PINCHING THEOREMS FOR SELF-SHRINKERS OF HIGHER
CODIMENSIONS
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ABSTRACT. In this paper, we investigate the pinching phenomena of the trace-
free second fundamental form of complete self-shrinkers of higher codimen-
sion. Firstly, assuming the mean curvature is nonzero everywhere and the self-
shrinker is of polynomial volume growth, we prove that if the tracefree second
fundamental form A satisfies ||A||,, < C(n) for a positive constant C(n) de-
pending only on the dimension n of the self-shrinker, then it is isometric to

the sphere S?(v/2n). Secondly, we show if the mean curvature vector H of
the self-shrinker satisfies sup |H| < \/g and A satisfies ||A||n < D(n,sup|H|)
for a positive constant D(n,sup|H|) depending n and sup |H|, then it is iso-
metric to the Euclidean space R™. We also obtain some rigidity theocrems for
self-shrinkers satisfying pointwise curvature pinching conditions on |A|2.

1. INTRODUCTION

The mean curvature flow is a one-parameter family of smooth immersions F' :
M x [0,T) — R"*P satisfying

2 F(x,t) = H(z,1),
1) { F(z,0) = Fo(),

where H(z,t) is the mean curvature vector of F;(M) that is defined to be the trace
of the second fundamental form A, Fy(z) = F(z,t) and Fj is some given immersion.
It is useful to investigate an important class of solutions to the mean curvature
flow (1.1), called self-shrinkers. An immersion F' : M"™ — R™*? is called a self-
shrinker if it satisfies
(1.2) H(z) = f%F(I)J‘
for all z € M. Here ( )+ denotes the normal part of a vector field on R"*P. The self-
shrinker is a time slice of a self-similar solution of the mean curvature flow, which
shrinks as time increases. It is well-known that self-shrinkers play an important
role in the study of mean curvature flow for they describe the singularity models
of the mean curvature flow and they arise as tangent flows of mean curvature flow
at singularities, see [11, 16, 18, 28], etc. If M is a curve in R?, all solutions of (1.2)
have been classified by Abresch-Langer [1]. In higher codimension the theorem
of Abresch-Langer applies as well since a self-shrinking curve in R lies in a flat
linear two-space R? C R¥. In the higher dimension case, it was proved in [16]
that a closed hypersurface in R" ! satisfying (1.2) with positive mean curvature is
S™(v/2n). Later this was extended in [17] to complete noncompact hypersurfaces
in R**! with nonnegative mean curvature, bounded second fundamental form and
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polynomial volume growth. Recently, Colding-Minicozzi [11] showed that Huisken’s
classification theorem still holds without boundedness of the second fundamental
form. Moreover, they showed that the only embedded entropy stable self-shrinkers
with polynomial volume growth in R®*! are hyperplanes, n-spheres, and cylinders.
In higher dimension and higher codimension case, the classification of self-shrinkers
is much more complicated. Smoczyk [27] made an extension of the classification
theorems in [16, 17] for the self-shrinkers with nowhere vanishing mean curvature
and parallel normalized mean curvature vector. Recently, a gap theorem of the
squared norm of the second fundamental form for self-shrinkers with polynomial
volume growth was obtained by Cao-Li [5], which generalized the gap theorem in
[21] to arbitrary codimension.

Theorem 1.1 ([5]). Let F : M"™ — R""? be an n-dimensional complete self-
shrinker with polynomial volume growth. If M satisfies |A|*> < %, then M is iso-

metric to one of S¥(v2k) x R*=* Cc R"*1 0 <k < n.

More recently, Ding-Xin [14] proved a gap theorem for complete self-shrinkers
under an integral curvature pinching condition.

Theorem 1.2 ([14]). Let F : M™ — R"? (n > 3) be a complete self-shrinker

of the mean curvature flow. If M satisfies ||A|ln < y/32g, then it is isometric

to R™. Here S is a positive constant which appears in the Sobolev inequality on
submanifolds in the Fuclidean space.

Without the assumption of polynomial volume growth, Cheng and Peng [9]
proved the following rigidity theorem.

Theorem 1.3 ([9]). Let F : M"™ — R™P be an n-dimensional complete self-
shrinker. If M satisfies sup,, |A]? < %, then M is isometric to R™.

Some other classification and rigidity theorems for self-shrinkers satisfying cer-
tain curvature conditions have been proved in [6, 9, 10, 14, 23, 24], etc.

In this paper, we study the gap phenomena for the tracefree second fundamental
form of self-shrinkers. Let A denote the tracefree second fundamental form, which
is defined by A=A- % g® H with g denoting the induced metric on M. Motivated
by Theorem 1.2 and integral pinching theorems in [29], we prove the following

Theorem 1.4. Let F' : M™ — R"P (n > 3) be a complete self-shrinker of the
mean curvature flow with polynomial volume growth. Suppose the mean curvature
is nowhere vanishing. If M satisfies ||Al|,, < C(n), where C(n) is an explicit given
positive constant depending only on n, then it is isometric to S™(v/2n).

Without the assumption of polynomial volume growth, we also prove an integral
curvature pinching theorem under the condition that the mean curvature is suitably
bounded.

