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Abstract

In this paper, we construct the q-Schur modules as left principle ideals of the cyclotomic

q-Schur algebras, and prove that they are isomorphic to those cell modules defined in [3]

and [10] at any level r. Then we prove that these q-Schur modules are free modules

and construct their bases. This result gives us new versions of several results about the

standard basis and the branching theorem. With the help of such realizations and the

new bases, we re-prove the Branch rule of Weyl modules which was first discovered and

proved by Wada in [20].
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1. Introduction

Weyl modules for a cyclotomic q-Schur algebra Sn,r have been investigated recently in

the context of cellular algebras (see [3]). These modules are defined as quotient modules

of certain permutation modules, that is, as cell modules via cellular bases. Such cellular

bases play a decisive role in the study.

However, the classical theory [1] and the work [4] [5] in the case when m = 1, 2 suggested

that a construction as submodules without using cellular bases should exist in the case of

Iwahori-Hecke algebra. Following Dipper and James’ work [2], when the level l equals to

one, the basis and structure appearing in Hecke algebras can still be constructed in q-Schur

algebras with totally different proof.

This phenomena needs great change to stay valid in the case of cyclotomic q-Schur

algebras of arbitrary level, which is the major motivation of this paper. We can solve

this difficulty by constructing a series of principle left ideals in the cyclotomic q-Schur

algebras generated by a single element zλ, which we construct as φ1
λw ·Twλ

·yλ′ by the right

Ariki-Koike algebra Hn,r-module structure, where the element yλ′ and morphism φd
λw are

defined in 2.3 and 2.4 respectively. The q-Schur module Aλ is defined as Sn,r · φ1
λwTwλ

yλ′

as given in Definition 2.4. Then in Theorem 3.1, we prove that the Aµ as Sn,r ·zµ is exact-

ly a realization of the Weyl modules in the category of modules over cyclotomic q-Schur

algebras which is a generalization of Dipper and James’ work [2]. After that, we construct
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an R-linear basis of q-Schur module Aµ and prove the following theorem,

Main Theorem: Suppose that λ ∈ Λ+
n,r(m). Then the q-Schur module Aλ is free as

an R-module and {φ1A
µλ · zλ|A ∈ T ss

µ (λ) and µ ∈ Λn,r(m)} ⊆ Aλ is a basis.

Here µ is any multipartition as defined in Section 2.1 and A is its semi-standard tableau

as defined in Remark 3.3, which lies in between the semi-standard basis that appeared in

[3] and the definition of φµ. With the help of this basis, we can show a new version of the

branch rule which appeares in the category of modules over a cyclotomic q-Schur algebra.

The paper is organized as follows. In Section 3, we construct the left ideals Aµ called

q-Schur modules over the cyclotomic q-Schur algebra RSn,r, and prove that these q-Schur

modules are the same as the Weyl modules in [3]. After that, we construct the natural

bases {φ1A
µλ · zλ|µ ∈ Λn,r(m) and A∈ T ss

µ (λ)} in these ideals, following the work of Dipper

and James obtained in [4] in case of Iwahori-Hecke algebras. In the final section, by using

these new bases in the q-Schur modules, we construct their filtrations, which gives a new

point of view to the branch rule in Wada’s work [20].

2. Prelimilaries

2.1. Some notations about tableaux. A composition λ of n is a finite sequence of

non-negative integers (λ1, λ2, . . . , λm) such that |λ| =
∑

i λi = n. Moreover, there is a

partial order � (resp. �) within compositions of n defined as follows. We denote λ � µ

when
∑k

i=1 λi ≤
∑k

i=1 µi (resp.
∑k

i=1 λi ≥
∑k

i=1 µi) for all 1 ≤ k ≤ m. Moreover, if a

composition λ satisfies that λ1 ≥ λ2 ≥ · · ·λm, we call it a partition.

Let Sn denote the symmetric group of all permutations of 1, . . . , n with Coxeter gener-

ators si := (i, i + 1), and Sλ the Young subgroup corresponding to the composition λ of

n. Thus, we have

Sλ = Sa = S{1,...,a1} ×S{a1+1,...,a2} × · · · ×S{an−1+1,...,an},

where a = [a0, a1, . . . , an] with a0 = 0 and ai = λ1 + · · · + λi for all i = 1, . . . ,m. We

denote by Dλ the set of distinguished representatives of the right Sλ-cosets and write

Dλµ := Dλ ∩ D−1
µ , which is the set of distinguished representatives of the double cosets

Sλ \Sn/Sµ.

As usual one identifies a composition λ to its Young diagram and we say that λ is the

shape of the corresponding Young diagram. A λ-tableau is a filling of the n boxes of the

Young diagram of λ of the numbers 1, 2, . . . , n. We denote the set of λ-tableaux by T (λ)

and usually denote t as an element of T (λ).

For later use, let Λ(n) (resp. Λ+(n)) denote the set of all compositions (resp. all

partitions) of r. For λ ∈ Λ(n), let λ′ be the dual partition of λ, i.e., λ′
i := #{j;λj ≥ i}.

There is a unique element wλ ∈ Sn with the trivial intersection property [4](4.1):

wλSλ ∩Sλ′ = w−1
λ Sλwλ ∩Sλ′ = {1}.(2.1)
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We can represent wλ with the help of Young diagrams. For example, represents

λ = (3, 2), then wλ ∈ Sn is defined by the equation tλwλ = tλ, where tλ (resp. tλ) is the

λ-tableau obtained by putting the number 1, 2, . . . , n in order into the boxes from left to

right down successive rows (resp. columns). Thus, in the example, t(3,2) =
1 2 3
4 5 , and

t(3,2) =
1 3 5
2 4 .

We quote the following definition as in [2].

