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Abstract 
 
This paper will present the methods adapted to model low earth orbiting (LEO) 
spacecraft support and an actual implementation of this approach. The results of a 
comparison of actual human schedulers' performance and the support schedules 
developed by using the proposed modeling approach will be presented. Indications 
based on two years of performance tracking of the new approach are that modeling 
optimization yields up to half an hour/day of extra support for remote sensing 
satellites, a very significant gain when one considers the high cost of putting a LEO 
satellite in orbit. 
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1.  What is a Visibility Clash? 
 
Orbiting once every 100 or so minutes at a 800 km height, low orbit (LEO) spacecraft 
now form a critical infrastructure for remote sensing, natural resource management, 
crop estimation, flood control, communication, and space research support [11].  
This paper addresses the optimal allotment of ground station support time to 
passing LEO spacecraft when their visibilities clash.  The problem is NP-complete 
and more complex than classical product mix determination since the products here 
may have different and arbitrarily defined profitability profile.  Further, opportunity 
windows dynamically generate clashing topologies.  Decision makers in satellite 
mission support management [1, 2], motion picture exhibition [6, 20] and advertising 
(rather distinctively in e-commerce) [21] now routinely face its variants.  
 
Visibility clashes are incidents when two or more spacecraft passing over a ground 
station have overlapping visibilities and ground station resources must be 
apportioned equitably among the spacecraft so as to generate maximum value in the 
mission.  This paper describes meta-heuristic methods to optimally resolve visibility 
clashes.  The methods apply both to TTC (telemetry, tracking and command) and PL 
(payload) operations support.  Initially we use a simple, linear objective function to 
set the stage for the procedure.  Subsequently we describe a method to derive the 
applicable non-linear optimization function⎯to help resolve visibility clash with 
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realistic constraints and objectives.  Such a payoff function can capture preferences, 
penalties, soft constraints, mission priorities and other factors as articulated by space 
mission scientists.  This leads to a general solution to the clash resolution. 
 
Broadly defined, a “visibility clash” is said to occur when LEO spacecraft have either 
overlapping visibilities at a ground station or their respective LOS (Loss of Signal) 
and AOS (Acquisition of Signal) difference is less than the station reconfiguration 
time.  Nonclashing visibilities may be assigned tasks by priority-dispatch rules [17].  
However, “clash resolution” must find the optimum apportioned support schedule 
that maximizes the total value or utility generated from supports provided to each 
clashing spacecraft.  In this process some spacecraft may receive no support at all, 
yet the total schedule is optimal.  As for the character of the objective functions 
optimized, one with a constant payoff rate is pertinent in PL support optimization.  
A function with a diminishing marginal payoff rate is apt in resolving TTC clashes. 
 
Clearly, the task grows in complexity as the number of spacecraft in orbit grows.  
Table 1 displays a fleet of six Indian LEO spacecraft that must be supported together, 
with possibility of several more whose missions must join this fleet.     
 
 

Table: 1  Sample Spacecraft Fleet in Orbit 
 

SPACECRAFT ORBIT # LAUNCH DATE LOCAL TIME PAY LOADS 
IRS – 1C 808 / 825 28-12-1995 9:48 PAN, WIFS LISS – 3 
IRS – 1D 736/821 29-09-1997 10:23 PAN, WIFS LISS – 3 
IRS – P3 807 / 825 21-03-1996 8:53 XRAY, MOS CBT 
IRS- P4 711/728 26-05-1999 11:57 OCM, MSMR 
IRS – P6 808 / 825 17 – 10 –2004 10:34 LISS – 4, AWIFS, 

TES 523 / 585 22 – 10 –2001 10:52 LISS – 3,SSR PAN 
 
 

2.  Optimization of Visibility Clash:  The Challenges 
The optimal allotment of ground station support time to passing low orbit spacecraft 
is an NP-complete problem [23].  It is more complex than product mix determination 
in manufacturing management since the “products” here may have different and 
arbitrarily defined profitability profile.  Further, clashing topologies generate the 
opportunity windows dynamically.  Besides spacecraft mission support 
management [1, 2], decision makers in motion picture exhibition [6, 20] and advertising 
(rather distinctively in e-commerce) [21] also face variants of this problem routinely.  
 
The fundamental time allocation problem may be characterized as below. 

• The opportunity window (machine time) is open for a specified period within 
which the resources must be allocated (to products to be made) so as to 
maximize the total profit contributed by all resources allocated. 

• Products are perishable.  They have no salvage value.  Each product must be 
marketed (consumed) as produced. There is no inventory. 

• Each product has its own marketing opportunity. 
• In general, the market opportunities of two or more products may clash, 



 3

forcing the enterprise to produce and market only one product at one instant 
of time. 

• If a product is produced, a specified minimum quantity of it must be 
produced. 

• Production of a product once started cannot be interrupted (no job splitting) 
• For each product there is a maximum quantity that can be produced 

regardless of the market opportunity that may exist for it. 
• A finite switchover time is required to reconfigure the machine from 

producing one product to another.  This time is machine dependent and 
independent of the production quantities involved. 

• The machine itself is available for a specified period. 
• An arbitrary profit function determines how much profit is contributed by 

each product. 
 
The above problem may initially be patterned after parallel machine scheduling [5, 
19].   A set of N jobs is to be scheduled on M parallel machines.  Each job j, (j = 1,…, 
N), must be processed without interruption during a period of length jOPD , that is, 
the minimum obligation period for which the job will be occupying the machine, if 
scheduled.  A machine can handle no more than one job at a time, and is 
continuously available.  Each job j has a release date jr  and a due date jd . The goal is 
to find an optimal feasible schedule⎯a set of start and end times⎯such that the 
capacities, availability and time limit constraints are met, and a given objective 
function is optimized.   As said, this problem is NP-complete [14]. 
 
Spacecraft task scheduling and sequencing has received increasing attention in the 
past decade as the application of spacecraft in remote sensing, crop estimation, 
rescue missions, mapping, defense, and numerous other applications has flourished.  
An activity-based scheduler exploiting AI methods was used to represent constraints 
and for searching good schedules to determine near-optimal long term scheduling of 
Hubble telescope observations [19].  The method used heuristic logic and hill-
climbing schedule repair schemes to determine a hierarchical ordering of activities, 
in order to schedule the most constrained activities first.  A system for NASA's 
Terriers satellite based on dispatching rules was implemented in 1992 without the 
explicit consideration of optimality [9].  GREAS, a scheduling and mission planning 
tool using task mapping-to-resource logic utilizes a constraint satisfaction approach 
[8, 13].  This system first creates a representation involving tasks, resources, events 
and constraints.  It then searches for a solution (a feasible schedule) using heuristic 
search with constraint propagation.   
 
Agnese and Brousse [2] present a search method to apply depth first and branch and 
bound methods, and greedy search to determine task allocations to spacecraft 
visibility windows.  The method is shown to yield solutions within reasonable time, 
but it is approximate and thus suboptimal.  A commercial system called ILOG aims 
as satisfying critical constraints only [24].  Tasks are allocated in ILOG using integer 
programming on a yes/no rather than fractional coverage (to allow true optimality) 
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basis.  Other similar suboptimal spacecraft support schedules have been produced 
by [18].   Among the recent noteworthy works in this area, Wolfe and Sorensen [23] 
compare priority dispatch, a look ahead heuristic and genetic algorithms to assign 
tasks to earth orbiting satellites.  
 
