
Modeling and results of Satellite Ground Support Optimization

Sanjay Kumar
University of Texas in Dallas, Dallas Texas USA

skumar@utdallas.edu
and

Tapan P Bagchi
Indian Institute of Technology Bombay, Mumbai 400076 India

bagchi@iitb.ac.in

Abstract

This paper will present the methods adapted to model low earth orbiting (LEO)
spacecraft support and an actual implementation of this approach. The results of a
comparison of actual human schedulers' performance and the support schedules
developed by using the proposed modeling approach will be presented. Indications
based on two years of performance tracking of the new approach are that modeling
optimization yields up to half an hour/day of extra support for remote sensing
satellites, a very significant gain when one considers the high cost of putting a LEO
satellite in orbit.

Key words: LEO spacecraft, Ground station support, Product mix Allocation,
Optimization, Nonlinear objectives, Nonlinear constraints, Genetic algorithms, Meta-
heuristics

1. What is a Visibility Clash?

Orbiting once every 100 or so minutes at a 800 km height, low orbit (LEO) spacecraft
now form a critical infrastructure for remote sensing, natural resource management,
crop estimation, flood control, communication, and space research support [11].
This paper addresses the optimal allotment of ground station support time to
passing LEO spacecraft when their visibilities clash. The problem is NP-complete
and more complex than classical product mix determination since the products here
may have different and arbitrarily defined profitability profile. Further, opportunity
windows dynamically generate clashing topologies. Decision makers in satellite
mission support management [1, 2], motion picture exhibition [6, 20] and advertising
(rather distinctively in e-commerce) [21] now routinely face its variants.

Visibility clashes are incidents when two or more spacecraft passing over a ground
station have overlapping visibilities and ground station resources must be
apportioned equitably among the spacecraft so as to generate maximum value in the
mission. This paper describes meta-heuristic methods to optimally resolve visibility
clashes. The methods apply both to TTC (telemetry, tracking and command) and PL
(payload) operations support. Initially we use a simple, linear objective function to
set the stage for the procedure. Subsequently we describe a method to derive the
applicable non-linear optimization function⎯to help resolve visibility clash with

 2

realistic constraints and objectives. Such a payoff function can capture preferences,
penalties, soft constraints, mission priorities and other factors as articulated by space
mission scientists. This leads to a general solution to the clash resolution.

Broadly defined, a “visibility clash” is said to occur when LEO spacecraft have either
overlapping visibilities at a ground station or their respective LOS (Loss of Signal)
and AOS (Acquisition of Signal) difference is less than the station reconfiguration
time. Nonclashing visibilities may be assigned tasks by priority-dispatch rules [17].
However, “clash resolution” must find the optimum apportioned support schedule
that maximizes the total value or utility generated from supports provided to each
clashing spacecraft. In this process some spacecraft may receive no support at all,
yet the total schedule is optimal. As for the character of the objective functions
optimized, one with a constant payoff rate is pertinent in PL support optimization.
A function with a diminishing marginal payoff rate is apt in resolving TTC clashes.

Clearly, the task grows in complexity as the number of spacecraft in orbit grows.
Table 1 displays a fleet of six Indian LEO spacecraft that must be supported together,
with possibility of several more whose missions must join this fleet.

Table: 1 Sample Spacecraft Fleet in Orbit

SPACECRAFT ORBIT # LAUNCH DATE LOCAL TIME PAY LOADS
IRS – 1C 808 / 825 28-12-1995 9:48 PAN, WIFS LISS – 3
IRS – 1D 736/821 29-09-1997 10:23 PAN, WIFS LISS – 3
IRS – P3 807 / 825 21-03-1996 8:53 XRAY, MOS CBT
IRS- P4 711/728 26-05-1999 11:57 OCM, MSMR
IRS – P6 808 / 825 17 – 10 –2004 10:34 LISS – 4, AWIFS,

TES 523 / 585 22 – 10 –2001 10:52 LISS – 3,SSR PAN

2. Optimization of Visibility Clash: The Challenges
The optimal allotment of ground station support time to passing low orbit spacecraft
is an NP-complete problem [23]. It is more complex than product mix determination
in manufacturing management since the “products” here may have different and
arbitrarily defined profitability profile. Further, clashing topologies generate the
opportunity windows dynamically. Besides spacecraft mission support
management [1, 2], decision makers in motion picture exhibition [6, 20] and advertising
(rather distinctively in e-commerce) [21] also face variants of this problem routinely.

The fundamental time allocation problem may be characterized as below.

• The opportunity window (machine time) is open for a specified period within
which the resources must be allocated (to products to be made) so as to
maximize the total profit contributed by all resources allocated.

• Products are perishable. They have no salvage value. Each product must be
marketed (consumed) as produced. There is no inventory.

• Each product has its own marketing opportunity.
• In general, the market opportunities of two or more products may clash,

 3

forcing the enterprise to produce and market only one product at one instant
of time.

• If a product is produced, a specified minimum quantity of it must be
produced.

• Production of a product once started cannot be interrupted (no job splitting)
• For each product there is a maximum quantity that can be produced

regardless of the market opportunity that may exist for it.
• A finite switchover time is required to reconfigure the machine from

producing one product to another. This time is machine dependent and
independent of the production quantities involved.

• The machine itself is available for a specified period.
• An arbitrary profit function determines how much profit is contributed by

each product.

The above problem may initially be patterned after parallel machine scheduling [5,
19]. A set of N jobs is to be scheduled on M parallel machines. Each job j, (j = 1,…,
N), must be processed without interruption during a period of length jOPD , that is,
the minimum obligation period for which the job will be occupying the machine, if
scheduled. A machine can handle no more than one job at a time, and is
continuously available. Each job j has a release date jr and a due date jd . The goal is
to find an optimal feasible schedule⎯a set of start and end times⎯such that the
capacities, availability and time limit constraints are met, and a given objective
function is optimized. As said, this problem is NP-complete [14].

Spacecraft task scheduling and sequencing has received increasing attention in the
past decade as the application of spacecraft in remote sensing, crop estimation,
rescue missions, mapping, defense, and numerous other applications has flourished.
An activity-based scheduler exploiting AI methods was used to represent constraints
and for searching good schedules to determine near-optimal long term scheduling of
Hubble telescope observations [19]. The method used heuristic logic and hill-
climbing schedule repair schemes to determine a hierarchical ordering of activities,
in order to schedule the most constrained activities first. A system for NASA's
Terriers satellite based on dispatching rules was implemented in 1992 without the
explicit consideration of optimality [9]. GREAS, a scheduling and mission planning
tool using task mapping-to-resource logic utilizes a constraint satisfaction approach
[8, 13]. This system first creates a representation involving tasks, resources, events
and constraints. It then searches for a solution (a feasible schedule) using heuristic
search with constraint propagation.

Agnese and Brousse [2] present a search method to apply depth first and branch and
bound methods, and greedy search to determine task allocations to spacecraft
visibility windows. The method is shown to yield solutions within reasonable time,
but it is approximate and thus suboptimal. A commercial system called ILOG aims
as satisfying critical constraints only [24]. Tasks are allocated in ILOG using integer
programming on a yes/no rather than fractional coverage (to allow true optimality)

 4

basis. Other similar suboptimal spacecraft support schedules have been produced
by [18]. Among the recent noteworthy works in this area, Wolfe and Sorensen [23]
compare priority dispatch, a look ahead heuristic and genetic algorithms to assign
tasks to earth orbiting satellites.

