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Abstract 
 

Many factors may influence the successful development of software 
(SW).  Most practitioners, however, tend to use their own preferred 
methods—some ad hoc—for this task.  This paper reviews recent 
attempts of using orthogonal array (OA) experiments to determine the 
effect of various influencing factors and then their optimum settings to 
reduce errors in the SW created.  Genichi Taguchi popularized such an 
experimental approach—now known as the Taguchi Method—for 
hardware design.  Indeed, this method has proved to be of high value in 
delivering superior quality products and manufacturing processes.  This 
paper reviews the SW development scene and examines the potential 
utility of such a framework to improve SW development.  Indications are 
that this approach can reduce bugs and errors in the SW thus developed, 
and also make the development and testing processes more effective and 
efficient. 

 
Introduction 
 
Software (SW) development today holds a prominent place in intellectual 
enterprise.  The public at large often regards SW creation—a “high-tech” 
activity—to be synonymous with the highest level of sophistication ingrained in 
any job.  Most, however, are unaware that the software creation process details, 
particularly their quality assurance aspects, still exist at a relatively primitive 
state—where hardware industry was perhaps 100 years ago.  Most part of the 
SW creation process still depends heavily in inspection.  By contrast, several HW 
manufacturers have touched Six Sigma through excellence in design and process 
control, modeling, optimization, and the use of advanced statistical techniques.  
SW failures and defects continue to be at a daunting level; methods are still 
sought to reduce/eliminate defects in the SW created and make defect 
prevention more effective. 
 
Many challenges in SW creation are indeed unique and quite unlike widgets 
design and production.  Generally, the reliability or performance of a piece of 
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“quality” hardware gradually deteriorates.   In SW, on the other hand, all its bugs 
and defects remain built in from day zero when the SW is declared ready for the 
store shelf.  Few SW are guaranteed to be defect free by their creators—a 
characteristic attributed to the “inherent complexity” of the SW product. 
 
In view of this and the critical role played by SW that fly airplanes, manage vast 
communication networks, produce investment advisory signals, or process 
utility bills, etc., the methodology or framework for creating a SW is currently 
under close scrutiny.  We have now cast SW development into different life cycle 
frameworks and the scene is still evolving.  Low customer satisfaction, high cost, 
a great deal of re-work on modules that do not integrate properly, low reliability 
and unacceptable development delays are too frequent.  These have led to this 
inquiry of the practices that SW developers engage in.  Models called Capability 
Maturity Models (CMMI) have been proposed to guide developers do their job 
better.  SEI process capability models are such artifacts (Dymond 2002). It is now 
widely noted that error or defect density reduces as maturity goes up (Cote 2005).  
“Design-test-design”, “build-and-fix”, “Waterfall”, rapid prototyping, 
incremental development, and extreme programming (XP), spiral model, and 
others have been proposed and tested—with the single goal of producing SW 
that reaches the highest level of user satisfaction, gets developed fast, and is not 
too expensive (Jayaswal and Patton 2006).  
  
Extensive studies of “post mortem” work on SW failures, whether technical or 
commercial, indicate that SW bugs and errors are almost all created well 
upstream—during the design process.  Of course there is the equivalence of 
“production” as in manufacturing in SW—the coding process—but a lot and 
indeed a LOT of things happen upstream, during requirements analysis, 
architecture or technical design, and functional design.  Here all the guiding 
decisions are made, before programming actually begins.  As with HW, it has 
been established that the majority of SW performance problems can be traced to 
inadequate effort put in at this initial “upstream” stage. 
 
Decisions in setting the level or value or character of many of these factors—e.g. 
choice of the language, number of processors that will be engaged, memory and 
buffer use, complexity, etc.—one often banks on experience, for there still isn’t a 
well-established theory available as to how to optimize such decisions 
proactively, before one taps the keyboard.  Quality assurance (QA) in SW 
development, therefore, continues to be inspection-oriented—generally executed 
after the fact, to classify the SW to be OK, or defective, in need of rework, 
rewriting, or just scrapping. 
 
