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Abstract

We generalize Banaszczyk’s seminal tail bound for the Gaussian
mass of a lattice to a wide class of test functions. We therefore obtain
quite general transference bounds, as well as bounds on the number
of lattice points contained in certain bodies. As example applications,
we bound the lattice kissing number in `p norms by e(n+o(n))/p for
0 < p ≤ 2, and also give a proof of a new transference bound in the
`1 norm.

1 Introduction

A lattice Λ ⊂ Rn is the set of integral linear combinations of some basis
{b1, . . . , bn} of Rn. The dual lattice

Λ∗ = {x ∈ Rn : x · λ ∈ Z, ∀λ ∈ Λ}

is the set of vectors that have integer inner product with all lattice vec-
tors, and is itself a lattice satisfying (Λ∗)∗ = Λ. A ubiquitous classical tool
for studying lattices (with many applications in fields as diverse as number
theory and computer science) is the Gaussian mass∑

λ∈Λ

e−π‖λ+v‖22 ,

∗Supported by NSF grant CNS-1526333.
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for v ∈ Rn, where ‖x‖2 := (x2
1 + x2

2 + · · · + x2
n)1/2 is the Euclidean norm of

x = (x1, . . . , xn) ∈ Rn. (See, for example, [Jac, Rie, MO, Ban93, Cai, BPY,
SS,Mum,MR,Katz,Reg,RS,Ste].) The case of v = 0 specializes to the usual
θ-function of the lattice Λ.

Banaszczyk [Ban93] proved an important tail bound on the Gaussian mass
of lattice points outside of a ball,∑

λ∈Λ

‖λ+v‖2≥ r

e−π‖λ+v‖22 ≤ (2πn−1er2)n/2 e−πr
2
∑
λ∈Λ

e−π‖λ‖
2
2 (1.1)

for any r ≥
√

n
2π

. He then used this bound to prove nearly optimal trans-
ference theorems, which relate the geometry of Λ to that of Λ∗ (see Sec-
tion 3.1). Both the tail bound and the transference theorems have since
found many additional applications in the study of the geometry of lat-
tices (e.g., [Ban95,Cai]), algorithms for computational problems over lattices
(e.g., [Kle, LLM, NV, ADRS]), the complexity of such problems (e.g., [AR,
MR, Reg]), and lattice-based cryptography (e.g., [GPV, Gen, Pei]), among
other fields.

Given its importance, we find it natural to generalize (1.1) to sums of the
form ∑

λ∈Λ

λ+v/∈K

f(λ+ v) ,

for subsets K ⊂ Rn, where f : Rn → R≥0 is any test function satisfying
certain analytic conditions. For example, our application in Theorem 3.9
uses the function f(x1, . . . , xn) =

∏
i(1 + 2 cosh(2πxi/

√
3))−1, while our

application in Theorem 3.12 uses f(x) = e−‖x‖
p
p for 0 < p ≤ 2, where

‖x‖p = ‖(x1, . . . , xn)‖p := (|x1|p + · · · + |xn|p)1/p. To that end, we gener-
alize Banaszczyk’s elegant Fourier-analytic proof of (1.1) into a more flexible
framework (see Section 2). For example, we prove the tail bound

(Theorem 2.3, Part 2):
∑
λ∈Λ
λ+v/∈K

f(λ+ v) ≤ νf (K)
∑
λ∈Λ

f(λ) (1.2)

for any subset K ⊂ Rn, where

νf (K) := inf
0<u≤1

sup
x /∈K

f(x)

unf(ux)
. (1.3)
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(See Theorem 2.3 for precise conditions on the function f .) We also show
in Corollary 2.12 that the bound (1.2) takes a particularly nice form for func-
tions (such as Gaussians) that satisfy a certain concavity condition (see (2.11))
and depend only on the “norm”

‖x‖K := min{r : x ∈ rK} (1.4)

for any compact set K ⊂ Rn containing the origin in its interior and which
is starlike with respect to the origin1.

