
Analysis of Deutsch-Jozsa Quantum Algorithm

Zhengjun Cao1, Jeffrey Uhlmann2, Lihua Liu3,∗

Abstract. Deutsch-Jozsa quantum algorithm is of great importance to quantum

computation. It directly inspired Shor’s factoring algorithm. In this note, we re-

mark that Deutsch-Jozsa algorithm has confused two unitary transformations: one

is performed on a pure state, the other is performed on a superposition. In the past

decades, no constructive specification on the essential unitary operator performed

on a superposition has been found. Thus, we think the algorithm needs more speci-

fications so as to facilitate the construction of the wanted quantum oracle.

Keywords: quantum computing, Deutsch-Jozsa algorithm, Shor’s algorithm,

superposition.

1 Introduction

Deutsch-Jozsa algorithm [5] is one of the first examples of a quantum algorithm that is exponen-

tially faster than any possible deterministic classical algorithm. The algorithm has become the

cornerstone for quantum computation and inspired Grover’s algorithm [7] and Shor’s algorithm

[13]. In this note, we want to point out that Deutsch-Jozsa algorithm has confused two unitary

transformations: one is performed on a pure state, the other is performed on a superposition.

So far, no constructive specifications on the essential unitary transformation performed on a

superposition have been found. We believe this fact renders the algorithm somewhat dubious.

2 Preliminaries

A qubit is a quantum state |Ψ〉 of the form |Ψ〉 = a|0〉 + b|1〉, where the amplitudes a, b ∈ C
such that |a|2 + |b|2 = 1, |0〉 and |1〉 are basis vectors of the Hilbert space. Two quantum

mechanical systems are combined using the tensor product. For example, a system of two

1Department of Mathematics, Shanghai University, Shanghai, 200444, China.
2Department of Computer Science, University of Missouri, Columbia, USA.
3Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, China. ∗ liulh@shmtu.edu.cn

1

qubits |Ψ〉 = a1|0〉+ a2|1〉 and |Φ〉 = b1|0〉+ b2|1〉 can be written as

|Ψ〉|Φ〉 =

(
a1
a2

)
⊗
(
b1
b2

)
=


a1b1

a1b2

a2b1

a2b2


Its shorthand notation is |Ψ,Φ〉.

Operations on a qubit are described by 2×2 unitary matrices. Of these, the most important

is the Hadamard gate H = 1√
2

[
1 1

1 −1

]
. Clearly, H|0〉 = 1√

2
(|0〉+ |1〉), H2 =

[
1 0

0 1

]
= I2.

3 Deutsch-Jozsa quantum algorithm

Let f : {0, 1}n → {0, 1}. The Deutsch-Jozsa algorithm needs a quantum oracle computing f(x)

from x which doesn’t decohere x. It begins with the n+ 1 bit state |0〉⊗n|1〉. That is, the first

n qubits are each in the state |0〉 and the final qubit is in the state |1〉.
A Hadamard gate is applied to each qubit to obtain the following state

H⊗(n+1) : |0〉⊗n|1〉 −→ 1√
2n+1

2n−1∑
x=0

|x〉(|0〉 − |1〉). (1)

Suppose that the oracle Uf : |x〉|y〉 −→ |x〉|y⊕f(x)〉 is available, where ⊕ is addition modulo

2. Applying the quantum oracle, it gives

W :
1√

2n+1

2n−1∑
x=0

|x〉(|0〉 − |1〉) −→ 1√
2n+1

2n−1∑
x=0

|x〉(|f(x)〉 − |1⊕ f(x)〉). (2)

For each x, f(x) is either 0 or 1. The state can be written as 1√
2n+1

∑2n−1
x=0 (−1)f(x)|x〉(|0〉− |1〉).

Ignoring the last qubit and applying the Hadamard gate to each of the first n qubits, it gives

H⊗n :
1√
2n

2n−1∑
x=0

(−1)f(x)|x〉 −→ 1

2n

2n−1∑
x=0

(−1)f(x)

2n−1∑
y=0

(−1)x·y|y〉

 (3)

where x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 is the sum of the bitwise product. The above new

superposition can be written as

1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)f(x)(−1)x·y

]
|y〉.

The probability for measuring the state |0〉⊗n is | 12n
∑2n−1

x=0 (−1)f(x)|2.

