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Abstract

This work presents an improved hashing-based algorithm for Private Set Intersection (PSI) in the honest-
but-curious setting. The protocol is generic, modular and provides both asymptotic and concrete efficiency
improvements over eisting PSI protocols.

If each player has m elements, our scheme requires only O(mλ) communication between the parties, where
λ is a security parameter. This is the first protocol that to achieve PSI using only asymptotically linear
communication under standard cryptographic assumptions and without Random Oracles. Our protocol also
provides 10-15% reduction in communication costs under real-world parameter choices.

Our protocol builds on the hashing-based PSI protocol of Pinkas et al. (USENIX 2014, USENIX 2015),
but we replace one of the sub-protocols (handling the cuckoo “stash”) with a special-purpose PSI protocol
that is optimized for comparing sets of unbalanced size. This brings the asymptotic communication complex-
ity of the overall protocol down from ω(λm) to O(mλ), and provides concrete performance improvements
over the most efficient existing PSI protocols.

Our protocol is simple, generic and benefits from the permutation-hashing optimizations of Pinkas et al.
(USENIX 2015) and the Batched, Relaxed Oblivious Pseudo Random Functions of Kolesnikov (CCS 2016).

1 Introduction

Private Set Intersection (PSI) is a secure computation protocol that allows two parties, who each hold a
private list of elements from some universe U , to compute the intersection of their (private) lists, without
revealing information about the elements outside the intersection. PSI is an important cryptographic tool,
and is a building block for many more complex functionalities and thus has received a lot of attention from
the cryptographic community. In this work, we focus on PSI in the honest-but-curious setting, and thus we
focus on comparing our protocol to other protocols that target the honest-but-curious security model.

A simple, generic method for privately computing set intersection would be to securely compute all pair-
wise comparisons between the elements. If each player has m elements, this would require m2 comparisons.
The number of comparisons can be reduced by first hashing the elements into bins. The players would
agree on a hash function h : U → [n], and then hash their elements into bins, where each bins of size b.
Then for each bin, the players can perform a secure comparison of all the elements. This basic hashing
protocol requires nb2 secure comparisons. If n = O(m), then with high probability, the maximum bin size

is log n/ log logn, so this would require n (logn/log logn)
2

secure comparisons. If, instead of performing all
pair-wise comparisons in each bin, we recursed, hashing each bin into sub-bins, we obtain a protocol that
requires O(n log n) secure comparisons.

This scheme can be improved by replacing one player’s hash table with a cuckoo hash table [36, 34, 28].
In this modification, the players choose two hash functions, and Alice hashes each of her elements into two
bins, and Bob uses uses the two hash functions to hash his elements into a cuckoo-hash table with a stash.
Then, for each location in Bob’s cuckoo hash table, the players compute a secure comparison between the
single element in that bucket and every element in Alice’s corresponding bucket. Finally, they compare every
element in Bob’s stash against every element in Alice’s table. Since Bob only has a single element in each of



his buckets, this method only requires O(m) comparisons to compare Bob’s cuckoo table against Alice’s table.
Unfortunately, comparing Bob’s stash (of size s) against Alice’s table still requires O(msλ) communication
in the protocols of [36, 34, 28]. The entire protocol then requires O(msλ) communication, and somewhat
counterintuitively, the communication complexity of the protocol is dominated by computation of the small
(ω(1)-sized) stash.

In this work, we make three improvements to this hashing-based PSI protocol

1. We observe that Bob’s hashing protocol does not need to support dynamic insertions and deletions,
and thus we can replace the cuckoo-hashing scheme with a 1-out-of-k hashing scheme, and compute
the optimal allocation of his elements in an offline pre-processing phase. Although the size of the hash
table, n, remains n = O(m), this allows us to shrink the constants, and remove some of the heuristics
from the failure probability analysis. This is described in Section 4.

2. We show how to use efficient protocols for unbalanced PSI [26, 4] to reduce the communication com-
plexity of the comparing Bob’s stash to Alice’s set. This provides both asymptotic and practical
improvements in communication complexity of existing PSI protocols. Our protocol reduces the com-
munication cost of the stash-comparison step from ω(λm) to O(λm), thus reducing the communication
complexity of the entire protocol from ω(λm) to O(λm).

We give details of our construction in Section 5, and concrete performance numbers in Section 9.

3. Finally, we show how to modify the protocol so that the participants learn only a secret-sharing of the
intersection, rather than the intersection itself. This is necessary for many secure computations that
use PSI as a building block (e.g. secure computation of cross-tabs and secure database joins). Our
protocols exhibit better asymptotic communication complexity than existing generic PSI protocols for
computing secret sharings of an intersection. We give details of this protocol in Section 8.

Together, these modifications yield an extremely efficient PSI protocol based on general assumptions that
achieves linear communication complexity. In addition to the asymptotic improvements in communication
complexity outlined above, our protocols also provide concrete improvements in communication complexity
for real-world set sizes. In Section 9 we calculate the actual communication cost of our protocol, and identify
the set sizes at which our modifications begin to offer concrete improvements in communication cost.

2 Previous work

There have been many approaches to the problem private set intersection (PSI), and early works focused on
building custom protocols to perform PSI (some examples include [12, 27, 17, 22, 23, 5, 6, 7]). Over the years,
many special-purpose PSI protocols have been proposed and implemented. Many of the early protocols were
designed around Oblivious Polynomial Evaluation (OPE). In this framework, Alice interpolates a polynomial
with roots at their elements, and then Alice and Bob work together to privately evaluate this polynomial at
Bob’s private elements. The private evaluation can be done using any additively homomorphic cryptosystem.
Some PSI protocols that fall into this framework include [12, 18, 27, 5]. Appendix A in [7] provides a nice
overview of many of the special-purpose PSI protocols.

In the face of the plethora of custom PSI protocols, [19] proposed the idea, that generic (circuit-based)
PSI protocols had many advantages, most notably that they were easy to implement and integrate into
other, more complex secure computation protocols.

One natural approach is to use Oblivious Pseudo-Random Functions (OPRFs) [11]. An oblivious PRF
is a protocol where Alice holds a PRF key κ, and Bob holds an input x, and the OPRF protocol allows Bob
to learn PRF(κ, x) while Alice learns nothing about x.