In this paper a special case of this problem is considered first.  The general visibility 
clash resolution problem is addressed next. 

 
 

3.  The Parallel Machines Model:  An Exact Solution 
 
A special case of the support scheduling problem may be formulated and exactly 
solved as follows.  All of the support stations are assumed to be identical and 
modeled as parallel machines.  At any point in time, the decision maker may decide 
whether or not to schedule a particular job (a support task).  However, once 
scheduled, the processing period is restricted to be at least jOPD .  Also, scheduling 
decisions are made keeping in mind the constraints on the release and due dates (the 
appearance and the disappearance of the spacecraft).  Further, the jobs may 
contribute differently to the total profitability when scheduled at different points in 
time.  The objective is to schedule all jobs available such that the cumulative profit is 
maximized over the planning horizon.  Lastly, the decision maker may decide to 
schedule only a subset of all the jobs available.  
 
A Time-Indexed Formulation of the Problem 
A time-indexed formulation [18, 22] may be used to solve such problems analytically.  
This uses the idea of dividing the planning horizon [0, …, W] into W discrete 
intervals of unit length such as weeks.  A binary decision variable is used, which 
equals 1 if job j is scheduled for i weeks beyond its obligation period starting in week w 
of the planning horizon, and 0 otherwise.  This action incorporates the obligation 
period constraint in the definition of the decision variable itself. This formulation 
may be generalized to encompass such extensions as different machine capacities, 
precedence constraints, and job-specific due dates.   
 
The time-indexed formulation highlights some key differences between the current 
problem and typical machine scheduling problems.  First, all jobs do not have to be 
processed in the current problem, while all jobs must be scheduled in machine 
scheduling problems.  Accordingly, this formulation helps the decision maker 
resolve two critical issues: choice of “which” jobs to schedule, and deciding processing 
durations of the chosen jobs.  Second, typical decision making goals prevalent in 
machine scheduling problems are turnaround, timeliness, and throughput.  In 
contrast, the current formulation offers a situation in which the scheduling decisions 
directly affect profitability, perhaps a more appropriate decision objective.  
 
Solving the Problem 
A profit function, or a similar utility measure, could be defined corresponding to 
each value of the decision variable.  For example, corresponding to the value of a 
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particular binary decision variable being 1, the function would denote the profit the 
decision maker would make if job j is scheduled for i weeks beyond its obligation 
period starting in week w of the planning horizon. This operationalization of the 
profits would simplify the solution procedure considerably since it would be 
possible to compute them independently of the algorithm for generating the optimal 
schedule.  Based on such factors, the time-indexed formulation would be as follows.  
 
Maximize Cumulative Profits  

Decision variables are Support lengths, processing times or duration allocated 
to the individual products 

 
Subject to 

1. Continuity constraints 
2. Machine allocation constraints 
3. Release- and due-dates constraints, and 
4. Binary constraints on the decision variables 

 
Constraint 1 would ensure that a job is scheduled in only consecutive weeks (i.e., no 
job-splitting), when that is the requirement.  Also, this would allow a job not to be 
scheduled at all, if it is not profitable to do so.  The next constraint would restrict the 
total number of jobs scheduled at any instance of the planning horizon to M, the 
total number of machines available.  In doing so, it would sum up all the jobs that 
are released earlier than or at the point of time under consideration.  Constraint 3 
would contain indexing constraints to ensure feasibility according to release and due 
dates.  Constraint 4 would define the decision variable to be a binary variable.  

 
The above problem may be formulated as an integer/linear program [6] and then, by 
exploiting the underlying special structure of the constraints (network property) it 
may be solved as a linear program.   This approach greatly reduces solution time.  
 

4  A Variation:  Optimal Resolution of Spacecraft Visibility Clashes 
 

Consider now the following variation of the parallel machine scheduling problem.  
As stated at the outset of this text, remote sensing spacecraft are typically low earth 
orbiting and these must remain in routinely executed support (communication) with 
ground stations located at different points on the globe.  Table 2 displays a list of 
sample support stations in a network.  As mentioned above, visibility clash (akin to a 
market opportunity clash) occurs when several spacecraft simultaneously passing 
over a ground station equipped with only a single “chain” (an antenna connected 
with appropriate electronic infrastructure) have either overlapping visibilities, or the 
relevant LOS (Loss of Signal of spacecraft #1) and AOS (Acquisition of Signal of 
spacecraft #2) difference is less than the station reconfiguration time.  The challenge 
is to determine the optimum support schedule (i.e., how much support to give to 
which satellite) that maximizes the total profit (utility) generated from all supports 
executed⎯within a single clash situation.  
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Table 2:  Sample Ground Support Stations in a Typical Network 

 
Station Capability Support Duration 

Bangalore (2 chains) All operations; 
Reconfiguration time 3 

minutes 

Throughout mission life (All 24 hours) 

Lucknow (2 chains) All operations; 
Reconfiguration time 3 

minutes 

Throughout mission life (All 24 hours) 

Mauritius (1 Chain) All operations; 
Reconfiguration time 3 

minutes 

Throughout mission life (04:00 U T to 
10:00 U T) 

Bears Lake  
(2 chains) 

All operations; 
Reconfiguration time 15 

minutes 

Throughout mission life (All 24 hours) 

Biak (1 chain) TM, TC Throughout mission life (22:00 UT to 05:00 
UT & 11:45 UT to 14:15 UT) 

 
 

Figure 1   Variants of Visibility Clash Topologies  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Complexities enter in this problem from two sources.  First, visibility clashes become 
numerous when the spacecraft are a dozen or more in number because then the 
patterns in which these revolve may have large variety.  This may greatly expand 
the solution search space.  Indeed, note that the topologies shown in Figure 1 
develop dynamically and must be handled precisely for optimal ground station 
support⎯possibly several dozen times every hour as the LEOs circle the globe.  
Second, the objective function to be optimized subject to various constraints (hard and 
soft) may be nonlinear and even discontinuous.    
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Figure 2 displays the general picture of a single occasion of clashing visibilities at a 
ground station.  Notice the fat two-headed arrows that indicate the individual 
spacecraft’s visibilities that overlap with each other.  Note also the station 
reconfiguration periods interceding support durations x1, x2 and x3.  The section 
below provides a mathematical formulation of the problem. 
 