Definition 2.1. Suppose that t1 is a λ-tableau and t2 is a µ-tableau for λ, µ ∈ Λ+(n). Let

χ(t1, t2) be the n-by-n matrix whose entry in row i and column j is the cardinality of

{entries in the first i rows of t1} ∩ {entries in the first j columns of t2}.

Also from [2] we have the following remark,

Remark 2.2. If t1 and t′1 are λ-tableaux and t2 and t′2 are µ-tableaux for λ and µ ∈ Λ+(n),

then write χ(t1, t2) ≥ χ(t′1, t
′
2) if each entry in χ(t1, t2) is at least as big as the corresponding

entry in χ(t′1, t
′
2). Write χ(t1, t2) > χ(t′1, t

′
2) if, in addition, χ(t1, t2) ̸= χ(t′1, t

′
2).

The following properties are immediate from the definitions.

χ(t1w, t2w) = χ(t1, t2) for all w ∈ Sr.(2.2)

χ(t1w, t2) = χ(t1, t2) if w ∈ Sλ.(2.3)

χ(t1, t2w) = χ(t1, t2) if w ∈ Sµ′ .(2.4)

Let m = (m1, · · · ,mr) ∈ Zr
>0 be an r-tuple of positive integers. Define a subset of

r-composition of n as:

Λn,r(m) =

{
µ = (µ(1), · · · , µ(r))

∣∣∣∣∣ µ(k) = (µ
(k)
1 , · · · , µ(k)

mk
) ∈ Zmk

≥0∑r

k=1

∑mk

i=1 µ
(k)
i = n

}
.

We denote by |µ(k)| =
∑mk

i=1 µ
(k)
i (resp. |µ| =

∑r

k=1 |µ(k)|) the size of µ(k) (resp. the

size of µ). We define the map ζ : Λn,r(m) → Zr
≥0 by ζ(µ) = (|µ(1)|, |µ(2)|, · · · , |µ(r)|) for

µ ∈ Λn,r(m). Put Λ+
n,r(m) = {λ ∈ Λn,r(m)|λ(k)

1 ≥ λ
(2)
2 ≥ · · · ≥ λ(k)

mk
for any k = 1, · · · , r}.

Let λ′ := (λ(r)′, . . . , λ(1)′) denote the m-composition dual to λ. By concatenating the

components of λ, the resulting composition of r will be denoted by

λ = λ(1) ∨ · · · ∨ λ(r).

We can identify λ with its Young diagram. For example, λ = ((31), (22), (1)) is identified

with

(
, ,

)
.

Let tλ be the λ-tableau obtained by putting the number 1, . . . , r in order into the boxes

down successive rows in the first diagram of λ, then in the second diagram and so on.

From the example above, we have
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tλ = (
1 2 3
4 ,

5 6
7 8 , 9 ).

We also define the λ-tableau tλ by putting the numbers in the order down successive

columns in the last diagram of λ, then in the second last diagram, and so on. For the

above example, we have

tλ = (
6 8 9
7 ,

2 4
3 5 , 1 ).

Now, associated to a r-partition λ = (λ(1), . . . , λ(r)) of n, we define the element wλ ∈ Sn

by tλwλ = tλ. More precisely, if ti (resp. ti) denotes the i-th subtableau of tλ (resp. tλw
−1
[λ] )

and define w(i) by tiw(i) = ti, then tλw(1) · · ·w(r)w[λ]. Likewise, if we define t̃
i (resp. t̃i) the

i-th subtableau of tλw[λ] (resp. tλ) and w̃(1) with t̃iw̃(i) = t̃i, then tλw[λ]w̃(1) · · · w̃(r) = tλ.

We have, therefore

wλ = w(1) · · ·w(r)w[λ] = w[λ]w̃(r) · · · w̃(1), w−1
[λ]w(i)w[λ] = w̃(r−i+1).(2.5)

Note that w(i)w(j) = w(j)w(i) and w̃(i)w̃(j) = w̃(j)w̃(i) for i, j = 1, 2, . . . , r.

2.2. Ariki-Koike algebras and cyclotomic q-Schur algebras. In this subsection, we

recall the definition of the cyclotomic q-Schur algebra Sn,r introduced by [3], and review

the presentations of Sn,r by generators and fundamental relations given by [21].

Let R be a commutative ring, and we take parameters q,Q1, · · · , Qr ∈ R such that q

is invertible in R. The Ariki-Koike algebra Hn,r associated to the complex group Sn n
(Z/rZ)n is the associative algebra with 1 over R generated by T0, T1, . . . , Tn−1 with the

following defining relations:

(T0 −Q1)(T0 −Q2) · · · (T0 −Qr) = 0,

(Ti − q)(Ti + q−1) = 0 (1 ≤ i ≤ n− 1),

T0T1T0T1 = T1T0T1T0,

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i ≤ n− 2),

TiTj = TjTi (|i− j| ≥ 2).

The subalgebra of Hn,r generated by T1, · · · , Tn−1 is isomorphic to the Iwahori-Hecke

algebra associated to the symmetric group Sn which is discussed in [16]. For w ∈ Sn,

denote by ℓ(w) the length of w and by Tw the standard basis of Hn,r corresponding to w.

For each r-composition λ = (λ(1), . . . , λ(r)), define [λ] := [a0, a1, . . . , ar] such that a0 := 0

and ai :=
∑i

j=1 |λ(j)|. In the case of Iwahori-Hecke algebras, we can define an element

mλ ∈ Hn as mλ :=
∑

w∈Sλ

Tw. Here wλ ∈ Sn is defined in last subsection.