Next, following Banaszczyk’s approach [Ban93] we use (1.2) to show a
general transference bound in Theorem 2.16, which relates the geometry of
Λ and Λ∗. To that end, for any starlike compact set K ⊂ Rn with the origin
in its interior, and any lattice Λ ⊂ Rn, we define

σK(Λ) := min
λ∈Λ 6=0

‖λ‖K , (1.5)

and ρK(Λ) := max
v∈Rn

min
λ∈Λ
‖λ− v‖K . (1.6)

I.e., σK(Λ) is the length of the shortest non-zero vector and ρK(Λ) is the
covering radius in the ‖ · ‖K “norm.” We show that

(Theorem 2.16): σK(Λ) ρK′(Λ
∗) ≤ 1 (1.7)

for any suitable sets K,K ′ ⊂ Rn such that 2νf (K) + νf̂ (K
′) < 1 for some

function f satisfying certain analytic conditions. In particular, taking f to
be the Gaussian and K = K ′ to be a Euclidean ball of a certain radius
immediately recovers Banaszczyk’s Euclidean transference bound:

(
min
λ∈Λ 6=0

‖λ‖2

)(
max
v ∈Rn

min
λ∈Λ∗

‖λ− v‖2

)
≤ n

2π
+

3
√
n

π
. (1.8)

(Banaszczyk actually stated a slightly weaker result, but he noted that his
proof actually yields something like (1.8). See Section 3.1.)

We then derive applications of (1.2) and (1.7) with functions f other than
Gaussians. In Theorem 3.12, we use the functions

f(x) = e−‖x‖
p
p (1.9)

1That is, for each r > 0 we have x /∈ rK ⇐⇒ ‖x‖K > r.
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to prove bounds on the lattice kissing number (also known as the lattice
Hadwiger number) of the `p balls with 0 < p ≤ 2. Namely, we show that for
such p

(Theorem 3.12): #{λ ∈ Λ : ‖λ‖p = σp(Λ)} ≤ O(n
p
en/p) , (1.10)

where σp(λ) = minλ∈Λ6=0
‖λ‖p. To the authors’ knowledge, these are the best

bounds presently known for 1/ log 2 < p < 2 and for 0 < p ≤ 1 (in particular,
including the case of p = 1). (See the discussion above Theorem 3.12.)
Theorem 3.12 actually gives a more general result: a bound on the number of
non-zero vectors whose `p norm is within some factor u ≥ 1 of the minimal
value.

Finally, as a proof of concept of the applicability of our general transfer-
ence theorem, we use the function f(x1, . . . , xn) =

∏
i(1+2 cosh(2πxi/

√
3))−1

to prove a transference bound in the `1 norm,

(Theorem 3.9): ( min
λ∈Λ 6=0

‖λ‖1)(max
v∈Rn

min
λ∈Λ∗
‖λ− v‖1) < c1n

2(1 + o(1)) , (1.11)

with c1 ≈ 0.15427. This sharpens — though just barely — the bound that
follows immediately from (1.8) together with the Cauchy-Schwarz inequality
‖x‖1 ≤

√
n‖x‖2, which gives c1 = 1

2π
+ o(1) ≈ 0.159155 + o(1).2

It is a pleasure to thank our colleagues Divesh Aggarwal, Tamar Lichter,
Chris Peikert, Oded Regev, Konrad J. Swanepoel, and Ramarathnam Venkate-
san for their helpful discussions and comments.

2 Poisson summation and tail bounds

We begin with the following version of the Poisson summation formula:∑
λ∈Λ

f(λ+v
t

) =
tn

|Λ|
∑
λ∈Λ∗

f̂(tλ) e(tλ · v) , t > 0 and v ∈ Rn , (2.1)

2In [Ban95], Banaszczyk proved more general transference bounds that apply for ar-
bitrary `p norms for 1 ≤ p ≤ ∞. He includes there a bound of the form (1.11) with no
constant c1 specified.
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where e(y) := e2πiy and f̂(x) :=
∫
Rn f(r)e(−r · x)dr is the Fourier transform

of f : Rn → C. Here in order to justify applying this formula we assume that

(i) f is continuous,

(ii) f(x) = O((1 + ‖x‖2)−n−δ) for some δ > 0, and

(iii) the right-hand side of (2.1) is absolutely convergent.

(2.2)

(See Part 2 of Theorem A.1 in Appendix A for a proof that these conditions
are sufficient for (2.1) to hold.)

The following theorem generalizes (and slightly improves3) the main tail
bound in Banaszczyk’s seminal work [Ban93].

Theorem 2.3 (Generalized tail bounds). Assume f > 0 satisfies conditions

(2.2), that f̂ ≥ 0, and that f̂ is monotonically non-increasing on each ray,

i.e., f̂(tv) ≤ f̂(v) for all v ∈ Rn and t ≥ 1.4 Then the following statements
hold for any lattice Λ ⊂ Rn.