OPRFs provide a natural method for a linear-communication PSI protocol in the semi-honest model. If
Alice has a set X and Bob has a set Y , Alice will generate a key, κ, for an Oblivious PRF, and for every
x ∈ X, they will use the OPRF protocol to give Bob PRF(κ, x). Then Alice will locally evaluate PRF(κ, y)
for all y ∈ Y , and send these evaluations to Bob. Bob can then locally compute the intersection by comparing
his evaluations to those received from Alice.

OPRFs can be implemented generically, using secure Multiparty Computation to compute an ordinary
PRF, where Alice’s private input is the PRF key, and Bob’s private input is his evaluation point. This
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approach was taken in [35] where they used garbled circuits to compute to obliviously compute the AES-
based PRF. There have also been many special-purpose constructions of Oblivious PRFs designed specifically
for set intersection protocols. The work of [17] shows how to instantiate an oblivious version of the Naor-
Reingold PRF (based on the DDH assumption), and make it secure against malicious adversaries. The works
[6, 7] use the one-more RSA assumption in Random Oracle Model to build an OPRF-based linear-time PSI
protocol, and the work of [23] uses an OPRF-based PSI protocol to provide security against malicious
adversaries based on the one-more gap Diffie-Hellman problem in the Random Oracle Model. The work of
[22] builds an OPRF secure in the standard model under the Decisional Composite Residuosity assumption.

In [26] it was observed that the OPRF-based PSI protocols are well-suited to applications where the
parties hold sets unequal size. In particular, if Bob’s set Y is much smaller than Alice’s set X, then using an
OPRF-based PSI protocol, they only need |Y | OPRF calls, followed by |X| communication. In particular,
they show that the natural approach of using garbled circuits to implement an AES-based PRF is extremely
efficient when Bob’s set is sufficiently small. The recent work of [4] uses levelled fully homomorphic encryption
to create a PSI protocol for unbalanced set sizes.

Unfortunately, when the set sizes are roughly balanced, the generic OPRF protocols that use general-
purpose MPC machinery to obliviously evaluate a PRF are not as efficient as the custom-PSI protocols,
whereas the custom OPRF-based PSI protocols like [6, 7, 23] achieve linear complexity and practical effi-
ciency, but under strong and non-standard cryptographic assumptions.

The work of [19] identified three natural PSI protocols that could easily be implemented by an off-the-shelf
MPC protocol. If the universe U of elements is known in advance, and is not too large, the players can simply

encode their sets as characteristic vectors in {0, 1}|U|, and then perform |U| secure bit-wise AND operations
to compute their intersection (called the Bit-Wise And (BWA) protocol). When the universe is not known in
advance (or is too large), the players can securely perform all pairwise comparisons (this requires m2 secure
comparisons to intersect two sets of size m), this is called the Pair-Wise Comparison (PWC) protocol, and is
included only as a baseline, or straw-man protocol. Finally, they introduce the Sort-Compare-Shuffle (SCS)
paradigm, where each player locally sorts their sets, then they engage in an secure computation to securely
sort their joint set (using the Waksman sorting network). After the joint multi-set is sorted, all elements
in the intersection will occur twice in two adjacent positions. Thus the intersection can be computed using
2m − 1 secure comparisons (comparing element i and i + 1 for i = 1, . . . , 2m − 1). Finally, before the
intersection can be revealed, it must be randomly shuffled (again using the Waksman sorting network) to
hide information carried by the position of the intersected elements. The Waksman sorting network requires
O(m logm) comparisons to sort a m elements, and thus the total number of comparisons required by the
SCS approach is O(m logm).

If the players agree a hash function (or hash functions), they can use the hash functions to locally sort
their elements into bins, and then perform pairwise comparisons on the bins. In its simplest form, the players
agree on a hash function, h : U → [n], and some bucket size b. Then they locally hash their m elements into
n buckets of size b. If any bucket receives more than b elements, the protocol will fail, so b must be chosen to
be large enough so that this probability is sufficiently small. Then for each bucket, the players will engage
in a secure computation to compare all elements within that bucket. If they use brute-force comparison
within the bucket, this requires b2 comparisons, and the entire protocol requires nb2 comparisons to compute
the intersection. If the players use the SCS method (described above) within each bucket, the number of
comparisons drops to O(nb log b). If n = O(m), then b must be O(logm/ log logm), and the entire protocol
is O(m logm).

The works of [36, 34] outline an optimization of this approach, where one player uses a traditional hash,
while the other uses cuckoo hashing. To do this, Alice and Bob agree on k hash functions h1, . . . , hk, and
Alice hashes each of her elements into the k buckets defined by these hash functions. Alice’s buckets will
be sized to store as many elements as necessary. Bob, on the other hand, uses h1, . . . , hk to build a cuckoo
hash table (with a stash), and hashes each element into this cuckoo hash table. For each of the n bins,
Alice and Bob engage in a secure computation to compare the single element in that bin Bob’s cuckoo
hash table to the b elements Alice has in her bin. Finally, they compare each element in Bob’s stash to
every one of Alice’s elements. If the stash has size s, this requires nb + ns secure comparisons. Using
cuckoo hashing, we can set n = O(m), s = ω(1), and as above b = O(log(m)), and thus the protocol uses
O(m logm) secure comparisons. The protocols of [36, 34] use an OT-masking protocol to replace the (b+s)n
secure comparisons to simply sending (1 + s)n pseudo random masks. This reduces the communication
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complexity of these protocols to ω(nλ) = ω(mλ). The primary improvement introduced in [34] is the notion
of permutation-based hashing which reduces the complexity of each secure comparison (but not the number of
secure comparisons). Permutation-based hashing can be used to improve the performance of all the hashing-
based PSI protocols (including ours), and we review the details of permutation-based hashing in Section 3.2.
The performance of [34] can be further improved by viewing the OT-based solution as a special OPRF-based
solution, and instantiating it with novel, special-purpose OPRFs [28].

Bloom filters provide a natural, generic method for computing set intersections. If each participant
inserts their m elements into a Bloom filter of size n, then they can use a secure bitwise-AND calculation
to calculate the intersection of their Bloom filters. The players can locally query this “intersected” Bloom
filter on each of their elements to find the intersection. This approach was taken in [32]. It is straightforward
to check that if an element appears in the intersection, it will also show up in the intersected Bloom filter.
It is not too hard to see that the “intersected” Bloom filter created in this way may have extra ones that
would not appear in a fresh Bloom filter created by inserting only the elements in the intersection of the two
private sets. These extra ones, have the potential to leak information about the underlying sets, and thus
this simple method of computing a set intersection using Bloom filters cannot be made to meet the security
definitions of PSI.