In this paper a special case of this problem is considered first. The general visibility
clash resolution problem is addressed next.

3. The Parallel Machines Model: An Exact Solution

A special case of the support scheduling problem may be formulated and exactly
solved as follows. All of the support stations are assumed to be identical and
modeled as parallel machines. At any point in time, the decision maker may decide
whether or not to schedule a particular job (a support task). However, once
scheduled, the processing period is restricted to be at least jOPD . Also, scheduling
decisions are made keeping in mind the constraints on the release and due dates (the
appearance and the disappearance of the spacecraft). Further, the jobs may
contribute differently to the total profitability when scheduled at different points in
time. The objective is to schedule all jobs available such that the cumulative profit is
maximized over the planning horizon. Lastly, the decision maker may decide to
schedule only a subset of all the jobs available.

A Time-Indexed Formulation of the Problem
A time-indexed formulation [18, 22] may be used to solve such problems analytically.
This uses the idea of dividing the planning horizon [0, …, W] into W discrete
intervals of unit length such as weeks. A binary decision variable is used, which
equals 1 if job j is scheduled for i weeks beyond its obligation period starting in week w
of the planning horizon, and 0 otherwise. This action incorporates the obligation
period constraint in the definition of the decision variable itself. This formulation
may be generalized to encompass such extensions as different machine capacities,
precedence constraints, and job-specific due dates.

The time-indexed formulation highlights some key differences between the current
problem and typical machine scheduling problems. First, all jobs do not have to be
processed in the current problem, while all jobs must be scheduled in machine
scheduling problems. Accordingly, this formulation helps the decision maker
resolve two critical issues: choice of “which” jobs to schedule, and deciding processing
durations of the chosen jobs. Second, typical decision making goals prevalent in
machine scheduling problems are turnaround, timeliness, and throughput. In
contrast, the current formulation offers a situation in which the scheduling decisions
directly affect profitability, perhaps a more appropriate decision objective.

Solving the Problem
A profit function, or a similar utility measure, could be defined corresponding to
each value of the decision variable. For example, corresponding to the value of a

 5

particular binary decision variable being 1, the function would denote the profit the
decision maker would make if job j is scheduled for i weeks beyond its obligation
period starting in week w of the planning horizon. This operationalization of the
profits would simplify the solution procedure considerably since it would be
possible to compute them independently of the algorithm for generating the optimal
schedule. Based on such factors, the time-indexed formulation would be as follows.

Maximize Cumulative Profits

Decision variables are Support lengths, processing times or duration allocated
to the individual products

Subject to

1. Continuity constraints
2. Machine allocation constraints
3. Release- and due-dates constraints, and
4. Binary constraints on the decision variables

Constraint 1 would ensure that a job is scheduled in only consecutive weeks (i.e., no
job-splitting), when that is the requirement. Also, this would allow a job not to be
scheduled at all, if it is not profitable to do so. The next constraint would restrict the
total number of jobs scheduled at any instance of the planning horizon to M, the
total number of machines available. In doing so, it would sum up all the jobs that
are released earlier than or at the point of time under consideration. Constraint 3
would contain indexing constraints to ensure feasibility according to release and due
dates. Constraint 4 would define the decision variable to be a binary variable.

The above problem may be formulated as an integer/linear program [6] and then, by
exploiting the underlying special structure of the constraints (network property) it
may be solved as a linear program. This approach greatly reduces solution time.

4 A Variation: Optimal Resolution of Spacecraft Visibility Clashes

Consider now the following variation of the parallel machine scheduling problem.
As stated at the outset of this text, remote sensing spacecraft are typically low earth
orbiting and these must remain in routinely executed support (communication) with
ground stations located at different points on the globe. Table 2 displays a list of
sample support stations in a network. As mentioned above, visibility clash (akin to a
market opportunity clash) occurs when several spacecraft simultaneously passing
over a ground station equipped with only a single “chain” (an antenna connected
with appropriate electronic infrastructure) have either overlapping visibilities, or the
relevant LOS (Loss of Signal of spacecraft #1) and AOS (Acquisition of Signal of
spacecraft #2) difference is less than the station reconfiguration time. The challenge
is to determine the optimum support schedule (i.e., how much support to give to
which satellite) that maximizes the total profit (utility) generated from all supports
executed⎯within a single clash situation.

 6

Table 2: Sample Ground Support Stations in a Typical Network

Station Capability Support Duration

Bangalore (2 chains) All operations;
Reconfiguration time 3

minutes

Throughout mission life (All 24 hours)

Lucknow (2 chains) All operations;
Reconfiguration time 3

minutes

Throughout mission life (All 24 hours)

Mauritius (1 Chain) All operations;
Reconfiguration time 3

minutes

Throughout mission life (04:00 U T to
10:00 U T)

Bears Lake
(2 chains)

All operations;
Reconfiguration time 15

minutes

Throughout mission life (All 24 hours)

Biak (1 chain) TM, TC Throughout mission life (22:00 UT to 05:00
UT & 11:45 UT to 14:15 UT)

Figure 1 Variants of Visibility Clash Topologies

Complexities enter in this problem from two sources. First, visibility clashes become
numerous when the spacecraft are a dozen or more in number because then the
patterns in which these revolve may have large variety. This may greatly expand
the solution search space. Indeed, note that the topologies shown in Figure 1
develop dynamically and must be handled precisely for optimal ground station
support⎯possibly several dozen times every hour as the LEOs circle the globe.
Second, the objective function to be optimized subject to various constraints (hard and
soft) may be nonlinear and even discontinuous.

Simple clash

 S/C1

 S/C2

 S/C3

 S/C4

Linked clash

S/C1

S/C2

S/C3

S/C4

S/C5

Nested clashes

S/C1

S/C2

S/C3

S/C4

Complicated nests

S/C1

S/C2

S/C3

S/C4

S/C5

Jumped Clashes

S/C1

S/C2

S/C3

S/C4

S/C5

 7

Figure 2 displays the general picture of a single occasion of clashing visibilities at a
ground station. Notice the fat two-headed arrows that indicate the individual
spacecraft’s visibilities that overlap with each other. Note also the station
reconfiguration periods interceding support durations x1, x2 and x3. The section
below provides a mathematical formulation of the problem.

Figure 2 A Visualization of Three Clashing Spacecraft Visibilities
over a Ground Station

5 Model Formulation

Figure 2 displays the contiguous placement of the various activities in the general
picture of a single occasion of clashing visibilities occurring at a ground station.
Notice that the station must be reconfigured when support changes from one
passing spacecraft to the next. The following notations are used in this
representation [12]:

a1 b1

b2 a2

x2 x1 x3

Station reconfiguration time

Visibility of spacecraft 1

Visibility of spacecraft 2

Visibility of spacecraft 3

Total visibility V of all three spacecraft

a3 b3

s1 = Start of
support of

spacecraft 1
s2 = Start of
support of

spacecraft 2

s3 = Start of
support of

spacecraft 3

e1 = End of
support of

spacecraft 1

e2 = End of
support of

spacecraft 2

e3 = End of
support of

spacecraft 3

 8

V = Difference of first clashing AOS and last LOS.
I = Total number of spacecraft visibilities clashing in a pass over a station
 (i = 0……I).
P = The Utility or Value Function (= f(x1, x2, x3,…, xn)) to be maximized
ai = Start of visibility (AOS) of spacecraft i.
bi = End of visibility (LOS) of spacecraft i.
si = Start of support of spacecraft i.
ei = End of support of spacecraft i.
xi (= si – ei) = Support given to spacecraft i when it passes over a station.
min = Minimum time required for support once support is commenced.
max = Maximum time required for support.
r = Station reconfiguration time reconfiguration time is added to end support of

previous supported spacecraft.
Ci = Utility or profit contributed to P per unit time when spacecraft i is supported.

ti+1 is a binary variable that indicates whether spacecraft i is supported or not. Thus
if xi = 0, ti+1 = 0 and if xI > 0, ti+1 = 1 for i = 1, 2, 3, …, I; t1 = 0.