1. For any v ∈ Rn and t ≥ 1,∑
λ∈Λ

f(λ+v
t

) ≤ tn
∑
λ∈Λ

f(λ) . (2.4)

2. For any subset K ⊂ Rn and any v ∈ Rn,∑
λ∈Λ

λ+v/∈K

f(λ+ v) ≤ νf (K)
∑
λ∈Λ

f(λ) , (2.5)

where

νf (X) := inf
0<u≤ 1

sup
x /∈K

f(x)

unf(ux)
, (2.6)

provided the right-hand side is finite.

3. If no non-zero lattice vectors lie in K ⊂ Rn, then∑
λ∈Λ∗

f̂(λ+ v) ≥ (1− 2νf (K))
∑
λ∈Λ∗

f̂(λ) , (2.7)

provided that the left-hand side is convergent and νf (K) <∞.
3Banaszczyk proved a slightly weaker result for the case when v 6= 0, but it is clear

from his proof that this is unnecessary.
4Note that the non-negativity of f̂ implies 0 < f ≤ f(0), and that condition (2.2)(iii)

is equivalent to the convergence of the right-hand side of (2.1) at v = 0.
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Proof. Part 1 follows immediately from the Poisson summation formula (2.1),
the assumptions, and a second application of (2.1):∑

λ∈Λ

f(λ+v
t

) ≤ tn

|Λ|
∑
λ∈Λ∗

f̂(tλ) ≤ tn

|Λ|
∑
λ∈Λ∗

f̂(λ) = tn
∑
λ∈Λ

f(λ) , (2.8)

for any v ∈ Rn and t ≥ 1.
For Part 2, we have for 0 < u ≤ 1 that∑

λ∈Λ

f(u(λ+ v)) ≥
∑
λ∈Λ

λ+v/∈K

f(u(λ+ v))

≥ inf
x/∈K

f(ux)

f(x)

∑
λ∈Λ

λ+v/∈K

f(λ+ v) .
(2.9)

At the same time, we have
∑

λ∈Λ f(u(λ + v)) ≤ u−n
∑

λ∈Λ f(λ) by Part 1,
from which (2.5) is immediate.

Finally, for Part 3 consider the Poisson summation formula (2.1) applied
in the case t = 1 and v = 0 to the function f(x)e(−x · w) instead of f(x),
where w is an arbitrary vector in Rn. The Fourier transform of this function
is f̂(x + w). The assumption that the left-hand side of (2.7) converges thus
shows that conditions (2.2) hold for f(x)e(−x · w), and hence∑

λ∈Λ∗

f̂(λ+ w) = |Λ|
∑
λ∈Λ

f(λ) e(−λ · w)

≥ |Λ| f(0) − |Λ|
∑
λ∈Λ
λ/∈K

f(λ)

= |Λ|
∑
λ∈Λ

f(λ) − 2 |Λ|
∑
λ∈Λ
λ/∈K

f(λ)

≥ (1− 2νf (K))|Λ|
∑
λ∈Λ

f(λ)

= (1− 2νf (K))
∑
λ∈Λ∗

f̂(λ) , (2.10)

as claimed.
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Many functions f of interest (and all of the functions that we consider in
the sequel) satisfy an additional concavity property:

f(ux)

f(x)
≥ f(utx)

f(tx)
(2.11)

for any x ∈ Rn and u, t ∈ (0, 1]. When this is the case and K is sufficiently
nice, the supremum in the definition of νf (K) can be replaced by a maximum
over the boundary of K. If the function f also factors through the norm
function (1.4), then νf (K) takes a particularly nice form, as the following
corollary shows. (For example, Banaszczyk uses the fact that the Gaussian
satisfies (2.11) and that it factors through the norm function of the `2 ball
in proving his tail bound [Ban93].)