Nevertheless, Bloom filters can be used to perform PSI. The protocol of [8] introduces the notion of
a garbled Bloom filter. In a traditional Bloom filter, an element x is inserted by ORing a 1-bit into the
k locations defined by the hash functions h1, . . . , hk. In a garbled Bloom filter, each entry holds a string
(rather than a single bit), and an element x is inserted by secret-sharing x using a k-out-of-k secret sharing
scheme, (x = s1 + · · ·+ sk) and inserting the shares si into the location determined by hi. If the slot hi(x)
is occupied, we re-use the existing share in that location. As long as one of the k slots is unoccupied, there
will be enough freedom to make the si sum to x. If all k slots are occupied, then the insertion fails (just as
in a regular Bloom filter). This approach can also be made secure against malicious adversaries [39].

The garbled Bloom filter can be made into a PSI protocol as follows. Alice will create a standard Bloom
filter encoding her set, while Bob will create a garbled Bloom filter encoding his set. Denote these Bloom

filters A ∈ {0, 1}n and B ∈
(
{0, 1}λ

)n
. Then for each entry i ∈ [n], if A[i] = 0, then set C[i]

$← {0, 1}λ.

If A[i] = 1, then C[i] = B[i]. It is not hard to check that this is a garbled Bloom filter that encodes all
elements in the intersection. The somewhat surprising result from [8] is that this resulting garbled Bloom
filter has exactly the same distribution as a garbled Bloom filter created by the intersection, and thus it
leaks no information beyond the intersection. Implementing this PSI protocol using MPC requires n secure
(single-bit) comparisons. Note that in the semi-honest setting, Alice can generate all the random values (for
when A[i] = 0) and then Bob can receive the garbled Bloom filter, compute the intersection, and send the
intersection to Alice, and thus there is no need to generate the random values within the MPC protocol.
For a false-positive rate ε, a Bloom filter holding m elements needs to be of size O(m log(1/ε)), thus when
ε = O(m−1), n = O(m logm).

3 Preliminaries

3.1 Cryptographic primitives

Our constructions make use of several standard cryptographic primitives, Oblivious Transfer (OT) [37,
10]. Pseudorandom Functions (PRFs) and secure multiparty computation (MPC). These are all standard
cryptographic primitives, and we assume the reader has some familiarity with them, and thus we only provide
brief reviews. Formal definitions can be found in most cryptographic textbooks, e.g. [14, 15].

A PRF is a keyed function, F (·, ·), with the property that if a secret key, κ, is chosen uniformly, the
outputs of F (κ, ·) are indistinguishable from the independent, uniformly chosen random values. An oblivious
PRF (OPRF) [11] is a two-party secure computation for computing a PRF, where one party holds the key,
and the other holds the input value. In particular, an OPRF is a protocol between Alice and Bob, where
Alice holds a key, κ, Bob holds an evaluation point x, such that at the end of the protocol, Alice learns
nothing, and Bob learns nothing beyond F (κ, x). There are many OPRF protocols in the literature, and
OPRFs can be implemented by using any generic MPC protocol to compute a PRF. The OPRF functionality
is described schematically in Figure 1.
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Figure 1: The Oblivious-PRF (OPRF) functionality

one-time
OPRF

κ

x

F (κ, x)

Figure 2: The one-time OPRF functionality

We also consider a weaker notion, a one-time OPRF, which is similar to an OPRF, except that instead
of providing a key, a random key is generated by the protocol, and Alice receives the key as an output. Thus
a one-time PRF securely realizes the functionality, where Alice provides no input, Bob provides an input x,
Alice receives a (uniformly random) key, κ, and Bob receives F (κ, x). The qualifier one-time indicates that
a new key is generated at each instantiation, so the protocol can only be used to evaluatio F (κ, ·) once. The
one-time OPRF functionality is described schematically in Figure 2.

3.2 Permutation-based hashing

Our constructions also benefit from the idea of permutation-based hashing [3, 34]. Permutation-based
hashing can be used with any hashing-based protocol to reduce the size of the elements stored in each
hash bucket. In general, it takes log |U| bits to store an element x ∈ U . In a traditional hash table, a
hash function, h : U → [n] is chosen, and the element x is stored in the location indexed by h(x). Notice,
however, that the bucket index, h(x), carries log n bits of information, so it should be possible to reduce
the information stored in the bucket from log |U| bits to log |U| − log n bits, while still retaining the ability
to uniquely recover an element x. This reduction in storage is possible, if we choose our hash function
carefully. Permutation-based hashing provides a method for doing this, using a Feistel-style trick. Suppose
an element x has bit-representation x = x1||x2, where x1 has length log n, and x2 has length logU − log n.

If f : {0, 1}logU−logn → {0, 1}logn, then we define h(x) = x1 ⊕ f(x2), and we store x2 in the bin defined
by h(x). The crucial observation here is that if x and y are in the same bin, and the stored values are the
same (i.e., x2 = y2), then that means f(x2) = f(y2), and since h(x) = h(y), we conclude that x1 = y1,
which means x = y. The permutation-based hashing trick can be used in all hashing-based PSI protocols,
including this one. In the situation where there are multiple hash functions, the id of the hash function must
also be stored in the bin to allow equality tests [29].

4 Static (offline) hashing

Instead of cuckoo hashing, we propose using multiple-choice hashing [38], where there are k hash functions,
and each element is hashed into d buckets (using some choice of d of the hash functions) such that each
bucket contains at most one element. A simple observation is that if player 1 uses a d1-out-of-k hashing
scheme, and player 2 uses a d2-out-of-k scheme with d1 + d2 > k, then any element in the intersection must
appear in at least one overlapping bucket. Then the intersection can be computed efficiently by simply
comparing the buckets. The schemes of [36, 34, 28] which use cuckoo hashing, essentially do this (in the
online setting) with d1 = k, and d2 = 1. Our schemes will also focus on the case where d1 = k, and d2 = 1.

A simple variant of this idea is when d1 = d2 = 2, and k = 3, i.e., both players use two-out-of-three
hashing scheme, which guarantees that every common element will collide in at least one of its three buckets.
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Two-out-of-three hashing has been used to build data structures that support efficient set intersection queries
in the setting where privacy is not a concern [2, 9]. In [2], two-out-of-three hashing is used to build dynamic
data structures (supporting insertions and deletions) that allow efficient set intersection queries, but they
do not consider the notion of private set intersection. In [9], they consider the notion of two-out-of-three
cuckoo hashing, which improves performance over standard two-out-of-three hashing.