The Optimization Model

Maximize P = f(x1, x2, x3,… xn)

In general, the objective or evaluation function f(x1, x2, x3,… xn) may be nonlinear,
discontinuous, and have multiple peaks (Figure 3). In the special case when f(x1, x2,
x3,… xn) is linear,

P = ∑
=

I

i
ii xC

1
 = total value generated (1)

V = rtx
I

i
i

I

i
i *)(

11
∑∑
==

+ = total visibility at the ground station (2)

subject to:

(i) Start of support (si) of spacecraft ‘i’ must be at AOSi or later and it should be

equal to or less then LOSi.

bi ≥ si ≥ ai (3)

(ii) End of support (ei) of spacecraft i must be at LOSi and it should be equal to
or greater than AOSi.

ai ≤ ei ≤ bi (4)

(iii) Station Reconfiguration allowance.

si ≥ {
1).....1(−= ik

Maximum (ek × tk+1)}+ r (5)

 9

(iv) Duration of support of spacecraft i.

xi = ei - si (6)

(v) Constraint for minimum time of support. This may be either 0 or greater

than the quantity min. Therefore,

xi = 0 or xi ≥ min (7)

(vi) Maximum time of support should be less than the quantity max, as specified
by the decision maker.

xi < max (8)

(vii) Nonnegativity constraint

si, ei ≥ 0; xi ≥ 0 ; (9)

Constraint (v) makes the problem nonlinear, even if the objective function (1) is
linear. It may be shown that the search space is not convex. As said earlier, in
general the profit or value function P (= ƒ(x1, x2, x3,…, xI)) may be a nonlinear and
involve multiple local optima (Figure 3).

Note again that Constraint (v) implies that the feasible values of the decision
variables {xi} are discontinuous. This is a major departure from standard LP type
formulations that require convexity of the feasible space. The restrictions⎯constant
min, max and r⎯may in general be satellite- or station-specific, when necessary.

Figure 3 An Arbitrary Profit Function of Two Decision Variables

6 An Evaluation Function for TTC Support Value Generation

In spacecraft applications it is well-known that for TTC (telemetry, tracking and
command) operations the return or utility per unit support time (i.e., the marginal
rate of utility generated by an additional second of support) is not uniform or
constant. Rather, it depends on the duration of support already provided and even be
discontinuous. For example, extensive discussions held with a group of space

x1

f(x1, x2)

 x2

f(x1, x2)

 x2

f(x1, x2)

 x2

f(x1, x2)

 10

technologists led to the following points (the values cited are only illustrative and
would change to conform to the particulars of a situation).
• TTC operations require a minimum support of m minutes (m×60 seconds),

whenever support is provided.
• Almost all operations can be done in this m-minute span. Thus the returns

obtained in supporting a spacecraft for its minimum support time are high.
• A support of more then m minutes is not necessary, but if some additional

visibility time is available, support may be extended beyond m minutes. The
marginal utility of this “extra” support gradually diminishes with the extra
support provided. Thus, providing more than m minutes’ support is desirable,
when possible, but not required.

Thus one infers that the objective function should be crafted in such a way there is
no return if a spacecraft is supported for a duration < m minutes. But the return is
high if support is exactly m minutes. However, the marginal return diminishes after
m minutes. One may paraphrase this as follows. If a spacecraft is supported
beyond m minutes, the returns generated are more for the “mth minute” as compared
to those in “m+1th minute” of support; returns in the “m+1th minute” are more than
the returns generated in the “m+2th minute”, etc. But the marginal return
generated/minute (beyond the first m minutes) diminishes as time passes.

On consideration of such factors, a suitable “gradually diminishing” utility function
may be designed. To aid parsimony, a one-parameter function⎯the exponentially
decaying return function⎯is adopted for illustration. Incidentally, while this
function meets all requirements listed above and is mathematically simple to
manipulate, it quickly engages the space experts intuitively. Its construction would
proceed as follows. A simple exponentially falling function has only one parameter
λ and it may be represented as

ƒ = λe-λt (10)

where t is the time measured from the origin, as shown in Figure 4. At t = 0, ƒ =
λ, thus λ is the ordinate of the exponential curve at t = 0. To cast this diminishing
function into our requirement, we introduce one more parameter, β.

ƒ = λe-λβt (11)

 11

Here β is a factor that will control the actual decay rate of this exponential curve as
support time t increases beyond m minutes.

Determining the Value of β

In this illustration we assume that the minimum support needed (m) is 8 minutes.
Similarly, we assume that there exists an upper practical limit of providing support
also (= 16 minutes), after which the marginal utility generated of additional support
becomes negligible. In actual practice such input would come from the spacecraft
mission experts.

Suppose that the experts indicate that the function value f may be assumed to
reduce to 1% of its initial value (λ) when support time becomes 16 minutes. That is,
when t = 480 seconds,

ƒ = 1% of λ

The value of parameter β may then be found as follows.

At t = 0, ƒ = λ
At t = 480, ƒ = 1% of λ

Hence λe-λ*480*β = λ/100, which gives

β = 0.00958/λ (12)

Note that (11) provides the rate of marginal return. Therefore, at an instant t, the total
utility generated by providing support up to t is the area covered between the
exponential rate curve and the abscissa, easily found by integrating the exponential
function [10]. Hence

0

2

4

6

8

10

12

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

 Time t

f

Figure 4 The Exponentially Decaying Marginal Return Function f

 12

Total value of support = ∫ −
t

tB dte
0

λλ ,

which gives

Total value of support = (1- e-λtβ)/β (13)

Thus, because of the minimum (8 minute) support requirement, the actual marginal
rate function is not exponential, rather it is discontinuous, as shown in Figure 5.

Hence Total return = 0 for t < 480

= α + (1 - e-λtβ)/β for t ≥ 480 (14)

where α = 480*λ, β = 0.00958/λ and t = (duration of total support - 480).

Hence one may now give the expression for the total utility of a TTC support lasting
t units of time. This utility is discontinuous at the minimum support value (= m,
here 480 seconds). Indeed, the term α in the expression (14) below ensures high
immediate value generated when a spacecraft receives its minimum support of 480
seconds. The total return as a function of t is shown in Figure 6.

Figure 5 Marginal Return vs. Duration of TTC Support

 0 min max
 (8 minutes) (16 minutes)

Marginal
rate of
return

λ
λ/100

Total support
duration t

 13

7 Derivation of Lambda (λ)

The next challenge in crafting the objective function for the support optimization
model is to find the value of λ. In general, λ would vary with the spacecraft, the task
to be supported and the station providing the support. Numerically, λ is the rate of
return when a spacecraft is supported for exactly m minutes (the minimum support
for TTC operations). Recall that in (10) λ is the height of the original (assumed)
exponentially falling utility rate curve at zero time.

