
 1

Harnessing Taguchi Methods in Software Development

R K Gupta and Tapan P Bagchi
NDS InfoServ, Mumbai, India

bagchi@ndsinfo.com

Abstract

Many factors may influence the successful development of software
(SW). Most practitioners, however, tend to use their own preferred
methods—some ad hoc—for this task. This paper reviews recent
attempts of using orthogonal array (OA) experiments to determine the
effect of various influencing factors and then their optimum settings to
reduce errors in the SW created. Genichi Taguchi popularized such an
experimental approach—now known as the Taguchi Method—for
hardware design. Indeed, this method has proved to be of high value in
delivering superior quality products and manufacturing processes. This
paper reviews the SW development scene and examines the potential
utility of such a framework to improve SW development. Indications are
that this approach can reduce bugs and errors in the SW thus developed,
and also make the development and testing processes more effective and
efficient.

Introduction

Software (SW) development today holds a prominent place in intellectual
enterprise. The public at large often regards SW creation—a “high-tech”
activity—to be synonymous with the highest level of sophistication ingrained in
any job. Most, however, are unaware that the software creation process details,
particularly their quality assurance aspects, still exist at a relatively primitive
state—where hardware industry was perhaps 100 years ago. Most part of the
SW creation process still depends heavily in inspection. By contrast, several HW
manufacturers have touched Six Sigma through excellence in design and process
control, modeling, optimization, and the use of advanced statistical techniques.
SW failures and defects continue to be at a daunting level; methods are still
sought to reduce/eliminate defects in the SW created and make defect
prevention more effective.

Many challenges in SW creation are indeed unique and quite unlike widgets
design and production. Generally, the reliability or performance of a piece of

 2

“quality” hardware gradually deteriorates. In SW, on the other hand, all its bugs
and defects remain built in from day zero when the SW is declared ready for the
store shelf. Few SW are guaranteed to be defect free by their creators—a
characteristic attributed to the “inherent complexity” of the SW product.

In view of this and the critical role played by SW that fly airplanes, manage vast
communication networks, produce investment advisory signals, or process
utility bills, etc., the methodology or framework for creating a SW is currently
under close scrutiny. We have now cast SW development into different life cycle
frameworks and the scene is still evolving. Low customer satisfaction, high cost,
a great deal of re-work on modules that do not integrate properly, low reliability
and unacceptable development delays are too frequent. These have led to this
inquiry of the practices that SW developers engage in. Models called Capability
Maturity Models (CMMI) have been proposed to guide developers do their job
better. SEI process capability models are such artifacts (Dymond 2002). It is now
widely noted that error or defect density reduces as maturity goes up (Cote 2005).
“Design-test-design”, “build-and-fix”, “Waterfall”, rapid prototyping,
incremental development, and extreme programming (XP), spiral model, and
others have been proposed and tested—with the single goal of producing SW
that reaches the highest level of user satisfaction, gets developed fast, and is not
too expensive (Jayaswal and Patton 2006).

Extensive studies of “post mortem” work on SW failures, whether technical or
commercial, indicate that SW bugs and errors are almost all created well
upstream—during the design process. Of course there is the equivalence of
“production” as in manufacturing in SW—the coding process—but a lot and
indeed a LOT of things happen upstream, during requirements analysis,
architecture or technical design, and functional design. Here all the guiding
decisions are made, before programming actually begins. As with HW, it has
been established that the majority of SW performance problems can be traced to
inadequate effort put in at this initial “upstream” stage.

Decisions in setting the level or value or character of many of these factors—e.g.
choice of the language, number of processors that will be engaged, memory and
buffer use, complexity, etc.—one often banks on experience, for there still isn’t a
well-established theory available as to how to optimize such decisions
proactively, before one taps the keyboard. Quality assurance (QA) in SW
development, therefore, continues to be inspection-oriented—generally executed
after the fact, to classify the SW to be OK, or defective, in need of rework,
rewriting, or just scrapping.

HW folks also walked this path some 50 years ago. But they now use SPC,
designed experiments, rapid prototyping, field testing, etc. as well-organized

 3

proactive and preventive QA strategies, which attempt to perfect the product’s
design (two-third quality problems being traceable to design defects) before
mass production begins. Furthermore, since a SW is intrinsically much more
complex than a typical hardware, not all its bugs can ever be found and fixed if
we count on testing/inspection as the only QA process. The methods employed
in SW creation must have large element of proactivity. That is the focus of this
paper.

