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Abstract

In this paper, we construct the ¢g-Schur modules as left principle ideals of the cyclotomic
g-Schur algebras, and prove that they are isomorphic to those cell modules defined in [3]
and [10] at any level . Then we prove that these ¢-Schur modules are free modules
and construct their bases. This result gives us new versions of several results about the
standard basis and the branching theorem. With the help of such realizations and the
new bases, we re-prove the Branch rule of Weyl modules which was first discovered and
proved by Wada in [20].
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1. Introduction

Weyl modules for a cyclotomic ¢-Schur algebra .7, , have been investigated recently in
the context of cellular algebras (see [3]). These modules are defined as quotient modules
of certain permutation modules, that is, as cell modules via cellular bases. Such cellular
bases play a decisive role in the study.

However, the classical theory [1] and the work [4] [5] in the case when m = 1, 2 suggested
that a construction as submodules without using cellular bases should exist in the case of
Iwahori-Hecke algebra. Following Dipper and James’ work [2], when the level | equals to
one, the basis and structure appearing in Hecke algebras can still be constructed in g-Schur
algebras with totally different proof.

This phenomena needs great change to stay valid in the case of cyclotomic g-Schur
algebras of arbitrary level, which is the major motivation of this paper. We can solve
this difficulty by constructing a series of principle left ideals in the cyclotomic g-Schur
algebras generated by a single element 2y, which we construct as ¢35, - Ty, - yx by the right
Ariki-Koike algebra H,, .-module structure, where the element y,, and morphism ¢, are
defined in 2.3 and 2.4 respectively. The q-Schur module A is defined as .7, . - 03, T, Yn
as given in Definition 2.4. Then in Theorem 3.1, we prove that the A" as .7, .- 2, is exact-
ly a realization of the Weyl modules in the category of modules over cyclotomic g-Schur
algebras which is a generalization of Dipper and James’ work [2]. After that, we construct
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an R-linear basis of g-Schur module A* and prove the following theorem,

Main Theorem: Suppose that A € A} (m). Then the q-Schur module A* is free as
an R-module and {@,4 - z:|A € T:*(\) and p € A, ,(m)} C A* is a basis.

Here p is any multipartition as defined in Section 2.1 and A is its semi-standard tableau
as defined in Remark 3.3, which lies in between the semi-standard basis that appeared in
[3] and the definition of ¢,,. With the help of this basis, we can show a new version of the
branch rule which appeares in the category of modules over a cyclotomic g-Schur algebra.

The paper is organized as follows. In Section 3, we construct the left ideals A" called
q-Schur modules over the cyclotomic g-Schur algebra g.7, .., and prove that these g-Schur
modules are the same as the Weyl modules in [3]. After that, we construct the natural
bases {goij‘\ 2\ € Ay (m) and A€ T7°()\)} in these ideals, following the work of Dipper
and James obtained in [4] in case of Iwahori-Hecke algebras. In the final section, by using
these new bases in the ¢g-Schur modules, we construct their filtrations, which gives a new
point of view to the branch rule in Wada’s work [20].

2. Prelimilaries

2.1. Some notations about tableaux. A composition A of n is a finite sequence of
non-negative integers (A1, As,...,A,,) such that [A| = Y.\, = n. Moreover, there is a
partial order < (resp. ) within compositions of n defined as follows. We denote A < p
when Zle A < Zle ;i (resp. Zle A > Zle,ui) for all 1 < k < m. Moreover, if a
composition A satisfies that Ay > Ay > --- A,,,, we call it a partition.

Let &,, denote the symmetric group of all permutations of 1,...,n with Coxeter gener-
ators s; := (4,7 + 1), and &, the Young subgroup corresponding to the composition A of

n. Thus, we have
GCr=6a=60, 0} XOGar41,any X X S 111, an)s

where a = [ag,a,...,a,] with ag = 0and a; = Ay +---+ N\, foralli =1,...,m. We
denote by 2, the set of distinguished representatives of the right &,-cosets and write
Do = DND, 1" which is the set of distinguished representatives of the double cosets
G\ 6,/6,.

As usual one identifies a composition A to its Young diagram and we say that X is the
shape of the corresponding Young diagram. A A-tableau is a filling of the n boxes of the
Young diagram of A of the numbers 1,2,...,n. We denote the set of A\-tableaux by 7T ())
and usually denote t as an element of T ().