 

Figure 2   A Visualization of Three Clashing Spacecraft Visibilities 
over a Ground Station 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Model Formulation 
 
Figure 2 displays the contiguous placement of the various activities in the general 
picture of a single occasion of clashing visibilities occurring at a ground station.  
Notice that the station must be reconfigured when support changes from one 
passing spacecraft to the next.  The following notations are used in this 
representation [12]: 

a1 b1

b2 a2 

x2 x1 x3 

Station reconfiguration time 

Visibility of spacecraft 1 

Visibility of spacecraft 2 

Visibility of spacecraft 3 

Total visibility V of all three spacecraft

a3 b3 

s1 = Start of 
support of 

spacecraft 1 
s2 = Start of 
support of 

spacecraft 2

s3 = Start of 
support of 

spacecraft 3 

e1 = End of 
support of 

spacecraft 1 

e2 = End of 
support of 

spacecraft 2

e3 = End of 
support of 

spacecraft 3 
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V  =  Difference of first clashing AOS and last LOS. 
I   =  Total number of spacecraft visibilities clashing in a pass over a station                      
        (i  =  0……I). 
P  =  The Utility or Value Function (= f(x1, x2, x3,…, xn)) to be maximized 
ai  =  Start of visibility (AOS) of spacecraft i. 
bi  =  End of visibility (LOS) of spacecraft i. 
si  =  Start of support of spacecraft i. 
ei   =    End of support of spacecraft i. 
xi  (= si – ei) =  Support given to spacecraft i when it passes over a station. 
min  =   Minimum time required for support once support is commenced. 
max  =  Maximum time required for support. 
r =  Station reconfiguration time reconfiguration time is added to end support of 

previous supported spacecraft.     
Ci  =  Utility or profit contributed to P  per unit time when spacecraft i is supported. 
 
ti+1 is a binary variable that indicates whether spacecraft i is supported or not.  Thus  
if  xi =  0,   ti+1 = 0  and if  xI > 0,  ti+1 = 1  for  i = 1, 2, 3, …, I;  t1 = 0. 
 

The Optimization Model 
 
Maximize   P = f(x1, x2, x3,… xn) 
 
In general, the objective or evaluation function f(x1, x2, x3,… xn) may be nonlinear, 
discontinuous, and have multiple peaks (Figure 3).   In the special case when f(x1, x2, 
x3,… xn) is linear,  
 

P  = ∑
=

I

i
ii xC

1
  =  total value generated       (1) 

V =  rtx
I

i
i

I

i
i *)(

11
∑∑
==

+   = total visibility at the ground station   (2) 

 
subject to: 
 
(i) Start of support (si) of spacecraft ‘i’ must be at AOSi  or later and it should be 

equal to or less then LOSi. 

bi ≥  si  ≥   ai           (3)  

(ii) End of support (ei)  of spacecraft i must be at LOSi  and it should be equal to 
or greater than AOSi. 

ai  ≤ ei  ≤ bi          (4) 

(iii) Station Reconfiguration allowance. 

si  ≥  {
1).....1( −= ik

Maximum  (ek × tk+1)}+ r     (5) 
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(iv) Duration of support of spacecraft i. 

xi =  ei - si         (6) 

(v) Constraint for minimum time of support. This may be either 0 or greater 

than the quantity  min.  Therefore, 

xi = 0  or  xi ≥ min        (7) 

(vi) Maximum time of support should be less than the quantity max,  as specified 
by the decision maker. 

xi < max        (8) 

(vii) Nonnegativity constraint 

si, ei  ≥  0;      xi  ≥ 0 ;       (9) 

 

Constraint (v) makes the problem nonlinear, even if the objective function (1) is 
linear.    It may be shown that the search space is not convex.  As said earlier, in 
general the profit or value function P (= ƒ(x1, x2, x3,…, xI)) may be a nonlinear and 
involve multiple local optima (Figure 3).    
 

Note again that Constraint (v) implies that the feasible values of the decision 
variables {xi} are discontinuous.  This is a major departure from standard LP type 
formulations that require convexity of the feasible space.  The restrictions⎯constant 
min, max and r⎯may in general be satellite- or station-specific, when necessary. 

 
Figure 3   An Arbitrary Profit Function of Two Decision Variables 

 
 
 
 
 
 
 
 

 
 
 
 
 

6  An Evaluation Function for TTC Support Value Generation 
 
In spacecraft applications it is well-known that for TTC (telemetry, tracking and 
command) operations the return or utility per unit support time (i.e., the marginal 
rate of utility generated by an additional second of support) is not uniform or 
constant.  Rather, it depends on the duration of support already provided and even be 
discontinuous.  For example, extensive discussions held with a group of space 

x1

f(x1, x2) 

 x2 

f(x1, x2) 

 x2 

f(x1, x2) 

 x2 

f(x1, x2) 
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technologists led to the following points (the values cited are only illustrative and 
would change to conform to the particulars of a situation). 
• TTC operations require a minimum support of m minutes (m×60 seconds), 

whenever support is provided. 
• Almost all operations can be done in this m-minute span. Thus the returns 

obtained in supporting a spacecraft for its minimum support time are high. 
• A support of more then m minutes is not necessary, but if some additional 

visibility time is available, support may be extended beyond m minutes.   The 
marginal utility of this “extra” support gradually diminishes with the extra 
support provided.  Thus, providing more than m minutes’ support is desirable, 
when possible, but not required. 

Thus one infers that the objective function should be crafted in such a way there is 
no return if a spacecraft is supported for a duration < m minutes.  But the return is 
high if support is exactly m minutes.  However, the marginal return diminishes after 
m minutes.   One may paraphrase this as follows.  If a spacecraft is supported 
beyond m minutes, the returns generated are more for the “mth minute” as compared 
to those in “m+1th minute” of support; returns in the “m+1th minute” are more than 
the returns generated in the “m+2th minute”, etc.  But the marginal return 
generated/minute (beyond the first m minutes) diminishes as time passes. 
 
On consideration of such factors, a suitable “gradually diminishing” utility function 
may be designed.  To aid parsimony, a one-parameter function⎯the exponentially 
decaying return function⎯is adopted for illustration.  Incidentally, while this 
function meets all requirements listed above and is mathematically simple to 
manipulate, it quickly engages the space experts intuitively.   Its construction would 
proceed as follows.   A simple exponentially falling function has only one parameter 
λ and it may be represented as 
 

ƒ = λe-λt                                                                                                                                                             (10) 
 

where t  is the time measured from the origin, as shown in  Figure 4.  At  t = 0,    ƒ = 
λ, thus λ is the ordinate of the exponential curve at t = 0.  To cast this diminishing 
function into our requirement, we introduce one more parameter,  β.  
 

ƒ = λe-λβt                                                        (11) 
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Here  β  is a factor that will control the actual decay rate of this exponential curve as 
support time t increases beyond m minutes. 
 
Determining the Value of  β 
 
In this illustration we assume that the minimum support needed (m) is 8 minutes.  
Similarly, we assume that there exists an upper practical limit of providing support 
also (= 16 minutes), after which the marginal utility generated of additional support 
becomes negligible.   In actual practice such input would come from the spacecraft 
mission experts. 
 
Suppose that the experts indicate that the function value  f  may be assumed to 
reduce to 1% of its initial value (λ) when support time becomes 16 minutes.   That is,  
when t = 480 seconds,  
 

ƒ = 1% of λ 
 

The value of  parameter β may then be found as follows. 
 

At t = 0,   ƒ = λ 
At t = 480,   ƒ = 1% of λ 

 
Hence   λe-λ*480*β  =  λ/100, which gives  
 

β = 0.00958/λ         (12) 
 
Note that (11) provides the rate of marginal return.  Therefore, at an instant t, the total 
utility generated by providing support up to t is the area covered between the 
exponential rate curve and the abscissa, easily found by integrating the exponential 
function [10].   Hence 

0 
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12 
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  Time t  

 
f 

Figure 4   The Exponentially Decaying Marginal Return Function f 



 12

Total value of support  = ∫ −
t

tB dte
0

λλ , 

which gives 
 

Total value of support =  (1- e-λtβ)/β                   (13)  
 
Thus, because of the minimum (8 minute) support requirement, the actual marginal 
rate function is not exponential, rather it is discontinuous, as shown in  Figure 5.  
 