Definition 2.3. Let Hn,r be a cyclotomic Hecke algebra with generators {T0, T1, . . . , Tn−1},
and elements L1 = T0, Li = q−1Ti−1Li−1Ti−1 for i = 2, · · · , n, and put π0 = 1, πa(x) =

Πa
j=1(Lj − x) for any x ∈ R and any positive integer a. Following [3], for a = [λ] =

[a0, a1, . . . , ar] ∈ Λ[m, r] for some m, we define that

u+
a = πa1

(Q2) · · ·πar−1
(Qr) and u−

a = πa1
(Qr−1) · · ·πar−1

(Q1),
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and, for λ ∈ Λn,r(m), we define that

xλ := u+
[λ]mλ = mλu

+
[λ] and yλ := u−

[λ]mλ = mλu
−
[λ].

Define the right ideal as Mλ := xλHn,r which is called a permutation module.

The cyclotomic q-Schur algebra Sn,r associated to Hn,r is defined by

RSn,r = RSΛn,r
(m) = EndHn,r

( ⊕
µ∈Λn,r(m)

Mµ
)
.

In order to describe a presentation of RSn,r, we need some notations. Put m =∑r

k=1 mk, and let P =
⊕m

i=1 Zεi be the weight lattice of glm. Set αi = εi − εi+1

for i = 1, · · · ,m − 1, then Π = {αi|1 ≤ i ≤ m − 1} is the set of simple roots, and

Q =
⊕m−1

i=1 Zαi is the root lattice of glm. Put Q+ =
⊕m−1

i=1 Z≥0αi. We define a partial

order “≥” on P , so called dominance order, by λ ≥ µ if λ − µ ∈ Q+. It is the alterna-

tive definition of “dominant order in multipartitions” when λ, µ ∈ Λn,r(m), i.e., λ � µ if∑l−1

i=1 |λ(i)|+
∑j

k=1 λ
(l)
k ≥

∑l−1

i=1 |µ(i)|+
∑j

k=1 µ
(l)
k for any 1 ≤ l ≤ r, 1 ≤ j ≤ ml.

For (i, k) ∈ Γ′(m), we define the elements E(i,k), F(i,k) ∈ RSn,r by

E(i,k)(mµ · h) =


q−µ

(k)
i+1+1

( ∑
x∈X

µ+α(i,k)
µ

qℓ(x)T ∗
x

)
hµ
+(i,k)mµ · h if µ+ α(i,k) ∈ Λn,r(m),

0 if µ+ α(i,k) /∈ Λn,r(m),

F(i,k)(mµ · h) =


q−µ

(k)
i +1

( ∑
y∈X

µ−α(i,k)
µ

qℓ(x)T ∗
y

)
mµ · h if µ− α(i,k) ∈ Λn,r(m),

0 if µ− α(i,k) /∈ Λn,r(m),

for µ ∈ Λn,r(m) and h ∈ RHn,r, where hµ
+(i,k) =

{
1 (i ̸= mk),

LN+1 −Qk+1 (i = mk).

For λ ∈ Λn,r(m), we define the element 1λ ∈ RSn,r by

1λ(mµ · h) = δλµmλ · h

for µΛn,r(m) and h ∈ RHn,r. For this definition, we see that {1λ|λ ∈ Λn,r(m)} is a set of

pairwise orthogonal idempotents, and we have 1 =
∑

λ∈Λn,r(m) 1λ.

Definition 2.4. For any µ ∈ Λn,r(m), we can define a left principle ideal of cyclotomic

q-Schur algebra as a submodule as in [2] with m = 1:

Aµ , Sn,rφ
1
µωTwµ

yµ′ with φ1
µω ∈ HomHn,r

(Hn,r,M
µ) = Mµ defined as φ1

µω(h) := xµh

for any h ∈ Hn,r and element Twµ
yµ′ acts on φ1

µω by the right Hn,r-module structure of

Mµ. From now on, the module Aµ is called a q-Schur module, and denote the element

φ1
µωTwµ

yµ′ ∈ Sn,r by zµ.

Recall in [6] that the set of all [λ] form a poset Λ[m, r] with m =
∑

i ai, which is

isomorphic to the poset Λ(m, r) of all compositions of m with at most r parts as set but

with different order. Here the partial ordering on Λ[m, r] is given by ≼: [ai] ≼ [bi] if ai ≤ bi

for all i = 1, . . . , r. While Λ(m, r) has the usual dominance order �.

The following results will be useful in the sequel. See (2.8), (3.1), (3.4) in [6].
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Lemma 2.5. [6] Let a, b ∈ Λ[m, r], and also note H(Sn) as the Iwahori-Hecke algebra

associated with Sn.

(a) u+
a Hn,ru

−
b′ = 0 unless a ≼ b.(2.6)

(b) u+
a H(Sn)u

−
a′ = vaH(Sa′) = H(Sa)va, where va = u+

a Twa
u−
a′ .(2.7)

(c) u+
a Hn,ru

−
a′ = u+

a H(Sn)u
−
a′ .(2.8)

(d) vaHn,r is a free R-submodule with basis {vaTw|w ∈ Sr}.(2.9)

Definition 2.6. [17] For λ ∈ Λ+
n,r(m) and µ ∈ Λn,r(m), a λ-tableau of type µ denoted as

T is said to be semistandard if

(i) the entries in each row of each component of T (k) of T are non-decreasing;

(ii) the entries in each column of each component T (k) of T are strictly increasing;

(iii) if (a, b, c) ∈ λ, and T (a, b, c) = (i, s) then s ≥ c.

Let T ss
µ (λ) be the set of semistandard λ-tableau of type µ and denote T ss

Λ (λ) = ∪µ∈ΛT ss
µ (λ).

The set

{ΨST |S, T ∈ T ss
Λ (λ), λ ∈ Λ+(n, r)},(2.10)

which is called the semi-standard basis of cyclotomic q-Schur algebras in [3], forms a

cellular basis of Sn,r in the sense of [11] with the dominance order � on Λ+
n,r(m). Let

S �λ
n,r be the two sides ideal of Sn,r spanned by all ΨST with S, T ∈ T ss

Λ (µ) and µ�λ (i.e.,

shape(S) = shape(T )� λ), where shape(T ) means the partition associated with tableaux

T .