Cuckoo hashing is a specific type of multiple-choice hashing procedure that is designed for dynamically
adding elements to the hash table. In the PSI setting, however, both parties know their sets in advance,
and can find the optimal static allocation. In fact, it remains an open question whether the dynamic cuckoo
hashing insertion algorithm can obtain the optimum load threshold achievable by a static allocation [33].

We review the bounds for offline hashing in Appendix A.1, and review an efficient algorithm for finding
the optimal allocation in Section A.2.

5 Construction

At a high level, our construction is as follows: Alice and Bob choose k hash functions, h : {0, 1}∗ → [n],
Then Alice hashes each of her elements into k buckets, and Bob uses multiple-choice hashing to hash each of
his elements into 1 (out of k possible) buckets. Then they perform pairwise comparisons on the buckets. If
k is constant (relative to m) we can set n to be O(m) and the hashing will succeed with probability 1−o(n).
To make this failure probability negligible, we allow Bob to keep a super-constant sized “stash” of elements
that could not be allocated to a single bucket. See Appendix A.1 for a more detailed analysis of the failure
probability.

Then, we use secure comparison protocol (like those described in [36, 34, 28] to compare the element in
each of Bob’s buckets to the elements in Alice’s corresponding bucket. Finally, we need to compare Bob’s
stash (of size ω(1) to Alice’s elements (of size O(m)). To do this, we use an unbalanced PSI protocol like
those described in [26].

1. Set k ≥ 1, and n = O(m), and the players choose k hash functions hi : U → [n].

2. Bob will hash his elements into n buckets using a 1-out-of-k hashing scheme, such that each bucket
obtains at most one element. Elements that cannot be allocated to a single bucket will be put in
a “stash”, StashB , of size m′ = ω(1). Bob can compute this allocation efficiently as described in
Appendix A.2. Let B[i] denote the element stored in Bob’s ith bucket. Let StashB [i] for i ∈ m′
denote the ith element of the stash.

3. Alice will hash her elements into n buckets, using a k-out-of-k hashing scheme. Thus with high
probability some of Alice’s buckets will have O(logm/ log logm) elements. Let C[i] denote the
number of elements in Alice’s ith bucket, and let A[i][j] denote the element in the bucket for
1 ≤ i ≤ n, 1 ≤ j ≤ C[i].

4. Alice and Bob will engage in n parallel executions of a one-time-OPRF, where for i ∈ [n], Alice

learns a key κi, and Bob learns SiB
def
= PRF(κi, B[i]).

5. For each i ∈ [n], Alice will locally compute SiA,` = PRF(κi, A[i, `]) for j = 1, . . . , C[i].

6. Alice will shuffle
{
SiA,`

}
i∈[n],`∈[C[i]]

and send the shuffled set to Bob. Note that this set will have

exactly km elements.

7. Bob will locally compute the intersection by finding which of the SiB are in the set received from
Alice.

8. To handle the stash, Alice will generate a key, κ, for an OPRF, and Alice and Bob will engage in

m′ executions of an OPRF protocol, where Bob learns RiB
def
= PRF(κ,StashB [i]) for i ∈ m′.
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9. Alice will compute RiA
def
= PRF(κ,A[i]) for i ∈ n, shuffle the set, and send it Bob who will locally

compare these to values to the
{
RiB
}
i∈m′ to find the intersection of Alice’s set with the stash.

Figure 3: The high-level outline of our algorithm
In the next sections, we describe alternative methods for implementing the one-time OPRF using methods
from [34] and [28], and how to implement the OPRF using methods from [26].

5.1 A OT-masking-based protocol

In this section, we describe how our PSI protocol can implemented using OT. This protocol is essentially a
modification of the [36, 34] where we can use OT to create randomized “masks” and then the players can
compute equality tests of private elements by comparing their masks in the clear. The main improvements
over existing work is the use of static (offline) 1-out-of-k hashing scheme instead of cuckoo hashing, and the
replacement of the stash comparison with an efficient unbalanced PSI protocol. The first change removes some
of the heuristics from the security analysis, and the second change reduces the communication complexity
from super-linear to linear as well as resulting in concrete communication improvements for real-world
parameters.
Our protocol also naturally benefits from the permutation-based hashing described in [34] (Section 3.2) and
the OPRF-based improvements described in [28] (Section 6).

1. Set k ≥ 1, and n = O(m), and the players choose k hash functions hi : U → [n].

2. Bob will hash his elements into n buckets using a 1-out-of-k hashing scheme, such that each bucket
obtains at most one element. Elements that cannot be allocated to a single bucket will be put
in a “stash”, StashB , of size m′ = ω(1). Bob can compute this allocation efficiently as described
in Section A.2. Let B[i] denote the element stored in Bob’s ith bucket. Let StashB [i] for i ∈ m′
denote the ith element of the stash.

3. Alice will hash her elements into n buckets, using a k-out-of-k hashing scheme. Thus with high
probability some of Alice’s buckets will have O(logm/ log logm) elements. Let C[i] denote the
number of elements in Alice’s ith bucket, and let A[i][j] denote the jth element in the bucket for
1 ≤ i ≤ n, 1 ≤ j ≤ C[i].

4. For each i ∈ [n], let B[i]1|| · · · ||B[i]t denote the base-N representation of the element B[i]. Thus
t = logN |U| (or t = logN |U| − logN n+ logN k if we use permutation-hashing).

5. For each i ∈ [n], the players engage in t parallel 1-out-of-N string OTs (for random strings). To
keep the failure probability below 2−σ, the strings should be of length σ+2 logm (as in [36, 34, 28]).
For each i ∈ [n] and j ∈ [t], Bob provides input B[i]j ∈ [N ] to the

(
N
1

)
-OT, and receives a random

string M i,j,B[i]j while Alice gets N random masks {M i,j,γ} for γ ∈ [N ]. Then for each i ∈ [n] and
` ∈ C[i] Alice computes

Si,`A = ⊕tj=1M
i,j,A[i,`]j

and Bob computes
SiB = ⊕tj=1M

i,j,B[i]j

At this point Si,`A = SiB if A[i, `] = B[i], and from Bob’s perspective Si,`A is uniformly random
otherwise.