For later use, let A(n) (resp. AT(n)) denote the set of all compositions (resp. all
partitions) of r. For A € A(n), let X’ be the dual partition of A, i.e., X, := #{j;\; > i}.
There is a unique element wy € &,, with the trivial intersection property [4](4.1):

(2.1) MEANGy = wy G wy NGy = {1}.
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We can represent wy with the help of Young diagrams. For example, H}j represents
A = (3,2), then w, € &, is defined by the equation t*w, = t, where t* (resp. t,) is the
A-tableau obtained by putting the number 1,2,...,n in order into the boxes from left to

right down successive rows (resp. columns). Thus, in the example, t&2) = , and
t(372) = .

We quote the following definition as in [2].

Definition 2.1. Suppose that t; is a A-tableau and t; is a p-tableau for X\, p € A*(n). Let
X(t1, t2) be the n-by-n matriz whose entry in row i and column j is the cardinality of

{entries in the first i rows of t;} N {entries in the first j columns of to}.
Also from [2] we have the following remark,

Remark 2.2. Ift; and t] are \-tableauz and ty and t, are p-tableauz for A and p € A™(n),
then write x(t1,t2) > x (], ;) if each entry in x(t;,t2) is at least as big as the corresponding
entry in x (¥}, ). Write x(t1,t2) > x(t,t,) if, in addition, x(t1,t2) # x(t,4,).

The following properties are immediate from the definitions.

(2.2) x(hw, tbw) = x(t,t2) forall weG,.
(2.3) x(hw,ts) = x(t,t) if we S,.
(2.4) Xt bw) = x(t,t) if we&,.
Let m = (mq,---,m,) € Z2, be an r-tuple of positive integers. Define a subset of

r-composition of n as:

An,r(m) = {,u = (N(1)7 e 7N(T))

p® = (@, )y ez
22:1 Zikl /%('k) ="n

We denote by |u®| = S27* 1™ (vesp. |u| = S3i_, |u®)]) the size of u® (resp. the
size of p). We define the map ¢ : A, (m) — ZZ, by () = (|uP], [p®], -, [p"]) for
p€ A, (m). Put Af (m)={\e A, (m) AP > AP > > AE) for any k=1,--- ,r}.

Let N := (A™" ... A"} denote the m-composition dual to A\. By concatenating the
components of A, the resulting composition of r will be denoted by

A= \D v ..oy a0,

We can identify A with its Young diagram. For example, A = ((31), (22), (1)) is identified
with

-, H o).

Let t* be the A-tableau obtained by putting the number 1,...,r in order into the boxes
down successive rows in the first diagram of X, then in the second diagram and so on.

From the example above, we have



1275 58
¢ = @ B m).

We also define the A-tableau t, by putting the numbers in the order down successive
columns in the last diagram of A, then in the second last diagram, and so on. For the

above example, we have

b= (3 B m).

Now, associated to a r-partition A = (A, ... A(") of n, we define the element w, € &,
by t*w, = t,. More precisely, if t' (resp. t;) denotes the i-th subtableau of t* (resp. tAw[_A]l)
and define w;y by tiw(i) ={;, then t’\w(l) -~ wywpyy. Likewise, if we define t (resp. L) the
i-th subtableau of t*wpy (resp. t,) and W) with t) = t;, then thwp Wy - Wy = .
We have, therefore

(25)  wy=wa) - weywp = W) W), Wi W W] = Dr—it)-

Note that W)W = W) W) and ﬁ)(i)’w(j) = ﬁ)(j)lb(i) for i,j = 1, 2, s T

2.2. Ariki-Koike algebras and cyclotomic ¢g-Schur algebras. In this subsection, we
recall the definition of the cyclotomic g-Schur algebra .7, ,. introduced by [3], and review
the presentations of .7, , by generators and fundamental relations given by [21].

Let R be a commutative ring, and we take parameters ¢,Q1,- - ,Q, € R such that ¢
is invertible in R. The Ariki-Koike algebra H,, , associated to the complex group &,, x
(Z/rZ)™ is the associative algebra with 1 over R generated by Ty, T1,...,T,_; with the
following defining relations:

(To — Q)(To — Q2) - (To — Qr) = 0,

(T~ )T+ a7 =0 (<i<n-1),
TV Ty, =TV ToT 1Ty,

LT =T TiTi (1<i<n—2),
LT = T;T, (li=jl=2).