Corollary 2.12. Let K ⊂ Rn be a compact set whose interior contains the
origin and which is starlike with respect to the origin. Let g : R≥0 → R>0

be an injective function for which the composition f(x) = g(‖x‖K) satis-
fies (2.11) and the requirements of Theorem 2.3. Then for any r > 0,

νf (rK) ≤ µg(r) , (2.13)

where

µg(r) :=
g(r)

sup0<u≤1 u
ng(ur)

. (2.14)

In particular, for any lattice Λ ⊂ Rn,∑
λ∈Λ

‖λ+v‖K ≥ r

f(λ+ v) ≤ µg(r)
∑
λ∈Λ

f(λ) . (2.15)

Proof. Since g is injective, we have that f(y) = g(s) if and only if s = ‖y‖K .
Thus for any fixed u > 0 the value of f(ux) = g(‖ux‖K) = g(u‖x‖K) depends
only on ‖x‖K . This implies that

νf (rK) = inf
0<u≤ 1

sup
x/∈rK

f(x)

unf(ux)
= inf

0<u≤ 1
sup
s>r

g(s)

ung(us)
,

where in the last equality we have used the fact K is starlike. Finally,
by (2.11), we see that for any s > r, g(s)/g(us) ≤ g(r)/g(ur), so that
νf (rK) ≤ µg(r). The result then follows immediately from Part 2 of Theo-
rem 2.3.
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From Theorem 2.3, we derive the following general transference bound.
Recall the definition of νf (·) from (1.3) and the definitions of σK(·) and ρK(·)
from (1.5)-(1.6).

Theorem 2.16 (Generalized transference bound). Assume that f, f̂ > 0
each satisfy all conditions of Theorem 2.3 (i.e., (2.2) and the monotonically
non-increasing on rays condition). Suppose that K,K ′ ⊂ Rn are compact
sets with the origin in their interiors and which are starlike with respect to
the origin, such that

2νf (K) + νf̂ (K
′) < 1 . (2.17)

Then for any lattice Λ ⊂ Rn

σK(Λ) ρK′(Λ
∗) ≤ 1 . (2.18)

Proof. It follows from definitions (1.5) and (1.6) that the left-hand side of
(2.18) is unchanged if Λ is replaced by a scaling tΛ. We thus assume, as we
may by rescaling, that σK(Λ) = 1. By definition, sΛ then has no non-zero
vectors in K for any s > 1. Part 3 of Theorem 2.3, when applied to the
lattice sΛ (which has dual lattice (sΛ)∗ = s−1Λ∗), then shows that∑

λ∈Λ∗

f̂(s−1(λ+ v)) ≥ (1− 2νf (K))
∑
λ∈Λ∗

f̂(s−1λ) , (2.19)

for any v ∈ Rn and any s > 1.
By Part 2 applied to f̂ , s−1Λ∗, and K ′,∑

λ∈Λ∗
s−1(λ+v) /∈K′

f̂(s−1(λ+ v)) ≤ νf̂ (K
′)
∑
λ∈Λ∗

f̂(s−1λ) . (2.20)

Since νf̂ (K
′) < 1− 2νf (K), we have∑

λ∈Λ∗
s−1(λ+v) /∈K′

f̂(s−1(λ+ v)) <
∑
λ∈Λ∗

f̂(s−1(λ+ v)) (2.21)

for all v ∈ Rn. Hence for any v ∈ Rn there must exist some λ ∈ Λ∗ such that
λ + v ∈ sK ′; that is, ρK′(Λ

∗) ≤ s. Since this holds for all s > 1, we deduce
that ρK′(Λ

∗) ≤ 1, as needed.
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3 Applications of Theorems 2.3 and 2.16

In this section we consider various admissible pairs of functions. We begin
first with some facts about the Fourier transform in n = 1 dimension:

• if f(x) = e−πx
2
, then f̂(x) = f(x);

• if f(x) = sech(πx), then f̂(x) = f(x);

• if f(x) = (1 + 2 cosh(2πx/
√

3))−1, then f̂(x) = f(x);

• if f(x) = e−|x|, then f̂(x) = 2
1+4π2x2 ; and

• if f(x) = e−|x|
p

with 0 < p ≤ 2, then f̂ ≥ 0 (see [EOR, Lemma 5]).

In the rest of this section we more generally study functions of the form

f(x1, . . . , xn) =
n∏
j=1

f(xj) , f̂(x1, . . . , xn) =
n∏
j=1

f̂(xj) , (3.1)

where each f is one of these examples (one could further consider functions
of the form

∏n
j=1 fj(xj), though we shall not do so here).