6. Alice will shuffle
{
Si,`A

}
i∈[n],`∈[C[i]]

and send the shuffled set to Bob. Note that this set will have

exactly km elements.
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7. Bob will locally compute the intersection by finding which of the SiB are in the set received from
Alice.

8. To handle the stash, Alice will generate a key, κ, for an OPRF, and Alice and Bob will engage in

m′ executions of an OPRF protocol, where Bob learns RiB
def
= PRF(κ,StashB [i]) for i ∈ m′.

9. Alice will compute RiA
def
= PRF(κ,A[i]) for i ∈ n, shuffle the set, and send it Bob who will locally

compare these to values to the
{
RiB
}
i∈m′ to find the intersection of Alice’s set with the stash.

Figure 4: The OT-masking-based algorithm
This protocol requires

• nt
(
N
1

)
-string OTs (for random strings). Using OT extension [20], these can be generated using λ base

OTs.

• Using permutation-based hashing, t = logN |U| − logN n+ logN k.

• m′ = O(log n) secure computations of the PRF

• Alice will send km+ n PRF outputs to Bob

6 Relaxed PRFs

In this section, we describe how to use our hashing scheme with the Batched, relaxed-key OPRFs introduced
in [28]. At a high level, this protocol is very similar to the OT-based protocol described in Section 5.1. As
this is the most efficient instantiation of the one-time OPRF used in our scheme we provide a description in
more detail below.

Definition 1 (k-Hamming Correlation Robustness [28]). Let H : {0, 1}∗ → {0, 1}v be a hash function such
that for all z1, . . . , zm ∈ {0, 1}∗, and ai, bi ∈ {0, 1}n for i = 1, . . . ,m, with wt(bi) ≥ k, we have{

{H(zi||ai ⊕ [bi · s])}i∈[m]

∣∣∣ s← {0, 1}n}
≈{

{ri}i∈m
∣∣∣ ri $← {0, 1}v

}
This generalizes the original definition of correlation robustness in [20] which required k = n, i.e., bi · s = s.
A pseudo-random code is a relaxation of error-correcting code such that for any two distinct messages, their
encodings have a large minimum distance with high probability over the choice of a specific code from the
family.

Definition 2 (Pseudo-Random Code [28]). A family of function C is called a (d, ε) pseudorandom code
(PRC) if for all strings x 6= x′,

Pr
C←C

[wtC(x)⊕ C(x′) < d] ≤ 2−ε

Definition 3 (m-related key PRFs [28]). An m-related key relaxed PRF is a pair of functions F, F̃ , and
security is defined relative to the following game:

1. The adversary chooses input strings {xj}j∈[n] and pairs {(ji, yi)}i∈[m], with yi 6= xji .

2. The challenger chooses PRF keys k∗, k1, . . . , kn and a challenge bit b ∈ {0, 1}.

• If b = 0, the challenger sends
{
F̃ ((k∗, kj), xj)

}
j

and {F ((k∗, kji), yi)}i to the adversary.
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• If b = 1, the challenger generates m random strings zi ← {0, 1}v, and sends
{
F̃ ((k∗, kj), xj)

}
j

and {zi}i to the adversary.

3. The adversary outputs a guess b′, and the adversary wins if b′ = b. We say the adversary’s advantage
is Pr[b′ = b]− 1/2.

We say the pair F, F̃ is secure if the adversary’s advantage is negligible. Intuitively, the pair F, F̃ is an
m-related key relaxed PRF if F̃ does not reveal information that would allow an adversary to distinguish F
from a true random function.

Lemma 1 (Lemma 5 in [28]). If C is a (d, ε+ logm)-pseudo random code, and 2−ε is negligible and H is a
d-Hamming correlation robust hash function, then

F (((C, s), (q, j)) , r) = H(j||q ⊕ [C(r) · s])
F̃ (((C, s), (q, j)) , r) = (j, C, q ⊕ [C(r) · s])

is an m-related key PRF as in Definition 3.

1. Alice chooses a random PRC C
$← C and sends the code to the receiver.

2. Alice chooses a key s
$← {0, 1}k.

3. Bob generates two matrices T0, T1 ∈ {0, 1}m×k as follows. For j = 1, . . . ,m,

(a) The jth row of T0 is generated uniformly at random t0,j
$← {0, 1}k.

(b) The jth row of T1 is defined as t1,j = C(rj)⊕ t0,j .

The ith columns of T0 and T1 are denoted ti0, t
i
1 respectively.

4. Alice and Bob engage in k parallel instances of
(
2
1

)
-OT for strings of length m as follows:

• Bob acts as sender and his inputs are the k columns of T0 and T1, i.e., Bob’s inputs to the
OT are

{
ti0, t

i
1

}
i∈k

• Alice acts as receiver and her inputs are the k bits of s, i.e., {si}i∈k
• Alice receives k outputs (each of length m) denoted

{
qi
}
i∈k

Alice creates the m × k matrix Q whose columns are the received vectors
{
qi
}

. Thus the ith
column of Q is tisi . Let qj denote the jth row of Q. Then

qj = ((t0,j ⊕ t1,j) · s)⊕ t0,j = t0,j ⊕ (C(rj) · s)

5. For j ∈ [m], Alice keeps the PRF seed ((C, s), (j, qj))

6. For j ∈ [m], Bob keeps the relaxed PRF output (j, C, t0,j).

Figure 5: Instantiating a BaRK-OPRF using OT [28].
At the end of the protocol in Figure 5, Alice has the keys k∗ = (C, s), and kj = (j, qj), which allows her to
evaluate the BaRK-OPRF

F ((k∗, kj), r) = F ((C, s), (j, qj)), r) = H(j||qj ⊕ [C(r) · s])

9



for any r, and Bob has the relaxed PRF outputs

(j, C, t0,j) = (j, C, qj ⊕ [C(rj) · s]) = F̃ ((k∗, kj), rj)

which allows him to compute F ((k∗, kj), rj).

1. Set k ≥ 1, and n = O(m), and the players choose k hash functions hi : U → [n].

2. Bob will hash his elements into n buckets using a 1-out-of-k hashing scheme, such that each bucket
obtains at most one element. Bob can compute this allocation efficiently as described in Appendix
A.2. Let B[i] denote the element stored in Bob’s ith bucket.