Hence Total return   = 0                 for   t < 480  

= α + (1 - e-λtβ)/β  for   t ≥ 480            (14) 

where  α = 480*λ,  β = 0.00958/λ   and  t = (duration of total support - 480). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hence one may now give the expression for the total utility of a TTC support lasting 
t units of time.  This utility is discontinuous at the minimum support value (= m, 
here 480 seconds).  Indeed, the term  α in the expression (14)  below ensures high 
immediate value generated when a spacecraft receives its minimum support of 480 
seconds.   The total return as a function of t is shown in Figure 6. 
 
 
 
 
 
 
 

Figure 5   Marginal Return vs. Duration of TTC Support 

    0                               min                              max 
                                (8 minutes)                          (16 minutes) 
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7   Derivation of Lambda (λ) 
 
The next challenge in crafting the objective function for the support optimization 
model is to find the value of λ.  In general, λ would vary with the spacecraft, the task 
to be supported and the station providing the support.  Numerically, λ is the rate of 
return when a spacecraft is supported for exactly m minutes (the minimum support 
for TTC operations).   Recall that in (10)  λ is the height of the original (assumed) 
exponentially falling utility rate curve at zero time. 
 
The applicability of the exponential-decay logic would depend on the correct 
derivation of λ.  In practice this would require in-depth discussion with spacecraft 
mission experts as their judgments would have to be accurately reflected in the 
quantification of λ.  We present below a procedure. 
 
Assume that the experts indicate that the value of λ for a particular support scenario 
(a combination of spacecraft, station and operation) under consideration for clash 
resolution would depend on the factors listed in Table 1.   
 
Experts also indicate that these factors each have their own significance in spacecraft 
support and hence would each impact λ in its own manner.  The experts express the 
relative impact of these factors as shown in Table 3⎯in terms of subjectively 
expressed priority and penalty values that reflect the various aspects of spacecraft 
mission objectives.  

 
 
 
 
 

Figure 6   Total Returns as a Function of Total Support Duration t 
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TABLE 3  SAMPLE FACTORS CONTRIBUTING TO SUPPORT CRITICALITY 
 

FACTOR PRIORITY PENALTY 

Maximum elevation 2  

Spacecraft priority 10  

Exclusive pass (orbit over a single station) 8  

Critically dependent operations  10 

Special TTC operations (must be done in that pass) 10  

Service (visibility gap)  5 

Minimum operations on the spacecraft  6  

Exactly ‘n’ ascending operations per spacecraft   2 

Exactly ‘m’ descending operations per spacecraft  2 

Operator constraint  2 

Ground station constraint 2  

 
 
Discussions with spacecraft mission experts would typically reveal that LEO 
spacecraft missions have multiple objectives.   Common among these are 

− Maximization of the total number of supports provided 
− Maximization of the total duration of supports 
− Maximization of the execution of PL requests 
− Minimization of ground station idle time 
− Maximization of controller use 
− Uniform distribution of tasks across stations 
− Operations such as TR should be distributed globally for each spacecraft 

Many other requirements could be expressed as soft constraints and these too should 
be rolled into the objective function being crafted.   
 
Combining these considerations into one function would facilitate the valuation of λ.  
However, the method of combining these objectives and soft constraints should 
reflect their particular character and significance and their effect on mission 
objectives.   Subsequently, factors not considered in constructing λ may be used if 
necessary to guide the actual selection of tasks to be supported, to enable the 
selection of “preferred solutions”⎯in the Pareto optimality sense. 
 
For illustration we assume that discussions with mission experts have led to the 
deduction that λ consists of two dominant but separable parts as follows: 
 

λ = Max (FactorExclusive, FactorCyclic, FactorPrecedent,  
FactorSupportGap) + FactorSpacecraft + FactorElevation (15)                       
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FactorExclusive, FactorCyclic, and FactorPrecedent are expressions of the character 
of the task to be performed.  FactorSpacecraft is also an expression of importance or 
priority.  In practice these factors may each be subjectively quantified in consultation 
with mission specialists as weights, each set on a scale of 1 to 10.  The other factors in 
(15) depend on dynamically developing conditions.  For instance, FactorSupportGap 
would depend on the time gap between current visibility and previous supported 
visibility for the same spacecraft.  FactorElevation is step function assumed for 
illustration to be rising from a value of 0 (for the maximum elevation of the visible 
pass ≤  say 5°) to 10 (for elevations  ≥  5°).  
 
Note again that the above expression for λ has two parts.  The first part is the 
maximum of four factors while the second part is added to it.  It is conspicuous that 
the first part has terms that correspond to the actual operation performed on the 
spacecraft.  By contrast, FactorSpacecraft and FactorElevation relate to (a) the 
spacecraft concerned and (b) the quality of the visibility window and are both 
independent of the actual operations.   
 
Furthermore, the first part of  λ has factors that are each apparently very important 
in determining support/no support  decisions.  Hence, if any one factor among these 
is high for a visibility, that visibility becomes a high contender and it should be 
supported.  This requirement is ensured by the construct of λ as shown by (15), for it 
takes the maximum of Factor Exclusive, FactorCyclic, FactorPrecedent and 
FactorSupportGap. 
 
We provide below illustrative valuations of the factors in λ. 
 
 
Subjective Setting of the Factors in λ  
 
FactorExclusive:   This factor assumes only two values, either 0 or 10.  If a visibility 
is exclusive in that specific orbit (i.e., this spacecraft is not going to be visible for at 
least for the full duration of the next orbit), this factor becomes 10.  Otherwise it is 0.  
Thus, if a visibility is exclusive, this factor increases the value of λ in order that the 
likelihood of support for this visibility rises. 
 
FactorCyclic:  This factor also takes values of 0 or 10.   If a cyclic operation falls 
in this slot of visibility, FactorCyclic becomes 10.  Otherwise it is 0.  Thus, if a 
spacecraft requires a cyclic operation to be supported in this particular visibility, this 
factor becomes 10 and thus it increases the value of λ and hence the likelihood of 
providing support for this visibility becomes high. 
 
FactorPrecedent:  This factor also takes values of  0 or 10.  If a precedent  operation 
(required by a subsequent dependent operation)  falls in this slot of visibility, this 
factor becomes 10, otherwise it is 0.  Thus by giving precedent operation a value of 
10 we raise the odds that the dependent operation will have its precondition met.  
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Such “chaining” effect develops due to the fact that for certain spacecraft a precedent 
operation’s completion is the prerequisite for the dependent operation. 
 