The subalgebra of #H, , generated by T},---,T,_, is isomorphic to the Twahori-Hecke
algebra associated to the symmetric group &, which is discussed in [16]. For w € &,,,
denote by ¢(w) the length of w and by T, the standard basis of #,,, corresponding to w.

For each r-composition A = (A, ... A\(")) define [\] := [ao, a1, . ..,a,] such that ag := 0
and a; = E;:I IAW[. In the case of Iwahori-Hecke algebras, we can define an element

my € H, as my := Y. T,. Here wy € &, is defined in last subsection.
weS )

Definition 2.3. Let H,,,. be a cyclotomic Hecke algebra with generators {To, T4, ..., -1},
and elements Ly = Ty, Ly = ¢ YTy 1L \T;_1 fori =2,--- ,n, and put 7o = 1, m,(x) =
H$_,(L; — x) for any x € R and any positive integer a. Following [3], for a = [\ =

[ag, a1, ...,a,.] € A[m,r]| for some m, we define that

ub =70, (Q2) T, (Qr) and uy =m0 (Qro1)+ Ta, ,(Q1),
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and, for A € A,, .(m), we define that
Ty = uff\]my = m;u[f\} and yy = upmy = myupy.
Define the right ideal as M* := x\H,,, which is called a permutation module.

The cyclotomic g-Schur algebra .7, , associated to H,, . is defined by
rnr =pSn,,(m)=Endy, ( @ M").
WEAn »(m)

In order to describe a presentation of .7, ,, we need some notations. Put m =
Sy my, and let P = @', Ze; be the weight lattice of gl,. Set a; = & — €41
for i = 1,---,m — 1, then II = {a;]1 < i < m — 1} is the set of simple roots, and
Q = @:’;1 Za; is the root lattice of gl . Put Qt = @Z_ll Zsoo;. We define a partial
order “>” on P, so called dominance order, by A > p if A — u € Q. It is the alterna-
tive definition of “dominant order in multipartitions” when A\, € A, .(m), i.e., A > p if
S MO A 2 T O+ Y ) forany 1< U<, 1< G <m.

For (i,k) € I'(m), we define the elements E(; ), F(; x) € r-Lnr by

e . .
q Ni+1+1 < z qg(m)Ta:>hi(z,k:)ml‘ . h Zf M + a(l,k) (- Anﬂr(m)7
Eiwy(my, - h) = cexi TR
0 Zf M + Q(i,k) ¢ An,r(m)a
NO) R )
o +1 ( Z qZ( )Ty)m# . h Zf w— a(i,k) c An,r(m)a
F(i,k) (mu : h) = yeXffia(i”k)

0 if =g ¢ A (m),
1 (Z 7é mk)a

Lyt — Qigr (Z = mk)'
For A € A, ,(m), we define the element 1, € .7, by

for p € A, -(m) and h € gH,, ., where hi(i,k) = {

1)\(m# . h) = 6)\um)\ -h

for puA, . (m) and h € gH, .. For this definition, we see that {1 |\ € A,,,.(m)} is a set of
pairwise orthogonal idempotents, and we have 1 =3, _, 1,.

n,r(m)

Definition 2.4. For any p € A, .(m), we can define a left principle ideal of cyclotomic
q-Schur algebra as a submodule as in [2] with m = 1:

At £ S ol Ty with o), € Homay, (R, M") = M* defined as @), (h) := z,h
for any h € J, . and element T,y acts on gollw by the right J€, .-module structure of
M*. From now on, the module A" is called a q-Schur module, and denote the element

OrwTw, Y € Lnw bY 2.

Recall in [6] that the set of all [A] form a poset A[m,r] with m = ) a;, which is
isomorphic to the poset A(m,r) of all compositions of m with at most r parts as set but
with different order. Here the partial ordering on A[m, r] is given by =<: [a;] < [b;] if a; < b;
for all  =1,...,r. While A(m,r) has the usual dominance order <.

The following results will be useful in the sequel. See (2.8), (3.1), (3.4) in [6].
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Lemma 2.5. [6] Let a,b € A[m,r|, and also note H(S,,) as the Twahori-Hecke algebra
associated with &,,.

) ulHn,,uy =0 unless a =< b.

) ufH(S,)uy = v H(Gy) = H(S4)ve, where va = ul Ty uy,.
¢) utfH,,uy, =ulH(S,)u,.
)

VaHn s a free R-submodule with basis {v,T,,|w € S,.}.