2

4 Analysis of Deutsch-Jozsa algorithm

The process of Deutsch-Jozsa algorithm can be described as follows

| 00 · · · 0︸ ︷︷ ︸
n

〉|1〉 H⊗(n+1)

−−−−−→ 1√
2n+1

2n−1∑
x=0

|x〉(|0〉 − |1〉)

W−−−−−→ 1√
2n+1

2n−1∑
x=0

|x〉(|f(x)〉 − |1⊕ f(x)〉)

ignoring the last qubit−−−−−−−−−−−−−−−−−−→
and obtaining the state

1√
2n

2n−1∑
x=0

(−1)f(x)|x〉

H⊗n

−−−−−−→ 1

2n

2n−1∑
x=0

(−1)f(x)

2n−1∑
y=0

(−1)x·y|y〉


observing the state and−−−−−−−−−−−−−−−−−−−→
obtaining its probability

| 00 · · · 0︸ ︷︷ ︸
n

〉.

4.1 How to practically construct the oracle performed on a pure state

In Deutsch-Jozsa algorithm, the quantum oracle Uf : |x〉|y〉 −→ |x〉|y ⊕ f(x)〉 must be of the

form

Uf = I⊗n2 ⊗ Vf ,

where I2 is the 2× 2 identity matrix and Vf is a 2× 2 unitary matrix.

Suppose that Vf =

[
X1 X2

X3 X4

]
. We have Vf |y〉 =

[
X1 X2

X3 X4

]
|y〉 = |y ⊕ f(x)〉. If y = 0,

then |0〉 =
(
1
0

)
. It gives

(
X1

X3

)
= |f(x)〉. Since f(x) ∈ {0, 1}, we obtain X1, X3 ∈ {0, 1}. If y = 1,

then |1〉 =
(
0
1

)
. It gives

(
X2

X4

)
= |1⊕ f(x)〉. Since f(x) ∈ {0, 1}, we obtain X2, X4 ∈ {0, 1}. Thus,

Vf is in the set{[
1 0

0 1

]
,

[
0 1

1 0

]
,

[
1 1

0 1

]
,

[
1 1

1 0

]
,

[
0 1

1 1

]
,

[
1 0

1 1

]}
.

Clearly, to determine Vf , one has to invoke the classical computational result f(x). That means

the unitary matrix Vf should be further specified as Vf(x). The notation is very useful because it

indicates the constructive specification of the involved unitary matrix. So it is better to rewrite

the quantum oracle as

Uf(x) = I⊗n2 ⊗ Vf(x) .

Note that the construction of the oracle depends essentially on the classical computational result

f(x). Besides, the oracle is performed on the pure state |x〉|y〉.

3

4.2 Is it possible to construct the oracle performed on a superposition

The unitary operatorW is performed on the superposition 1√
2n+1

∑2n−1
x=0 |x〉(|0〉− |1〉) and keeps

the states of the first n qubits. Hence, it can be decomposed asW = I⊗n2 ⊗Γ, where Γ is a 2×2

unitary matrix.

By the description of Deutsch-Jozsa algorithm, we have

W = I⊗n2 ⊗ Γ = Uf(x) = I⊗n2 ⊗ Vf(x) .

That means one has to extract a classical computational result f(x) from the superposition
1√
2n+1

∑2n−1
x=0 |x〉(|0〉−|1〉) in order to construct the operatorW practically. Since x runs through

all values 0, 1, · · · , 2n − 1, one has to measure the superposition so as to obtain a value x̂.

Once the value x̂ is measured, applying W = I⊗n2 ⊗ Vf(x̂) to 1√
2n+1

∑2n−1
x=0 |x〉(|0〉 − |1〉) will

produce one state of the following

1√
2n+1

2n−1∑
x=0

|x〉

[
1 0

0 1

]
(|0〉 − |1〉), or

1√
2n+1

2n−1∑
x=0

|x〉

[
0 1

1 0

]
(|0〉 − |1〉),

or
1√

2n+1

2n−1∑
x=0

|x〉

[
1 1

0 1

]
(|0〉 − |1〉), or

1√
2n+1

2n−1∑
x=0

|x〉

[
1 1

1 0

]
(|0〉 − |1〉),

or
1√

2n+1

2n−1∑
x=0

|x〉

[
0 1

1 1

]
(|0〉 − |1〉), or

1√
2n+1

2n−1∑
x=0

|x〉

[
1 0

1 1

]
(|0〉 − |1〉),

not the wanted state 1√
2n+1

∑2n−1
x=0 |x〉(|f(x)〉 − |1⊕ f(x)〉).