3.1 Recovering Banaszczyk’s bounds [Ban93]

As our first example, we take f(x) = f̂(x) = e−π‖x‖
2
2 to be a Gaussian, as

in Banaszczyk’s original application. From this, we immediately derive what
is essentially Banaszczyk’s original transference theorem for the Euclidean
norm [Ban93, Theorem 2.2].5

Theorem 3.2 (`2 transference bound). For any Λ ⊂ Rn, let σ2(Λ) :=
minλ∈Λ6=0

‖λ‖2 denote the length of the its shortest non-zero vector in the
Euclidean norm, and let ρ2(Λ∗) := maxv∈Rn minλ∈Λ∗ ‖λ− v‖2 denote the cov-
ering radius of its dual lattice in the Euclidean norm. Then

σ2(Λ) ρ2(Λ∗) ≤ n

2π
+

3
√
n

π
. (3.3)

5Though Banaszczyk’s theorem states that σ2(Λ)ρ2(Λ∗) ≤ n/2, he remarks towards the
end of his paper that a more careful analysis yields a bound like (3.3). He also proves that
there exist lattices Λ in arbitrarily large dimensions with σ2(Λ)ρ2(Λ∗)� n. In fact, his n/2
bound has the optimal constant C among bounds of the form Cn, since σ2(Z)ρ2(Z) = 1/2.
He also proved additional transference bounds relating successive minima, a topic which
we have chosen to omit for the sake of brevity.
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Proof. Let f(x) = f̂(x) := e−π‖x‖
2
2 , τ := 1

2
+ 3√

n
, r :=

√
τn/π, and K :=

{x ∈ Rn : ‖x‖2 ≤ 1}. By Corollary 2.12,

νf (rK) ≤ e−πr
2

sup0<u≤1 u
ne−πu2r2 = (2e1−2ττ)n/2 = (1 + 6/

√
n)n/2e−3

√
n .

A straightforward computation then shows that 3νf (rK) < 1. Applying
Theorem 2.16, we see that σrK(Λ)ρrK(Λ∗) ≤ 1. The result then follows
by the scaling formulas σ2(Λ) = rσrK(Λ) and ρ2(Λ∗) = rρrK(Λ∗), so that
σ2(Λ)ρ2(Λ∗) ≤ r2, as was to be shown.

It is interesting to speculate whether or not (3.3) can be improved by using
carefully optimized test functions. Banaszczyk’s choice of the Gaussian ap-
pears to be particularly natural among functions of the form f(x) = g(‖x‖2),
with g fixed and the dimension n varying. This is because such f which are
bounded, continuous, and integrable on Rn, and which furthermore have non-
negative Fourier transform f̂ , can be expressed using Schoenberg’s theorem
as

f(x) =

∫ ∞
0

e−πt
2‖x‖22 dα(t) (3.4)

for some nonnegative Borel measure α on (0,∞). By the Fubini theorem,
functions of the form (3.4) are integrable on Rn if and only if

∫∞
0
t−ndα(t) <

∞, in which case the Fourier transform

f̂(r) =

∫ ∞
0

e−π‖r‖
2
2/t

2

t−n dα(t) (3.5)

has a similar form. Gaussians correspond to when the measure α is concen-
trated at a single point. When the measure has larger support, a heuristic
argument replacing these integrals by finite sums of Gaussians shows that
the best-possible constants in (3.3) are achieved for a single Gaussian. This
suggests that improving (3.3) would require functions beyond simply those
of the form f(x) = g(‖x‖2), where g is independent of n.

3.2 A transference bound in the `1 norm

In this subsection, we take

f(x) = f(x1, . . . , xn) :=
n∏

i= 1

1

1 + 2 cosh(2πxi/
√

3)
. (3.6)
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As noted above, this function possesses the Fourier duality f̂(x) = f(x) in
analogy to Gaussians. However, its asymptotics log(f(x)) ≈ −2π‖x‖1/

√
3

are related to the `1 norm (as opposed to the `2 norm for Gaussians).

Lemma 3.7. Let

C∗ := max
z≥0

(
z − z tanh(z)

1 + sech(z)/2

)
≈ 0.42479 ,

and let
Kα := {x ∈ Rn : ‖x‖1 ≤ (1 + C∗)αn}

be the `1 ball of radius (1 + C∗)αn. Then for any α >
√

3
2π

,

νf (Kα) ≤
(2πα√

3

)n
e
−( 2πα√

3
−1)n

. (3.8)

Proof. Let x = (x1, . . . , xn) ∈ Rn. By differentiating log f(ux) with respect
to u, we see that

log(f(ux))− log(f(x)) =
2π√

3

∑
i

∫ 1

u

xi tanh(2πvxi/
√

3)

1 + sech(2πvxi/
√

3)/2
dv

≥ (1− u)2π√
3

·
∑
i

xi tanh(2πuxi/
√

3)

1 + sech(2πux/
√

3)/2
,

where the inequality follows from the fact that the integrand is monotonically
non-decreasing in v.