Definition 2.6. [17] For A € A}, (m) and pu € A, .(m), a A-tableau of type p denoted as
T is said to be semistandard if
(i) the entries in each row of each component of T®) of T are non-decreasing;
(ii) the entries in each column of each component T*) of T are strictly increasing;
(i) if (a,b,c) € X, and T'(a,b,c) = (i,s) then s > c.
Let T.7°(A) be the set of semistandard \-tableau of type p and denote T*(N) = UueaT;%(N).

The set
(2.10) {Usr|S, T € TS°(N), A€ A+(n, )},

which is called the semi-standard basis of cyclotomic ¢-Schur algebras in [3], forms a
cellular basis of .7}, . in the sense of [11] with the dominance order < on A} (m). Let
52 be the two sides ideal of ., . spanned by all Ugr with S,T € T3°(n) and > X (i.e.,
shape(S) = shape(T") > \), where shape(7’) means the partition associated with tableaux
T.

In particular, let A € AT(n,r) be a partition and recall that T* = A(¢*), as in [3] and
[16], is the unique semistandard A-tableau of type A. From the definitions one sees that
Worapa restricts to the identity map on M)y, and sometimes we denote this element by W,
. Then, we can define the “cell module” as a submodule of .7, , /.7

(2.11) W =.7,,0,, where Uy = (S 4+ 0,) /S0

The module W* is called a Weyl module in [3].

3. MAIN THEOREM AND ITS PROOF

We now prove that the g-Schur modules we defined above are isomorphic to those in [3]
as “cell modules” when A € A (m). Recall the definitions given in 2.6.

Theorem 3.1. For each A € A}, (m), we have the following .7, .-module isomorphism.:
Proof. Consider the epimorphism:
0 : yn,r\:[l)\ — yn,rz)\; h\I/A — hZ)\ = hgoinwAy,\/ = th%\w . Tw(l)i..w(”yuu)/v.,,vH(ry me

Suppose that T' € T°(u) and S € T°(p) with p € A, (m) and v € A,,,.(m). By the
definition of Wgr in [3] and semistandard basis theorem [3] (6.6), we easily find that the
6



set {Wsp|T € T° (), S € T2°(p) with p> X and p € A (m),v € A, ,.(m)} is an R-basis
of .7, ¥,. More precisely, we can write this basis as

(3.1) AU |T € TN} U{Ysr|T € T, (1) and S € T°(u) with p> A}
Then we obviously have that
WA= 7, U, /(L AN ,5””'>,’,\)

We claim that, with x> X and A € A} (m), v € A, ,(m), if O(Vsr) = O(Vsr¥rar) =
Usror, Tws Y # 0 jthen p = .
Consider the action on the unit of H,, ,:

\I]STSOE\wTwAy)\’(]') = mSTTwAyX
= > meTuuv= >, >, muTuyx
teStd(p) teStd(p) s€Std(p)
A(O=T AXO=T" v(s)=5
= ZTd(s)qud(t)kayz\' = ZTd(s)xﬂuaﬁ]Td(t)TMu[_/\,]y;/
s,t 5,t

= ().
Recall that by Lemma 2.5, uj?—[n,rug, = 0 unless a < b. Ygrp} T,,yv # 0 implies that
for some s and t above, Td(g)xﬂuFL]Td(t)Tmu[},]y;\, =% 0. Thus, this condition shows that
[ = [A]. On the other hand, with the assumption in the above claim, i.e., > A, it is
obvious that [p] > [A] by the definition of [u], [A\] and >, > . So [u] = [A]. Then we find

(%) = Z Td(s)xﬂua]Td(t)Twu[;],y;/
=
= Z Ty xph vy ys by (b), (c¢) in Lemma 2.5
oy
= > Tae)T oo By -+ hYarry.vae v by [8]
s,t
hQGG{\x[ij?E:\j,v-v,|xi\)
= > Tuis) (@ Myyner) -+ (@0 B yaeorr ) op
piin

RIEG (1x; 141,10 1)

Since [A] = [u], the fact that this is non-zero implies, by [4] (4.1), that A(® > p@ for all
i=1,...,7. On the other hand, by [8] (1.6), > X and [u] = [)\] implies u® > A\ with
1 < i< 7. Hence u = X9 for all 4, and therefore, 1 = A. This completes the proof of
the above claim.