The Critical Role of Design Excellence in SW Creation

Since SW creation is clearly all design and development with little scope of
playing with “manufacturing” factors to improve quality, it is now recognized
that everything that can be done to create bug-free SW must be done before
coding begins (Jayaswal and Patton 2006). Even the right/wrong approach to
coding (e.g. size of submodules, data structure, complexity, etc.) is decided
during architectural work and it is best not left to the pure subjectivity of the
developer. The focus therefore moves to improving and perfecting SW design
methods. Vast bodies of knowledge have been created to address this under the
umbrella of software engineering (Pressman 2005). Certain practices have been
promoted, others discarded, and many innovated using the lessons learned.
Unlike electronic devices engineering, however, there are few laws of physics or
chemistry to guide here and one often has to rely on generating useful
knowledge through expansive experience, or empirically—through the process of
formally designed experiments. Such experiments form the bedrock of a vast
body of knowledge that scientists and engineers have empirically compiled
about the behavior of systems that involve (a) multiple control or influencing
factors, and/or (b) multiple responses.

A highly regarded body of empirical studies falls under “design of experiments”
(Montgomery 2001). It is applied to domains where there are no Newton’s or
Kirchhoff’s laws to guide the designer. Here the designer can assemble the
artifact from its components, but he/she cannot set the inherent parameters in it
optimally (i.e. complete the design) using basic knowledge or well-known cause-
effect relationships. An example would be correctly operating a wave soldering
machine that is expected to deliver defect-free motherboards as a routine with
the various conditions—bath temperature, pre-heat temperature, type of solder,
fluxing methods, etc. etc. optimally controlled (Diepstraten 2005). There are no
equations available here to help one do the job. SW development, it its entirety,
is not much different from this multiple-control factor scenario. Whereas there
exist several different methods to plan empirical studies involving multiple
control factors, a method proposed by Taguchi (1986) is widely popular because
of (a) its simplicity, and (b) its effectiveness in quickly optimizing the process.
Taguchi’s method utilizes an efficient experimental plan (known as Orthogonal

 4

Arrays (OA)) to manipulate the control factors and to guide the running of the
special experiments involved here.

Taguchi Experiments

The reader is referred to Phadke (1989) for details on the design of Taguchi
experiments. A brief outline is given here. The motivation for conducting these
experiments is two-fold: (1) Discover reliably which factor(s) have a strong
influence on the quality of the response (for us defects created in the SW
developed), and (2) Do it efficiently using the fewest number of experiments.
Objective (1) is attained by using experimental plans that are based on sound
principles of statistical theory, in particular, design of experiments (Montgomery
1990), while objective (2) is achieved by the use of orthogonal arrays. The
method has been immensely useful to industries ranging from AT&T to Du Pont
to Toyota. Dell used it to optimize advertising campaigns (Kowalick 2004). The
basic steps in Taguchi Method are as follows (Sankar and Thampy 2002):

1. Brainstorm to define a measurable performance objective that is in need of
improvement. Identify factors—qualitative or quantitative—speculated to
be influencing this performance (this step requires familiarity with the
domain of the process and is often facilitated by the use of the Cause-
Effect or Fishbone diagram (Kanchana and Sarma 1999). No one is sure at
this point whether a particular factor has any, a strong, or a weak influence
of the performance targeted. Next, identify the different levels that a
factor can be set at in the actual process.

2. Design or plan your experiments as guided by an appropriate orthogonal
array (OA).

3. Assign factors to the OA columns.
4. Run the experiments. This is the step when the process being studied is

actually run end to end (under conditions as specified in Step 3) and the
response (performance of interest) is measured.

5. Analyze the results. This step determines the factor effects and the
optimum level (setting) of each factor that when applied together other
similarly identified settings leads to best performance.

6. Run the confirmation experiment. This step attempts to verify whether
the “optimum” factor settings identified in Step 5 indeed lead to best or at
least improved performance. This makes the results reproducible under
normal operation.

The goal in these steps is to formulate the process improvement objective,
identify the influencing factors, and determine their optimum levels which when
combined produce best process results.

 5

To illustrate the method we utilize the results of SW design experiments reported
by Kanchana and Sarma (1999) who used the Taguchi methodology to explore
the opportunities for SW quality enhancement in the performance of an airborne
surveillance system’s SW. The goal was to reduce the average numbers of errors
in the SW module crafted. They investigated the effect of the number of
requirements/module, Cyclomatic complexity and coupling—factors suspected
to influence errors—using an orthogonal array.

Brainstorming led to a three-factor cause-effect diagram shown in Figure 1. For
each factor, three possible levels could be chosen from while no one could tell a
priori which of these 3×3×3 = 27 combinations would give the best (lowest
average error) performance. Table 1 displays the possible settings for each of
these factors. The L9 OA (Phadke 1989) shown in Table 2 was chosen to guide
the Taguchi experiments.