FactorSupportGap:   Generally speaking, a spacecraft needs to be health-monitored, 
telemetered, etc. throughout the day.  Consequently, an important requirement in 
spacecraft support scheduling is to keep the gap between supports small.  
FactorSupportGap ensures that a spacecraft will have an increased likelihood of 
support after a certain time gap.   The value of this factor is dynamically set and it is 
kept dependent on the time gap between current visibility and previous supported 
visibility for the same spacecraft.  As this gap increases (because a support has not 
yet been possible), the value of FactorSupportGap also builds up.  After some delay 
(i.e., gaps piling up) this factor will build to such a high value that it will exceed any 
other priority factor in its numerical value.  Thus the affected spacecraft will end up 
receiving a support before too long. 
 
FactorSpacecraft:  This factor is a spacecraft-dependent factor and is independent 
of operations and visibility.  This factor is an additive term in λ.  This factor indicates 
that when a conflict develops, the “more important” spacecraft (as designated by 
mission management) should have a higher probability of getting a support.  An 
example is a new spacecraft or a launch that needs to be supported at every possible 
opportunity.  When FactorSpacecraft for this spacecraft is set high, it will preempt 
the support of any other normal spacecraft.    
FactorElevation:  This factor is defined as a step function.  In general, this factor is 
also independent of operations, hence it is additive in λ.  This factor indicates that a 
higher elevation visibility is more suitable for doing an operation, regardless of the 
operation, as compared with a low elevation visibility. 
 
We must point out that the above factors would now control the priority with which 
a particular operation on some particular spacecraft will be executed when a 
clashing scenario develops.   Hence, the values assigned to these factors must reflect 
the best judgment of mission specialists and mission objectives.   
 
We remark again that due to the manner in which we developed the foregoing logic 
of determining the priority of support, these factors alone would control the value of 
λ and hence the quality of the overall support schedule.  Note, however, that this is 
only illustrative of a general procedure that may be similarly set up. 
 
 

8   The Objective Function for Payload Operations Support 
 
For Payload operations, the marginal return of additional support (or the return per 
unit time) is generally constant, regardless of how much support has already been 
*provided.  Hence, the evaluation function becomes a linear objective function for 
the PL clash resolution problem.  It is then simply the product of the support time 
(xi) and returns per unit time (vi), beyond any minimum support required.   The 
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parameter vi is dependent on the spacecraft and the kind of PL operation being 
performed.   Thus the total utility from supporting several spacecraft in a visibility is 
 

P = ∑over all i (vi  × xi)                                                           (16) 
 
The function is shown in  Figure 7. 

 

 

 

 

 

 

 

 

 

9   Optimization of TTC Visibility Clash Support 

If there are I spacecraft passing over a given ground station simultaneously, solving 
the following problem would produce the optimal allocation of support to each 
spacecraft: 

Maximize,  

P = ∑over all i {αi + ((1- e-λitβi)/βi)}       (17) 

Subject to 

i) Start of support of spacecraft ‘i’ must be at AOSi  or later and it should be equal 
to or less then LOSi. 

bi≥ si ≥  ai            (18) 

ii) End of support of spacecraft ‘i’ must be at or before LOSi  and it should be 
equal to or more than AOSi. 

ai  ≤ ei  ≤ bi           (19) 

 vi 

 
 
min                                     max  

          xi  (support duration)  

   P  

Figure 7   Marginal (vi) and Total Utility (P) for PL Support 
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iii) Reconfiguration allowance. 

si  ≥  {
1).....1( −= ik

Maximum  (ek × tk)} + r       (20) 

iv) Duration of support of spacecraft i. 

xi =  ei  - si          (21) 

v) Constraint for minimum time of support.  Support provided may be either 0 

or greater than min: 

xi = 0  or  xi ≥ min         (22) 

vi) Constraint for maximum time of support.  Support should be equal to or less 
than max. 

xi  ≤ max         (23) 

vii) Non negativity constraint 

 si, ei ≥ 0 ;      xi  ≥  0 ;        (24) 

The objective function (17) and the presence of constraint (22) make the problem 
non-linear. 
 
In the above formulation, for convenience and without loss of generality we made 
the assumption that reconfiguration times are constant and have same value ’r’ for 
all sets of ground stations and spacecraft. 
 
Objective functions similar to (16) and (17) have already been implemented to 
resolve visibility clashes optimally in a prototype spacecraft support scheduling 
system.   (16) models the utility objective for PL visibility support while (17) models 
the objective for a TTC support. 
 
Solving the above problem would be nontrivial in general for it is NP-complete.  One 
approach to produce a practical solution in reasonable amount of time would be to 
use a heuristic or device that would reduce the effort to be expended in seeking a 
good solution.  For other similar problems meta-heuristic search methods⎯tabu 
search, simulated annealing or genetic algorithms⎯have been shown to be quite 
effective [14].  We approach the problem as follows. 
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10   An AI-based Formulation of the Optimization Problem 
 
Before we present meta-heuristic or AI-based methods for solving the above 
problem, a brief recollection of the utility of such methods would be in order.  
Methods such as greedy search [16] perform local search as opposed to a global 
search, which is what is required when the object is to solve an optimization 
problem globally.  Local search attempts to find a solution better than the current 
one through a search only in the neighborhood of the current solution.  Two 
solutions are neighbors if one can be obtained through a well-defined modification 
of the other.  The greedy search method can be programmed using conventional 
techniques to look for a neighbor that does least or no damage to feasibility and most 
helps the objective function.  However, working alone and given a starting point, 
such a procedure cannot guarantee reaching the globally optimal solution.  It often 
gets trapped in a local optima with no way available to it to escape from it. 
 
A meta-heuristic is a top-level general strategy which guides other heuristics to 
search for feasible solutions in domains where the task is hard.  Meta-heuristics have 
been most generally applied to problems classified as NP-hard or NP-Complete.  
However, meta-heuristics would also be applied to other optimization problems for 
which it is known that a polynomial-time solution exists but is not practical.  If the 
neighborhood generation method is intelligent, repeated a reasonable number of 
times a good local search procedure combined with appropriate randomization can 
reach a solution of acceptable quality, even if the final solution not globally optimal.  
Indeed this is how many complex practical optimization problems are now being 
tackled, particularly in scheduling [14] and in engineering design optimization [4].   
Three of the most popular methods for improving search are tabu search, simulated 
annealing and genetic algorithms.  Such methods belong to the domain of artificial 
intelligence, for they incorporate nontrivial moves, learning, and the capability to 
automatically modify the direction of search based on emergent information.  What 
separates these “AI” methods from conventional computer programs is that these 
methods are not programmed to execute instructions along pre-destined paths. 
 
The key idea in each of these meta-heuristic search methods is to innovate  
procedures that minimize nonimproving moves to neighborhood.  They do this by 
making provisions to prevent repeating solutions.  Tabu search deals with cycling by 
temporarily forbidding moves that would return to a solution recently visited.  The 
effect prevents short-term cycling, although solutions can repeat over a longer 
period.  Simulated annealing controls cycling by accepting even nonimproving 
moves according to probabilities tested with computer-generated random numbers.  
A parameter “temperature” controls the randomness of the search.  Genetic 
algorithms (GAs)—another still very popular metaheuristic to apply to complex 
optimization problems—evolve good heuristic solutions by performing “genetic 
operations” on a population of solutions that when properly parameterized 
continually improves as the generations go by;  GA breeds new solutions by 
combining existing solutions.  GA search is more general and abstract than both 
simulated annealing and tabu search [14].  Newer GAs are multi-objective [4]. 
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Such methods have the advantage that they can be applied to a problem without 
requiring much knowledge about the structure of the problem [14].  Further, these 
methods, particularly GA, may often be hybridized with other heuristic “solution 
improvement” methods that exploit domain-specific knowledge.  (This is now 
frequently done in scheduling [4].)   However, the computation time needed to 
obtain a solution by a meta-heuristic method tends to be relatively long and 
therefore, such methods remain presently the last resort when no exact method is 
available.   
 