Theorem 1.5. Let F' : M™ — R"P (n > 3) be a complete self-shrinker of the
mean curvature flow. Suppose the mean curvature satisfies sup,; |H| < \/g If M

satisfies || Al|,, < D(n,supy; |H|), where D(n,sup,; |H|) is an explicit given positive
constant depending only on n and sup,, |H|, then it is isometric to R™.

Comparing with Theorems 1.1 and 1.3, we prove the following

Theorem 1.6. Let F' : M™ — R"P (n > 2) be a complete self-shrinker of the
mean curvature flow. Suppose the mean curvature is nowhere vanishing.

(1) If M has polynomial volume growth and satisfies |A|* < 1, then it is isometric
to one of S*(V2k) x R"7* [2] < k < n.
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(2) If M satisfies sup,; |A]2 < 1. then it is isometric to one of SF(v2k) x
Rk (5] <k <n.

Note that S¥(v2k) x R"~* satisfies |A|? = 11-5)y <zl < Lfork > 0. Soitis
natural to conjecture that the best pinching constant is % We prove the following

Theorem 1.7. Let F: M™ — R"P (n > 2) be a complete embedded self-shrinker
of the mean curvature flow. Suppose the mean curvature is nowhere vanishing and
the normal bundle is flat.

(1) If M has polynomial volume growth and satisfies \A|2 < %, then it is isometric
to one ofSk(\/ﬁ) xR"™F 1<k <n.

(2) If M satisfies sup,, |A]? <

1, then it is isometric to one of SF(V2k) x
R** 1<k<n.

We also prove some rigidity results for closed self-shrinkers under pointwise cur-
vature pinching conditions.

Theorem 1.8. Let F : M™ — R"P (n > 2) be a closed self-shrinker of the
mean curvature flow. Suppose the mean curvature is nowhere vanishing and the
normalized mean curvature vector is parallel in the normal bundle.

(1) If M satisfies

AP* <

)

W =

then M is one of the following:

(i) S*(v2n) C R C R™ P, p > 1;

(i) S?(2v/3) — S*(2) ¢ R® C R**P, p > 3, where S%(2v/3) — S*(2) is the
Veronese surface.

(2) If n =2 and M satisfies

then M is one of the following:

(i) S?(2v/3) — S*(2) € S'*P(2) € R**P, p > 3, where S?(2v/3) — S*(2) is the
Veronese surface;

(i) S?(2v/6) — S8(2) C S'*P(2) € R**P, p > 5, where S?(2v/6) — S5(2) is the
standard immersion, see [19].

(8) If p =2 and M satisfies

A* <

)

| —

then M is one of SF(v/2k) x S*F(\/2(n —k)) € S"*1(v2n) C R*" ™2 |1 <k < n.
(4) If p = 2, there is a positive constant 6(n) depending only on n such that if
M satisfies
1, 1
- < < =
S <IAP < 5+ 3,
then M is one of S¥(v/2k) xS"7F(\/2(r — k)) € S"T1(v2n) cR™2 1 <k <n—1.

The paper is organized as follows. In Section 2, we recall some basic equations
in submanifold geometry and introduce an elliptic operator for self-shrinkers. In
Section 3, we study the gap theorem of self-shrinkers with nowhere vanishing mean
curvature under integral or pointwise curvature pinching conditions. In Section 4,
we consider the integral pinching theorem for A under the assumption that the
mean curvature is suitably bounded. In Section 5, we discuss the gap phenomena
of A for closed self-shrinkers with parallel normalized mean curvature vector under
pointwise pinching conditions.
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2. PRELIMINARIES

Throughout this paper, let M™ be an n-dimensional complete smooth manifold
isometrically immersed into an (n + p)-dimensional Euclidean space R"™?. Denote
by g the induced metric on M. We shall make use of the following convention on
the range of indices:

1 <AaBaC7 <n+p7 1 <Z7.77k7 <na n+1 <Oé,6,’77 <n+p

Choose a local field of orthonormal frame {e4} in R™*? such that, restricted to M,
e;’s are tangent to M. Let {ws} and {wap} be the dual frame field and connection
1-forms of R™*P, respectively. Restricting these forms to M, we have

— E (¢4 (o7 Ne7
J

A= Zh%‘(«di@)wj@ea Zzhzjwi@wj,
,J

&,

H= E h{eq = g H%,,
e a
_ a Lo [eQ Ne]
Rijr = Z( ik = Tl jk)v

«
_ B B
Rapri = Z(h?khiz — hijhg),
i
where A, H, R;jr1, Rapri are the second fundamental form, the mean curvature vec-
tor, the Riemannian curvature tensor, the normal curvature tensor of M, respec-
tively. The tracefree second fundamental form is defined by A = A — % g® H. Let
A be the Laplacian of M.
Denoting the first and second covariant derivatives of hg; by i, and hiy, re-
spectively, we have

(2.1) S hggwn = dhg =3 hGwry — Y hfwki — Y hliwsa,
k k k B

_ B
D Wi = dh = > W = i = 3 hijn = 3 hijpna.
1 l 1 l )
Then we have
a _ p«
igk = MVikj»
_ B
WS = M = > B Rt + Y 1 Rimint — > i Ragia.
m m B
Hence
ARG = W
k