Next, we note that

|xi| −
xi tanh(2πuxi/

√
3)

1 + sech(2πuxi/
√

3)/2
≤
√

3

2πu
·max
z≥0

(
z − z tanh(z)

1 + sech(z)/2

)
=

√
3

2πu
· C∗ .

Therefore,

log(f(ux))− log(f(x)) >
(1− u)2πn√

3

(
‖x‖1

n
−
√

3C∗

2πu

)
.

Taking u =
√

3
2πα

< 1, it follows that for any x /∈ Kα (i.e., ‖x‖1 > (1 +C∗)αn)

un
f(ux)

f(x)
>

(2πα√
3

)−n
e

( 2πα√
3
−1)n

,

which immediately implies the result.
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Theorem 3.9 (`1 transference bound). For any lattice Λ ⊂ Rn, let σ1(Λ) :=
minλ∈Λ6=0

‖λ‖1 denote the length of its shortest non-zero vector in the `1 norm,
and let ρ1(Λ∗) := maxv∈Rn minλ∈Λ∗ ‖λ− v‖1 denote the covering radius of its
dual lattice in the `1 norm. Then

σ1(Λ) ρ1(Λ∗) < 0.15427n2 ·
(

1 + 2π
√

3
n

)2

. (3.10)

Proof. Let α :=
√

3
2π

+ 3√
n
, and set Kα := {x ∈ Rn : ‖x‖1 ≤ (1 + C∗)αn} and

C∗ = 0.42479 · · · as in the statement of Lemma 3.7. Applying the lemma,
we have

νf (Kα) ≤
(2πα√

3

)n
· e−( 2πα√

3
−1)n

<
1

3
,

where the second inequality follows by a straightforward computation. There-
fore, 3νf (Kα) < 1. It is straightforward to verify that f = f̂ obeys the
assumptions of Theorem 2.16, and hence

σKα(Λ)ρKα(L) ≤ 1 .

We then obtain the result by simply noting that σ1(Λ) = (1+C∗)αn·σKα(Λ) ,
and similarly ρ1(Λ∗) = (1 +C∗)αn · σKα(Λ), so that their product is at most

(1 + C∗)2α2n2 < 0.15427n2 · (1 + 2π
√

3/n)2 ,

as needed.

3.3 Supergaussians, `p norms for 0 < p ≤ 2, and the
kissing number

Here, we consider the following specialization of Theorem 2.3 to functions
of the form f(x) := exp(−‖x‖pp) = e−(|x1|p+···+|xn|p), which are sometimes
referred to as “supergaussians.”

Lemma 3.11. Let 0 < p ≤ 2 and fp(x) := exp(−‖x‖pp). Then∑
λ∈Λ

‖λ+v‖p≥ t(n/p)1/p

fp(λ+ v) ≤
(
etpe−t

p)n/p ∑
λ∈Λ

fp(λ)

for any t ≥ 1.
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Proof. We apply Corollary 2.12 to f = fp. It is well-known (see, for example,
[EOR, Lemma 5]) that the single-variable function x 7→ e−|x|

p
has the form

(3.4). Since it is integrable, its Fourier transform has the form (3.5) with
n = 1, and is in particular non-negative and non-decreasing on rays. Fur-
thermore, a straightforward computation shows that fp satisfies (2.11). The
only remaining condition to show is (2.2)(iii), which is the absolute conver-
gence of the right-hand side of the Poisson summation formula. This follows
from the fact that the Fourier transform

∫
R e
−|x|pe−2πirxdx of e−|x|

p
is asymp-

totic to −π−p−
1
2 |r|−p−1Γ( p+1

2 )
Γ(− p2)

for 0 < p < 2 (as can be seen using standard

techniques such as stationary phase or Mellin tranforms). It follows that for
r := t(n/p)1/p, ∑

λ∈Λ
‖λ+v‖p≥r

fp(λ+ v) ≤ µp(r)
∑
λ∈Λ

fp(λ)

with

µp(r) :=
e−r

p

sup0<u≤1 u
ne−(ur)p

.