In the clash resolution problem formulated in this paper, the decision variables are 
{xi}.  However, due to non-linearity and non-convexity present, the general problem 
cannot be solved by traditional optimization methods.  As already noted, the general 
problem cannot be modeled as an LP due to its non-linearity.  We outline a solution 
by genetic algorithms, a technique now widely described in the literature.  
 
 
The GA Chromosome Construction 
 
A key step in using GAs is casting the solution to the optimization problem in a 
chromosome-like structure in order that “genetic operations”⎯crossover, mutation, 
selection, etc.⎯may then be performed on it.  We often use binary (0-1) coding to 
construct this chromosome because in many problems the decision variables {xi} are 
real numerical quantities while binary coding is easily manipulated by 
straightforward genetic operators. A single chromosome for spacecraft support 
would contain all information for the full duration of support for each spacecraft 
involved in a clashed set of visibilities at a station.   
 
An example of such coding would be as follows.  Suppose that at some ground 
station four spacecraft visibilities are clashing.  Then, the chromosome would 
contain four decision variables⎯x1, x2, x3, and x4.  In general, for n visibilities 
clashing and in need of value-maximized clash resolution, the chromosome itself 
would have the following appearance (note the difference in the bit lengths {li} of the 
different decision variables): 
 
 
 
 

 
 
 
In GA formulations using binary-coded variables, the length of a substring 
representing a real variable (such as xi) depends on the numerical accuracy desired 
of the final solution.  If we us il  binary (0-1) bits to code the variable xi the 
obtainable accuracy in that variable would be approximately [7] ( ) iL

i
U

i xx l2/)()( − .  In 
most remote sensing LEO spacecraft operations the visibilities are about 20 minutes 

x1, l 1-bit  x2, l 2-bit x3, l 3-bit xn, l n-bit

1011000……..10000110   10100…………0101010  0011110…………….. 
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or less, within a second.  So, to illustrate a case, if 10 bits are used to represent xi}, the 
obtainable accuracy would be of the order of  
 
 (16*60+23)/2 10  = 0.959  
 
seconds.  Thus, when sufficient time is given to the GA converge, the 
implementation of this level of precision (i.e., il = 10 bits) in chromosome coding 
would keep the numerical error of the final solution limited to one second or less. 

 

Feasibility Assurance and GA Operators 
 
In nature, the feasibility of a species is maintained by nature’s incorporating 
constraints inside chromosome coding. (A violation of these constraints by say 
mutation may cause cancer-like cell formation.)  In the spacecraft support problem 
feasibility of solutions may be ensured by imposing suitably modified upper and 
lower limits of possible values of support times {xi} [12].   Figure 2 indicates such 
limits.   
 
Formally, this may be stated as follows.  Consider the object of ensuring feasibility of 
two decision variables x1 and x2  (refer to Figure 2). The limits for x1 are [a1 , b1].  
Limits for x2  will be [(Greater of e1+r and a2), b2 ].  Such approach would ensure 
feasibility of all chromosomes.  Experience shows that putting such constraints in the 
chromosome structure itself reduces the effort in optimization.  Otherwise numerous 
penalty functions would have to be incorporated in the objective function. 
 
GA facilitates global search by creatively generating new solutions as the search 
progresses.  In GA, "crossover" creates progeny by exchanging information (gene-
holding segments of the chromosome) among selected parent strings resident in the 
mating pool [7].   "Mutation" facilitates local search. Various “selection” strategies  
influence the selection of “parent” chromosomes that subsequently  procreate the 
next generation.  The preserve-the-best and roulette wheel selection strategies [7, 4] 
were implemented in the numerical example given below. 
 

11   A Numerical Example with Linear Objective function 
 
This example assumes that payload (PL) support is to be provided to four spacecraft 
simultaneously passing over a ground station supporting them, causing their 
visibilities to clash.  The maximum support required is uniformly 983 seconds while 
the minimum support required, once support is decided to be given, is 263 seconds.  
The visible time windows are as follows (all expressed in seconds from a reference 
point): 

a1  =  616520,    b1 = 617115;    a2 = 617244,      b2 = 618318;    
 a3  =  617712,    b3 = 618650;  a4 = 618027,      b4 = 619196 
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The above data (616520, 617115, etc.) are time marks (in seconds) from a reference 
point.  The profit function ƒ(x1, x2, x3,…, xi)⎯here a linear function involving 
marginal value generation rates C1, C2, C3 and C4 (the respective profits generated 
per unit time of PL support)⎯is  ∑

=

I

i
ii xC

1

.   

 
To solve this problem a bit length of 10 was used for each of the four decision 
variables x1, x2, x3 and x4.  The GA parameters pc (the probability of crossover) and pm 
(the probability of mutation) were set at 1.0 and 0.01 respectively, values determined 
as optimal by conducting pilot GA runs in a design-of-experiments framework [20].  
Population size was held at 20.  The GA converged to within values of 0.4 seconds 
when run for 100 generations, a precision sufficient for the application at hand.   
Table 4 displays the support times determined for four different problem scenarios, 
each with its own {Ci} profile.  A reconfiguration time (r) of  600 seconds was 
assumed to be in effect whenever the station support switched from one spacecraft 
to another. 
 
Intuitively, given the unequal value generation rates (Ci) of the different spacecraft 
and a linear profit function, we would expect the spacecraft with highest Ci to 
receive maximum support.  This has a caveat, however.  Because a non-value 
generating task of reconfiguration is involved whenever support is switched from 
one spacecraft to another, it is probable that it would be optimal to not support some 
particular spacecraft at all.   
 

Table 4  Optimal Support Schemes for Maximizing Profits 
 

Scenario 1 si ei Support (xi) Total Profit 
C1 = 1 616520 616520 0 
C2 = 2 617244 617613 369 
C3 = 3 618213 618213 0 
C4 = 4 618213 619196 983 

 
 
 

4670 
Scenario 2  

C1 = 4 616520 617115 595 
C2 = 3 617715 618318 603 
C3 = 2 617712 617712 0 
C4 = 1 618918 619196 278 

 
 
 

4467 
Scenario 3  

C1 = 1 616520 616520 0 
C2 = 4 617244 618227 983 
C3 = 3 617712 617712 0 
C4 = 2 618827 619196 369 

 
 
 

4670 
Scenario 4  

C1 = 1 616520 617112 592 
C2 = 3 617712 617712 0 
C3 = 4 617712 618650 938 
C4 = 2 618027 618027 0 

 
 
 

4344 
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Each scenario in Table 2 was solved by the GA in about 3 seconds by a C++ program 
running on a Pentium III 500 mHz system.  Observe that support does shift towards 
the spacecraft contributing at the maximum rate to total profits.  Also, some 
spacecraft get no support at all.  The estimated total profits are also shown in each 
case.  Figure 8 graphically displays the spacecraft visibility and support periods for 
the profit rates {Ci} of Scenario 1.  In a modern network operating a dozen LEOs and 
20-odd ground stations, up to 200 or more such PL visibility clashes would need to 
be optimally resolved every week before the operating schedules are released to the 
different ground stations spread around the globe.  GA would take about 3 minutes 
on a Pentium III system to resolve the 200-odd clashes. 
 