= hi Y (Z hft Bk + Y Wi Rk — Y hfﬂaﬁjk)-
k k m m B

From the self-shrinker equation (1.2) we obtain

(0% 1 (0%
(2.3) ViH® = o > (Fex) b,

k

(2.2)

and

« 1 o (o7 1 [e%
(2.4) Vi ViH® = Shy — > (H, hjr)hs, + 3 > (F,ex)hiy;.
k k
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Let div and du be the divergence and volume form on M, respectively. Colding-
Minicozzi [11] introduced a linear operator

1 2 2
L=A-3(RY() = e div(e= V()
for Euclidean submanifolds. Here F is considered as a vector in R**?. They showed
|F|2

that £ is self-adjoint with respect to the measure e‘T‘du.

3. SELF-SHRINKERS WITH NOWHERE VANISHING MEAN CURVATURE

Suppose the mean curvature of the self-shrinker M is nowhere vanishing. We

choose e,4+1 = \%I The second fundamental form can be written as A = > h%e,,
«
where h*, n+1 < a < n+p, are symmetric 2-tensors. By the choice of e,,41, we see

that trh™+! = |H| and trh® = 0 for a > n + 2. The tracefree second fundamental

form may be rewritten as A = S h%,, where h"t1 = pntl — |nﬂ1d and h® = he
[e3

for a > n+2 Weset Ay = h"e,q, Ay = 3 h%q, Ay = htle, .1 and
a#n+1
Ar= Y. h%e,. Then we have
a#n+2
AP = > | = AP - |Aul?,
a#n+1
A= D7 b2 = AP —|Aul*.
a#n+1
Note that |Ag|? = |[Ag|? — % and |A7|2 = |A;|2. Since e,41 is chosen globally,

|Ag|?, |Ag|? and |A;|? are defined globally and independent of the choice of {e;}.
To prove Theorem 1.4, we need to give an estimate of £|Ar|?. Combining (2.2)
and (2.4), we obtain

(3.1)
SN nEARG = > Y kY VH®
a#n+1 i,j a#En+1 i,j
+ Z Z hg; ( Z P Romiji + Z by Bmkje — Z hfiRaﬁjk)
aFn+1i,j,k m B
=l ] YD S hghg + (R VIALP)
a#n+114,j,k
+ Z Z h{; ( Z P B + Z hoyi Rmkjke — Z hiiRaBjk)~
a#n+11i,5,k m m B
From (3.1) and the definition of £, we get
(3.2)

1
LA =AJAL = 5(F, VAL

1
2 > hYARY +2[VAL - 3 (F VA%
i,7,a#n+1
=2\VA]” + A = 2/H| ) tr[A"(A%)7]
a#n+1

+2 Z Z h?J(Z R Roniji + Z P Rk — Z hfiRaﬁjk)-
m m B

a#n+11,j5,k
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Set A% = (h§;)nxn and define N(B) = tr(B'B) for a matrix B. Then by direct
computation, we have

Z Z h hkm mijk = Z tr(AnJrlAa)Zf Z [tr(AnJrlAO‘)]Z

(3 3) a#n+11i,5,k,m a#n+1 a#n+1
+ 0 wm(AtA)?2 = D [tr(AvAR)?,
a,B#n+1 a,B#n+1
(3.4)
Yo D hGhi R, =1H| Y tr[AMTH(A%)?)
a#n+11,5,k,m a#n+1
— > t[(ATT2(A) = > (A% A%APAY),
a#n+1 a,B#n+1

Z Z h%hfiRBa]‘k = Z ‘EI‘(AO‘Aﬁ)2 — Z tI‘(AO‘ABAﬁAO‘)

aF#n+1,81,5,k a,f#n+1 a,f#n+1
(3.5) + Y (ATATTE = N (AT AT AT A,
a#n+1 a#n+1

Combining (3.2)-(3.5), we get

LIA[]? =2[VAL* + AP =2 ) [er(A™TA))?

a#n+1
—2 Y N(A“AP - APA%) —2 D [tr(AA%)?
(3 6) a,B#n+1 a,B#n+1
+2 0 tr(ATTTAM)2 =2 > (AT (A%)?]
a#n+1 a#n+1
+2 3 tr(A%ATTH2 =2 3 tr(A% AT AT A,
a#n+1 a#n+1
By Theorem 1 in [22], we have
(3.7) —2 > N(A“AP - APA%) —2 N [tr(A“A%)? > —3]A, %
a,B#n+1 a,B#n+1
We also have
(3.8)
=2 > [r(AMTANP 42 Y (AT AR -2 Y tr(ATT)2(AY)?]
a#n+1 a#n+1 a#n+1
=—2 ) [rr(A"TANP 42 > tr(ATTAY)? =2 Y er[(AnT)2(4%)7]
a#n+1 a#n+1 a#n+1

> —2|Ag?| AL

Here Ant! = (fQL?jH)an and for the inequality we have used Lemma 3.2 in [8].
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We choose {¢;} such that h,’;jH = X\;d;j. Then hZH =\ ;0;7, where No= N — ‘HI.
We have the following estimate.