In particular, let λ ∈ Λ+(n, r) be a partition and recall that T λ = λ(tλ), as in [3] and

[16], is the unique semistandard λ-tableau of type λ. From the definitions one sees that

ΨTλTλ restricts to the identity map on Mλ, and sometimes we denote this element by Ψλ

. Then, we can define the “cell module” as a submodule of Sn,r/S �λ
n,r :

W λ = Sn,rΨ̄λ, where Ψ̄λ := (S �λ
n,r +Ψλ)/S

�λ
n,r .(2.11)

The module W λ is called a Weyl module in [3].

3. Main theorem and its proof

We now prove that the q-Schur modules we defined above are isomorphic to those in [3]

as “cell modules” when λ ∈ Λ+
n,r(m). Recall the definitions given in 2.6.

Theorem 3.1. For each λ ∈ Λ+
n,r(m), we have the following Sn,r-module isomorphism:

Aλ ∼= W λ.

Proof. Consider the epimorphism:

θ : Sn,rΨλ −→ Sn,rzλ; hΨλ 7→ hzλ = hφ1
λωTwλ

yλ′ = hφ1
λ̄ω · Tw(1)···w(r)

yµ(1)′∨···∨µ(r)′ · v[µ].

Suppose that T ∈ T ss
λ (µ) and S ∈ T ss

ν (µ) with µ ∈ Λn,r(m) and ν ∈ Λn,r(m). By the

definition of ΨST in [3] and semistandard basis theorem [3] (6.6), we easily find that the
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set {ΨST |T ∈ T ss
λ (µ), S ∈ T ss

ν (µ) with µ�λ and µ ∈ Λ+
n,r(m), ν ∈ Λn,r(m)} is an R-basis

of Sn,rΨλ. More precisely, we can write this basis as

{ΨTTλ |T ∈ T ss
ν (λ)} ∪ {ΨST |T ∈ T ss

λ (µ) and S ∈ T ss
ν (µ) with µ� λ}.(3.1)

Then we obviously have that

W λ ∼= Sn,rΨλ/(Sn,rΨλ ∩ S �λ
n,r ).

We claim that, with µ� λ and λ ∈ Λ+
n,r(m), ν ∈ Λn,r(m), if θ(ΨST ) = θ(ΨSTΨTλTλ) =

ΨSTφ
1
λωTwλ

yλ′ ̸= 0 ,then µ = λ.

Consider the action on the unit of Hn,r:

ΨSTφ
1
λωTwλ

yλ′(1) = mSTTwλ
yλ′

=
∑

t∈Std(µ)
λ(t)=T

mStTwλ
yλ′ =

∑
t∈Std(µ)
λ(t)=T

∑
s∈Std(µ)
ν(s)=S

mstTwλ
yλ′

=
∑
s,t

Td(s)xµTd(t)Twλ
yλ′ =

∑
s,t

Td(s)xµ̄u
+
[µ]Td(t)Twλ

u−
[λ′]yλ̄′

= (∗).

Recall that by Lemma 2.5, u+
aHn,ru

−
b′ = 0 unless a ≼ b. ΨSTφ

1
λωTwλ

yλ′ ̸= 0 implies that

for some s and t above, Td(s)xµ̄u
+
[µ]Td(t)Twλ

u−
[λ′]yλ̄′ ̸= 0. Thus, this condition shows that

[µ] ≼ [λ]. On the other hand, with the assumption in the above claim, i.e., µ � λ, it is

obvious that [µ] ≽ [λ] by the definition of [µ], [λ] and �, ≽ . So [µ] = [λ]. Then we find

(∗) =
∑
s,t

[µ]=[λ]

Td(s)xµ̄u
+
[µ]Td(t)Twλ

u−
[µ]′yλ̄′

=
∑
s,t

[µ]=[λ]
h′∈S[µ]

Td(s)xµ̄h
′v[µ]yλ̄′ by (b), (c) in Lemma 2.5

=
∑
s,t

[µ]=[λ]
h′
i∈S{|λi−1|+1,··· ,|λi|}

Td(s)xµ(1)∨···∨µ(r)h′
1 · · ·h′

myλ(1)′∨···∨λ(r)′v[µ] by [8]

=
∑
s,t

[µ]=[λ]
h′
i∈S{|λi−1|+1,··· ,|λi|}

Td(s)(xµ(1)h′
1yλ(1)′) · · · (xµ(r)h′

myλ(r)′)v[µ].

Since [λ] = [µ], the fact that this is non-zero implies, by [4] (4.1), that λ(i) � µ(i) for all

i = 1, . . . , r. On the other hand, by [8] (1.6), µ� λ and [µ] = [λ] implies µ(i) � λ(i), with

1 ≤ i ≤ r. Hence µ(i) = λ(i) for all i, and therefore, µ = λ. This completes the proof of

the above claim.

By the claim and (3.1), one see that

kerθ = {ΨST | T ∈ T ss
λ (µ) and S ∈ T ss

ν (µ) with µ� λ} = Sn,rΨλ ∩ S �λ
n,r .

Therefore, Aλ ∼= W λ. �
7



Definition 3.2. [4] For w ∈ Sn and S ∈ Tλ(µ) with λ, µ ∈ Λ(n, r), define a map

Sn × Tλ(µ) −→ Dλ(3.2)

(w, S) 7−→ wS(3.3)

where the element wS is defined by the row-standard λ-tableau tλwS for which i belongs to

the row a if the place occupied by i in tµw is occupied by a.