A simple computation shows that µp(r) = (eprp/n)n/pe−r
p
.

From this, we derive an upper bound of en/p+o(n/p) on the lattice kissing
number or lattice Hadwiger number — the number of non-zero lattice points
with minimal length — in `p norms for 0 < p ≤ 2. To the authors’ knowledge,
the only previously known bounds on these quantities for p 6= 2 were the
trivial bounds 2(2n − 1) for 1 < p < 2 and 3n − 1 for p = 1. (Much better
bounds are known for p = 2 using sophisticated techniques [KL], and as far
as we know nothing was known for p < 1.) Talata also provided evidence for
a conjectured upper bound of 1.5n+o(n) for the p = 1 case. See [Swa] for a
recent survey of such results.

We actually prove a slightly more general bound of eu
pn/p+o(upn/p) on

the “u-handshake number” number, which is the number of non-zero lat-
tice points whose length is within a factor u ≥ 1 of the minimal length.6

Thus the kissing number is simply the 1-handshake number.

6We note that this quantity must be unbounded as p → 0, as even in two dimensions
there exist lattices with infinitely many non-zero lattice points λ = (λ1, . . . , λn) such that∏

i |λi| is minimal. (E.g., take the canonical embedding of a ring the integers in a number
field with infinitely many units.) Since ‖λ‖pp ∼ n+p log

∑
i |λi| as p→ 0, this implies that

the u-handshake number for such lattices and u > 1 is unbounded as p→ 0.

13



Theorem 3.12 (`p handshake number bound). For any 0 < p ≤ 2 and
lattice Λ ⊂ Rn, let σp(Λ) := minλ∈Λ 6=0

‖λ‖p. Then

#{λ ∈ Λ 6=0 : ‖λ‖p ≤ uσp(Λ)} ≤ 10 eu
p
n

p
eu

pn/p (3.13)

for any u ≥ 1. In particular, when u = 1 this shows that the lattice kissing
number in the `p norm is O(n

p
en/p) for all 0 < p ≤ 2.

Proof. Let fp(x) := exp(−‖x‖pp). By scaling the lattice appropriately, we

may assume that σp(Λ) = t(n
p
)1/p for t := (1 + p

n
)1/p. The Theorem shows∑

λ∈Λ6=0

fp(λ) =
∑
λ∈Λ

‖λ‖p≥σp(Λ)

fp(λ) ≤
(
etpe−t

p)n/p ∑
λ∈Λ

fp(λ) .

Noting that
∑

λ∈Λ fp(λ) = 1 +
∑

λ∈Λ 6=0
fp(λ) and rearranging, we see that

∑
λ∈Λ 6=0

fp(λ) ≤
(
etpe−t

p)n/p
1−

(
etpe−tp

)n/p ≤ 10n
p

(
etpe−t

p)n/p
,

where in the last inequality we have used the fact 1 − (1+x−1)x

e
≥ 1

10x
for

x = n
p
≥ 1

2
. Let S denote the set of λ ∈ Λ 6=0 with ‖λ‖p ≤ uσp(Λ) = ut(n

p
)1/p.

Then ∑
λ∈Λ6=0

fp(λ) ≥
∑
λ∈S

fp(λ) ≥ e−u
ptpn/p |S| .

Combining the two inequalities, rearranging, and then using the fact that
(1 + p

n
)n/p ≤ e, we obtain

|S| ≤ 10n
p

(
etpe(up−1)tp

)n/p ≤ 10n
p
e(1+n/p)up ,

as was to be shown.
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A The Poisson Summation Formula

Here, we state and prove a version of the Poisson summation formula flexible
enough for our applications. The notation ‖x‖ = ‖x‖2 refers to the `2 norm.

Theorem A.1. Let f(x) denote a continuous, complex-valued function on
Rn which is O((1 + ‖x‖)−n−δ) for some δ > 0.

1. The Fourier inversion formula

f(x) =

∫
Rn
f̂(r) e(r · x) dr (A.2)

holds provided f ’s Fourier transform f̂(x) =
∫
Rn f(r)e(−r · x)dr is

integrable (i.e.,
∫
Rn |f̂(x)|dx <∞).