2 ) tr(A%ATTHZ -2 Y tr(ACATTI AT A

a#n+1 a#n+1
=2 > YRR RgRET =2 Y T > R R R A
a#n+11,5,k,l a#n+11,5,k,l
=2 > Y NNRE)T =2 >0 Y Ak
a#n+1 4,j a#n+1 4,5
> Z(Ai*/\j)Z(h%)z
a#En+1 i#£j
SN (= A) (hey)?
a#n+1 i#£j
() ( 5 X
i a#n+1 i#j
——2( ) (1A= > S6)?)
i a#n+1l 1

(3.9) > —2|Ay A
From (3.6)-(3.9), we obtain
(3.10) LIAL]? = 2|VAL]> + |Af]P(1 — 4| Ag|? — 3| A7 ]?).

We need the following Sobolev inequality for submanifolds in the Euclidean s-
pace, which is a consequence of the classical Sobolev inequality due to Michael-
Simon [26].

Lemma 3.1 ([29]). Let M™ (n > 3) be a complete submanifold in the Fuclidean
space R"TP. Let f be a nonnegatwe C! function with compact support. Then we
have

92
VA1 > - (”1)22()1 5 |5 1y — (14 1) e llIA1E].

where D(n) = 2™(1 4+ n) "% (n —1)"to, "7 and on denotes the volume of the unit
ball in R™.

Now we give the proof of Theorem 1.4.
Proof. From (3.10), we have
(3.11) LIA[]? = 2VA? + |A[]2(1 — 4| A]?).

Set f. = [|A7|2+n(p—1)e2]2 for a constant ¢ > 0. Since A; is a Codazzi tensor,

we have
n+2

VA 2 — =V

From (3.11) we have

(nJr 2)

(3.12) LfZ> [VFe? + [ALP (1 = 4] AP).

For a fixed point zg € M and every r > 0, define a smooth cut-off function ¢,
by
1 x € By(x0),
ér(z) =< ¢r(z) €10,1] and |Vo,| < 2 x € Bar(xg) \ Br(x0),

T

0 ZEEM\BQT(LE()).
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Multiplying both 51des of (3.12) by ¢2f"~2 and integrating by parts with respect

to the measure e~ 1 du on M give

(n+2) n 2 —— A n 2 ——
o>/M V11262 du+/ A 202 12 dy
—4/ ARIAPRg ey - /L‘fm e
= [ 2Dt Fans [ japente a

M

*4/ |Ar? |4 ¢%f§’26*7du+/ (V2,9 (62f72))e 5 dp
M

2 _
(3.13) =W/ VPR **dw/ APPSR 2
—4/ AL P|APg2 2 **du+4/ o f2 VL, Vo) S du
2(” _n+2) n 2 ——
>(2, 572) [ wspes:

+ / |A1\2¢3f£”26’7du*4 / ALIAPg2 ey
M M

_ _IFZ
a Qbrfsn 1<st;v¢r>e € |V¢r‘26 4 d/i
M

Here o,p € RT.
By a direct computation, we have

n 2
B.14) (VO SDIP = VO +nonf2 T Vo, V) + Lo VP

Pick o, p > 0 such that 2("2;"”) - (4;”)p = "Z. Then we have

( /IV br f2) 2 _7du—*/ S fr NV Ve dy

—7/ f;‘|wf|2e-4)
/ AP e dy — 4/ ALPIAP G2 fr2e 5 d

/|v Foppe Fan- (12 )/ FrIV 6 e

/ AP 2 gy — 4/ AL PIAP G2 fr2e 5 .

(3.15)
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Similar as in [14], we have

316
e 2 _1F2 1 n _1E2
/ V(£ e ) Py = / V(E p)2e - / 92 frIFN P dy

/ ¢2 n _7d/.t—7/ ¢ f5|FT|2 _7d,u
g/ 'v(fg‘b’")‘%*#d“‘§/M¢3f:\H|Zedeu

/ ¢2 n —
Then we have

o n _|F? o n _1F?
027/ V(érfee 8)\2du+*/ LI H|e™ 3 dp
n Jym 2n M

- = 2pn Ry, (2120, C "ve e B g
1 Mcbrfge i 5 T Mfg\ orle i
2 2 m-2 B2 20 1242 pn—2_— L2
+ |AI| ¢7‘f6 € 4 d,U, 4 ‘AI| |A| d)rfs € 4 d:u’
M
\F\

(n—2)2%0 o _lF12
>4n(n—1)2D2( )(1+t)‘ rfee

o (n—2)2
+(2n—4n3( 2t>/ G 7 H e
[ e o ( )/ 12V, Pe S dp

b [ bt aa [ aare e
M M
Letting € — 0, we obtain

(n—2)%0 ‘
4n(n —1)2D%(n)(1 +1t)

g (n 2 2
(-2 [ e

o) _1F1? -0 o n _1F1?
=5 [ e 4du—( 2 *)/ A" Ve, e T dn
M P n/Jm

ng2 — 22 ny A2 g2 — 22
+ |AI| ¢re 4 d/J—4 |AI| |A| ¢re 4 d/.L
M M

(3.17)

n
n—2

0=

n—2

(3.18)