Figure 1: The Cause-Effect Diagram

Table 1: SW Design Factors and their Possible Settings

Factor Name Label Level 1 Level 2 Level 3
Number of

Requirements/Module
“A” 1 2 > 2

Cyclomatic
Complexity

“B” < 5 5 – 10 > 10

Coupling “C” Data stamp
and

Control

Common
and

Content

Common
and

Content

Design faults measured
as average error/module

Number of
requirements/module

Coupling Cyclomatic
Complexity

 6

Table 2: Experimental OA and Results

Experiment# “A” “B” “C” Response: Avg
Error/Module

1 1 1 1 0.2
2 1 2 2 0.6
3 1 3 3 2.0
4 2 1 2 0.5
5 2 2 3 1.33
6 2 3 1 2.0
7 3 1 3 1.0
8 3 2 1 1.66
9 3 3 2 3.33

These tasks complete Steps 1 to 3 given above. Step 4 involved conducting the
actual experiments, i.e., developing SW modules as per the factor settings
prescribed by Table 2. The corresponding “response” results (average
error/module) appear in Column 5 of Table 2. Our analysis to determine the
factor effects on the SW creation process could now begin.

The use of the OA experimental framework makes the determination of factor
effects quite straightforward (Phadke 1989, Taguchi, Chowdhury and Wu 2004).
These are shown in Table 3, along with a graphical view of the results in Figure 2.

Table 3: Factor Effects Calculated

Factor Avg Effect at
Level 1

Avg Effect at
Level 2

Avg Effect at
Level 3

Number of
Requirements/Module

1.00 1.28 2.00

Cyclomatic
Complexity

0.57 1.20 2.44

Coupling 1.29 1.48 1.44

 7

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Avg Effect at
Level 1

Avg Effect at
Level 2

Avg Effect at
Level 3

A
vg

 E
rr

or
/M

od
ul

e Number of
Requirements/Module

Cyclomatic
Complexity

Coupling

Figure 2: Graphical Representation of Factor Effects

Figure 2 makes the interpretation of factor effects or the influence of each of the
three design factors on the resulting errors in the SW modules produced
uncomplicated. It is evident that Cyclomatic Complexity dominates the scene
(varying Complexity over the range shown in
Table 1 has the largest impact on errors produced) whereas Coupling only mildly
effects error production. In the overall SW creation process, this investigation
suggests, keeping each factor at its “Level 1” should produce minimum errors.
This last assertion now becomes the target of Step 6 (running the confirmation
experiment). Kanchana and Sarma (1999) report that the confirmation
experiment run this way indeed confirmed this assertion. (If this would not be
true, one would suspect higher order interactions of factor effects to be active. In
that case one would require full factorial or other methods rather than the simple
L9 OA as used here to help minimize errors in the SW being produced. See
Bagchi 1993 or Montgomery 2001.)

These results closely parallel the experience hardware designers have in HW
design or process optimization. Such examples are numerous. Examples in SW
design domain are still rather few. However, some creative applications of OA
experiments have been already made—particularly in test case generation.

 8

OA in SW Test Case Generation

SW testing continues to be the predominant means to assure the quality of SW
products delivered. Phadke (1997) pointed out that many SW faults escape
conventional testing and indicated the use of exhaustive testing as infeasible in
many situations. He suggested the use of orthogonal arrays to generate test
cases. A recent white paper (Ponnusamy 2007) echoes this and it provides a
good overview of the manner in which OAs may be used to plan SW testing
effectively, rather than attempting to design test cases that cover all possible
combinations of inputs that may be involved. While describing the verification
suite development the author points out that typically test cases development
consumes 60% of the testing time. In one illustration provided where the goal
was to cover some feature of a RDBMS, 36 (as opposed to 117 conventionally
planned) test cases were produced by an OA with two additional cases added for
testing some special features. Being founded on sound statistical theory of
design of experiments (Montgomery 2001), OAs greatly reduced the number of
combinations while they maximized coverage.