The applicability of the exponential-decay logic would depend on the correct
derivation of λ. In practice this would require in-depth discussion with spacecraft
mission experts as their judgments would have to be accurately reflected in the
quantification of λ. We present below a procedure.

Assume that the experts indicate that the value of λ for a particular support scenario
(a combination of spacecraft, station and operation) under consideration for clash
resolution would depend on the factors listed in Table 1.

Experts also indicate that these factors each have their own significance in spacecraft
support and hence would each impact λ in its own manner. The experts express the
relative impact of these factors as shown in Table 3⎯in terms of subjectively
expressed priority and penalty values that reflect the various aspects of spacecraft
mission objectives.

Figure 6 Total Returns as a Function of Total Support Duration t

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900 1000 1100

Total Duration of TTC Support t

Cumulative returns generated
Note the discontinuity

from the left!

 14

TABLE 3 SAMPLE FACTORS CONTRIBUTING TO SUPPORT CRITICALITY

FACTOR PRIORITY PENALTY

Maximum elevation 2

Spacecraft priority 10

Exclusive pass (orbit over a single station) 8

Critically dependent operations 10

Special TTC operations (must be done in that pass) 10

Service (visibility gap) 5

Minimum operations on the spacecraft 6

Exactly ‘n’ ascending operations per spacecraft 2

Exactly ‘m’ descending operations per spacecraft 2

Operator constraint 2

Ground station constraint 2

Discussions with spacecraft mission experts would typically reveal that LEO
spacecraft missions have multiple objectives. Common among these are

− Maximization of the total number of supports provided
− Maximization of the total duration of supports
− Maximization of the execution of PL requests
− Minimization of ground station idle time
− Maximization of controller use
− Uniform distribution of tasks across stations
− Operations such as TR should be distributed globally for each spacecraft

Many other requirements could be expressed as soft constraints and these too should
be rolled into the objective function being crafted.

Combining these considerations into one function would facilitate the valuation of λ.
However, the method of combining these objectives and soft constraints should
reflect their particular character and significance and their effect on mission
objectives. Subsequently, factors not considered in constructing λ may be used if
necessary to guide the actual selection of tasks to be supported, to enable the
selection of “preferred solutions”⎯in the Pareto optimality sense.

For illustration we assume that discussions with mission experts have led to the
deduction that λ consists of two dominant but separable parts as follows:

λ = Max (FactorExclusive, FactorCyclic, FactorPrecedent,
FactorSupportGap) + FactorSpacecraft + FactorElevation (15)

 15

FactorExclusive, FactorCyclic, and FactorPrecedent are expressions of the character
of the task to be performed. FactorSpacecraft is also an expression of importance or
priority. In practice these factors may each be subjectively quantified in consultation
with mission specialists as weights, each set on a scale of 1 to 10. The other factors in
(15) depend on dynamically developing conditions. For instance, FactorSupportGap
would depend on the time gap between current visibility and previous supported
visibility for the same spacecraft. FactorElevation is step function assumed for
illustration to be rising from a value of 0 (for the maximum elevation of the visible
pass ≤ say 5°) to 10 (for elevations ≥ 5°).

Note again that the above expression for λ has two parts. The first part is the
maximum of four factors while the second part is added to it. It is conspicuous that
the first part has terms that correspond to the actual operation performed on the
spacecraft. By contrast, FactorSpacecraft and FactorElevation relate to (a) the
spacecraft concerned and (b) the quality of the visibility window and are both
independent of the actual operations.

Furthermore, the first part of λ has factors that are each apparently very important
in determining support/no support decisions. Hence, if any one factor among these
is high for a visibility, that visibility becomes a high contender and it should be
supported. This requirement is ensured by the construct of λ as shown by (15), for it
takes the maximum of Factor Exclusive, FactorCyclic, FactorPrecedent and
FactorSupportGap.

We provide below illustrative valuations of the factors in λ.

Subjective Setting of the Factors in λ

FactorExclusive: This factor assumes only two values, either 0 or 10. If a visibility
is exclusive in that specific orbit (i.e., this spacecraft is not going to be visible for at
least for the full duration of the next orbit), this factor becomes 10. Otherwise it is 0.
Thus, if a visibility is exclusive, this factor increases the value of λ in order that the
likelihood of support for this visibility rises.

FactorCyclic: This factor also takes values of 0 or 10. If a cyclic operation falls
in this slot of visibility, FactorCyclic becomes 10. Otherwise it is 0. Thus, if a
spacecraft requires a cyclic operation to be supported in this particular visibility, this
factor becomes 10 and thus it increases the value of λ and hence the likelihood of
providing support for this visibility becomes high.

FactorPrecedent: This factor also takes values of 0 or 10. If a precedent operation
(required by a subsequent dependent operation) falls in this slot of visibility, this
factor becomes 10, otherwise it is 0. Thus by giving precedent operation a value of
10 we raise the odds that the dependent operation will have its precondition met.

 16

Such “chaining” effect develops due to the fact that for certain spacecraft a precedent
operation’s completion is the prerequisite for the dependent operation.

FactorSupportGap: Generally speaking, a spacecraft needs to be health-monitored,
telemetered, etc. throughout the day. Consequently, an important requirement in
spacecraft support scheduling is to keep the gap between supports small.
FactorSupportGap ensures that a spacecraft will have an increased likelihood of
support after a certain time gap. The value of this factor is dynamically set and it is
kept dependent on the time gap between current visibility and previous supported
visibility for the same spacecraft. As this gap increases (because a support has not
yet been possible), the value of FactorSupportGap also builds up. After some delay
(i.e., gaps piling up) this factor will build to such a high value that it will exceed any
other priority factor in its numerical value. Thus the affected spacecraft will end up
receiving a support before too long.

FactorSpacecraft: This factor is a spacecraft-dependent factor and is independent
of operations and visibility. This factor is an additive term in λ. This factor indicates
that when a conflict develops, the “more important” spacecraft (as designated by
mission management) should have a higher probability of getting a support. An
example is a new spacecraft or a launch that needs to be supported at every possible
opportunity. When FactorSpacecraft for this spacecraft is set high, it will preempt
the support of any other normal spacecraft.
FactorElevation: This factor is defined as a step function. In general, this factor is
also independent of operations, hence it is additive in λ. This factor indicates that a
higher elevation visibility is more suitable for doing an operation, regardless of the
operation, as compared with a low elevation visibility.

We must point out that the above factors would now control the priority with which
a particular operation on some particular spacecraft will be executed when a
clashing scenario develops. Hence, the values assigned to these factors must reflect
the best judgment of mission specialists and mission objectives.

We remark again that due to the manner in which we developed the foregoing logic
of determining the priority of support, these factors alone would control the value of
λ and hence the quality of the overall support schedule. Note, however, that this is
only illustrative of a general procedure that may be similarly set up.

8 The Objective Function for Payload Operations Support

For Payload operations, the marginal return of additional support (or the return per
unit time) is generally constant, regardless of how much support has already been
*provided. Hence, the evaluation function becomes a linear objective function for
the PL clash resolution problem. It is then simply the product of the support time
(xi) and returns per unit time (vi), beyond any minimum support required. The

 17

parameter vi is dependent on the spacecraft and the kind of PL operation being
performed. Thus the total utility from supporting several spacecraft in a visibility is

P = ∑over all i (vi × xi) (16)

The function is shown in Figure 7.