For example, S =
1 2 3
1 2 and tµw =

1 2 4
3 5 with µ = (3, 2) and λ = (2, 2, 1), then

tλwS =

1 3
2 5
4 .

Remark 3.3. Let T ss
λ (µ) be the set of all semi-standard µ-tableaux of type λ, with λ and µ ∈

Λn,r(m). For any S ∈ T ss
λ (µ), we define 1S := 1S̄. Since S is a semi-standard µ-tableau

of type λ, it implies that S̄ is a row-standard µ̄-tableau of type λ̄, as in [7].

We compare the definition of semi-standard tableaux in [3] with that in [7]. Note

that every entry in S is written as the symbol (i, j) and is replaced by i +
∑j−1

k=1 mk, for

1 ≤ i ≤ mj, 1 ≤ j ≤ n.

Then, by the above definition, we obtain the following consequence:

Lemma 3.4. Suppose that u ∈ Sr and w ∈ Sµ(1)′∨···∨µ(r)′ , with λ, µ ∈ Λn,r(m). Then

φ1
λ̄ω
TuTw is a linear combination of the terms φd

λ̄ω
(d ∈ Dλ̄) for which χ(tλ̄d, tµ̄w(1) · · ·w(r)) =

χ(tλ̄u, tµ̄w(1) · · ·w(r)).

Proof. The conclusion is ture when w = 1 since φ1
λ̄ω
Tu = φu

λ̄ω
for some u ∈ Sn. Below we

assume that w ̸= 1.

For some w′ ∈ Sn and some a = (i, i + 1) ∈ Sµ(1)′∨···∨µ(r)′ , we have that w = w′a, and

without losing generality, we can set (i, i+ 1) ∈ Sµ(1)′ satisfying:

w′ = w′
1 · · ·w′

r, w = w1 · · ·wr with w′
1(i, i+ 1) = w1,

wi = w′
i for i = 2, · · · , r.

By induction on the length ℓ(w), we have φ1
λ̄ω
TuTw′ as a linear combination of the terms

φd
λ̄ω

(d ∈ Dλ̄) for which χ(tλ̄d, tµ̄w(1) · · ·w(r)) = χ(tλ̄u, tµ̄w(1) · · ·w(r)).

Consider

φ1
λ̄ωTuTw = φ1

λ̄ωTuTwTa =
∑

χ(tλ̄d,tµ̄w(1)···w(r))=χ(tλ̄u,tµ̄w(1)···w(r))

Cdφ
d
λ̄ωTa.

By [2] or [4], we have

(3.4)

φd
λ̄ωTa =


qφd

λ̄ω
if i, i+ 1 belong to the same row of tλ̄d;

φda
λ̄ω

if the row index of i in tλ̄ is less than that of i+ 1;

qφda
λ̄ω

+ (q − 1)φλ̄φ
d
λ̄ω

otherwise.

Then the proof is completed through checking the formula above case by case. �
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By the definition in Remark 3.3, we can show the following theorem about the bases,

which is the main result in this paper.

Theorem 3.5. Suppose that λ ∈ Λ+
n,r(m). Then the q-Schur module Aλ is free as an

R-module and {φ1A
µλ · zλ|A ∈ T ss

µ (λ) and µ ∈ Λn,r(m)} ⊆ Aλ is a basis.

Proof. With the help of Theorem 3.1, it is enough to show that {φ1A
µλzλ|A ∈ T ss

µ (λ) and µ ∈
Λn,r(m)} ⊆ Aλ is R-linearly independent. We calculate the action of the element φ1A

λµ · zµ
on the unit of Hn,r,

φ1A
λµ · zµ(1) = φ1A

λµφ
1
µωTwµ

yµ′(1) = φ1A
λµ(xµ)Twµ

yµ′

= (
∑

d∈Sλ̄1ASµ̄

Td) · u+
[µ]Twµ

yµ̄′u−
[µ′] by [7]

= (
∑

d∈Sλ̄1ASµ̄

Td) · Tw(1)···w(m)
u+
[µ]Tw[µ]

u−
[µ′]yµ̄′

= φ1A
λ̄µ̄
(xµ̄) · Tw(1)···w(r)

v[µ]yµ(r)′∨···∨µ(1)′ by Lemma 2.5

= φ1A
λ̄µ̄
(xµ̄) · Tw(1)···w(r)

· yµ(1)′∨···∨µ(r)′ · v[µ] by [6]

= φ1A
λ̄µ̄
(xµ(1)∨···∨µ(r)Tw(1)···w(r)

yµ(1)′∨···∨µ(r)′) · v[µ]
= φ1A

λ̄µ̄
φ1

µ̄ω · Tw(1)···w(r)
yµ(1)′∨···∨µ(r)′(1) · v[µ]

Then, following from the calculation in [2], for A,B ∈ Tλ̄(µ̄), we write A ∼ B if A and

B are row equivalent, which as defined in [3], i.e. if one tableau A can be changed to B by

a sequence of elementary row permutations. Then, Sλ̄1ASµ̄ =
∪

B∼A Sλ̄1B. In addition,

if w ∈ Sn, we denote by w the unique element of Sλw ∩ Dλ for some λ ∈ Λ(n, r), i.e. the

shortest element in Sλw. We have

φ1A
λ̄µ̄
φ1

µ̄ω · Tw(1)···w(r)
yµ(1)′∨···∨µ(r)′

= (
∑
B∼A

φ1B
λ̄ω
Tw(1)···w(r)

)yµ(1)′∨···∨µ(r)′

= (
∑
B∼A

φ1
λ̄ωT1BTw(1)···w(r)

)yµ(1)′∨···∨µ(r)′

= (
∑
B∼A

qKBφ1
λ̄ωT1Bw(1)···w(r)

+ sB) · yµ(1)′∨···∨µ(r)′ by [2]

where KB is an integer and sB is a linear combination of terms φd
λ̄ω

for which

χ(tλ̄1B, t
µ̄) > χ(tλ̄d, tµ̄w(1) · · ·w(r)).