By the claim and (3.1), one see that

kert = {Wer | T € T3*(1) and § € T2*(u) with o> A} = 75,0, 1 752,
Therefore, A* = W?. =



Definition 3.2. [4] For w € &,, and S € T,(p) with A\, u € A(n,r), define a map

(3.2) S, xTa(pw) — Dy
(3.3) (w,8) — wg

where the element wg is defined by the row-standard \-tableau t*wg for which i belongs to

the row a if the place occupied by i in t*w is occupied by a.

For example, S = and t‘w = with © = (3,2) and A = (2,2,1), then
N
t Wg = .

Remark 3.3. Let T,%(u) be the set of all semi-standard p-tableauz of type N, with X and p €
A,.(m). For any S € T*(u), we define 15 := 15. Since S is a semi-standard p-tableau
of type X, it implies that S is a row-standard fi-tableau of type X, as in [7].

We compare the definition of semi-standard tableaux in [3] with that in [7]. Note
that every entry in S is written as the symbol (i, ) and is replaced by i + Zfﬂ;ll my,, for
1<i<m;,1<j5<n.

Then, by the above definition, we obtain the following consequence:

Lemma 3.4. Suppose that u € &, and w € & ,ay ..y e, With A\, u € A, -(m). Then
@y T.T, is a linear combination of the terms % (d € D) for which x(tAd, trwy - W) =
X(t/\u, tﬁw(l) s U}(r)).

Proof. The conclusion is ture when w = 1 since 3 T, = % _for some u € &,,. Below we
assume that w # 1.
For some v’ € &,, and some a = (i,i+ 1) € S, vy, we have that w = w'a, and

without losing generality, we can set (7,7 + 1) € &,ay satisfying:

w=wl-w, w=w-w, with wj(i,i+1) = wy,

Y

w; = w, fori=2,--- 7.

By induction on the length ¢(w), we have ¢} T, T, as a linear combination of the terms
@4 (d € Z5) for which XA, Py - wiy) = Xt u, tRw) - - we).
Consider

gp%\wT”ﬂ” = go%wT“TwTa = Z Cdgol%wTa-

XA}t w(ry - w ) ) =X (E u,tPw gy w ()

By [2] or [4], we have

(3.4)
qg0‘§w if i,7 + 1 belong to the same row of t*d;
ot T, = e if the row index of i in ¢* is less than that of i 4 1;
g5 + (¢ — 1)pxed otherwise.
Then the proof is completed through checking the formula above case by case. O
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By the definition in Remark 3.3, we can show the following theorem about the bases,

which is the main result in this paper.

Theorem 3.5. Suppose that X € A} (m).

R-module and {gp}[ﬁ -2 |A e T (N) and p € A, (m)} C A is a basis.

Then the q-Schur module A* is free as an

Proof. With the help of Theorem 3.1, it is enough to show that {¢;32x[A € T*(X) and p €
A, (m)} C A* is R-linearly independent. We calculate the action of the element Lpiz “Zy

on the unit of H,,,,

@iﬁ ) Z,u(l) = @;ﬁ‘pinw,l,yu’(l)

by Lemma 2.5

(p}\fL (.Z‘#)Tw“y#’
CY ToiTnen, i
deGx146;
n _
( Z Ty) - Tw(l)"'”(m)u[u]TwMuW]yﬁ/
deG5146;
@ié(wn) *Torgry - wiey Vil Yt veeovu 7
‘P%;;(xﬁ) : Twm“'w(r) “Yurvevpr Ul

1a
w;ﬂ(wuuw...vmn Tursy iy YpHryevp)r) * Vi)

1a 1
(p/—\ﬂgoﬁw : Tw<1)"'“’(v~) yuuyv,..wm,(l) i

by [6]

Then, following from the calculation in [2], for A, B € T5(f), we write A ~ B if A and
B are row equivalent, which as defined in [3], i.e. if one tableau A can be changed to B by

a sequence of elementary row permutations. Then, 65146, = Uz, ©s1p. In addition,

if w € G,,, we denote by w the unique element of S w N Z, for some A € A(n,r), i.e. the

shortest element in & w. We have

1a, 1
B~A
B~A

B~A

1p
(Z ProLwey-w,

Kp, 1
( § q @Xlegw(l)mw(,.) + SB) ! yu(l)/\/H-\/,u(T)/

weaywipy YpD v

)yu“)/\#n\/u(”/

1
( E %OwalgTwmn-w(,))yuuwv...w(rw

by [2]

where K is an integer and sp is a linear combination of terms gpf—\lw for which

X(tle, tﬁ) > X(t)\d, tﬁw(l) s w(r)).