9 Optimization of TTC Visibility Clash Support

If there are I spacecraft passing over a given ground station simultaneously, solving
the following problem would produce the optimal allocation of support to each
spacecraft:

Maximize,

P = ∑over all i {αi + ((1- e-λitβi)/βi)} (17)

Subject to

i) Start of support of spacecraft ‘i’ must be at AOSi or later and it should be equal
to or less then LOSi.

bi≥ si ≥ ai (18)

ii) End of support of spacecraft ‘i’ must be at or before LOSi and it should be
equal to or more than AOSi.

ai ≤ ei ≤ bi (19)

 vi

min max

 xi (support duration)

 P

Figure 7 Marginal (vi) and Total Utility (P) for PL Support

 18

iii) Reconfiguration allowance.

si ≥ {
1).....1(−= ik

Maximum (ek × tk)} + r (20)

iv) Duration of support of spacecraft i.

xi = ei - si (21)

v) Constraint for minimum time of support. Support provided may be either 0

or greater than min:

xi = 0 or xi ≥ min (22)

vi) Constraint for maximum time of support. Support should be equal to or less
than max.

xi ≤ max (23)

vii) Non negativity constraint

 si, ei ≥ 0 ; xi ≥ 0 ; (24)

The objective function (17) and the presence of constraint (22) make the problem
non-linear.

In the above formulation, for convenience and without loss of generality we made
the assumption that reconfiguration times are constant and have same value ’r’ for
all sets of ground stations and spacecraft.

Objective functions similar to (16) and (17) have already been implemented to
resolve visibility clashes optimally in a prototype spacecraft support scheduling
system. (16) models the utility objective for PL visibility support while (17) models
the objective for a TTC support.

Solving the above problem would be nontrivial in general for it is NP-complete. One
approach to produce a practical solution in reasonable amount of time would be to
use a heuristic or device that would reduce the effort to be expended in seeking a
good solution. For other similar problems meta-heuristic search methods⎯tabu
search, simulated annealing or genetic algorithms⎯have been shown to be quite
effective [14]. We approach the problem as follows.

 19

10 An AI-based Formulation of the Optimization Problem

Before we present meta-heuristic or AI-based methods for solving the above
problem, a brief recollection of the utility of such methods would be in order.
Methods such as greedy search [16] perform local search as opposed to a global
search, which is what is required when the object is to solve an optimization
problem globally. Local search attempts to find a solution better than the current
one through a search only in the neighborhood of the current solution. Two
solutions are neighbors if one can be obtained through a well-defined modification
of the other. The greedy search method can be programmed using conventional
techniques to look for a neighbor that does least or no damage to feasibility and most
helps the objective function. However, working alone and given a starting point,
such a procedure cannot guarantee reaching the globally optimal solution. It often
gets trapped in a local optima with no way available to it to escape from it.

A meta-heuristic is a top-level general strategy which guides other heuristics to
search for feasible solutions in domains where the task is hard. Meta-heuristics have
been most generally applied to problems classified as NP-hard or NP-Complete.
However, meta-heuristics would also be applied to other optimization problems for
which it is known that a polynomial-time solution exists but is not practical. If the
neighborhood generation method is intelligent, repeated a reasonable number of
times a good local search procedure combined with appropriate randomization can
reach a solution of acceptable quality, even if the final solution not globally optimal.
Indeed this is how many complex practical optimization problems are now being
tackled, particularly in scheduling [14] and in engineering design optimization [4].
Three of the most popular methods for improving search are tabu search, simulated
annealing and genetic algorithms. Such methods belong to the domain of artificial
intelligence, for they incorporate nontrivial moves, learning, and the capability to
automatically modify the direction of search based on emergent information. What
separates these “AI” methods from conventional computer programs is that these
methods are not programmed to execute instructions along pre-destined paths.

The key idea in each of these meta-heuristic search methods is to innovate
procedures that minimize nonimproving moves to neighborhood. They do this by
making provisions to prevent repeating solutions. Tabu search deals with cycling by
temporarily forbidding moves that would return to a solution recently visited. The
effect prevents short-term cycling, although solutions can repeat over a longer
period. Simulated annealing controls cycling by accepting even nonimproving
moves according to probabilities tested with computer-generated random numbers.
A parameter “temperature” controls the randomness of the search. Genetic
algorithms (GAs)—another still very popular metaheuristic to apply to complex
optimization problems—evolve good heuristic solutions by performing “genetic
operations” on a population of solutions that when properly parameterized
continually improves as the generations go by; GA breeds new solutions by
combining existing solutions. GA search is more general and abstract than both
simulated annealing and tabu search [14]. Newer GAs are multi-objective [4].

 20

Such methods have the advantage that they can be applied to a problem without
requiring much knowledge about the structure of the problem [14]. Further, these
methods, particularly GA, may often be hybridized with other heuristic “solution
improvement” methods that exploit domain-specific knowledge. (This is now
frequently done in scheduling [4].) However, the computation time needed to
obtain a solution by a meta-heuristic method tends to be relatively long and
therefore, such methods remain presently the last resort when no exact method is
available.

In the clash resolution problem formulated in this paper, the decision variables are
{xi}. However, due to non-linearity and non-convexity present, the general problem
cannot be solved by traditional optimization methods. As already noted, the general
problem cannot be modeled as an LP due to its non-linearity. We outline a solution
by genetic algorithms, a technique now widely described in the literature.

The GA Chromosome Construction

A key step in using GAs is casting the solution to the optimization problem in a
chromosome-like structure in order that “genetic operations”⎯crossover, mutation,
selection, etc.⎯may then be performed on it. We often use binary (0-1) coding to
construct this chromosome because in many problems the decision variables {xi} are
real numerical quantities while binary coding is easily manipulated by
straightforward genetic operators. A single chromosome for spacecraft support
would contain all information for the full duration of support for each spacecraft
involved in a clashed set of visibilities at a station.

An example of such coding would be as follows. Suppose that at some ground
station four spacecraft visibilities are clashing. Then, the chromosome would
contain four decision variables⎯x1, x2, x3, and x4. In general, for n visibilities
clashing and in need of value-maximized clash resolution, the chromosome itself
would have the following appearance (note the difference in the bit lengths {li} of the
different decision variables):

In GA formulations using binary-coded variables, the length of a substring
representing a real variable (such as xi) depends on the numerical accuracy desired
of the final solution. If we us il binary (0-1) bits to code the variable xi the
obtainable accuracy in that variable would be approximately [7] () iL

i
U

i xx l2/)()(− . In
most remote sensing LEO spacecraft operations the visibilities are about 20 minutes

x1, l 1-bit x2, l 2-bit x3, l 3-bit xn, l n-bit

1011000……..10000110 10100…………0101010 0011110……………..

 21

or less, within a second. So, to illustrate a case, if 10 bits are used to represent xi}, the
obtainable accuracy would be of the order of

 (16*60+23)/2 10 = 0.959

seconds. Thus, when sufficient time is given to the GA converge, the
implementation of this level of precision (i.e., il = 10 bits) in chromosome coding
would keep the numerical error of the final solution limited to one second or less.

Feasibility Assurance and GA Operators

In nature, the feasibility of a species is maintained by nature’s incorporating
constraints inside chromosome coding. (A violation of these constraints by say
mutation may cause cancer-like cell formation.) In the spacecraft support problem
feasibility of solutions may be ensured by imposing suitably modified upper and
lower limits of possible values of support times {xi} [12]. Figure 2 indicates such
limits.