Moreover, χ(tλ̄1A, t
µ̄) > χ(tλ̄1B, t

µ̄) = χ(tλ̄1Bw(1) · · ·w(r), t
µ̄1Bw(1) · · ·w(r)) if B ∼ A but

B ̸= A. Hence

φ1A
λ̄µ̄
φ1

µ̄ω · Tw(1)···w(r)
yµ(1)′∨···∨µ(r)′ = (qKφ1

λ̄ωT1Aw(1)···w(r)
+ s) · yµ(1)′∨···∨µ(r)′(3.5)

where K is an integer and s is a linear combination of terms φd
λ̄ω

with

χ(tλ̄1A, t
µ̄) > χ(tλ̄d, tµ̄w(1) · · ·w(r)).
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Now suppose that
∑
A

cAφ
1A
λ̄µ̄
φ1

µ̄ω · Tw(1)···w(r)
yµ(1)′∨···∨µ(r)′ = 0, where cA ∈ R and the sum

is over A ∈ T ss
λ (µ). Choose D ∈ T ss

λ (µ) such that cA = 0 for all A with χ(tλ̄1A, t
µ̄) >

χ(tλ̄1D, t
µ̄). If we can prove that cD = 0, it will follow that every coefficient cA = 0, and

then the proof is completed.

By (3.5), there exists an integer K and s ∈ Mλ such that∑
A

cAφ
1A
λ̄µ̄
φ1

µ̄ω · Tw(1)···w(r)
yµ(1)′∨···∨µ(r)′ = cDq

Kφ1
λ̄ωT1Dw(1)···w(r)

yµ(1)′∨···∨µ(r)′ + syµ(1)′∨···∨µ(r)′

where s is a linear combination of terms φd
λ̄ω
(d ∈ Dλ̄) for which

χ(tλ̄d, tµ̄w(1) · · ·w(r)) � χ(tλ̄1D, t
µ̄).(3.6)

Now, suppose

cDq
Kφ1

λ̄ωT1Dw(1)···w(r)
yµ(1)′∨···∨µ(r)′ + syµ(1)′∨···∨µ(r)′ = 0

and by Lemma 3.4, φ1
λ̄ω
T1Dw(1)···w(r)

yµ(1)′∨···∨µ(r)′ is the linear combination of the terms φd
λ̄ω

(d ∈ Dλ̄) for which χ(tλ̄d, tµ̄w(1) · · ·w(r)) = χ(tλ̄1Dw(1) · · ·w(r), t
µ̄w(1) · · ·w(r)) = χ(tλ̄1D, t

µ̄),

while syµ(1)′∨···∨µ(r)′ is a linear combination of the terms φ1
λ̄ω
(d ∈ Dλ) for which χ(tλ̄, tµ̄) ̸=

χ(tλ̄1D, t
µ̄) by (3.6). Therefore,

cDq
Kφ1

λ̄ωT1Dw(1)···w(r)
yµ(1)′∨···∨µ(r)′ = 0.

But φ1
λ̄ω
T1Dw(1)···w(r)

yµ(1)′∨···∨µ(r)′ ̸= 0, since the numbers strictly increase down the columns

for every component of D. Therefore, cD = 0, as we claimed.

Now, we have already known that the elements φ1A
λ̄µ̄
φ1

µ̄ω ·Tw(1)···w(r)
yµ(1)′∨···∨µ(r)′ is linearly

independent. It implies that φ1A
λµφ

1
µωTwµ

yµ′ = φ1A
λ̄µ̄
φ1

µ̄ω · Tw(1)···w(r)
yµ(1)′∨···∨µ(r)′ · v[µ] are R-

linearly independent, since by Lemma 2.5 it is trivial that a · v[µ] = 0 if and only if a = 0

for any a ∈ H(Sr). �

4. Application to a new proof of The Branch rule

In this section, by using this embedding and restriction functors described in [20], we

give a new proof of the branch rule in a cyclotomic q-Schur algebra of rank n to the one

of rank n+ 1.

From now on, throughout this paper, we argue under the following setting:

m = (m1, · · · ,mr) such that mk ≥ n+ 1 for all k = 1, · · · , r,

m′ = (m1, · · · ,mr−1,mr − 1),

Sn+1,r = RSn+1,r(Λn+1,r(m)),

Sn,r = RSn,r(Λn,r(m
′)).

We will omit the subscript R when there is no risk of confusion.

We define the injective map

γ : Λn,r(m
′) → Λn+1,r(m), (λ(1), · · · , λ(r−1), λ(r)) 7→ (λ(1), · · · , λ(r−1), λ̂(r)),
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where λ̂(r) = (λ
(1)
1 , · · · , λ(r)

mr−1, 1). Put Λ
γ
n+1,r(m) = Imγ, we have

Λγ
n+1,r(m) = {µ = (µ(1), · · · , µ(r)) ∈ Λn+1,r(m)|µ(r)

mr
= 1},

where we define µ(i) = (µ
(i)
1 , · · · , µ(r)

mi
) ∈ Zmi

>0 for 1 ≤ i ≤ r.

For λ ∈ Λ+
n+1,r, and T ∈ T ss

Λ (λ), let T \ (n + 1) be the standard tableau obtained

by removing the node x such that T (x) = n + 1, and denote the shape of T \ (n + 1) by

Shape(T \(n+1)). Note that x here is a removable node of λ, and that Shape(T \(n+1)) =

λ \ x.