Moreover, X(t’_\lA,t’j) > X(t’_\lg,tﬁ) = X(t;\lgw(l) c Wy, P lpway - wey) if B ~ A but

B # A. Hence

1a .1 _ K, 1
(35) @Xﬂ@ﬂw . Tw(l)..‘ww)y#(l)/\/...\/#(r)/ = (q gO;\leAw(l)...w(r) + 8) . yu(l)’Vw\/,u(T)’

where K is an integer and s is a linear combination of terms ¢¢_ with

X(tj\lA, tﬁ) > X(txd, t*_‘w(l) .. "LU(,-)).
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Now suppose that ZCAQO}\:‘]@}M Ty wiry Y vy = 0, where ¢y € R and the sum
A

is over A € T,%*(iu). Choose D € T;%*(u) such that ¢4, = 0 for all A with x(t*14,t") >
x(t*1p,t"). If we can prove that cp = 0, it will follow that every coefficient ¢4 = 0, and
then the proof is completed.

By (3.5), there exists an integer K and s € M* such that

1a, 1 _ K, 1
E CASDS\ﬂSDﬁw : Tw(l)»--w(r)yp(l)/\/~~~\/u(")/ = Cpq @Xlepw(U---w(,,‘)y/t(l)’\/n»V/L(")’ + SYpuWyry.oyp(r)
A

where s is a linear combination of terms ¢$ (d € Z5) for which
(36) X(txd, tﬁw(l) te w(r)) ?_4 X(tj\lp, tﬁ).
Now, suppose

K 1 _
" OxTowwm Y vevpr + 8Yumry. e = 0

and by Lemma 3.4, %DinWymwvmva is the linear combination of the ter_ms cpgw
(d S @j\) for which X(t)‘d, tﬁw(l) ce U}(T)> == X(t’\lpw(l) < -w(r),tﬂw(l) o -w(r)) = X(t/\lp, tﬁ),
while $y,,()ry...vu(n is a linear combination of the terms ¢} (d € Z,) for which (¢, t") #
x(t*1p,t*) by (3.6). Therefore,

K 1 _
cpq SOJ\WT1Dw<1)~-wmyml)/v---vu('r')/ =0.

But @%meyuuwmv w0 7 0, since the numbers strictly increase down the columns
for every component of D. Therefore, cp = 0, as we claimed.

Now, we have already known that the elements go%ggofm L1y wimy Yurv-yptrr 18 linearly
independent. It implies that @}\fbﬁpinumym = gp}\ggoi_w Ty iy YuW oy V)] are R-
linearly independent, since by Lemma 2.5 it is trivial that a - vy,) = 0 if and only if @ = 0

for any a € H(G,.). O

4. APPLICATION TO A NEW PROOF OF THE BRANCH RULE

In this section, by using this embedding and restriction functors described in [20], we
give a new proof of the branch rule in a cyclotomic ¢g-Schur algebra of rank n to the one
of rank n + 1.

From now on, throughout this paper, we argue under the following setting:

m = (myq,---,m,) such that my >n+1forallk=1,---,r,
m' = (mq, - ,m,_y,m, — 1),

Fnr1r = S mi1,r(Mgr (M),

S = (A (m)).

We will omit the subscript R when there is no risk of confusion.
We define the injective map

v: Ay, (m') = Ay, (m), AW  ACTD A oy (AD) ACD X0
10



where A =AY, ... AD 1), Put A}, (m) = Imy, we have

» my—1>
A;YLJrl,r(m) = {lu’ = (/’L(l)7 T 7/’L(T)) € An+1,7‘(m)’/j"(r;2- = 1}7
where we define p® = (u{”, - i)y € 2% for 1 < i <.

For A € A}, ,, and T € Tg5(\), let T\ (n + 1) be the standard tableau obtained
by removing the node z such that T'(x) = n + 1, and denote the shape of T\ (n + 1) by
Shape(T'\ (n+1)). Note that x here is a removable node of A\, and that Shape(T'\ (n+1)) =
AN z.

