75 + ke1kez, kar + kr2k7s + k74 + keoke1 + k62, kae + kr1k72+

k73 + ksokeo, kas + krok71 + k72 + ksgkso + keo, ksakas + kaakeoke1 + kzake2 + k3sksokeo+
ksokesoke1 + ksokeokez + kaske1 + keoke1 + k214 kaskar + kas + k3o, kazksa + kazksokeo+

ksszke1 + ksaksskso + kssksokeo + kssksoke1 + kaakeo + ksokeo + k2o + kaskas + kar + k35 + ke2,
kiek17 + kiekazkas + kickaa + kirka1kaz + ka1kackas + karkazkas + ki7kas + kaokas + ka+
kagkag + k3o + kas + kas + krskra + k75 + ke1ke2 + ko, kiskie + kiskaikaz + kiskas + kickaokar +
kaokarkaz + kaokarkas + k1ekaz + ka1kaz + k2 + korkas + koo + kaa + kar + kr2kzs + kra+

keoke1 + ke2, k™ (A complex expression of key bits).

Trivium, where 3 equivalent key bits can be recovered with complexity of

274,

The other key bits can be recovered by brute force with a complexity of 277.

Furthermore, our flexible methods can be applied to attack on more round

of Trivium by adjustment of P;, which is our future work.
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A The Details of Determining the Degree Upper Bound
of Output for 721-round Trivium

For z791|deg>36 = s3%0s5%7 + 57735774, the 4 state bits s316, s347, 773, 974

can be expressed using state bits furthermore. Substitute the 4 state bits us-
ing the expression and discard the state terms whose degree is lower than
37, then the resulted z721|deg>36 = 5102571045178 + 516451055177 + s{B1 53825508 +
508254835007 + 538253835195 4 18150825196 Then the state bits involved in the
polynomial can be expressed using state bits, so that we can obtain 2791|deg>36 =
54125372 5373 4398 3300 4 o413 (371 (372 308 (399 | 413 373 (374 397 (308 | (414 372 (373 G307
5398 15403 404 §372 373 417 | (403 404 (373 (374 416 1 (403 404 372 (373 374 { 4403 (401 371
3735374 4 sA03 5404 G413 373374 | (403 (04 414 (372 373 4 404 (05 371 372 416 |-
54045105 4372 373 (415 4 (404 5405 (371 372 (373 | 04 5405 (370 372 (373 | 404 G405 412 (372
5373 4 54045405 5413 ;371 372
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Repeat the process above and we can obtain 2791 |deg>36 = 57 053715705293 5294
5295 5308 5304 | 52915292 (304 1293 204 3295 (303 $304 4 (290 4201 (292 (293 (204 (205 303 304 |
5289 52914202 293 (204 205 303 (304 | (201 (292 (286 293 (294 395 (303 (304 | 290 (201 287
5298 5294295 3303 (304 4 (200 201 (305 ;202 (294 (295 ;303 (304 4 (291 292 (304 202 (294 ;295
53035301 § 2003291 202,3292 (204,205 303 ;304 4 (289 (201 ;292 (292 394 (295 ;303 G304 |
52915292 4286 3292 (204 205 303 (304 (200 291 (287 (292 (294 295 303 $304 | (289 3290 ;304
5293 32943295 5304 4305 | (290 ;291 (303 203 394 295 (304 §305 4 (289 (290 ;291 293 ;294 (205
53045305 | 288 290 4291 3293 (204,205 304 (305 4 (290 (201 (385 (295 294 (295 (304 (305 |
5289 5290 4286 293 (204 1205 304 (305 (289 290 (304 292 (294 295 304 4305 | (290 (291 ;303
5292 5294295 ;304 4305 1 (280 ;200 3291 ;202 294 4295 (304 (305 4 (288 200 (201 ;202 294 (295
53045305 | 2003291285 292 204,205 304 4305y (289 ;200 (286 4292 294 (295 ;304 G305 |
5289 290 304 5294 4295 ;206 302 303 | 3200 291 (303 4294 4295 296 5302 (303 | (289 (290 (291
52945295 4296 302 (303 1 (288 (200 (291 ;204 295 (296 ;302 (303 4 (290 201 (285 ;204 (295 ;296
53025303 J 289 290 (286 ;294 205 ;206 (302 4303y (289 ;290 304 4293 295 (296 302 (303 |
5290 3291 4303 3293 4295 ;296 (302 ;303 | (289 (290 ;291 ;293 ;295 3296 ;302 303 | (288 4290 3291
5298 5295 4296 3302 (303 1 (200 201 (285 ;203 5295 4296 ;302 (303 4 (280 200 (286 203 5295 ;296
53025303 | 288 5289 4303 204 (205 1206 303 ;304 4 (289 ;200 ;302 (294 3295 (296 303 304 |
5288 289 290 5294 4295 ;206 303 304 | 28T (289 (290 (204 1295 1296 303 (304 | (289 (290 (284
52945295 4296 3303 (304 1 (288 (289 (285 (204 295 (296 ;303 (304 1 (288 289 (303 4203 (295 ;296
53035304 § 2895290 43023293 (205 ;206 303 ;304 4 (288 (289 290 4293 (295 ;296 303 G304 |
5287 5289 4290 3293 (205 ;206 3303 304 (289 290 (284 3393 (295 ;206 (303 §304 | (285 (289 (285
52935295 4296 3303 ;304

Substitute once again and there remains no state term, so that the degree
of z791 is lower than 37, which can be derived as distinguishers with lower com-

plexity.
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