Proposition 4.1. [20](Wada inclusion) There exists an algebra homomorphism ι :

Sn,r → Sn+1,r such that

E
(l)

(i,k) 7→ E
(l)

(i,k)ξ, F
(l)

(i,k) 7→ F
(l)

(i,k)ξ, 1λ 7→ 1γ(λ)(4.1)

for (i, k) ∈ Γ′(m′), l ≥ 1, λ ∈ Λn,r(m
′), where ξ =

∑
λ∈Λγ

n+1,r(m) 1λ is an idempotent of

Sn+1,r. In particular, we have that ι(1Sn,r
) = ξ, and that ι(Sn,r) ( ξSn+1,rξ, where 1Sn,r

is the unit element of Sn,r. Moreover, ι is injective.

We define a restriction functor Resn+1
n : Sn+1,r-mod→ Sn,r-mod by

Resn+1
n = HomSn+1,r

(Sn+1,rξ, ?) ∼= ξSn+1,r⊗Sn+1,r
?.

We recall that, for λ ∈ Λ+
n+1,r, the q-Schur module Aλ of Sn+1,r has an R-free basis

{φ1A
µλzλ|A ∈ T ss

µ (λ), µ ∈ Λn+1,r(m)}. From the definition, we have that

Resn+1
n (Aλ) = ξAλ.

Thus, Resn+1
n (Aλ) has an R-free basis {φ1A

µλzλ|A ∈ T ss
µ (λ), µ ∈ Λγ

n+1,r(m)}.
For a partition λ = (λ1, · · · , λm) of n, we identify the boxes in the Young diagram Y(λ)

with its position coordinates. Thus,

Y(λ) = {(i, j) ∈ Z+ × Z+|j ≤ λi}.

The elements of Y(λ) will be called nodes. A node of the form (i, λi) (resp. (i, λi + 1))

is called removable (resp. addable) if i = m or λi > λi+1 for i ̸= m (resp. (i, λi) = (0, 1)

for λ1 = · · · = λm = 1 or i = 1 or λi−1 > λi if i ̸= 1). Let λ = (λ(1), · · · , λ(r)) be an

r-partition. Then its Young diagram Y(λ) is the union of the Young diagram Y(λ(k)),

1 ≤ k ≤ r. Thus, a set of nodes is as follows,

Y(λ) = {(i, j, k)|i, j ∈ Z+, j ≤ λ
(k)
i , 1 ≤ k ≤ m}.

A node of Y(λ) is said to be removable (resp. addable) if it is a removable (resp. addable)

node of Y(λ(k)) for some k. Denote by Rλ the set of all removable nodes of Y(λ). Then

N = #Rλ =
∑r

i=1 #Rλ(i) .

A partial ordering “ ≻ ” on Rλ will be fixed from top to bottom and from left to right,

that is, it satisfies that

(i, j, k) ≻ (i′, j′, k′) if k < k′, or if k = k′ and i < i′.

11



Then, we have Rλ = {n1, · · · , nN}, with the property that ni ≻ nj for i > j. Let jn,

n ∈ Rλ, be the number at the node n in tλ. For example, for λ =
(
(31), (22), (1)

)
,

Rλ = {(1, 3, 1), (2, 1, 1), (1, 1, 3)}.
Also, we define a partial order ≽ on Z>0 × {1, . . . , r} by

(i, k) ≻ (i′, k′) if (i, 1, k) ≻ (i′, 1, k′).

Proposition 4.2. Let λ ∈ Λ+
n+1,r, µ ∈ Λγ

n+1,r(m), A ∈ T ss
µ (λ). For (i, k) ∈ Γ′(m′), we

have the following

E(i,k) · φ1A
µλzλ =

∑
B∈T ss

µ+α(i,k)
(λ)

shape(B\(mr,r))Dshape(A\(mr,r))

rBφ
1B
µ+α(i,k),λ

zλ (rB ∈ R);(4.2)

F(i,k) · φ1A
µλzλ =

∑
B∈T ss

µ−α(i,k)
(λ)

shape(B\(mr,r))Dshape(A\(mr,r))

rBφ
1B
µ−α(i,k),λ

zλ (rB ∈ R).(4.3)

Proof. Following from (5.8), (5.9)’s notations in [7], one shows that φ1A
µλ = ΨATλ . On the

other hand, by a general theory of cellular algebras together with Proposition 3.3 in [20],

we have that, for (i, k) ∈ Γ′(m′),

E(i,k) · φ1A
µλ ≡

∑
B∈T ss

µ+α(i,k)
(λ)

shape(B\(mr,r))Dshape(A\(mr,r))

rBφ
1B
µ+α(i,k),λ

mod S ◃λ
n+1,r,(4.4)

where rB ∈ R.

By definitions, zλ := φ1
λωTwyλ′ and S ◃λ

n+1,r is linearly generated by ΨST for S, T ∈ TΛ(ν)

with ν ◃ λ, it follows that S ◃λ
n+1,r ·zλ = 0. On the other hand, we suppose that there exists

some S, T ∈ T ss
Λ (ν), such that ΨST zλ ̸= 0, which means λ = ν from the proof of Theorem

3.1. This consequence is contradict to the fact ν ◃ λ. Finally, we reach the consequence

of the first statement after multiplying the element zλ on both sides of (4.4).

The case for F(i,k) with (i, k) ∈ Γ′(m′) can be proved in the same way as the above

proof for the case of E(i,k). �

By Theorem 3.5, let RMi be an R-submodule of Resn+1
n (Aλ) spanned by

{φ1A
µλzλ|A ∈ T γ

Λ (λ) ∩ T ss
Λ (λ) such that A(nj) = (mr, r) for some j ≥ i},

where we put T γ
Λ (λ) :=

∪
µ∈Λγ

n+1,r(m) Tµ(λ). When there is no confusion about R, we also

denote it as Mi (i.e., delete the subscript.).