Now we set ¢ = 4 — 0 for small § > 0, p = pg = %(2(”2;””) - "(4476)) and
t= % Then we have

(3.19)
(n— 271 6)
0> 2D2%(n)[2n%(n — 1)2 4 (n — 2)?] ‘ e

o 4-0 1ri2 2 L2
- (2+ ) [ iwo e - [ ariapete
Po n M M

By the Cauchy inequality, we have

o |F|2
(3.20) | 1airiareze S au < |lozia,

n—2
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Hence
(n—2)%(4-0) P 2 _ie?
0> — 44112 ) |[o21ar" a
(3.21) (st otz — AR et o
’ 0 4-0 n o P2
“\lg, 7t |[Ar|"|Vr|“e™ 3 dp.
Po n M
Since |V, | < 2 and [, |Ar|"dp < [, |A]"dp < oo, we have
. n 9 _1EI2
hm/ |Ar|" |V r|"e™ 2 du = 0.
r—00 M
Hence
(n—2)*(4-90) AN 2 e
> 442 ) im |[62140" o
! <2D2(”)[2n2(n—1)2+(n—2)2] 1AL ) i f|onlArf™e™ 5 || 2o
. )2
Now we let § — 0. If ||A||, < C(n), where C?(n) = 2D2(n)[2n§(nfi)2+(n72)2]7 then

2
lim H|A1|"e*%|
T— 00

—n_ =0, which implies that A; = 0 and VA; = 0. From (2.1),

for « # n + 1, we have

0="> hfwr = —|H|wnt1a-
ik
Since H is nowhere vanishing, we obtain w,11, = 0. Also, since VJ-enH =
> Wntla ® we = 0, e,41 is parallel in the normal bundle. The first normal s-

pace Ni(x) at & € M, which is defined to be the orthogonal complement of
{{ € N;M|We = 0} in N, M with W, denoting the shape operator with respect
to &, is just {Ae,+1|A € R}, hence it is invariant under parallel translation in the
normal bundle. By the codimension reduction theorem in [15], M in fact lies in an
(n + 1)-dimensional affine subspace of R"*P. Then from [11, 16, 17] we see that M
is isometric to S™(v/2n), R”, the product S*(v/2k) x R* % with 1 <k <n — 1, or
the product I' x R»~!, where I" denotes one of the Abresch-Langer curves. Since we
assume that the mean curvature is nonzero and ||A||, < oo, the latter three cases
are excluded. This completes the proof of the theorem. O

By using equation (3.11), we give the proof of Theorem 1.6.

Proof. To prove (1), since M has polynomial volume growth, by (3.11) and the
assumption |A|? < 1, we have VA; = 0 and |A;| = constant. By (3.10), we get

0> |Ar2(1 = 4)A1?) + | 4;]* > 0.

This implies |A;| = 0. So, as in the proof of Theorem 1.4, M is isometric to
Sk(\/ﬂ) x R"* with 1 < k < n or the product T' x R*~! with " denoting one of
the Abresch-Langer curves. For the first case, by a direct computation, we have
|A? = 1(1— E). Since |A]? < 1, k > [2]. For the second case, by the arguments
in Proposition 3.4.1 and Appendix E in [25], except the circle S'(v/2) € R?, the
curvature k of I' C R? satisfies Kmax > g So either I' = Sl(ﬁ), or there is point
in I' x R"~! ¢ R™*! such that only one of the principal curvatures at this point
is nonzero and it is grater than g Hence either n = 2 and M = S'(v/2) x R, or
sup |A|2 > %(1 — %) > %, and the latter sub-case is excluded. This completes the
proof of (1).

We now use a generalized maximum principle for the £ operator on self-shrinkers
that was proved in [9] to prove (2). By an inequality in [7, 30|, the sectional
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curvature K, of M satisfies

1(1H? 2\ _ 1 _|HP i2 1
Ky > = —APF ) =z —— —4]" | > —=.
M Q(n—l = 2\ n(n—1) 4l 8
We also have |A7]2 < |A]?2 < 1. Hence the generalized maximum principle for the

L operator on self-shrinkers applies. So, there exists a sequence of points {zx}72,
in M such that

lim |A1\2(33k) = Sup|A1\2, limsup£|AI|2(9:k) <0.
k—o0 M k—»o00

Then by (3.11), we have

0 >limsup £| Az |*(zy)

k—o0

> lim |A7[2(2)(1 — 4 lim |A]?(2x))
k—o00 k—o00

> sup |Ar[*(1 — 4sup [A]?).
M M

Under the assumption sup,, |A[? < 1, we obtain |A7|> = 0. Hence as in the proof
of (1), M is isometric to one of S*(v2k) x R"™*, [2] < k < n. O

We use similar argument to prove Theorem 1.7.