HW folks also walked this path some 50 years ago.  But they now use SPC, 
designed experiments, rapid prototyping, field testing, etc. as well-organized 
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proactive and preventive QA strategies, which attempt to perfect the product’s 
design (two-third quality problems being traceable to design defects) before 
mass production begins.  Furthermore, since a SW is intrinsically much more 
complex than a typical hardware, not all its bugs can ever be found and fixed if 
we count on testing/inspection as the only QA process.  The methods employed 
in SW creation must have large element of proactivity.  That is the focus of this 
paper. 
 
The Critical Role of Design Excellence in SW Creation  
 
Since SW creation is clearly all design and development with little scope of 
playing with “manufacturing” factors to improve quality, it is now recognized 
that everything that can be done to create bug-free SW must be done before 
coding begins (Jayaswal and Patton 2006).  Even the right/wrong approach to 
coding (e.g. size of submodules, data structure, complexity, etc.) is decided 
during architectural work and it is best not left to the pure subjectivity of the 
developer.  The focus therefore moves to improving and perfecting SW design 
methods.  Vast bodies of knowledge have been created to address this under the 
umbrella of software engineering (Pressman 2005).  Certain practices have been 
promoted, others discarded, and many innovated using the lessons learned.  
Unlike electronic devices engineering, however, there are few laws of physics or 
chemistry to guide here and one often has to rely on generating useful 
knowledge through expansive experience, or empirically—through the process of 
formally designed experiments.  Such experiments form the bedrock of a vast 
body of knowledge that scientists and engineers have empirically compiled 
about the behavior of systems that involve (a) multiple control or influencing 
factors, and/or (b) multiple responses.  
 
A highly regarded body of empirical studies falls under “design of experiments” 
(Montgomery 2001).   It is applied to domains where there are no Newton’s or 
Kirchhoff’s laws to guide the designer.  Here the designer can assemble the 
artifact from its components, but he/she cannot set the inherent parameters in it 
optimally (i.e. complete the design) using basic knowledge or well-known cause-
effect relationships.  An example would be correctly operating a wave soldering 
machine that is expected to deliver defect-free motherboards as a routine with 
the various conditions—bath temperature, pre-heat temperature, type of solder, 
fluxing methods, etc. etc. optimally controlled (Diepstraten 2005).  There are no 
equations available here to help one do the job.  SW development, it its entirety, 
is not much different from this multiple-control factor scenario.  Whereas there 
exist several different methods to plan empirical studies involving multiple 
control factors, a method proposed by Taguchi (1986) is widely popular because 
of (a) its simplicity, and (b) its effectiveness in quickly optimizing the process.  
Taguchi’s method utilizes an efficient experimental plan (known as Orthogonal 
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Arrays (OA)) to manipulate the control factors and to guide the running of the 
special experiments involved here. 
 
Taguchi Experiments 
 
The reader is referred to Phadke (1989) for details on the design of Taguchi 
experiments.  A brief outline is given here.  The motivation for conducting these 
experiments is two-fold:  (1) Discover reliably which factor(s) have a strong 
influence on the quality of the response (for us defects created in the SW 
developed), and (2) Do it efficiently using the fewest number of experiments.   
Objective (1) is attained by using experimental plans that are based on sound 
principles of statistical theory, in particular, design of experiments (Montgomery 
1990), while objective (2) is achieved by the use of orthogonal arrays.  The 
method has been immensely useful to industries ranging from AT&T to Du Pont 
to Toyota.  Dell used it to optimize advertising campaigns (Kowalick 2004). The 
basic steps in Taguchi Method are as follows (Sankar and Thampy 2002): 
 

1. Brainstorm to define a measurable performance objective that is in need of 
improvement.  Identify factors—qualitative or quantitative—speculated to 
be influencing this performance (this step requires familiarity with the 
domain of the process and is often facilitated by the use of the Cause-
Effect or Fishbone diagram (Kanchana and Sarma 1999).  No one is sure at 
this point whether a particular factor has any, a strong, or a weak influence 
of the performance targeted.  Next, identify the different levels that a 
factor can be set at in the actual process.    

2. Design or plan your experiments as guided by an appropriate orthogonal 
array (OA).   

3. Assign factors to the OA columns.   
4. Run the experiments.   This is the step when the process being studied is 

actually run end to end (under conditions as specified in Step 3) and the 
response (performance of interest) is measured. 

5. Analyze the results.  This step determines the factor effects and the 
optimum level (setting) of each factor that when applied together other 
similarly identified settings leads to best performance. 