3. Alice will hash her elements into n buckets, using a k-out-of-k hashing scheme. Thus with high
probability some of Alice’s buckets will have O(logm/ log logm) elements. Let C[i] denote the
number of elements in Alice’s ith bucket, and let A[i][j] denote the element in the bucket for
1 ≤ i ≤ n, 1 ≤ j ≤ C[i].

4. Alice and Bob will use the BaRK-OPRF protocol (Figure 5) with Bob providing the contents of his
n buckets as his inputs. At the end of the protocol, Alice has keys:

k∗, k1, . . . , kn

and Bob has relaxed PRF outputs F̃ ((k∗, ki), B[i]) which allows him to compute SiB
def
=

F ((k∗, ki), B[i]).

5. Alice will compute F ((k∗, ki), A[i, `]) for i ∈ [m], ` ∈ C[i]. Alice will shuffle this set and send the
shuffled set to Bob. Note that this set will have exactly km elements.

6. Bob will locally compute the intersection by finding which of the SiB are in the set received from
Alice.

Figure 6: BaRK-OPRF-based PSI protocol

7 Security

The PSI protocols outlined in Section 5 are formed by taking existing one-time OPRF-based PSI protocols,
and combining them (in parallel) with an OPRF-based PSI protocol to handle the unbalanced stash. The
proof of security (against honest-but-curious) adversaries then follows immediately from the security of the
two underlying protocols.
Full proofs of security for the one-time OPRF protocols can be found in [36, 34, 28], and a proof of security
for the unbalanced OPRF-based PSI protocol can be found in [26]. These proofs are straightforward, and
we do not repeat them here.

8 Generic PSI protocols for computing sharings

The generic one-time OPRF protocol (Section 5) and its instantiation with BaRKs (Section 6) are very
efficient, but they reveal the intersection to the players. In many situations, however, PSI is used as a sub-
protocol in a larger secure computation, and the intersection itself should never be revealed (e.g. in secure
database-joins). In these situations, the protocols outlined in Section 5 are not appropriate, and a different
solution is needed.
In this section, we outline a generic PSI protocol with O(mt log logm) communication for t-bit values,
by combining a basic hashing scheme with the SCS protocol to compare elements within each bucket. This
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provides asymptotic communication improvements over existing schemes, using only generic MPC techniques,
and is naturally composable with larger secure computations.

8.1 Improving SCS via hashing

Our scheme is a simple hashing-based scheme, but we use a small number of hash buckets. In particular,
instead of setting n > m (the number of buckets is larger than the number of elements being hashed) we set
n = m/b, for some b > 1, and allow each bucket to have (1 + δ)b elements.

1. Set n = m/b, and let h : U → [n] be a hash function

2. Alice and Bob will each hash all of their elements to n buckets, using the hash function, h. If any
bucket contains more than (1 + δ)b elements, Alice and Bob abort the protocol. Since the abort
leaks information, we will show that this happens with probability that is negligible (in m).

3. For each bucket, Alice and Bob will engage in a 2-party secure computation, implementing the
sort-compare-shuffle (SCS) protocol of [19].

Figure 7: Combining Sort-Compare-Shuffle and hashing to reduce the asymptotic communication cost.
First, we examine the failure probability, i.e., the probability that a bucket contains more than (1 + δ)b
elements. Fix a player, and a bucket, and let Xi denote the random variable that is 1 if the player’s ith
element lands in the chosen bucket, and 0 otherwise. Let X =

∑m
i=1Xi denote the number of elements that

land in the given bucket. If we model h as a truly random hash function, each Xi is an independent random
variable with Pr[Xi = 1] = E[Xi] = 1

n . Then, E[X] = b, and by a Chernoff Bound,

Pr [X > (1 + δ)b] ≤ e− δ
2b
3

Taking a union bound over the 2 players and the n buckets, we find that the probability of abort (and hence
information leakage) is upper bounded by

me−
δ2b
3

b
< 2−

δ2b
3 logm

Asymptotically, setting δ = 1, and b = log2m, we have that the failure probability is negligible in m. Since
the SCS protocol requires O(tb log b) AND gates to compare each bucket of size O(b), the total number of
AND gates is O(mt log logm). Using the GMW protocol [16], each AND gate can be implemented using 2
OTs. Using OT-extensions, the entire secure two-party computation can be implemented using computation
and communication that is linear in the size of the circuit [21].
Concretely, to keep the overall failure probability below 2−σ, we set

me−
δ2b
3

b
< 2−

δ2b
3 logm < 2−σ

⇒ logm− .48δ2b < −σ

⇒ 2.1(logm+ σ)

δ2
< b

In our situation, each bucket has ` = (1 + δ)b elements and each element is of length τ = t− log n bits, thus
running the SCS protocol requires τ`

3 (5 log `+ 14) AND gates ([19] Table 1).
Setting σ = 40 (as in [34, 28]), we can set the values of b and δ to minimize the number of AND gates needed.
Table 1 shows that this protocol requires only a few hundred AND gates per element.
Thus for real-world parameter choices, the entire PSI protocol can be computed by a circuit using approx-
imately 500m AND gates, and this circuit can be evaluated with constant overhead (independent of the
security paramter) using the generic techniques of [21].
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log(m) t δ b
Number of AND

gates per element
16 24 0.60 327 515
20 24 0.81 190 392
24 32 0.58 395 530
28 36 0.58 430 537
32 36 0.77 255 411

Table 1: Number of AND gates required per element in the hashing-SCS protocol. m is the total number
of elements, t is the bit length of each element, b is the expected bucket size, and (1 + δ)b is the maximum
alotted bucket size. Thus the overall computation requires m/b SCS sub-computations, each on sets of size
(1 + δ)b.