Proof. Since the normal bundle if flat, we have A*AP = APA® for all o, . To
estimate the right hand side of (3.6), we have

—2 Y N(A"AP - APAY) —2 > [r(A%AP))?
a,B#n+1 a,B#n+1
=-2 ) [tr(A*4A%)P
a,B#n+1
2 - 2|AI‘4a

=2 > (AT AN P 42 Y tr(ATTAY)E -2 Y tr(ATT)2(AY)?]
a#n+1 a#n+1 a#n+1
=-2 Y [tr(A"TAY)?
a#n+1
> — 2| Ay AL,

2 ) tr(AYAMT)2 =2 Y e (AATTI AT A) = 0.
a#n+1 a#n+1
Then by (3.6), we obtain

LIAr? 22|V AL? + |Ar]? - 2|A;]* — 2] Ag|?|A;)?
=2V A + |A7(1 - 2|AP).

If M has polynomial volume growth and |A[? < %, then VA; =0 and |A4;| = 0.
By a similar argument as in the proof of Theorem 1.6, M is isometric to S¥(v/2k) x
R"* with 1 < k < n or the product I' x R"~! with I" denoting one of the Abresch-
Langer curves. Since we have assumed that M is embedded, it is isometric to one
of SF(v2k) x R*F 1 <k < n.

If sup,, |A]2 < 1, we have Kj; > —1. Also, |A|2 is bounded. In a similar way,
we can prove that M is isometric to one of S*(v2k) x R* ™% 1<k < n. O
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4. SELF-SHRINKERS WITH BOUNDED MEAN CURVATURE

Combining (2.2) and (2.4), we obtain

D hGARG =k Zv ViH®

,J,0 i,
+ ) hg ( > g R + Y hRonkjr — hfﬁaﬁjk)
7,k m m B
(41) 1 2 B1,B pa pa 1 2
*§\A| - Z HP Wy hayhiy + Z<Fa VI[AJ%)
ij ko
+ ) R ( > b Rmigi + Y b R — Y hfﬂaﬁjk)-
i,5,k,a m m B

Then we have
(4.2)

1
LIAP =AJAP? = S(F,V|AP)

—22 h ARG + 2|V AJ? — (F V|AJ?)

4,5,
=2\VAP? +|A* -2 Y HPh hghs,
i,5,k,c,B
+2 Z h%(zhngmijk“rZh%iRmkjk_Zh}fiRa,@jk)
i,7,k,a m
—2|VA]? 4 |A]2 - 22(2;@;@) —2 3 (Y mgng, - h?phfp)) :

i,j,0,8 P

On the other hand, from (2.4) we have

AlH> =2|VH|? + |H|2—22(ZH“h%)2+%<F>V|H|2>7

where H* = > h%. Tt follows that

2
(4.3) C|HP =2/ VHP +|H] =2 (Zﬂa a) .
i
Combining (4.2) and (4.3), we have

LIAPR =21V AP + AP =23 (Yngnd )
B ig

2
2 S (g - ngnl) 42 Z (ZH“ 5)
i.j,a,8 P
At the point where the mean curvature is zero, we have

-2 3 (Swes) 2 32 (St - i) + 230 (S ang)

irdy008
- QZN (A2 AP — AP A™) =2 [tr(A~AP)]?,
a,f a,B
where A* = (h?j)nm By Theorem 1 in [22] this is not less than —3|A|*. Hence we
have

(4.5) LIA? > 2]VAP? + |A]? - 3|A)%.

(4.4)
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At the point where the mean curvature is nonzero, we choose €, 11 = I—gl and define

Ag, falH, Ar and fil in the same way as in Section 3. Then we have

. 2 o 1
> (3 :h;hg) —[Ap|* + 2| HP| A + | H|*
n n
0,

6 7
v2 3 (Yatig) Y (ki)
a#n+1 ¥ a,B#n+1 7
S (ol - ngii) =2 S0 S (g, - n i)
(4.7) 1,50, p a#n+1 4,5 p
Y S (s, - b))
a,B#En+1 1,5 p
(18 S (S men) = PR +
1,9 a

From (4.6), (4.7) and (4.8) we obtain the following

(4.9)

22(&%) w2 Y0 (gl - heni) - Z(ZH“ )’

i,j,a,8 P

=2|Ap|* + *IH\QIAle

v 3 (D) e S (00 - i)

a#n+1 4] a#n+1 4,5
aiB a jB a1 B
+2 >0 ) (Zhwhw) +2 > ) (Z byt — b b))
a,B#n+1 1,5 ,J a,B#n+1 4,5
We choose {e;} such that h?j“ = X;0;;. Then h"Jrl =\ i0i;, where )\ =)\ %

We have the following estimates.

Y (Shthg) = Y (SAke)

a#n+1 7 a#n+1 i

(4.10) <4(Zj\?)( > 2(53)2)

a#n+1l 1

=4l Au? Y Y (h3)°

a#n+1l 1
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Y (S h i)

a#n+1 i,j P

=4 ) Y (= A)%(hg)?

a#n+1 i#£j

=4 Y > (=)0
a#n+1 i#£j

(4.11) <8 Y DA+ A(h)?

aF#En+1 i#£j

<sldp > N (he)?

a#n+1 i#j
=S| Au (|42 = Y D).

a#n+1 1
<8|Ay|?| A

By Theorem 1 in [22], we have

—2 Y (Shi) -2 X Z(thjhﬁfh?phfa)-

a,f#En+1 4j a,B#En+1 4]
-2 Y [w(AvAP)P -2 Y N(A*AP - AP A
a,B#n+1 a,B#n+1

(412) > —3lA[%

Putting (4.4), (4.9), (4.10), (4.11) and (4.12) together, we obtain

LIAP? 22|VAP + |AP? = 2|Ap|" — Z|H[*|Ar|® - 8| Au|*|Ar]* — 3| A"
(4.13) o
22 VAP +[A]? = 4JA[ = ~|H[*| Ay

From (4.5) and (4.13), we always have the following estimate.