No exact method is known to exist in the literature to analytically solve a resource 
allocation problem of such complexity.  
 
Is GA the best method for solving this problem?  There are several criteria on the 
basis of which this may be judged.  GA, simulated annealing and tabu search, each 
produce comparable final solutions.  GA takes the longest time and tabu search the 
shortest.   However, there is one criterion on the basis of which GA may get a 
preferential nod.  GA produces a family of final solutions whereas both simulated 
annealing and tabu search produce single solutions.  There may be other, perhaps 
qualitative, criteria also to judge the acceptability of the final support schedules.   
Such multiobjective situations may also be addressed by the GA methodology with 
suitable modification of the chromosome structure and an extension of GA’s 
selection logic [4].  This can produce Pareto optimal final schedules. 
 
 
 
 

 
 
 

Figure 8   Satellite Support Periods for Profit Scenario 1 
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12   Support Optimization with Exponential Objective function 
 
This section illustrates the method for optimal clash resolution when the objective 
function is nonlinear, in particular, when it has an exponentially decaying marginal 
return character as derived in Section 6.  Suppose that TTC support is to be provided 
to two spacecraft simultaneously passing over a ground station supporting them, 
causing their visibilities to clash.  The maximum support required is uniformly 1800 
seconds while the minimum support required, once support is decided to be given, 
is 480 seconds.  The visible time windows are as follows (all expressed in seconds 
from a reference point): 
 

a1  =  0,    b1 = 840;    a2 = 900,      b2 = 1800 
 

Station reconfiguration time is 10 minutes or 600 seconds.  The profit function for 
each spacecraft is ƒ(xi)⎯here an exponential function involving parameters αi, βi and 
λi  (see Section 6)⎯given by 
 

Profit  = 0               for  t < 480  

= αi + (1 - e-λit
β

i)/ βi  for  t ≥ 480                             

where  αi = 480*λi, βi = 0.00958/λi   and  t = (Duration of total support - 480). 
 
GA was parameterized as population size = 20, probability of crossover = 0.95 and 
probability of mutation = 0.1, and the number of generations to run = 100.  We also 
point out that GA uses randomization in several places, including mutation, 
crossover, and also selection.  The random path that a particular GA execution 
follows is controlled by the seed of the random number that initiates GA.  A robust 
GA would produce good results regardless of the value of this initial seed.  For the 
example solved, five GA replications produced the following results: 
 

Random Seed 1 2 3 4 5 
Spacecraft 1 Start of support 0 0 0 0 0 
Spacecraft 1 End of support 601.013 600.124 601.698 602.176 604.882 
Spacecraft 2 Start of support 1201.01 1200.12 1201.69 1202.18 1204.88 
Spacecraft 2 End of support 1799.91 1799.98 1799.97 1799.99 1799.99 
Total return generated 1102.61 1102.63 1102.62 1102.62 1102.56 

 
The data indicate both good convergence as well as robust performance of the GA.   
A question may be asked, how difficult is the return maximization task here?  We 
address this question for a more complicated scenario when the two spacecraft-task 
combinations have different λ.   
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Let λ1 = 1.0 and λ2 = 2.0.  Figure 9 displays the behavior of the (total) objective 
function (the total return is produced here by partially supporting spacecraft 1 and 
spacecraft 2).  We generated the data here by enumeration.  The solution space is 
restrained by the constraints  

(a)  Total visibility equals 1800 seconds and  
(b)  Station reconfiguration time is 600 seconds. 

 
Observe two aspects of the function plotted in Figure 9:  (1) Strong nonlinearity 
exists in the objective function, and (2) discontinuities exist where the objective 
function sharply jumps to a different value.  An application of GA produced a 
solution that maximizes total return as follows: 
 
Spacecraft 1 Start of support 0 
Spacecraft 1 Endof support  564.71     

 S1 = Support of spacecraft 1 = 564.71 seconds 
 
Spacecraft 2 Start of support  1164.71 
Spacecraft 2 End of support  1799.96   

 S2 = Support of spacecraft 2 = 635.25 seconds 
 

Figure 9  Total Return as function of Support Times S1 and S2 
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We verify that the total support time + the reconfiguration time is 1799.96 seconds, a 
sufficiently good practical solution.  Also, it is not difficult to see that the GA-
generated solution falls in the region where total return is highest subject to the 
constraints (a) and (b).  
 

13  An Application 
 
This section provides the summary of an implementation based on the visibility 
clash resolution logic developed above and the consequence (benefits) observed.  In 
this implementation, customer requests for payload data are processed for special tilt 
requirement, sensor selection etc and feasibility of scheduling those passes are first 
studied. These processed requirements, and the visibilities of all the spacecrafts, over 
all the stations, serve as input for optimization. The configuration files (containing 
the scheduling environment and resource characteristics) serve as the controlling 
factor for operation allocation.  The Genetic Algorithm is applied at this level to 
optimally allocate the operations for a duration of one week, by resolving all 
visibility clashes and controller clashes occurring. All these processes (modules 
within the “Scheduling System”, Figure 10) are automated and are to be utilized for 
schedule generation on a weekly basis. 
  
 
Figure 10  Functional Modules of an implemented Satellite Support Scheduling 

System 
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A sample output of support schedules generated is given below.  The clashing 
passes over Mauritius ground station (MAU) are highlighted for easy reference. In 
this, the visibilities of spacecraft IRS-1D, IRS-1C, IRS-P4 and IRS-T1 are clashing.  
The scheduling system has optimized the allocation of the passes and supports IRS-
1C and IRS-T1 only.  The decision took less than 100 generations of the GA executed 
in a fraction of one second on a Pentium IV.  Note that all these calculations are 
performed off-line and the support decisions are programmed into the electronic 
infrastructure well ahead of the execution of the actual support.  Note also that the 
GA parameters were optimized before “production” execution using statistically 
designed factorial experiments for a variety of clash topologies and payoff scenarios 
(Figures 1, 5 and 9).   
 
 
 

Table 5:  Sample Optimized Spacecraft Support Schedule after Resolution of 
Clashes 

 

 
 
A new scheduling system coded into software in VC++ based on the logic presented 
in the foregoing sections is currently under evaluation at an actual applications site.  
The results are being cross-compared with schedules produced by an experienced 
team of scientists well familiar with multi-satellite schedules generation on a regular 
basis.   A sample of the results of this comparative study appears in Table 6.   
 