6. Run the confirmation experiment.  This step attempts to verify whether 
the “optimum” factor settings identified in Step 5 indeed lead to best or at 
least improved performance.  This makes the results reproducible under 
normal operation. 

 
The goal in these steps is to formulate the process improvement objective, 
identify the influencing factors, and determine their optimum levels which when 
combined produce best process results. 
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To illustrate the method we utilize the results of SW design experiments reported 
by Kanchana and Sarma (1999) who used the Taguchi methodology to explore 
the opportunities for SW quality enhancement in the performance of an airborne 
surveillance system’s SW.  The goal was to reduce the average numbers of errors 
in the SW module crafted.  They investigated the effect of the number of 
requirements/module, Cyclomatic complexity and coupling—factors suspected 
to influence errors—using an orthogonal array.   
 
Brainstorming led to a three-factor cause-effect diagram shown in Figure 1.  For 
each factor, three possible levels could be chosen from while no one could tell a 
priori which of these 3×3×3 = 27 combinations would give the best (lowest 
average error) performance.  Table 1 displays the possible settings for each of 
these factors.  The L9 OA (Phadke 1989) shown in Table 2 was chosen to guide 
the Taguchi experiments.  
 
 

 
Figure 1:  The Cause-Effect Diagram  

 
 
 

Table 1:  SW Design Factors and their Possible Settings 
 

Factor Name Label Level 1 Level 2 Level 3 
Number of 

Requirements/Module 
“A” 1 2 > 2 

Cyclomatic 
Complexity 

“B” < 5 5 – 10 > 10 

Coupling “C” Data stamp 
and 

Control 

Common 
and 

Content 

Common 
and 

Content 

Design faults measured 
as average error/module 

Number of 
requirements/module 

Coupling Cyclomatic 
Complexity 
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Table 2:  Experimental OA and Results 

 

Experiment# “A” “B” “C” Response:  Avg 
Error/Module 

1 1 1 1 0.2 
2 1 2 2 0.6 
3 1 3 3 2.0 
4 2 1 2 0.5 
5 2 2 3 1.33 
6 2 3 1 2.0 
7 3 1 3 1.0 
8 3 2 1 1.66 
9 3 3 2 3.33 

 
 

These tasks complete Steps 1 to 3 given above.  Step 4 involved conducting the 
actual experiments, i.e., developing SW modules as per the factor settings 
prescribed by Table 2.  The corresponding “response” results (average 
error/module) appear in Column 5 of Table 2.  Our analysis to determine the 
factor effects on the SW creation process could now begin. 
 
The use of the OA experimental framework makes the determination of factor 
effects quite straightforward (Phadke 1989, Taguchi, Chowdhury and Wu 2004).  
These are shown in Table 3, along with a graphical view of the results in Figure 2.   
 
 

Table 3:  Factor Effects Calculated 
 

Factor Avg Effect at 
Level 1 

Avg Effect at 
Level 2 

Avg Effect at 
Level 3 

Number of 
Requirements/Module 

1.00 1.28 2.00 

Cyclomatic 
Complexity 

0.57 1.20 2.44 

Coupling 1.29 1.48 1.44 
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Figure 2:  Graphical Representation of Factor Effects 
 
 

Figure 2 makes the interpretation of factor effects or the influence of each of the 
three design factors on the resulting errors in the SW modules produced 
uncomplicated.  It is evident that Cyclomatic Complexity dominates the scene 
(varying Complexity over the range shown in  
Table 1 has the largest impact on errors produced) whereas Coupling only mildly 
effects error production.   In the overall SW creation process, this investigation 
suggests, keeping each factor at its “Level 1” should produce minimum errors.   
This last assertion now becomes the target of Step 6 (running the confirmation 
experiment).  Kanchana and Sarma (1999) report that the confirmation 
experiment run this way indeed confirmed this assertion.  (If this would not be 
true, one would suspect higher order interactions of factor effects to be active.  In 
that case one would require full factorial or other methods rather than the simple 
L9 OA as used here to help minimize errors in the SW being produced. See 
Bagchi 1993 or Montgomery 2001.) 
 