(4.14) LIAP? = 2|VA]? + A2 — 4]A* - %|H|2|fl\2.
Now we give the proof of Theorem 1.5.

Proof. Set f. = [|A]> 4+ npe?] for a constant € > 0. Then we have

IVAP? > V£

For the proof one can see [31]. From (4.14) we have

o o 2 o
(4.15) Lf2 2 2V L + AP = 4]A[ = ~[H[*| A"
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Multiplying both 51des of (4.15) by ¢2f"~2 and integrating by parts with respect

to the measure e~ 1 du on M give

g _IFI? : n—go _1E
022 [ (VaPe e T [ APs ey
M M
. o _1FI2 2 n 12
—a [ are e a2 [ gpiape W au
M nJm
_ Lol
Gl TEL(f2)e” T dp
M
—9 VF 242 fn—2 —%d Al2g2 fn—2 —%d
- ‘ f6| ¢rf5 € M+ ‘ | ¢7‘f5 € /1’
M M
. o _r? 2 n
R
M nJm

F|?

+ [ (VRGN
M

2(n=1) [ IVEPa e e [ ARG e W
—4/ |A[*¢2 fr=2 e u—*/ o7 [P HPe _7du
+4/ 67UV E Ve du

>(2tn 1= %) [ wnpere s [ 1Apae

2 M o
a4 dpg e a2 [ grprimpe
+(4+0) / & f2HV [, Vr)e —*du——/ FEV . Pe”

Here o,p € RT.
As (3.16), we have

n 2
V(oS3 = F2196,2 4 no f27 (Vo V1) + 022 VLI

Pick o, p > 0 such that 2(n — 1) — @ = "Z. Then we get

0>< /|V ¢Tf€ |2 _7dﬂ_7/ ¢r Vfaav¢r> FPdU

_7/ £2190 e ) + / AP 25 dp
n M "
, Ly .
L T R
o nJm
+a/ O [P UV fo, Vr)e EW@'QQ,Td

/ V(12 6) 2 F du — ( )/ fHV e, [Pe

+ [ AR e S au—a [ (Apes ’7du—*/ G2 o1 e dp.
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From [14], we have

M|V(¢Tf§ IQdu / |V fe ¢r ‘2 — 4 M—*/ ¢ n FN ) _7du
+*/ S M—f/ G2 ET e d
4 M
<[ Voo Fau g [ apippe %
M o

2
w4 [ orpre Fan
4 S
Then we have

o o |FI? a n _Ir2
2 [ st Folau 5 / S EPe 4y

,,/ o2 fre= " ap - ( >/ Ve dp

/|A|<Z> J s 4/ A2 fr=2e= 5y

—f/ o7 I H e

(n—2)%
ZIn(n — D)1+ 0

o (n —2)%0 9 o, _IPI2
- nH
Jr(271 4dnd(n — 1)t )/¢f| e
_g 2 e _ -0 v / n 5 _1EIZ
o[ e o (LT 0) [ rve e
/"12211727%(1 4 A4gn,2,&d
+ | [AFerfi e 1 |A|" ¢ f2 -
M M
Letting € — 0, we obtain

(n—2)% n LEE
4dn(n — )2D2( )(1+t)||¢| | ||

—2

0>

_ 4 2 n+2 — =
( - )/ APIVo e F 4 [ i an

Since Hy := sup,, |H| < /%, for any 5 € (0, H2) from the inequality above we get

(n—2)% -
0> Emma g erAre
o (n—2)%c 2
(%‘M—ﬂ)/ Q2P| H e~ dp

+ (1= - om3) [ oarea
4 M
4—0 o S in _1r? finge 02
‘( 2 +)/ A" [Ver[*e™ du—4/ A2 e T dp.
P n M M
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Nowweletlf%angz()andﬁ7%7%+n:O.Thenwehave
0o (-2 (1 —nHg)n(1 - 2Hg) ‘

° 2
GEAI"e |

“dn(n —1)2D2(n) (1 — 2HE) + c(n)(1 — nHE)

o 2 4_ i ,

e S (7 0) [ rwe e o
M 7))

n
n—2

2p
Here ¢(n) = % By the Cauchy inequality, we have
‘i _r? o m _LFIZ .
[areae aus |loare || oy - l4r]y
Hence
0> (n72)2 (1_77Hg)77(1_%H02) 4 /‘i 2 2;1” ,¥
= _12D2()' 1_2H2 1— Hgi H ||n ¢r‘ |€ e
n(n —1) n) n( ~Hg) + c(n)(1 — nHg) 73
4— o 2
- 747 / A"V, |2e T dp.
2p n M
Vd

The above inequality holds for any 1 € (0, 4=). Let n = no = no(Ho) = 7= - va
0 0
with d = d(Hy) = —2"); . Then we get