Then we have a filtration of R-modules

Resn+1
n (Aλ) = M1 ⊃ M2 ⊃ · · · ⊃ Mk ⊃ Mk+1 = 0.

For λ ∈ Λ+
n+1,r and a removable node x of λ, we define the semi-standard tableau

T λ
x ∈ T ss

Λ (λ) by

T λ
x (a, b, c) =

{
(a.c) if (a, b, c) ̸= x,

(mr, r) if (a, b, c) = x.
(4.5)
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We see that T λ
x ∈ T γ

Λ (λ)∩T ss
Λ (λ), and T λ

x \(mr, r) = T λ\x, where the tableau T λ\x denotes

the unique element in set T ss
λ\x(λ \ x).

From the definition, Mi/Mi+1 has an R-free basis

{φ1A
γ(µ)λzλ +Mi+1|A ∈ T γ

Λ (λ) ∩ T ss
Λ (λ) such that A(ni) = (mr, r) and µ ∈ Λn,r(m)}.

For A ∈ T γ
Λ (λ)∩T ss

Λ (λ) such that A(ni) = (mr, r), we have Shape(A \ (mr, r)) = λ \ ni by

definition. Note that λ\nj �λ\ni if and only if nj ≺ ni (i.e., j > i). Then, by Proposition

4.2, we see that {Mi} is a filtration of Sn,r-modules.

Now, using the main result in Section 3 we give a new version of the branch rule of

Weyl modules in [20].

Theorem 4.3. [20] Assume that R is a field. For any λ ∈ Λ+
n+1,r(m), let n1, · · · , nk be the

removable nodes of Y(λ) counted from top to bottom, and define Mt as above for 1 ≤ t ≤ k.

Then, we have a filtration of Sn,1-submodule for Aλ:

0 = Mk+1 ⊂ Mk ⊂ · · · ⊂ M1 = Aλ

with the sections of Weyl modules (or q-Schur modules): Mt/Mt−1
∼= W λ\nt.

Proof. First of all we set µ̂ := γ(µ), and consider the weight decomposition of the Sn,r-

moduleMi/Mi+1 =
⊕

µ∈Λn,r(m)
µ(Mi/Mi+1) =

⊕
µ∈Λn,r(m)

1µ·Mi/Mi+1 =
⊕

µ∈Λn,r(m)

1µ̂(Mi/Mi+1),

where 1µ̂(Mi/Mi+1) is generated by

{φ1A
µ̂λzλ +Mi+1|A ∈ T γ

Λ (λ) ∩ T ss
Λ (λ) such that A(ni) = (mr, r)}.

Since A \ (mr, r) ∈ T ss
µ (λ \ ni), we can find that µ(Mi/Mi+1) ̸= 0 only if λ � µ̂, which

implies that λ \ ni � µ.

Let ni = (a, b, c). Note that E(j,l) · φ1A
µ̂λzλ is a linear combination of {φ1B

µ̂+α(j,l),λ
zλ|B ∈

T ss
µ̂+α(j,l)

(λ)} and that T ss
µ̂+α(j,l)

(λ) = ∅ unless λ� µ̂+ α(j,l).

We have T λ
ni

∈ T ss
τ (λ) in the case of τ := λ̂ \ ni, i.e., τ = λ − (α(a,c) + α(a+1,c) + · · · +

α(mr−1,r)).

If (j, l) ≻ (a, c), we have E(j,l) · φ1A
τλzλ = 0 since λ 4 τ + α(j,l) for any A ∈ T ss

τ (λ).

If (j, l) ≼ (a, c), for any S ∈ T ss
τ+α(j,l)

(λ) together with the definition of semi-standard

tableaux, we can easily check that S
(
(a′, b′, c′)

)
≽ (j, l) for any (a′, b′, c′) ∈ λ satisfying

(a′, c′) ≽ (j, l). This implies that

|S \ (mr, r)| ̸= |λ \ ni| for any S ∈ T ss
τ+α(j,l)

(λ),(4.6)

since (a, c) ≽ (j, l) and T λ
ni

(
(a, b, c)

)
= (mr, r) ≼ (j, l). From now on, we denote the

tableau T λ
ni

as X.

Thus, Proposition 4.2 together with (4.6) implies that

E(j,l) · φ1X
τλ · zλ = 0 ∈ Mi+1 for any (j, l) ∈ Γ′(m′).

Thus, φ1X
τλ · zλ + Mi+1 is a highest weight vector of weight λ \ ni of Sn,r-module in the

sense of [21]. Moreover, since the Weyl modules are simple modules in the category of
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KSn,r-modules, due to the universality of the Weyl modules in [21], we have an KSn,r-

isomorphism:

θ
λ\ni

K : KAλ\ni → KSn,r · (φ1X
τλ · zλ) + KMi+1.(4.7)

Note that θ
λ\ni

K is determined by θ
λ\ni

K (φ1
λ\niλ\ni

·zλ\ni
) = φ1X

τλ ·zλ+KMi+1. We see that θ
λ\ni

A

is a restriction of θ
λ\ni

K which assigns the submodule AAλ\ni onto the submodule ASn,r ·
(φ1X

τλ ·zλ)+AMi+1. Then, we find that θ
λ\ni

A is a ASn,r-mod isomorphism. Furthermore, by

the argument of specialization to any arbitrary commutative ring, it follows that θ
λ\ni

R :=

θ
λ\ni

A ⊗A R is an isomorphism for the algebra RSn,r.

Assume that R is a field. Since W λ\ni ∼= Aλ\ni ∼= RSn,r · (φ1X
τλ · zλ) + RMi+1, which

is a RSn,r-submodule of Mi/Mi+1, we finally reach the consequence by comparing the

dimensions of Aλ\ni and Mi/Mi+1. �
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