9 Concrete communication benchmarks

In [25] it was shown that under the assumption that the dynamic (online) cuckoo hashing algorithm achieves
the optimal load, allocating m elements to n = O(m) buckets with a stash of size s will succeed with
probability at least 1 − O (n−s). The protocols of [36, 34, 28], set n = 1.2m. Thus, under the assumption
that online cuckoo hashing achieves the optimal offline load, to achieve a negligible probability of failure,
the stash size, s, must be s = ω(1) (e.g. s = O(log n)).
In the context of PSI, a cuckoo-hashing failure reveals information about the players’ sets, so the failure
probability should be set below the security threshold. In the work of [36, 34], they set security threshold to
be a constant 2−40 independent of the set sizes. In [34], they empirically tested the failure probability with
2-way cuckoo hashing, and different stash sizes for m up to about 214. Then they extrapolated these failure
probabilities up to larger set sizes, and used these values to choose the stash size (See [34] Figure 2). The
empirical values they found were consistent with the asymptotic failure rate of O(n−s) found [25], with an
implicit constant of about 1. Thus to achieve a failure probability of 2−40, they could set the stash size s
to be about s > 40/ log(n). The scheme of [28] uses similar stash parameters even though they are hashing
with three hash functions instead of two.
In practice, fixing a concrete security parameter that does not increase with m, means the necessary stash
size that decreases as the set sizes increases, whereas an asymptotic analysis (which assumes that the failure
probability should be negligible in m) requires that the stash size increase as the set sizes increase. Thus
this choice of a concrete security parameter means that the concrete and asymptotic performance metrics
diverge as the set sizes increase.
For a hash table of size n, and a stash of size s, the hashing protocol of [28] requires n applications of a
one-time OPRF, and the communication of n (truncated) PRF outputs in the main phase, and s one-time
OPRF evaluations and the communication of ns PRF outputs in the stash phase.
Replacing the stash computation with an unbalanced PSI protocol based on a standard (reusable) OPRF,
reducing the communication in the stash phase to s evaluations of an OPRF followed by sending n PRF
outputs.
In practice, because equality testing is done by comparing the pseudorandom masks (PRF outputs), there
is no need to transmit the entire mask. Instead, to achieve error probability less than 2−σ, it is sufficient to
transmit only about v = σ+2 logm bits of the mask, and in this case, by the birthday bound, the probability
of a spurious collision between masks is negligible in m. This is what is done in practice by [34, 28].
Let d denote the number of bits required to for a one-time OPRF application, and d′ > d be the number
of bits required for an OPRF evaluation. Then our protocol obtains a concrete performance improvement
whenever sd′ + nλ < sd+ nsλ. Ignoring the sd term, we obtain a concrete improvement whenever

sd′

v(s− 1)
< n

In [1], they report that a single (GMW-based) AES evaluation using ABY can be computed using only 170
kb of communication. Using their custom, “MPC-friendly” PRF, the garbled circuit can be computed using
only 23 kb of communication ([1] Table 6). Similarly, 1024 garbled AES representations were computed
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OPRF
Comm.

Cost

Break-even
point

AES (Obliv-C) 8 Mb 224

AES (GMW - ABY) 170 Kb 216

AES (Yao) 177 Kb 216

LowMC 23 Kb 212

Table 2: The minimum valueof n for which the OPRF instantiation has a lower communication cost than the
one-time OPRF instantiation in [28] This table shows the communication cost of a single OPRF evaluation,
and the minimum number of buckets, for which replacing the OPRF-based comparison of the stash in [28]
would be improved by switching to this protocol. The AES Obliv-C benchmarks were obtained via our
internal tests. The ABY benchmarks were taken from [1], the Yao benchmarks were taken from [26], and
the LowMC benchmarks were taken from [1].

2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28

2.5%

5%

7.5%

10%

12.5%

15%

17.5%

Percentage improvement in communication cost
LowMC

Figure 8: The percentage improvement in overall communication cost when modifying the BaRK protocol
to use the LowMC-based PRF to compare the stash. For most values of m, our modification reduces the
overall communication cost of the protocol by 10 to 15%. The points of non-differentiability in the graph
correspond to the places where the stash sizes drop (we use the same stash sizes as [34, 28])

using 185 Mb of communication ([26] Table 5]), which reduces to about 177 kb per AES circuit (including
pregenerating the OTs). Table 2 summarizes the communication costs of these different OPRFs, and the set
sizes at which our protocol starts to improve over the [28] protocol.
Thus using an off-the-shelf AES128 implementation, we start to see concrete improvements in communication
costs by replacing the one-time OPRF protocol of [28] with a true OPRF, whenever the sets being compared
have more than 216 ≈ 40, 0000 elements. Using the “MPC-friendly” PRF, LowMC [1], we start to see concrete
efficiency improvements for sets of size 212 ≈ 6, 000. Note that these are very conservative estimates, since
we are assuming the stash size, s, is minimal (s = 2), and we are ignoring the cost of s one-time OPRFs.
Figure 8 shows the overall reduction in communication when the BaRK protocol [28] is replaced with our
protocol instantiated with LowMC. Figure 9 shows the overall reduction in communication (over [28]) when
our protocol is instantiated using different OPRF instantiations. Since the OPRF cost does not increase
with m, all three instantiations of our protocols approach the same asymptotic improvement (about 10%)
over the protocol of [28].
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Figure 9: As m increases, and the stash size stays at 2, all three OPRF protocols tend towards a 10%
improvement in communication cost over the BaRK protocol of [28]

10 Conclusion

PSI is one of the most basic and fundamental types of secure computation, and numerous diverse types
of PSI protocols have been proposed and implemented. Existing PSI protocols are highly optimized and
extremely efficient.
In this work, we show how simple, modular composition of existing PSI protocols leads to both asymptotic
and concrete improvements in efficiency. Our main result is showing that combining the one-time OPRF
protocols of [36, 34, 28] can be improved by replacing the stash-comparison step with an unbalanced PSI
protocol [26].
We also show how combining a naive hashing-based PSI protocol with the Sort-Compare-Shuffle (SCS)
protocol yields a generic (circuit-based) PSI protocol with better asymptotic efficiency over either solution.
This solution is generic, can easily be adapted to support computing only the secret-sharing of the intersection
set, and provides asymptotic efficiency comparable to the best honest-but-curious PSI protocols.
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A Bounds for static (offline) multiple-choice hashing

In our protocol Bob uses a multiple-choice hashing scheme to hash his m elements into n buckets. In general,
each element will be hashed into k out of d possible locations. In previous work, the [36, 34, 28], Bob uses
1-out-of-k cuckoo hashing with a stash. Cuckoo hashing is designed for dynamic (online) hashing, whereas
Bob is assumed to know his entire set at the time he makes the hash allocation.
Since the communication complexity of the resulting protocols depends on n (the number of hash buckets),
we seek the minimum value of n that results in an acceptably low failure probability. Error bounds for
multiple-choice hashing schemes have been well studied, and most results are obtained by analyzing the
orientability of certain hypergraphs. In the following sections, we review some of the pertinant results.