Proposition 4.1. [20](Wada tnclusion) There exists an algebra homomorphism ¢ :
S = Fng1,r Such that
(4.1) By~ EQNE  FOom FOE  Lie Ly

for (i,k) e IV(m¥), 1 > 1, A € A, .(m), where § = ZAGAWH (my Ix is an idempotent of
F i1 In particular, we have that (1, ) = &, and that L(Fp,,) C EFpi1,E, where 1y, |

is the unit element of ., .. Moreover, v is injective.

We define a restriction functor ResZle : S pt1-mod— 7, -mod by
ReSZ'H = Homyn+l,r(yn+1m£, ) &'yn+1 T®y +1T..

We recall that, for A € AY,, ., the ¢-Schur module A* of .1, has an R-free basis
{gpiﬁz,\m € T7°(A), it € Apyrr(m)}. From the definition, we have that

esitH(AY) = €AN

Thus, Res, "' (A*) has an R-free basis {¢,42:|A € T*(A), € A}, . (m)}.
For a partition A = (A1, -+, A,,) of n, we identify the boxes in the Young diagram Y(\)
with its position coordinates. Thus,

YN ={(@5) € Z¥ x Z7]j < i}

The elements of Y(\) will be called nodes. A node of the form (i, A;) (resp. (i, \;
is called removable (resp. addable) if i = m or A\; > A4y for i # m (resp. (z Ai ) =
for \y =~ =X, =1lori=1or \j_y >\ ifi #1). Let A = (A®,.. ()

r-partition. Then its Young diagram )()) is the union of the Young dlagram y()\(k ),

+1))
0, )
be

1 <k <r. Thus, a set of nodes is as follows,
YN = {(i,j, k)i, j € Z*,j < AP, 1 <k <m}.
A node of Y(A) is said to be removable (resp. addable) if it is a removable (resp. addable)

node of Y(A®)) for some k. Denote by R, the set of all removable nodes of Y(\). Then

N =#R, =Y #Rv.
A partial ordering “ > ” on R, will be fixed from top to bottom and from left to right,
that is, it satisfies that

(i,5,k) = (', 7" k) if k <K, orif k =k and i <.
1



Then, we have Ry = {ny,--- ,ny}, with the property that n, > n; for i > j. Let j,,
n € Ry, be the number at the node n in t,. For example, for A = ((31),(22),(1)),
Ra = {(1,3,1),(2,1,1),(1,1,3)}.

Also, we define a partial order > on Z-o x {1,...,7} by

(i,k) = (&', k') if (i, 1, k) = (i, 1, k).

Proposition 4.2. Let X € A}, , pe€ A}, (m), Ae T*(\). For (i,k) € I'(m), we
have the following

(42) E(i,k) . QO}LS‘\Z)\ = Z rB(p/lj-a(i,k),AZA (7’3 S R),

BET a0

shape(B\(m, 1) shape(A\ (m, 7))

(4.3) Fir - 4,0;14’/*\2,\ = Z ngollﬁau,kMZ/\ (rg € R).
BET ., ()
shape(B\ (m..,r))>shape(A\(m,,7))
Proof. Following from (5.8), (5.9)’s notations in [7], one shows that cplll;‘\ = W, 7s. On the
other hand, by a general theory of cellular algebras together with Proposition 3.3 in [20],
we have that, for (i,k) € I"(m’),

(44)  Eup - golllj‘\ = Z TB‘P;liia(i,k),/\ mod yn‘i’\u,

Beﬁia(i.k) ()‘)

shape( B\ (m.,r))>shape(A\ (m..r))
where r5 € R.

By definitions, 2y := ¢}, Twyn and 7 . is linearly generated by Wsr for S, T € Tx(v)
with v > A, it follows that ynb-&-)\l,r"z)\ = 0. On the other hand, we suppose that there exists
some S, T € T2*(v), such that ¥grz, # 0, which means A\ = v from the proof of Theorem
3.1. This consequence is contradict to the fact v > A. Finally, we reach the consequence
of the first statement after multiplying the element z, on both sides of (4.4).

The case for F{; ) with (i,k) € I"(m’) can be proved in the same way as the above
proof for the case of E; ). O

By Theorem 3.5, let zM; be an R-submodule of Res! " (.A") spanned by
{goll[/‘\z,\|A € TY(A) NTR*(A) such that A(n;) = (m,,r) for some j > i},

where we put T/ (A) := Uue/ﬂ“ (m) Tu(A). When there is no confusion about R, we also
denote it as M; (i.e., delete the subscript.).
Then we have a filtration of R-modules

Res; ™ (AY) = My D My D -+ D My D My =0,
For A € A} +1,» and a removable node = of A, we define the semi-standard tableau

T} € Ty#(N) by

(4.5) T(a,b,¢) = { (a.c) if (a,b,¢) # =,

(my,r) if (a,b,¢) = .