All in all, it has confused a quantum oracle performed on a pure state with a quantum oracle

performed on a superposition. We now want to ask: “is it possible to construct the wanted

oracle performed on the superposition?”

Finally, we would like to stress that only the Hadamard gate H is applied to each of the first

n qubits twice. Since H2 = I2, we find the algorithm always produces the state

| 00 · · · 0︸ ︷︷ ︸
n

〉|χ〉

where χ ∈ {0, 1}. The claim that the probability for the state |0〉⊗n is | 12n
∑2n−1

x=0 (−1)f(x)|2, is

incorrect.

5 Conclusion

We point out that there are some flaws in Deutsch-Jozsa algorithm. We would like to stress that

the construction of a unitary operator performed on a superposition must be compatible with

tensor product [2], which describes the combination of two quantum systems. Some physical

4

experiments [4, 8, 10, 11, 12, 14] on Shor’s algorithm are criticized for using less qubits in the

second register and other deficiencies [1, 3]. So far, those so-called quantum computers, D-wave

[6] and IBM [9], have been reported to optimize some combinatoric problems only, not accelerate

any numerical computations. We think Deutsch-Jozsa algorithm needs more specifications so as

to facilitate the construction of the wanted quantum oracle and check its correctness.

6 Acknowledgements

We thank the National Natural Science Foundation of China (61303200, 61411146001).

References

[1] Z.J. Cao and Z.F. Cao: On Shor’s Factoring Algorithm with More Registers and the Problem to
Certify Quantum Computers. IACR Cryptology ePrint Archive 2014: 721 (2014)

[2] Z.J. Cao, Z.F. Cao and L.H. Liu: Remarks on Quantum Modular Exponentiation and Some Experi-
mental Demonstrations of Shor’s Algorithm. IACR Cryptology ePrint Archive 2014: 828 (2014)

[3] Z.J. Cao, Z.F. Cao and L.H. Liu: Comment on Demonstrations of Shor’s Algorithm in the Past
Decades. IACR Cryptology ePrint Archive 2015: 1207 (2015)

[4] A. Dang, et al.: Optimising Matrix Product State Simulations of Shor’s Algorithm,
arXiv:1712.07311v2 (2017)

[5] D. Deutsch and R. Jozsa: Rapid solutions of problems by quantum computation. Proceedings of the
Royal Society of London A, 439, 553 (1992)

[6] D-Wave Systems, PDF, 01-2017, http://www.dwavesys.com/sites/default/files/
D-Wave%202000Q%20Tech%20Collateral_0117F.pdf

[7] L. K. Grover: A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-
Eighth Annual ACM Symposium on Theory of Computing. pp. 212C219 (1996)

[8] E. Lucero, et al.: Computing prime factors with a Josephson phase qubit quantum processor. Nature
Physics 8, 719-723, 2012. arXiv:1202.5707 (2012)

[9] http://www.research.ibm.com/ibm-q/

[10] C.Y. Lu, et al.: Demonstration of a Compiled Version of Shor’s Quantum Factoring Algorithm Using
Photonic Qubits, Physical Review Letters 99 (25): 250504, arXiv:0705.1684 (2007)

[11] B. Lanyon, et al.: Experimental Demonstration of a Compiled Version of Shor’s Algorithm with
Quantum Entanglement”, Physical Review Letters 99 (25): 250505. arXiv:0705.1398 (2007)

[12] E. Mart́ın-López, et al.: Experimental realization of Shor’s quantum factoring algorithm using qubit
recycling. Nature Photonics. doi:10.1038/nphoton.2012.259 (2012)

[13] P. Shor: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 26 (5): 1484-1509 (1997)

[14] L. Vandersypen, et al.: Experimental realization of Shor’s quantum factoring algorithm using nuclear
magnetic resonance, Nature 414 (6866): 883-887, arXiv:quant-ph/0112176 (2001)

5

	Introduction
	Preliminaries
	Deutsch-Jozsa quantum algorithm
	Analysis of Deutsch-Jozsa algorithm
	How to practically construct the oracle performed on a pure state
	Is it possible to construct the oracle performed on a superposition

	Conclusion
	Acknowledgements