Formally, this may be stated as follows. Consider the object of ensuring feasibility of
two decision variables x1 and x2 (refer to Figure 2). The limits for x1 are [a1 , b1].
Limits for x2 will be [(Greater of e1+r and a2), b2]. Such approach would ensure
feasibility of all chromosomes. Experience shows that putting such constraints in the
chromosome structure itself reduces the effort in optimization. Otherwise numerous
penalty functions would have to be incorporated in the objective function.

GA facilitates global search by creatively generating new solutions as the search
progresses. In GA, "crossover" creates progeny by exchanging information (gene-
holding segments of the chromosome) among selected parent strings resident in the
mating pool [7]. "Mutation" facilitates local search. Various “selection” strategies
influence the selection of “parent” chromosomes that subsequently procreate the
next generation. The preserve-the-best and roulette wheel selection strategies [7, 4]
were implemented in the numerical example given below.

11 A Numerical Example with Linear Objective function

This example assumes that payload (PL) support is to be provided to four spacecraft
simultaneously passing over a ground station supporting them, causing their
visibilities to clash. The maximum support required is uniformly 983 seconds while
the minimum support required, once support is decided to be given, is 263 seconds.
The visible time windows are as follows (all expressed in seconds from a reference
point):

a1 = 616520, b1 = 617115; a2 = 617244, b2 = 618318;
 a3 = 617712, b3 = 618650; a4 = 618027, b4 = 619196

 22

The above data (616520, 617115, etc.) are time marks (in seconds) from a reference
point. The profit function ƒ(x1, x2, x3,…, xi)⎯here a linear function involving
marginal value generation rates C1, C2, C3 and C4 (the respective profits generated
per unit time of PL support)⎯is ∑

=

I

i
ii xC

1

.

To solve this problem a bit length of 10 was used for each of the four decision
variables x1, x2, x3 and x4. The GA parameters pc (the probability of crossover) and pm
(the probability of mutation) were set at 1.0 and 0.01 respectively, values determined
as optimal by conducting pilot GA runs in a design-of-experiments framework [20].
Population size was held at 20. The GA converged to within values of 0.4 seconds
when run for 100 generations, a precision sufficient for the application at hand.
Table 4 displays the support times determined for four different problem scenarios,
each with its own {Ci} profile. A reconfiguration time (r) of 600 seconds was
assumed to be in effect whenever the station support switched from one spacecraft
to another.

Intuitively, given the unequal value generation rates (Ci) of the different spacecraft
and a linear profit function, we would expect the spacecraft with highest Ci to
receive maximum support. This has a caveat, however. Because a non-value
generating task of reconfiguration is involved whenever support is switched from
one spacecraft to another, it is probable that it would be optimal to not support some
particular spacecraft at all.

Table 4 Optimal Support Schemes for Maximizing Profits

Scenario 1 si ei Support (xi) Total Profit
C1 = 1 616520 616520 0
C2 = 2 617244 617613 369
C3 = 3 618213 618213 0
C4 = 4 618213 619196 983

4670
Scenario 2

C1 = 4 616520 617115 595
C2 = 3 617715 618318 603
C3 = 2 617712 617712 0
C4 = 1 618918 619196 278

4467
Scenario 3

C1 = 1 616520 616520 0
C2 = 4 617244 618227 983
C3 = 3 617712 617712 0
C4 = 2 618827 619196 369

4670
Scenario 4

C1 = 1 616520 617112 592
C2 = 3 617712 617712 0
C3 = 4 617712 618650 938
C4 = 2 618027 618027 0

4344

 23

Each scenario in Table 2 was solved by the GA in about 3 seconds by a C++ program
running on a Pentium III 500 mHz system. Observe that support does shift towards
the spacecraft contributing at the maximum rate to total profits. Also, some
spacecraft get no support at all. The estimated total profits are also shown in each
case. Figure 8 graphically displays the spacecraft visibility and support periods for
the profit rates {Ci} of Scenario 1. In a modern network operating a dozen LEOs and
20-odd ground stations, up to 200 or more such PL visibility clashes would need to
be optimally resolved every week before the operating schedules are released to the
different ground stations spread around the globe. GA would take about 3 minutes
on a Pentium III system to resolve the 200-odd clashes.

No exact method is known to exist in the literature to analytically solve a resource
allocation problem of such complexity.

Is GA the best method for solving this problem? There are several criteria on the
basis of which this may be judged. GA, simulated annealing and tabu search, each
produce comparable final solutions. GA takes the longest time and tabu search the
shortest. However, there is one criterion on the basis of which GA may get a
preferential nod. GA produces a family of final solutions whereas both simulated
annealing and tabu search produce single solutions. There may be other, perhaps
qualitative, criteria also to judge the acceptability of the final support schedules.
Such multiobjective situations may also be addressed by the GA methodology with
suitable modification of the chromosome structure and an extension of GA’s
selection logic [4]. This can produce Pareto optimal final schedules.

Figure 8 Satellite Support Periods for Profit Scenario 1

616500 617000 617500 618000 618500 619000 619500 620000

1

2

3

4

Sp
ac

ec
ra

ft

Time

C1=1
C2=2
C3=3
C4=4

Support
Ignore

 24

12 Support Optimization with Exponential Objective function

This section illustrates the method for optimal clash resolution when the objective
function is nonlinear, in particular, when it has an exponentially decaying marginal
return character as derived in Section 6. Suppose that TTC support is to be provided
to two spacecraft simultaneously passing over a ground station supporting them,
causing their visibilities to clash. The maximum support required is uniformly 1800
seconds while the minimum support required, once support is decided to be given,
is 480 seconds. The visible time windows are as follows (all expressed in seconds
from a reference point):

a1 = 0, b1 = 840; a2 = 900, b2 = 1800

Station reconfiguration time is 10 minutes or 600 seconds. The profit function for
each spacecraft is ƒ(xi)⎯here an exponential function involving parameters αi, βi and
λi (see Section 6)⎯given by

Profit = 0 for t < 480

= αi + (1 - e-λit
β

i)/ βi for t ≥ 480

where αi = 480*λi, βi = 0.00958/λi and t = (Duration of total support - 480).

GA was parameterized as population size = 20, probability of crossover = 0.95 and
probability of mutation = 0.1, and the number of generations to run = 100. We also
point out that GA uses randomization in several places, including mutation,
crossover, and also selection. The random path that a particular GA execution
follows is controlled by the seed of the random number that initiates GA. A robust
GA would produce good results regardless of the value of this initial seed. For the
example solved, five GA replications produced the following results:

Random Seed 1 2 3 4 5
Spacecraft 1 Start of support 0 0 0 0 0
Spacecraft 1 End of support 601.013 600.124 601.698 602.176 604.882
Spacecraft 2 Start of support 1201.01 1200.12 1201.69 1202.18 1204.88
Spacecraft 2 End of support 1799.91 1799.98 1799.97 1799.99 1799.99
Total return generated 1102.61 1102.63 1102.62 1102.62 1102.56

The data indicate both good convergence as well as robust performance of the GA.
A question may be asked, how difficult is the return maximization task here? We
address this question for a more complicated scenario when the two spacecraft-task
combinations have different λ.

 25

Let λ1 = 1.0 and λ2 = 2.0. Figure 9 displays the behavior of the (total) objective
function (the total return is produced here by partially supporting spacecraft 1 and
spacecraft 2). We generated the data here by enumeration. The solution space is
restrained by the constraints

(a) Total visibility equals 1800 seconds and
(b) Station reconfiguration time is 600 seconds.