12



We see that T € T (A\)NT22(N), and T2\ (m,., ) = T*\* where the tableau T*\* denotes
the unique element in set 7,3, (A \ z).
From the definition, M;/M;,, has an R-free basis

{goi‘(‘#)/\z,\ + M 1|A € Ty (A) N TR(A) such that A(n;) = (m,,r) and p € A, .(m)}.

For A € TJ(A\)NTg5(N) such that A(n;) = (m,.,r), we have Shape(A\ (m,,r)) = A\ n; by
definition. Note that A\ n; > A\ n; if and only if n; < n; (i.e., j > 7). Then, by Proposition
4.2, we see that {M;} is a filtration of .7}, ,-modules.

Now, using the main result in Section 3 we give a new version of the branch rule of
Weyl modules in [20].

Theorem 4.3. [20] Assume that R is a field. For any A € A}, (m), letny,---  ny be the
removable nodes of Y () counted from top to bottom, and define My as above for 1 <t < k.
Then, we have a filtration of ., 1-submodule for A*:

O:Mk+1CMkC"’CM1:AA
with the sections of Weyl modules (or q-Schur modules): M,/M, | = W>\"t,

Proof. First of all we set fi :== (1), and consider the weight decomposition of the .7, ,-
module M;/Miy1 = @ o(M;/Miy))= @ 1,oMi/Mipa= D 1a(Mi/Mis),

WEA, - (m) HENAR, - (m) HEA,,-(m)
where 1;(M;/M;.,) is generated by

{eien+ Min|A € TU ()N TR*(A) such that A(n,) = (m,.r)}.

Since A\ (m,,7) € T7*(A\ n;), we can find that ,(M;/M;,,) # 0 only if X\ > i, which
implies that A\ n; > p.
Let n; = (a,b,c). Note that E;,) - ¢332, is a linear combination of {cplljia(jyl)’/\z,\]B €
%5 (A} and that 725 (A) = 0 unless A> [+ o).

Ao, Ao e

We have T, € T**(\) in the case of 7 := A\ n;, e, 7 = A — (Qa,e) + Xatr,e) + - +
a(mTfl,'r‘))-

If (j,1) = (a,c), we have E(;) - prazy = 0 since A B 7 + a;yy for any A € T5(N).

It (j,1) = (a,c), for any S € T, . (A) together with the definition of semi-standard
tableaux, we can easily check that S((a/,b',¢)) = (j,1) for any (a/,¥/,c') € X satisfying
(a’,c) = (4,1). This implies that
(4.6) IS\ (my,7)] # A\ n| for any S € T2, (A),

THaG.
since (a,¢) = (4,1) and T ((a,b,¢)) = (m,,r) < (j,1). From now on, we denote the
tableau T];\i as X.
Thus, Proposition 4.2 together with (4.6) implies that

EGu ¢ -2 =0 Mgy for any (4,1) € T'(m’).

Thus, gpif\‘ - zy + M, 11 is a highest weight vector of weight A \ n; of .7, ,-module in the
sense of [21]. Moreover, since the Weyl modules are simple modules in the category of
13



xZn-modules, due to the universality of the Weyl modules in [21], we have an .7, -
isomorphism:

(4.7) O s AN o T (01 - 2) 4 kMg

Note that 63" is determined by 0™ (PAmnm, 2ains) = O3 -2at M1 We see that o
is a restriction of 19,’}\“7" which assigns the submodule 4A*\" onto the submodule 4.7, -

(gaif\( -zx)+aM; ;1. Then, we find that 9; "isa 47 »-mod isomorphism. Furthermore, by
MNng
R

the argument of specialization to any arbitrary commutative ring, it follows that 6
9;\‘” ® .4 R is an isomorphism for the algebra z.7, .

Assume that R is a field. Since WM\ = AMm =2 .7 . (!X . 2,) + g M;y,, which
is a g%, -submodule of M;/M;,,, we finally reach the consequence by comparing the
dimensions of AM™ and M,/M,, . O
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