In showing the benefits of using OAs the author reports that execution time for
the existing suite was 8 hours whereas the OA covered it in 25 minutes. Also,
while 117 existing cases checked 70% of the features, 36 cases of the OA covered
95% of these—a remarkable feat of efficiency that perhaps should not be
overlooked. Noted also is the fact that the 36 cases involved 1367 LOC while the
117 cases used 28,122 LOC to test the same features. Shankar and Thampy (2002)
describe how OAs may speed up configuration testing—a modern SW is
expected to work in a variety of HW platforms, and different OS and support
libraries. User interface testing is another area where effective test cases can be
provided by OAs rather than one’s attempt to test features exhaustively.
Performance tuning is another area indicated. Lastly, OAs can also make
regression testing efficient, for the method is simple yet thorough in its coverage.
The authors provide two case studies, the first about formatting a flash memory
card involving 10 factors with two levels each, which used the L16 OA (Phadke
1989), i.e. 16 test cases only while the conventional approach would use 44 test
cases. The second case study was on the design of a GUI tool involving nine
design factors with three levels each. The OA involved here was L27. The
authors note that conventional testing would leave out many important cases
that got covered satisfactorily by the OA method.

Efficiency aside, appropriately designed OAs can uncover the suspected effect of
interaction between factor effects, an aspect difficult to detect by randomly
designed test cases. The theory here is quite rich and uses “linear graphs” in the

 9

best suited assignment of experimental factors to the OA columns (Bagchi 1993).
Dalal and Mallows (1998) discuss the issues in factor coverage by OAs.

Performance Improvement by OA

Professor H N Mahabala (2007) has provided a cause-effect diagram as the
starting point of SW system performance improvement or performance tuning.
To the best of the authors’ knowledge, such a study has not been conducted yet.
Such a study is under way using actual HW/SW configurations at NDS InfoServ,
Mumbai. In Figure 3 we show the factors involved in this study.

Figure 3: Factors possibly influencing System Performance

Concluding Remarks

OAs provide a remarkably easy-to-understand and apply framework for SW defect
reduction. It has been lamented that the SW development world is stuck at
inspection whereas our HW colleagues have marched well into the domain of Six
Sigma. Till we internalize superior process methods to proactively control the
possibility of error creation, we should maximize the use of the knowledge and
means that are already available to help SW designers, SW architects, and coders
who make critical design and related decisions on ad hoc basis for want of more
powerful approaches.

This paper illustrates one such approach—the Taguchi Method of experimentally
determining the “right” answers here. Indeed the macro factors thus identified
and optimally set can reduce a great deal of hunting, test runs and delays in
product delivery. Even on the smart coverage of the testing domain, evidence
now exists that methods such as the use of Taguchi’s OAs can greatly reduce the
effort expended.

Performance
= Transactions
processed/sec

Multiple
processors

Memory
(main, RAM,
fast, etc.)

Number of
simultaneous
users

Memory/
user

Processor speed
Number of
disk drives

Buffer
size

Communication
bandwidth

 10

References

Bagchi, Tapan P (1993). Taguchi Methods Explained—A Practical Guide to Robust
Design, Prentice-Hall (India)

Bagchi, Tapan P (1999). Mutiobjective Scheduling using Genetic Algorithms, Kluwer

Cote, M-A, W Suryn and E Georgiadou (2005). Software Quality Model
Requirements for Software Quality Engineering, Software Quality Professional, 6(3),
pp. 4-17.

Dalal, Siddhartha R and Colin L Mallows (1998). Factor-Covering Designs for
Testing Software, Technometrics, Vol 40, 3, pp. 234-243.

Diepstraten G (2005). Analyzing Lead-free Soldering Defects in Wave Soldering
using Taguchi Methods, http://www.zetech.co.za/

Dymond, KM (2002). A Guide to the CMM, Process Transition International, pp. 1-
4.

Jayaswal, Bijay K and Peter C Patton (2006). Design for Trustworthy Software: Tools,
Techniques, and Methodology of Developing Robust Software, Pearson Education.

Kanchana, B and VVS Sarma (1999). Software Quality Enhancement through
Software Process Optimization using Taguchi Methods, IEEE

Kowalick, D (2004). Dell Employee Purchase Program (EPP) Email Advertising
Project: Taguchi Optimization Project, http://www.AdEvaluator.com/adtech

Mahabala, H N (2007). Personal communications

Montgomery, D C (2001). Design and Analysis of Experiments, 5th ed., Wiley.

Ponnusamy, S (2007). Orthogonal Array: Applicability in Software Product
Testing, White Paper, Wipro Technologies.

Phadke, M S (1989). Quality Engineering using Robust Design, Prentice-Hall.

Phadke, M S (1997). Planning Efficient Software Tests,
http://www.stsc.hill.af.mil/crosstalk/1997/10

 11

Sankar Unni and Deepa Thampy (2002). Applying Taguchi Methods in Software
Product Engineering, SEPG Conference Proceedings.

Taguchi, G (1986). Introduction to Quality Engineering, APO.

Taguchi G, S Chowdhury and Y Wu (2004). Taguchi’s Quality Engineering
Handbook, Jossey-Bass.