These results closely parallel the experience hardware designers have in HW 
design or process optimization.  Such examples are numerous.  Examples in SW 
design domain are still rather few.  However, some creative applications of OA 
experiments have been already made—particularly in test case generation.   
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OA in SW Test Case Generation 
 
SW testing continues to be the predominant means to assure the quality of SW 
products delivered.  Phadke (1997) pointed out that many SW faults escape 
conventional testing and indicated the use of exhaustive testing as infeasible in 
many situations.  He suggested the use of orthogonal arrays to generate test 
cases.  A recent white paper (Ponnusamy 2007) echoes this and it provides a 
good overview of the manner in which OAs may be used to plan SW testing 
effectively, rather than attempting to design test cases that cover all possible 
combinations of inputs that may be involved. While describing the verification 
suite development the author points out that typically test cases development 
consumes 60% of the testing time.  In one illustration provided where the goal 
was to cover some feature of a RDBMS, 36 (as opposed to 117 conventionally 
planned) test cases were produced by an OA with two additional cases added for 
testing some special features.  Being founded on sound statistical theory of 
design of experiments (Montgomery 2001), OAs greatly reduced the number of 
combinations while they maximized coverage.  
  
In showing the benefits of using OAs the author reports that execution time for 
the existing suite was 8 hours whereas the OA covered it in 25 minutes.  Also, 
while 117 existing cases checked 70% of the features, 36 cases of the OA covered 
95% of these—a remarkable feat of efficiency that perhaps should not be 
overlooked.  Noted also is the fact that the 36 cases involved 1367 LOC while the 
117 cases used 28,122 LOC to test the same features.  Shankar and Thampy (2002) 
describe how OAs may speed up configuration testing—a modern SW is 
expected to work in a variety of HW platforms, and different OS and support 
libraries.  User interface testing is another area where effective test cases can be 
provided by OAs rather than one’s attempt to test features exhaustively.  
Performance tuning is another area indicated.  Lastly, OAs can also make 
regression testing efficient, for the method is simple yet thorough in its coverage.  
The authors provide two case studies, the first about formatting a flash memory 
card involving 10 factors with two levels each, which used the L16 OA (Phadke 
1989), i.e. 16 test cases only while the conventional approach would use 44 test 
cases.  The second case study was on the design of a GUI tool involving nine 
design factors with three levels each.  The OA involved here was L27.   The 
authors note that conventional testing would leave out many important cases 
that got covered satisfactorily by the OA method. 
 
Efficiency aside, appropriately designed OAs can uncover the suspected effect of 
interaction between factor effects, an aspect difficult to detect by randomly 
designed test cases.  The theory here is quite rich and uses “linear graphs” in the 
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best suited assignment of experimental factors to the OA columns (Bagchi 1993).  
Dalal and Mallows (1998) discuss the issues in factor coverage by OAs. 
 
Performance Improvement by OA 
 
Professor H N Mahabala (2007) has provided a cause-effect diagram as the 
starting point of SW system performance improvement or performance tuning.  
To the best of the authors’ knowledge, such a study has not been conducted yet.  
Such a study is under way using actual HW/SW configurations at NDS InfoServ, 
Mumbai.  In Figure 3 we show the factors involved in this study. 
 
 

 
 

Figure 3:  Factors possibly influencing System Performance 
 
 
Concluding Remarks 
 
OAs provide a remarkably easy-to-understand and apply framework for SW defect 
reduction.  It has been lamented that the SW development world is stuck at 
inspection whereas our HW colleagues have marched well into the domain of Six 
Sigma.  Till we internalize superior process methods to proactively control the 
possibility of error creation, we should maximize the use of the knowledge and 
means that are already available to help SW designers, SW architects, and coders 
who make critical design and related decisions on ad hoc basis for want of more 
powerful approaches.   
 
This paper illustrates one such approach—the Taguchi Method of experimentally 
determining the “right” answers here.  Indeed the macro factors thus identified 
and optimally set can reduce a great deal of hunting, test runs and delays in 
product delivery.  Even on the smart coverage of the testing domain, evidence 
now exists that methods such as the use of Taguchi’s OAs can greatly reduce the 
effort expended. 

Performance  
= Transactions 
processed/sec 

Multiple 
processors 

Memory 
(main, RAM, 
fast, etc.) 

Number of 
simultaneous 
users 

Memory/
user 

Processor speed 
Number of 
disk drives 

Buffer 
size 

Communication 
bandwidth 
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