 
Date 

Space-
craft 

 
Stn 

 
Orbit # 

Max 
elevation 

AOS 
hh:mm:ss 

LOS 
hh:mm:ss- 

Operations 
Required 

2004 03 14 I1D SN1 33773 19.18 06:10:43 06:16:20 PL, P85 (TILT=   
-2.07), G3 

2004 03 14 I1D BLE 33773 17.99 06:11:56 06:24:40 TM, TC, TR 
2004 03 14 I1C LK1 42612 7.29 06:13:19 06:22:26 TM, TC$ 
2004 03 14 I1C SN2 42612 5.31 06:17:20 06:24:10 NO Support 
2004 03 14 I1C BLW 42612 4.38 06:18:19 06:26:29 TM, TC 
2004 03 14 I1D MAU 33773 70.78 06:21:14 06:35:51 NO Support 
2004 03 14 IT1 DLH 13111 31.35 06:24:45 06:36:03 NO Support 
2004 03 14 IP4 LK1 25434 52.26 06:27:26 06:37:55 TM, TC# 
2004 03 14 IT1 LK2 13111 19.94 06:25:20 06:35:59 TM, TC, TR, 

PLDW, DSS 
2004 03 14 I1C MAU 42612 24.90 06:26:07 06:35:38 TM, TC, TR$ 
2004 03 14 IP4 BLE 25434 48.46 06:27:47 06:41:46 TM, TC, TR, PB, 

PYS 
2004 03 14 IP4 SN1 25434 47.77 06:28:00 06:37:00 OCM_RT, P10 

(TILT= -20.0) 
2004 03 14 IT1 SN1 13111 19.29 06:28:03 06:38:39 NO Support 
2004 03 14 IT1 BLW 13111 18.38 06:29:29 06:39:41 TM, TC#$ 
2004 03 14 IP4 MAU 25434 12.84 06:39:22 06:50:42 NO Support 
2004 03 14 IT1 MAU 13111 66.89 06:40:38 06:50:09 TM, TC, TR, PB# 
2004 03 14 IP6 BR1 2119 15.82 06:54:08 07:07:12 TM, TC, PB 
2004 03 14 IP6 LK2 2119 7.43 07:01:28 07:11:29 TM, TC 
2004 03 14 IP6 SN3 2119 5.41 07:04:40 07:11:52 PL, P76, T02.27, 

RT, L4L3AW 
2004 03 14 IP6 BLW 2119 4.46 07:06:28 07:14:42 TM, TC 
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Table 6 Comparison of Manual Method vs. GA-bases Optimization—How many 
extra passes got scheduled in one week 

 
 
 

Spacecraft 

No. of Passes Scheduled by 
Manual Scheduling using 

local intelligence 
(heuristics) 

 
No. of Passes scheduled 

by GA Method 

 
Increase in the number 

of passes supported 

IRS-1C 126 136 10 
IRS-1D 125 132 7 
IRS-P4 119 122 3 
IRS-T1 107 106 -1 
IRS-P3 144 149 5 
IRS-1B 38 36 -2 
IRS-P2 22 27 5 
IRS-P6 126 139 13 
Total 807 847 40 

 
 
The last column in Table 6 indicates the impact of using GA to resolve clashes.  On 
close examination it was revealed that the manual method of scheduling has not 
correctly exploited the total value generated by a support.  It is clear, nevertheless, 
that nearly 5% extra passes could be supported by the new method for the 
considered fleet of eight spacecraft contending simultaneously for the available 
ground support resources.  The opportunity for increasing such “performance” is 
dependent on the number of passes that involve visibility or chain clashes.  As the 
number of orbiting spacecraft increases, such opportunities go up.  For instance, if a 
fleet has only 2 or 3 satellites, clashes may be rare, unless the spacecraft are close 
neighbors.  On the other hand, if the fleet consists of 10 or fifteen spacecraft, clashes, 
and therefore the opportunity to optimize the support allocation, would also be 
high.  Such tests are currently in progress.   The additional benefits of automating 
clash resolution that was demonstrated was (a) using only 250 CPU seconds on a 
Pentium IV to complete all clashing and nonclashing passes of a fleet of about a 
dozen spacecraft, (b) inclusion of two or more chains at a ground station in 
sensitivity studies, (c) be as realistic as possible in formulating the payoff functions 
to achieve near-optimal tradeoffs, and (d) test the feasibility of using limited 
manpower to accomplish tasks that earlier required laborious data manipulative 
effort.  
 
  

14  Concluding Remarks 
 
The central challenge in optimizing spacecraft support appears to be the handling of 
discontinuities and nonlinear objective functions and constraints.  This paper reports 
on a successful scheduling scheme developed to increase the utilization of capital-
intensive space equipment, and to improve customer service.  Spacecraft now 
constitute a key underpinning for natural resource management, communication, 
flood control, crop output estimation, defense, and other uses worldwide.  This 
paper has presented methods and established their real life utility for optimally 
resolving visibility clashes—situations met frequently in scheduling payload (PL) 
ground support to LEO spacecraft.  Since PL activity generates real revenue from 



 29

LEO networks, its optimization has critical value for the enterprise.  For TTC 
(Teletype, Telemetry and Communication) also, this problem occurs several hundred 
times/week in a typical LEO network and hence should be optimally resolved.  
 
Such resource contention scenarios exist also in motion picture exhibition and in 
scheduling advertising in printed and Internet media.  We recall that for certain 
special conditions the problem may be solved exactly.  For the more general 
situation involving arbitrary objective functions and nonlinearity in constraints, no 
exact solution methods are known to exist.  This paper devises and then 
demonstrates the efficacy of an AI-based search method, here GA, to solve the 
problem.  
 
Likewise, once we have a way to determine optimal support given a set of resources, 
the fraction of visibilities that go unsupported after the optimal allocation of support 
may also be found.  It would then be entirely possible for planners to introduce 
virtual capacities to find how much additional station or antenna capability (or even 
new ground stations) can be justified to support the spacecraft constellation.  This 
would be an additional use of good, practical solution approaches such as the 
method given here.   Till now such issues could not be adequately addressed [15]. 
 
While we have demonstrated the utility of AI-based search methods in spacecraft 
support scheduling, AI cannot yet match the human mind.  As of this writing, 
machines can understand language, learn, reason, solve problems—all given formal 
rules.  But machines do not imagine new scenarios nor can they automatically create 
new solution methodologies.  Such capabilities must await our acquiring deeper 
insights into the mind’s functioning.  We ran into such issues in this study when we 
were attempting to pin down “What are we trying to optimize?  What is the 
objective function?” (Section 7 above). Machines do not respond to such questions, 
though they can now do limited inductive reasoning; they can “learn” and “adapt” 
by automatically modifying certain logic control parameters and constructs.  The 
goal of AI is Turing's Dream: to build a digital mechanism that would accomplish 
some task that the public thinks requires qualities characteristic of the human mind: 
plasticity, intelligence, flexibility, communicability, etc. [26].  This counters the use of 
small specific methods to assist in database searches, airline reservations, graphic 
display handling, and the like, and also to do tasks that require brute computational 
force surpassing human capacity even if few are impressed anymore by hand-held 
devices that do calculations at lightning speed.  Chess-playing programs, for 
instance, are becoming increasingly more powerful simply by increasing the amount 
of brute force applied.   
 
Methods such as those applied in this paper have one objective:  They provide 
intelligence in the use of such brute force⎯to help solve problems that otherwise we 
would sidestep.  For such problems, without at least a usable meta-heuristic at hand, 
a solution may be of unknown quality at best and pretty bad at worst.   
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