Observe two aspects of the function plotted in Figure 9: (1) Strong nonlinearity
exists in the objective function, and (2) discontinuities exist where the objective
function sharply jumps to a different value. An application of GA produced a
solution that maximizes total return as follows:

Spacecraft 1 Start of support 0
Spacecraft 1 Endof support 564.71

 S1 = Support of spacecraft 1 = 564.71 seconds

Spacecraft 2 Start of support 1164.71
Spacecraft 2 End of support 1799.96

 S2 = Support of spacecraft 2 = 635.25 seconds

Figure 9 Total Return as function of Support Times S1 and S2

0
200

400
600

800

0

270
540

810
0

300

600

900

1200

1500

1800

Total
Return

Support to
Sat 2

Support to
Sat 1

Total Visibility Constraint: S1 + reconfig time + S2 = 1800

 26

We verify that the total support time + the reconfiguration time is 1799.96 seconds, a
sufficiently good practical solution. Also, it is not difficult to see that the GA-
generated solution falls in the region where total return is highest subject to the
constraints (a) and (b).

13 An Application

This section provides the summary of an implementation based on the visibility
clash resolution logic developed above and the consequence (benefits) observed. In
this implementation, customer requests for payload data are processed for special tilt
requirement, sensor selection etc and feasibility of scheduling those passes are first
studied. These processed requirements, and the visibilities of all the spacecrafts, over
all the stations, serve as input for optimization. The configuration files (containing
the scheduling environment and resource characteristics) serve as the controlling
factor for operation allocation. The Genetic Algorithm is applied at this level to
optimally allocate the operations for a duration of one week, by resolving all
visibility clashes and controller clashes occurring. All these processes (modules
within the “Scheduling System”, Figure 10) are automated and are to be utilized for
schedule generation on a weekly basis.

Figure 10 Functional Modules of an implemented Satellite Support Scheduling

System

 27

A sample output of support schedules generated is given below. The clashing
passes over Mauritius ground station (MAU) are highlighted for easy reference. In
this, the visibilities of spacecraft IRS-1D, IRS-1C, IRS-P4 and IRS-T1 are clashing.
The scheduling system has optimized the allocation of the passes and supports IRS-
1C and IRS-T1 only. The decision took less than 100 generations of the GA executed
in a fraction of one second on a Pentium IV. Note that all these calculations are
performed off-line and the support decisions are programmed into the electronic
infrastructure well ahead of the execution of the actual support. Note also that the
GA parameters were optimized before “production” execution using statistically
designed factorial experiments for a variety of clash topologies and payoff scenarios
(Figures 1, 5 and 9).

Table 5: Sample Optimized Spacecraft Support Schedule after Resolution of
Clashes

A new scheduling system coded into software in VC++ based on the logic presented
in the foregoing sections is currently under evaluation at an actual applications site.
The results are being cross-compared with schedules produced by an experienced
team of scientists well familiar with multi-satellite schedules generation on a regular
basis. A sample of the results of this comparative study appears in Table 6.

Date

Space-
craft

Stn

Orbit #

Max
elevation

AOS
hh:mm:ss

LOS
hh:mm:ss-

Operations
Required

2004 03 14 I1D SN1 33773 19.18 06:10:43 06:16:20 PL, P85 (TILT=
-2.07), G3

2004 03 14 I1D BLE 33773 17.99 06:11:56 06:24:40 TM, TC, TR
2004 03 14 I1C LK1 42612 7.29 06:13:19 06:22:26 TM, TC$
2004 03 14 I1C SN2 42612 5.31 06:17:20 06:24:10 NO Support
2004 03 14 I1C BLW 42612 4.38 06:18:19 06:26:29 TM, TC
2004 03 14 I1D MAU 33773 70.78 06:21:14 06:35:51 NO Support
2004 03 14 IT1 DLH 13111 31.35 06:24:45 06:36:03 NO Support
2004 03 14 IP4 LK1 25434 52.26 06:27:26 06:37:55 TM, TC#
2004 03 14 IT1 LK2 13111 19.94 06:25:20 06:35:59 TM, TC, TR,

PLDW, DSS
2004 03 14 I1C MAU 42612 24.90 06:26:07 06:35:38 TM, TC, TR$
2004 03 14 IP4 BLE 25434 48.46 06:27:47 06:41:46 TM, TC, TR, PB,

PYS
2004 03 14 IP4 SN1 25434 47.77 06:28:00 06:37:00 OCM_RT, P10

(TILT= -20.0)
2004 03 14 IT1 SN1 13111 19.29 06:28:03 06:38:39 NO Support
2004 03 14 IT1 BLW 13111 18.38 06:29:29 06:39:41 TM, TC#$
2004 03 14 IP4 MAU 25434 12.84 06:39:22 06:50:42 NO Support
2004 03 14 IT1 MAU 13111 66.89 06:40:38 06:50:09 TM, TC, TR, PB#
2004 03 14 IP6 BR1 2119 15.82 06:54:08 07:07:12 TM, TC, PB
2004 03 14 IP6 LK2 2119 7.43 07:01:28 07:11:29 TM, TC
2004 03 14 IP6 SN3 2119 5.41 07:04:40 07:11:52 PL, P76, T02.27,

RT, L4L3AW
2004 03 14 IP6 BLW 2119 4.46 07:06:28 07:14:42 TM, TC

 28

Table 6 Comparison of Manual Method vs. GA-bases Optimization—How many
extra passes got scheduled in one week

Spacecraft

No. of Passes Scheduled by
Manual Scheduling using

local intelligence
(heuristics)

No. of Passes scheduled

by GA Method

Increase in the number

of passes supported

IRS-1C 126 136 10
IRS-1D 125 132 7
IRS-P4 119 122 3
IRS-T1 107 106 -1
IRS-P3 144 149 5
IRS-1B 38 36 -2
IRS-P2 22 27 5
IRS-P6 126 139 13
Total 807 847 40

The last column in Table 6 indicates the impact of using GA to resolve clashes. On
close examination it was revealed that the manual method of scheduling has not
correctly exploited the total value generated by a support. It is clear, nevertheless,
that nearly 5% extra passes could be supported by the new method for the
considered fleet of eight spacecraft contending simultaneously for the available
ground support resources. The opportunity for increasing such “performance” is
dependent on the number of passes that involve visibility or chain clashes. As the
number of orbiting spacecraft increases, such opportunities go up. For instance, if a
fleet has only 2 or 3 satellites, clashes may be rare, unless the spacecraft are close
neighbors. On the other hand, if the fleet consists of 10 or fifteen spacecraft, clashes,
and therefore the opportunity to optimize the support allocation, would also be
high. Such tests are currently in progress. The additional benefits of automating
clash resolution that was demonstrated was (a) using only 250 CPU seconds on a
Pentium IV to complete all clashing and nonclashing passes of a fleet of about a
dozen spacecraft, (b) inclusion of two or more chains at a ground station in
sensitivity studies, (c) be as realistic as possible in formulating the payoff functions
to achieve near-optimal tradeoffs, and (d) test the feasibility of using limited
manpower to accomplish tasks that earlier required laborious data manipulative
effort.