- —
HZ n

. < _LFI2 4—0 0o Sin _IF2
0> (4000 oA )21 Ly~ (1574 D) [ YAV e
P N)JIm

where
(n—2)? (1 —noHE)no(1 — 2H3)

n ’= ' '
D(n, Hy) dn(n —1)2D2(n) no(1— 2HZ) + c(n)(1 — noHg)

By direct computation, 4,;7‘7 + 2 has an upper bounded E(n) that depends only
on n. Since |[V¢,| < 2 and [, |A|"dp < oo, we have

: 11n 2 ——‘F‘z
lim / |A"| V@, |e” = du = 0.
T—>00 M
If ||A]|, < D(n, Hp), then we get

2> 0.
n
n—2

2 inz\ 21 i —E2
0> (Din, Ho)? = ||AI2) Tim |[o2|A]"e= |

|F|2

Hence H|A|”e‘T|H = 0, which implies that A = 0 and M is isometric to R™ or

S™(v/2n). Since we have assumed that sup,, |[H| < /%, the second case is excluded.
This completes the proof of the theorem. O

5. SELF-SHRINKERS WITH PARALLEL NORMALIZED MEAN CURVATURE VECTOR

In this section, we assume that the mean curvature of the self-shrinker M is
nowhere vanishing and the normalized mean curvature vector is parallel in the
normal bundle. To prove our results, we need the following theorem proved by
Smoczyk [27].

Theorem 5.1 ([27]). Let F : M™ — R"™P be a closed self-shrinker of the mean
curvature flow. Then M is a minimal submanifold of the sphere S*TP~1(\/2n) if
and only if H # 0 and % 1s parallel in the normal bundle.

We will use Theorem 5.1 to prove Theorem 1.8.
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Proof. (1) From the assumption and Theorem 5.1, we see that M is a minimal
submanifold of the sphere S"*7~1(y/2n) C R™P. Let A and H denote the second
fundamental form and mean curvature vector of M in S**P~1(1/2n). Then by the
Gauss equation, we have

n—1

+[H? — AP = |H]* — AP

For H and H, we have the relation |H|?> = |H|? + 2. Substituting this to the
equality above we get

(5.1) AP = AP,

Here A is the tracefree second fundamental form of M in S"tP=1(y/2n). Since

M is minimal in S*t?~1(v/2n), we get |A|?> = |A|2. Hence the pinching condition
assumption is equivalent to )
3
Then from the intrinsic rigidity theorem in [22], we see that either M is the totally
geodesic sphere S"(v/2n) in S"*P~1(y/2n), or n = 2 and M is the Veronese surface
S%(2v3) — S*(2) C R® C R**P.

(2) From the assumption and Theorem 5.1, we see that M is a minimal subman-
ifold of the sphere S'*7(2) C R**?. Hence the second fundamental form A of M in
S'*P(2) satisfies

AP? <

1 < 5

- < AP < =,

37 V}' 12
Then by Theorem C in [19], either |A]*> = § and M = S?(2V3) — $*(2) C
SH*P(2) ¢ R**P, or |A]? = Z and M = S*(2V6) — S%(2) C S'*P(2) c R+,

Here S?(21/6) — S%(2) is a canonical immersion, see [19)].

(3) From the assumption and Theorem 5.1, we see that M is a minimal hypersur-
face of the sphere S"*1(1/2n) with second fundamental form A satisfying |4|? < 1.
Then by the rigidity theorem in [20], either M is totally geodesic, or M is one of
the Clifford hypersurfaces S¥(v/2k) x S"~%(y/2(n — k)) in S"*'(v/2n) c R™+2,

(4) From the assumption and Theorem 5.1, M is a minimal submanifold of the
sphere S"*1(v/2n) with second fundamental form A . Then by the gap theorem in
[12], there is a positive constant d(n) depending only on n such that if 1 < |A]? <
1 +6(n), then M is one of the Clifford hypersurfaces S*(v/2k) x S*~*#(,/2(n — k))
in S"T1(v2n) CR"™2 1<k <n—1. O

At the end of this section, we present the following theorem for 2-dimensional
self-shrinkers.

Theorem 5.2. Let F : M? — R?**P (p > 2) be a 2-dimensional closed self-shrinker
of the mean curvature flow. Suppose the mean curvature is nowhere vanishing and
the normalized mean curvature vector is parallel in the normal bundle.

(i) If the genus of M is zero and the group of isometries of the induced metric
on M contains a non-trivial 1-parameter subgroup, and if for some integer s > 1,
the Gaussian curvature K satisfies

K<
2(s+1)(s+2) 2s(s+1)
thensz OTK:m.

(ii) If p = 2 and the genus of M is zero, then M is S?(2) C S?(2) C R%.
(ii5) If p = 2, M is embedded and the genus of M is one, then M is S*(v/2) x
SY(v2) C S*(2) c R*.
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Proof. The proof is just a combination of Theorem 5.1 and the rigidity theorems
for minimal surfaces in spheres in [2, 3, 4]. O

It is an interesting question that if the conditions that the mean curvature is
nowhere vanishing and the normalized mean curvature vector is parallel in the
theorems proved in this section could be removed.
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