2. The Poisson summation formula∑
λ∈Λ

f(λ+v
t

) =
tn

|Λ|
∑
λ∈Λ∗

f̂(tλ) e(tλ ·v) , t > 0 and v ∈ Rn , (A.3)

holds provided the right-hand side converges absolutely.
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Both parts of the Theorem are well-known and classical if f is a Schwartz
function, or even if both f(x) and f̂(x) merely satisfy the O((1 + ‖x‖)−n−δ)
bound for some δ > 0 (see, for example, [Coh, Theorem 2.1]). Thus the main

point here is to relax the condition on the decay of f̂ , which we will need in
Section 3.3.

Proof. Let φ ≥ 0 denote a fixed, smooth function supported in the unit ball
of Rn and having total integral

∫
Rn φ(x)dx = 1. For any 0 < ε < 1 define

the rescaled function φε(x) = ε−nφ(x/ε), which also has total integral 1. We
have the estimate

|φ̂(r)| ≤
∫
Rn
φ(x) dx = 1 = φ̂(0) (A.4)

by the non-negativity of φ.
The convolution

fε(x) :=

∫
Rn
f(y)φε(x− y) dy (A.5)

is smooth. Since
∫
Rn φ(x)dx = 1,

fε(x)−f(x) =

∫
Rn

(f(y)−f(x))φε(x−y) dy ≤ max
y∈Bε(x)

|f(y)−f(x)| (A.6)

where Bε(x) denotes the closed `2 ball of radius ε around x. Therefore

lim
ε→0

fε(x) = f(x) (A.7)

by the assumed continuity of f .
We may bound fε(x) using the compact support of φ as

|fε(x)| � ε−n
∫
Rn

(1+‖y‖)−n−δ φ
(
x− y
ε

)
dy � ε−n

∫
Bε(x)

(1+‖y‖)−n−δ dy .

(A.8)
The boundedness of the integrand shows that this is O(1). For ‖x‖ ≥ 2 and
y ∈ Bε(x), we have ‖y‖ ≥ ‖x‖ − ε ≥ 1

2
‖x‖, and thus the right-hand side

of (A.5) is O(‖x‖−n−δ). Combining these two estimates, we see that

fε(x) = O((1 + ‖x‖)−n−δ) , (A.9)

independently of ε – the same bound that we assumed f(x) satisfies.
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In particular the Fourier transform of fε is well-defined, and a change of
variables shows it factors as

f̂ε(x) = f̂(x) φ̂ε(x) = f̂(x) φ̂(εx) . (A.10)

The decay assumption on f implies that it is integrable, so that f̂(x) is
bounded. Since φ and all its derivatives have compact support, the Riemann-
Lebesgue Lemma implies that φ̂(x) decays faster than the reciprocal of any
polynomial as ‖x‖ → ∞. It follows that

f̂ε(x) = Oε((1 + ‖x‖)−n−δ) , (A.11)

where the last subscript indicates that the implied constant depends on ε.
The Fourier inversion formula

fε(x) =

∫
Rn
f̂ε(r) e(r · x) dr =

∫
Rn
f̂(r) φ̂(εr) e(r · x) dr (A.12)

is therefore valid for fε(x).

If f̂(r) is integrable, then the bound φ̂(εr) ≤ 1 from (A.4) and dominated

convergence imply that the right-hand side of (A.12) converges to
∫
Rn f̂(r)e(r·

x)dr in the limit as ε→ 0. Combined with (A.7), this proves (A.2) and hence
Part 1.

To finish, we consider Part 2. Both fε(x) and f̂ε(x) satisfy the admissi-
bility bound O((1 + ‖x‖)−n−δ) by (A.9) and (A.11). Therefore the Poisson
summation formula (A.3) is valid with f replaced by fε ([Coh, Theorem 2.1]):∑
λ∈Λ

fε(
λ+v
t

) =
tn

|Λ|
∑
λ∈Λ∗

f̂(tλ) φ̂(εtλ) e(tλ·v) , t > 0 and v ∈ Rn , (A.13)

where we have used the factorization (A.10). We now again use (A.4) and
dominated convergence to show that the right-hand side of (A.13) converges
to the right-hand side of (A.3)) as ε → 0, using the assumed absolute con-
vergence of the latter. To conclude, we apply dominated convergence to the
left-hand side (using the bound (A.9) and the point-wise limit (A.7)) to show
that the left-hand side converges

∑
λ∈Λ f(λ+v

t
), as was to be shown.
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