A.1 Orienting hypergraphs

Given k hash functions, hi : U [n], the problem of hashing m elements into n bins such that each bin contains
at most b elements, and each element is hashed using d functions can be analyzed by translating the problem
into one of orienting hypergraphs.
Formally, we have,

Definition 4 (Orientability of hypergraphs). A k-uniform hypergraph H = (V,E) is called (d, b)-orientable
if there exists an assignment of each hyperedge e ∈ E to exactly d of its vertices v ∈ e such that no vertex
is assigned more than b hyperedges.

Translating from our original context, hash-bucket will correspond to a vertex in the hypergraph (thus there
are n vertices), and each element will correspond to an hyper-edge (thus there are m hyper-edges). The
hyper-edge corresponding to an element x ∈ U will contain the k vertices corresponding to h1(x), . . . , hk(x).
An (d, b) orientation of this hypergraph then corresponds to choosing a set of d hash buckets (vertices) for
each element (hyper-edge) such that each vertex (bucket) is chosen at most b times.
The problem of orienting random hypergraphs is well-studied, and many deep results are known [24, 13, 30,
31].
[13] give asymptotic thresholds for (d, b)-orientability in terms of n and m, but their results only hold when
b is “sufficiently large.”
[2] show how a similar 2-out-of-3 hash structure can be used to compute set intersections in GPUs. There
work focuses on the online setting, and they show the naive insertion algorithm has expected constant
running time when n = O(m).
[30] gives asymptotic thresholds for (d, b)-orientability in terms of n and m, for almost all values of d, b. The
main result of [30] is the following: for any positive integers, k, d, b there is an explicit (although complicated)
c∗ = ck,d,b such that if m > c∗n then the probability a random n,m, k hypergraph is (d, b)-orientable tends
to 0 as n→∞, and if m < c∗n, this probability tends to 1.

16



k d b ck,d,b
3 2 1 .1666
5 3 1 .2119
7 4 1 .1747
9 5 1 .1453
11 6 1 .1236
13 7 1 .1074
15 8 1 .0948

Table 3: The threshold for orientability in random hypergraphs. If m is the number of elements, and n is the
number of buckets, a random hashing scheme that hashes each element into d out of k buckets, where each
bucket has size b will succeed with probability approaching one if and only if m/n < ck,d,b. In particular, if
we hash each element into 3 out of 5 buckets, then (with high probability) there will be no collisions as long
as n > 5m.

k d b ck,d,b
2 1 1 .4999
3 1 1 .9179
4 1 1 .9768
5 1 1 .9924
6 1 1 .9973

Table 4: The threshold for 1-out-of-k orientability in random hypergraphs. If m is the number of elements,
and n is the number of buckets, a random hashing scheme that hashes each element into d out of k buckets,
where each bucket has size b will succeed with probability approaching one if and only if m/n < ck,d,b. In
particular, if we hash each element into 1 out of 3 buckets, then (with high probability) there will be no
collisions as long as n > 1.09 ·m.

Theorem 1 (Theorem 1 [30]). For integers k > d ≥ 1, and b ≥ 1, then if ξ is the unique solution to

kd = ξ
E [max(d− Bin(k, 1−Q(ξ, b)), 0)]

Q(ξ, b+ 1) Pr [Bin(k − 1, 1−Q(ξ, b)) < d]

and

ck,d,b =
ξ

kPr [Bin(k − 1, 1−Q(ξ, b)) < `]

where

Q(x, y)
def
= e−x

∞∑
j=y

xj

j!

and Bin(n, p) is the binomial distribution with Pr [Bin(n, p) = k] =
(
n
k

)
pk(1− p)n−k then

lim
n→∞

Pr [Hn,m,k is (d, b)-orientable ] =

{
0 if m > ck,d,bn
1 if m < ck,d,bn

In the case d = k − 1 and b = 1, we have ck,k−1,1 = 1
k(k−1) .

A.2 Finding an optimal allocation

Given 2k−1 hash functions, hi : U → [n], and m, we would like to find an allocation such that each of the m
values is hashed into k of its possible locations, and each bucket contains only a single value. As described
above, this corresponds to finding a (k, 1) orientation on a (2k − 1)-regular hypergraph (V,E).
If such an allocation exists, it can be found efficiently using a max-flow algorithm.
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Theorem 2. Given 2k− 1 hash functions, hi : U → [n], and {xi}mi=1 ⊂ U , it is possible to find an allocation
A : [m]→ P([2k − 1]) that allocates each element k hash functions, satisfying

1. Each element is allocated exactly k hash functions, i.e., |A(i)| = k for all i ∈ [m].

2. Each bucket has at most one element, i.e., for all i 6= i′ ∈ [m], {hj(xi)}j∈A(i) and {hj(xi′)}j∈A(i′) are
disjoint.

and the allocation can be found in time O(nk).

Proof. We begin by translating the problem to finding a (k, 1)-orientation in an (2k− 1)-regular hypergraph
Ghyper = (Vhyper, Hhyper), with n vertices and m edges. As described above, each bucket corresponds to an
vertex in the hypergraph, and each element x ∈ U corresponds to a hyperedge, containing the 2k−1 vertices
{h1(x), . . . , h2k−1(x)}.
Finding a (k, 1)-orientation of this hypergraph corresponds to finding an orientation, where each hyper-edge
“points” to k of its vertices, and each vertex has in-degree at most 1.
This problem can be translated to a problem on a flow network as follows.
Consider a network with node set with nodes for each vertex and each edge in the hypergraph, thus the set
of nodes is Hhyper∪Vhyper∪{s, t}. For each edge in the hypergraph, put a capacity 1 edge connected the node
corresponding to that edge with the 2k − 1 nodes corresponding to the vertices in Vhyper that it contains.
Add capacity k edges from the source s to each vertex corresponding to an edge in Hhyper, and capacity 1
edges from each vertex corresponding to a vertex in Vhyper to the sink, t.
Now, note that any |Hhyper|(k) flow from s to t in the flow network induces a (k, 1) orientation in the
hypergraph Ghyper. Conversely, any (k, 1) orientation of the hypergraph corresponds exactly to an |Hhyper|(k)
flow from s to t in the induced flow network.
Using the Ford-Fulkerson algorithm, the max flow can be computed in time O((|Vhyper| + |Hhyper|)(k)) =
O((m+ n)k) = O(nk).
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