14 Concluding Remarks

The central challenge in optimizing spacecraft support appears to be the handling of
discontinuities and nonlinear objective functions and constraints. This paper reports
on a successful scheduling scheme developed to increase the utilization of capital-
intensive space equipment, and to improve customer service. Spacecraft now
constitute a key underpinning for natural resource management, communication,
flood control, crop output estimation, defense, and other uses worldwide. This
paper has presented methods and established their real life utility for optimally
resolving visibility clashes—situations met frequently in scheduling payload (PL)
ground support to LEO spacecraft. Since PL activity generates real revenue from

 29

LEO networks, its optimization has critical value for the enterprise. For TTC
(Teletype, Telemetry and Communication) also, this problem occurs several hundred
times/week in a typical LEO network and hence should be optimally resolved.

Such resource contention scenarios exist also in motion picture exhibition and in
scheduling advertising in printed and Internet media. We recall that for certain
special conditions the problem may be solved exactly. For the more general
situation involving arbitrary objective functions and nonlinearity in constraints, no
exact solution methods are known to exist. This paper devises and then
demonstrates the efficacy of an AI-based search method, here GA, to solve the
problem.

Likewise, once we have a way to determine optimal support given a set of resources,
the fraction of visibilities that go unsupported after the optimal allocation of support
may also be found. It would then be entirely possible for planners to introduce
virtual capacities to find how much additional station or antenna capability (or even
new ground stations) can be justified to support the spacecraft constellation. This
would be an additional use of good, practical solution approaches such as the
method given here. Till now such issues could not be adequately addressed [15].

While we have demonstrated the utility of AI-based search methods in spacecraft
support scheduling, AI cannot yet match the human mind. As of this writing,
machines can understand language, learn, reason, solve problems—all given formal
rules. But machines do not imagine new scenarios nor can they automatically create
new solution methodologies. Such capabilities must await our acquiring deeper
insights into the mind’s functioning. We ran into such issues in this study when we
were attempting to pin down “What are we trying to optimize? What is the
objective function?” (Section 7 above). Machines do not respond to such questions,
though they can now do limited inductive reasoning; they can “learn” and “adapt”
by automatically modifying certain logic control parameters and constructs. The
goal of AI is Turing's Dream: to build a digital mechanism that would accomplish
some task that the public thinks requires qualities characteristic of the human mind:
plasticity, intelligence, flexibility, communicability, etc. [26]. This counters the use of
small specific methods to assist in database searches, airline reservations, graphic
display handling, and the like, and also to do tasks that require brute computational
force surpassing human capacity even if few are impressed anymore by hand-held
devices that do calculations at lightning speed. Chess-playing programs, for
instance, are becoming increasingly more powerful simply by increasing the amount
of brute force applied.

Methods such as those applied in this paper have one objective: They provide
intelligence in the use of such brute force⎯to help solve problems that otherwise we
would sidestep. For such problems, without at least a usable meta-heuristic at hand,
a solution may be of unknown quality at best and pretty bad at worst.

 30

14. Acknowledgements

The authors are grateful to P Soma of the Indian Space Research Organization (ISRO)
and his staff who shared the problem with the author and provided critical feedback
throughout the duration of this study. The authors also appreciate the efforts of
Garima Shahi and Sagar Kapse—research scholars at the Indian Institute of
Technlogy Kanpur—who coded, tested and finally developed the prototype
scheduling system that was used by ISRO to compare its performance to manually
developed spacecraft support schedules. ISRO put this system on line in production
mode in 2004.

15. References
[1] Agnese, J C, Bataille, N, Blumstein, D, Bensana, E and Verfaillie, G (1995).

Exact and Approximate Methods for the Daily Management of an Earth
Observation Satellite, Proc 5th Workhsop ESTEC Artificial Intelligence and
Knowledge Based Systems for Space, Noordwijk (NL), 10-12 October.

[2] Agnese, J C and Brousse, Pascal (1998). Scheduling Techniques for a
Constellation Visibilities, Spaceflight Dynamics; Proc AAS/GSFC International
Symposium, Greenbelt, MD, May 11-15.

[3] Bagchi, T P and Deb, Kalyanmoy (1996). Calibration of GA Parameters: The
Design of Experiments Approach, Computer Science and Informatics, 26, 3.

[4] Bagchi, T P (1999). Multiobjective Scheduling by Genetic Algorithms, Kluwer
Academic.

[5] Baker, K R (1993). Elements of Sequencing and Scheduling, Dartmouth College.

[6] Eliashberg, J, Swami, Sanjeev, Weinberg, C B and Wierenga, B (2000).
Implementation and Evaluation of SilverScreener: A Marketing Management
Support System for Movie Exhibitors, Working paper, U. Pennsylvania.

[7] Goldberg, D E (1989). Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley.

[8] GREAS, The Satellite Resource Management Tool,
www.psrw.com/GREAS/grweb2.html

[9] Groleau, N, Kiser, L and Girouard, F (1992). A fully implemented semi-
automated ground-control system for the Terriers satellite, NASA Ames
Research Center.

[10] Kapse, Sagar Ramesh (2001). LEO Satellite Visibility Clash Resolution using
Greedy Search, Tabu Search, Simulated Annealing and Genetic Algorithms, M Tech
Thesis, Indian Institute of Technology Kanpur.

[11] Kasturirangan, K (2000). Development in Indian Space Programme,
Technorama (IE India), August, pp. 5-9.

 31

[12] Kumar, Sanjay (2000). LEO Satellite Operations Scheduling: An Approach using
Genetic Algorithms, M Tech Thesis, Indian Institute of Technology, Kanpur,
2000.

[13] Pemberton, J C and Galiber, III, F (1998). A constraint-based Approach to
Satellite Scheduling, Pacific Searra Research.

[14] Pinedo, M (1995). Scheduling: Theory, Algorithms, and Systems, Prentice Hall,
NJ.

[15] Rao, J D, Soma, P and Padmashree, G S (1998). Multi-Satellite Scheduling
System for LEO Satellite Operations, Paper 2b002, Proceedings, Space Ops 98.

[16] Rardin, Ronald L (1998). Optimization in Operations Research, Prentice-Hall.

[17] Shahi, Garima (2001). A Constraint Satisfaction Heuristic for Scheduling
Telemetry, Tracking and Commanding Operations of Indian Remote Sensing
Satellites, M Tech Thesis, Indian Institute of Technology Kanpur.

[18] Sousa J P and Wolsey, L A (1992). A Time Indexed Formulation of
Non-preemptive Single Machine Scheduling Problems, Mathematical
Programming, 54.

[19] SPIKE: AI Scheduling for Hubble Space Telescope, www.stsci.edu/apsb/doc

[20] Swami, S, Eliashberg J and Weinberg, C B (1999). “SilverScreener: A Modeling
Approach to Movie Screens Management,” Marketing Science (Special Issue on
Managerial Decision Making), 18 (3), 352-372.

[21] Swami, S (1998). Dynamic Marketing Decisions in the Presence of Perishable
Demand, Ph D Thesis, U. Brititish Columbia.

[22] Williams, D N (1997). Time Indexed Formulation of Scheduling Problems, M Sc
Thesis, U. British Columbia.

[23] Wolfe, W J and Sorensen, S E (2000). Three Scheduling Algorithms Applied to
the Earth Observing Systems Domain, Management Science, January.

[24] www.monet.astro.uiuc.edu/adass98/proceedings/kleineresc/

[25] www.vs.afrl.af.mil/fy99sbir/html/vss9cw02.html

[26] http://www.stanford.edu/group/SHR/4-2/text/introduction.html

